
MTH 510

Chapter 8 Notes

The definition of determinant of a matrix is given in 10.25. Recall

Proposition 1 (from MTH 210). Let A, B be n× n matrices. Then

(1) det(AB) = det(A) det(B).
(2) A is invertible if and only if detA 6= 0.
(3) If A is invertible then detA−1 = 1

det A
.

(4) If A is triangular then detA equals the product of the diagonal entries.
(5) If A is invertible then det(A−1BA) = detB.

Assume V is finite dimensional. Let T ∈ L(V ). Define detT := detM(T,B), where
B is any basis for V (it follows from Part 5 that any basis will do). The characteristic
polynomial pT (x) of T is defined to be det(xI − T ). Note deg pT (x) = dimV .

Theorem 2. Let T ∈ L(V ). Then the roots of pT (x) are precisely the eigenvalues of
T .

An eigenvalue λ of T is said to have multiplicity m if λ has multiplicity m as a root
of pT (x). We let mT (λ) denote the multiplicity of λ.

Proposition 3. Suppose T ∈ L(V ) has a triangular matrix with respect to some
basis. If the diagonal entries of the matrix are d1, . . . , dn, where n = dimV , then

pT (x) = (x− d1) . . . (x− dn).

Theorem 4 (Cayley-Hamilton). For all T ∈ L(V ), pT (T ) = 0.

Proposition 5. If T ∈ L(V ) has a diagonal matrix with respect to some basis then
for all eigenvalues λ,

mT (λ) = dim null(T − λI).

Theorem 6. Let T ∈ L(V ) and let λ be an eigenvalue of T . Then

mT (λ) = dim null((T − λI)dim V ).

The set null((T −λI)dim V ) is a subspace of V called the space of generalized eigen-
vectors corresponding to λ. An operator is called nilpotent if some power of it equals
0.

Proposition 7. Let T ∈ L(V ) and let λ be an eigenvalue of T . Then

(1) U := null((T − λI)dim V ) is T -invariant.
(2) (T − λI)|U is nilpotent.
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Theorem 8 (Decomposition Theorem - see Th. 8.23). Suppose T ∈ L(V ) is such
that pT (x) factors into linear factors. Let λ1, . . . , λm be the distinct eigenvalues of T
and let U1, . . . , Um be the corresponding spaces of generalized eigenvectors. Then

V = U1 ⊕ · · · ⊕ Um.

It follows from the Decomposition Theorem and the fact that each Ui is T -invariant
that if B is the basis obtained by concatenating the bases B1, . . . ,Bm, where Bi is any
basis for Ui, then M(T,B) is block diagonal with diagonal blocks

M(T |U1 ,B1), . . . ,M(T |Um ,Bm).

We can use the fact that each (T−λiI)|Ui
is nilpotent to choose the basis Bi so that the

diagonal blocks have a nice form. Indeed, from Lemma 8.26 and the Decomposition
Theorem we get,

Theorem 9 (see Th. 8.28). Suppose T ∈ L(V ) is such that pT (x) factors into linear
factors. Let λ1, . . . , λm be the distinct eigenvalues of T . Then there is a basis B for V
such that M(T,B) is block diagonal with diagonal blocks A1, . . . , Am, where Ai is an
mT (λi)×mT (λi) upper triangular matrix with diagonal entries equal to λi for each i.

The following strengthening of Lemma 8.26 can be used to improve Theorem 9.

Lemma 10. Let N be a nilpotent operator on V . Then there is a basis B of V such
thatM(N,B) is a block diagonal matrix with diagonal blocks A1, . . . , Ad, where Ai is
of the form 

0 1 0
. . . . . .

. . . 1
0 0


and d = dim nullN .

A Jordan block is a matrix of the form
λ 1 0

. . . . . .
. . . 1

0 λ


A block diagonal matrix is said to be in Jordan form if each diagonal block is a Jordan
block. In class I gave the following example of a matrix in Jordan form

A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4





3

where A1 =

4 1 0
0 4 1
0 0 4

, A2 =

[
4 1
0 4

]
, A3 = [7], A4 =


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2


Now the Decomposition Theorem and Lemma 10 yield,

Theorem 11. Suppose T ∈ L(V ) is such that pT (x) factors into linear factors. Then
there exists a basis B of V such thatM(T,B) is in Jordan form. Moreover the number
of Jordan blocks with λ on the diagonal is dim null(T − λI).

Theorem 12. The Jordan form of T ∈ L(V ) is unique up to rearrangement of the
Jordan blocks.


