MTH 510

Chapter 8 Notes

The definition of determinant of a matrix is given in 10.25. Recall

Proposition 1 (from MTH 210). Let A, B be n x n matrices. Then

(1) det(AB) = det(A) det(B).
2) A is invertible if and only if det A 7é 0.
3) If A is invertible then det A~1 =

(
(
(4) If A is triangular then det A equals the product of the diagonal entries.
(5) If A is invertible then det(A~'BA) = det B.

Assume V is finite dimensional. Let T € £(V). Define det T" := det M (T, B), where
B is any basis for V' (it follows from Part 5 that any basis will do). The characteristic
polynomial pr(z) of T is defined to be det(z/ — T'). Note degpr(z) = dim V.

Theorem 2. Let T € L(V'). Then the roots of pr(x) are precisely the eigenvalues of
T.

An eigenvalue A of T' is said to have multiplicity m if A has multiplicity m as a root
of pr(z). We let mz(X) denote the multiplicity of .

Proposition 3. Suppose T € L(V') has a triangular matriz with respect to some
basis. If the diagonal entries of the matriz are dy, . .., d,, where n = dim V', then

pr(z) =(x —dy)...(x —d,).
Theorem 4 (Cayley-Hamilton). For all T € L(V), pr(T) = 0.

Proposition 5. If T' € L(V) has a diagonal matriz with respect to some basis then
for all eigenvalues A,

mp () = dimnull(T — ).
Theorem 6. Let T' € L(V) and let X\ be an eigenvalue of T'. Then
mp(A) = dimnull((T — AXI)3™VY).

The set null((T — X\ )4™V) is a subspace of V' called the space of generalized eigen-
vectors corresponding to A\. An operator is called nilpotent if some power of it equals

0.
Proposition 7. Let T € L(V') and let X be an eigenvalue of T. Then
(1) U :=null((T — M4V 4s T-invariant.

(2) (T = MI)|y is nilpotent.
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Theorem 8 (Decomposition Theorem - see Th. 8.23). Suppose T' € L(V') is such
that pr(z) factors into linear factors. Let Ay, ..., A\, be the distinct eigenvalues of T
and let Uy, ..., U,, be the corresponding spaces of generalized eigenvectors. Then

V=U& - @U,.

It follows from the Decomposition Theorem and the fact that each U; is T-invariant
that if B is the basis obtained by concatenating the bases B, ..., B,,, where B; is any
basis for U;, then M (T, B) is block diagonal with diagonal blocks
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We can use the fact that each (T'—\;1)|y, is nilpotent to choose the basis B; so that the
diagonal blocks have a nice form. Indeed, from Lemma 8.26 and the Decomposition
Theorem we get,

Theorem 9 (see Th. 8.28). Suppose T' € L(V') is such that pr(z) factors into linear
factors. Let N\, ..., A\, be the distinct eigenvalues of T'. Then there is a basis B for V.
such that M(T, B) is block diagonal with diagonal blocks Ay, ..., Am, where A; is an
mr () X mp(N;) upper triangular matriz with diagonal entries equal to \; for each i.

The following strengthening of Lemma 8.26 can be used to improve Theorem 9.

Lemma 10. Let N be a nilpotent operator on V. Then there is a basis B of V' such
that M(N, B) is a block diagonal matriz with diagonal blocks Ay, ..., Aq, where A; is
of the form

0 1 0
1
0 0

and d = dimnullV.

A Jordan block is a matrix of the form

Al 0
o1
0 A

A block diagonal matrix is said to be in Jordan form if each diagonal block is a Jordan
block. In class I gave the following example of a matrix in Jordan form

A 0 0 O
0 A 0 O
0 0 A3 O

0 0 0 A



21000

4 10 41 02100

where Al =10 4 1 y A2 = |:O 4:|7 Ag = [7], A4 =10 0 2 1 0
0 0 4 000 21

0000 2

Now the Decomposition Theorem and Lemma 10 yield,

Theorem 11. Suppose T' € L(V') is such that pr(z) factors into linear factors. Then
there exists a basis B of V' such that M(T, B) is in Jordan form. Moreover the number
of Jordan blocks with A on the diagonal is dim null(T" — \I).

Theorem 12. The Jordan form of T € L(V) is unique up to rearrangement of the
Jordan blocks.



