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Abstract6

Zika virus (ZIKV) disease outbreaks occurred in French Polynesia in 2013-20147

and in Brazil and Colombia in 2015-2016, respectively. Using our recently developed8

ZIKV disease model, we simulated the reported ZIKV infection cases from French9

Polynesia, Colombia and the State of Bahia of Brazil. Moreover, we estimated that10

the infection attack rates were 78.0% (95% confidence interval (CI): 63.5-86.3%)11

in French Polynesia which closely matches the previous serological study; 20.8%12

(95% CI: 1.1-50.0%) in Colombia which suggests that the attack rate was most13

likely less than 50%; and 32.4% (95% CI: 2.5-94.2%) in the State of Bahia in Brazil14

which suggests that the attack rate is unidentifiable with monthly data in Bahia.15

Furthermore, we found that the association of precipitation and ZIKV outbreak was16

more evident in Colombia than the other two places. These results are helpful for us17

to understand the possible evolution, to control the on-going outbreaks, to prevent18

the potential geographic spread, and to study the ecological and epidemiological19

characteristics of ZIKV.20
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Introduction21

An outbreak of Zika virus (ZIKV) hit French Polynesia in 2013-14 with more than 32,00022

suspected cases ([1, 2, 4]). In a serological survey, Cauchemez et al. [4] estimated that23

the infection attack rate of ZIKV among the 6-16 years old in French Polynesia was24

66% (95% confidence interval (CI): 62-70%), compared to an overall infection attack rate25

94% (95% CI: 91-97%) obtained in [5] by fitting a compartmental model to the weekly26

cases (26 weeks) from six major archipelagos in French Polynesia. Even though the27

incidence rate among children seems significantly lower than adults (see Figure 2 in the28

Zika Epidemiological Report [7]), the discrepancy between the two estimates seems too29

large to reconcile.30

In May 2015, a ZIKV outbreak in Brazil was first reported in the State of Bahia31

(Campos et al. [8]). ZIKV subsequently spread to other states in Brazil as well as other32

countries and territories in the Americas, including Colombia [9, 6]. Data from the State33

of Pernambuco suggested that there were two waves of infection in Brazil. Apparently,34

the wave in early 2015 resulted in an observable number of microcephaly cases. Figure35

1 presents the ZIKV and microcephaly cases from French Polynesia, states of Bahia36

and Pernambuco in Brazil, and Colombia. As of October 6, 2016, 196,976 and 95,41237

suspected ZIKV infection cases had been reported in Brazil and Colombia, respectively38

([6]). Majumder et al. [10] presented a study to estimate the reproductive number of39

ZIKV epidemics in Colombia and obtained a basic reproductive number between 2.5640

and 4.82. Towers et al. [11] used a compartmental model to fit the 2015 ZIKV epidemic41

data in Barranquilla, Colombia and estimated that R0 = 4.4 (95% CI: 3.0-6.2) by Monte42

Carlo iteration. A recent review [16] reported that the infection attack rate of ZIKV43

epidemic in the State of Bahia, Brazil up to the end of 2015 was larger than 2.5%.44

There are various epidemiological studies on ZIKV outbreaks in other regions. Duffy45

et al. [12] conducted a serological study on the 2007 Yap Island ZIKV outbreak and46

reported that 73% (95% CI: 68-77%) of population (age>3 years) were infected during47
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the epidemic. Funk et al. [13] built a compartmental model to investigate the 2007 ZIKV48

outbreak in Yap and inferred that the reporting rate was 3% (95% CI: 2-7%) andR0 = 4.349

(95% CI: 3.1-6.1). Ellington et al. [14] estimated that the total infected ratio of ZIKV50

outbreak in Puerto Rico in 2016 was 25% with a range 10%-70% by applying triangular51

distribution based on blood donor data for chikungunya.52

All the above mentioned studies were based on single ZIKV outbreaks. Since the ZIKV53

strains of some outbreaks were related ([22, 15]), in this paper we will compare different54

outbreaks in order to understand the common as well as distinct epidemiological factors55

of ZIKV. These results will be helpful to study the evolution of ZIKV.56

Seasonal drought periods have been associated with past West Nile virus (WNV)57

outbreaks ([17]). Widespread drought in the spring followed by wetting during summer58

greatly increases the probability of a WNV epidemic in Florida ([19]) and New Jersey59

