МТН 309

Additional Problems for Section 4.3

1. Recall the following theorem discussed in class:

Theorem 1 Let $a \in \mathbb{Z}_{m}$. Then a has a multiplicative inverse $\bmod m$ if and only if $\operatorname{gcd}(a, m)=1$.
(a) Use the theorem to find the elements of \mathbb{Z}_{12} that have a multiplicative inverse $\bmod 12$. Determine the multiplicative inverse for each of these elements.
(b) Use the theorem to find the elements of \mathbb{Z}_{15} that have a multiplicative inverse mod 15. Determine the multiplicative inverse for each of these elements.
2. Prove the following theorem

Theorem 2 Let $a, b \in \mathbb{Z}^{+}$. If $d \mid a$ and $d \mid b$ then $d \mid \operatorname{gcd}(a, b)$
3. Let m and n be relatively prime and let $a, b \in \mathbb{Z}$. Prove
(a) If $m \mid a$ and $n \mid a$ then $m n \mid a$
(b) If $a \equiv b(\bmod m)$ and $a \equiv b(\bmod n)$ then $a \equiv b(\bmod m n)$
(c) Show that (a) and (b) are false without the assumption that m and n are relatively prime.

