MTH 510

Chapter 8 Notes

The definition of determinant of a matrix is given in 10.25. Recall

Proposition 1 (from MTH 210). Let A, B be $n \times n$ matrices. Then

- (1) $\det(AB) = \det(A) \det(B)$.
- (2) A is invertible if and only if det $A \neq 0$.
- (3) If A is invertible then det A⁻¹ = 1/det A.
 (4) If A is triangular then det A equals the product of the diagonal entries.
- (5) If A is invertible then $det(A^{-1}BA) = det B$.

Assume V is finite dimensional. Let $T \in \mathcal{L}(V)$. Define det $T := \det \mathcal{M}(T, \mathcal{B})$, where \mathcal{B} is any basis for V (it follows from Part 5 that any basis will do). The characteristic polynomial $p_T(x)$ of T is defined to be det(xI - T). Note $deg p_T(x) = \dim V$.

Theorem 2. Let $T \in \mathcal{L}(V)$. Then the roots of $p_T(x)$ are precisely the eigenvalues of T.

An eigenvalue λ of T is said to have multiplicity m if λ has multiplicity m as a root of $p_T(x)$. We let $m_T(\lambda)$ denote the multiplicity of λ .

Proposition 3. Suppose $T \in \mathcal{L}(V)$ has a triangular matrix with respect to some basis. If the diagonal entries of the matrix are d_1, \ldots, d_n , where $n = \dim V$, then

$$p_T(x) = (x - d_1) \dots (x - d_n).$$

Theorem 4 (Cayley-Hamilton). For all $T \in \mathcal{L}(V)$, $p_T(T) = 0$.

Proposition 5. If $T \in \mathcal{L}(V)$ has a diagonal matrix with respect to some basis then for all eigenvalues λ ,

$$m_T(\lambda) = \dim \operatorname{null}(T - \lambda I).$$

Theorem 6. Let $T \in \mathcal{L}(V)$ and let λ be an eigenvalue of T. Then

$$m_T(\lambda) = \dim \operatorname{null}((T - \lambda I)^{\dim V})$$

The set $\operatorname{null}((T - \lambda I)^{\dim V})$ is a subspace of V called the space of generalized eigen*vectors* corresponding to λ . An operator is called *nilpotent* if some power of it equals 0.

Proposition 7. Let $T \in \mathcal{L}(V)$ and let λ be an eigenvalue of T. Then

- (1) $U := \operatorname{null}((T \lambda I)^{\dim V})$ is T-invariant.
- (2) $(T \lambda I)|_U$ is nilpotent.

2

Theorem 8 (Decomposition Theorem - see Th. 8.23). Suppose $T \in \mathcal{L}(V)$ is such that $p_T(x)$ factors into linear factors. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T and let U_1, \ldots, U_m be the corresponding spaces of generalized eigenvectors. Then

$$V = U_1 \oplus \cdots \oplus U_m.$$

It follows from the Decomposition Theorem and the fact that each U_i is *T*-invariant that if \mathcal{B} is the basis obtained by concatenating the bases $\mathcal{B}_1, \ldots, \mathcal{B}_m$, where \mathcal{B}_i is any basis for U_i , then $\mathcal{M}(T, \mathcal{B})$ is block diagonal with diagonal blocks

$$\mathcal{M}(T|_{U_1}, \mathcal{B}_1), \ldots, \mathcal{M}(T|_{U_m}, \mathcal{B}_m).$$

We can use the fact that each $(T - \lambda_i I)|_{U_i}$ is nilpotent to choose the basis \mathcal{B}_i so that the diagonal blocks have a nice form. Indeed, from Lemma 8.26 and the Decomposition Theorem we get,

Theorem 9 (see Th. 8.28). Suppose $T \in \mathcal{L}(V)$ is such that $p_T(x)$ factors into linear factors. Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T. Then there is a basis \mathcal{B} for V such that $\mathcal{M}(T, \mathcal{B})$ is block diagonal with diagonal blocks A_1, \ldots, A_m , where A_i is an $m_T(\lambda_i) \times m_T(\lambda_i)$ upper triangular matrix with diagonal entries equal to λ_i for each i.

The following strengthening of Lemma 8.26 can be used to improve Theorem 9.

Lemma 10. Let N be a nilpotent operator on V. Then there is a basis \mathcal{B} of V such that $\mathcal{M}(N, \mathcal{B})$ is a block diagonal matrix with diagonal blocks A_1, \ldots, A_d , where A_i is of the form

$$\begin{bmatrix} 0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & 0 \end{bmatrix}$$

and $d = \dim \operatorname{null} N$.

A Jordan block is a matrix of the form

$$\begin{bmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{bmatrix}$$

A block diagonal matrix is said to be in *Jordan form* if each diagonal block is a Jordan block. In class I gave the following example of a matrix in Jordan form

$$\begin{bmatrix} A_1 & 0 & 0 & 0 \\ 0 & A_2 & 0 & 0 \\ 0 & 0 & A_3 & 0 \\ 0 & 0 & 0 & A_4 \end{bmatrix}$$

where
$$A_1 = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 4 & 1 \\ 0 & 4 \end{bmatrix}$, $A_3 = [7]$, $A_4 = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$

Now the Decomposition Theorem and Lemma 10 yield,

Theorem 11. Suppose $T \in \mathcal{L}(V)$ is such that $p_T(x)$ factors into linear factors. Then there exists a basis \mathcal{B} of V such that $\mathcal{M}(T, \mathcal{B})$ is in Jordan form. Moreover the number of Jordan blocks with λ on the diagonal is dim null $(T - \lambda I)$.

Theorem 12. The Jordan form of $T \in \mathcal{L}(V)$ is unique up to rearrangement of the Jordan blocks.