([18]). To describe drought, Shaman et al. [19] used mean area water table depth (a60

measure of local land surface wetness) and Wang et al. [20] used mean annual precipita-61

tion. Johnson and Sukhdeo ([18]) observed that early seasonal drought conditions (i.e.,62

increased temperatures and decreased precipitation totals) are strongly associated with63

increases in yearly WNV infection rates in Culex spp. in New Jersey. Nevertheless, there64

are few studies relating the precipitation data with mosquito-borne disease data.65

In our recent report [21], a mathematical model was proposed to investigate the impact66

of mosquito-borne and sexual transmissions on the spread and control of ZIKV. Statis-67

tically, it was estimated that sexual transmission contributes 3.044% (95% CI: 0.123-68

45.73%) in the basic reproduction number and 4.437% (95% CI: 0.297-23.02%) in the69

attack rate. We also calibrated the model to the ZIKV epidemic data from Brazil, Colom-70

bia, and El Salvador, respectively. However, the data we used were only up to February71

2016.72

Now the one-year Zika virus infection datasets from both Brazil and Colombia [6]73

are avaliable, which are comparable to the dataset from the 2013-14 French Polynesia74

outbreak. We apply our recent modeling framework [21] to simulate the weekly ZIKV75
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cases (confirmed and suspected) from August 2013 to May 2014 in French Polynesia [2, 4],76

from August 2015 to May 2016 in Colombia, and from February 2015 to February 2016 in77

the state of Bahia in Brazil [6]. The goal is to study the overall trend, common features,78

and distinct characteristics of ZIKV in these three outbreaks and to determine the effect79

of precipitation.80

Data81

From Figure 1, we can see that these ZIKV outbreaks reached their peaks in the begin-82

ning (or the first half) of a year. The population standardized incidence rates (cases per83

1 million population) in Brazil and Colombia were smaller than that in French Polynesia.84

Data from the State of Pernambuco suggest that two ZIKV waves have occurred. The85

first wave seems highly under-reported, given the large amount of microcephaly cases re-86

ported there during the second wave and the substantial ZIKV wave in the State of Bahia87

in Brazil in early 2015, and the geographically adjacent relationship between Pernambuco88

and Bahia. The microcephaly rate is about 10 times higher in Pernambuco than in Bahia89

provided that the testing policies were similar in these two states. Thus, we would sus-90

pect that the early 2015 ZIKV incidence rate in Pernambuco should be 10 times high as91

in Bahia, if the risk of microcephaly due to ZIKV infection were the same in these two92

states. In late 2015, the testing effort was most likely strengthened in Pernambuco. In93

the following section, we use our model to fit the data from French Polynesia, the State94

of Bahia in Brazil and Colombia.95

The French Polynesia wave and Colombia wave occurred roughly in the same time of96

a year, and both data are weekly. Thus we fit the two time series simultaneously in one97

framework to maximize the ratio of the data size to the number of model parameters.98

Since the Bahia data are monthly, we fit the data separately under the same assumption99

on mosquito abundance.100
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Figure 1: Scaled ZKIV cases and microcephaly cases. ZIKV data from French Polynesia
(November 2015 to May 2015), the States of Bahia (February 2015 to February 2016)
and Pernambuco (March-April 2015, November 2015 to April 2016) in Brazil, Colombia
(August 2015 to June 2016), and microcephaly data from Bahia (July 2015 to February
2016) and Pernambuco (August 2015 - April 2016). All data are weekly except for the
State of Bahia in Brazil, which were monthly and had been scaled by 1/4.25 to make them
comparable. All time series are scaled by their respective population sizes. Microcephaly
data for Colombia are not available.
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Methods101

Differed from [5], we considered a time-dependent mosquito abundance which is more102

biologically realistic. Thus the instantaneous reproductive number is also time-dependent.103

Specifically, we assumed that the mosquito abundance contains two parts, a common104

trend and a distinct component associated with meteorological conditions. Given that the105

ZIKV lineages are the same in these outbreaks [15], we assumed that the parameters and106

quantities are the same except for the population sizes, initial conditions, reporting ratio107

(due to different surveillance systems and health policies) and meteorological parameters.108

The common trend could be due to any other natural or human caused effects on mosquito109

population. We reduced the number of parameters by using a common trend. But we110

did not use the same trend in Bahia since the data are monthly, rather than weekly as in111

French Polynesia and Colombia.112

We assumed that the mosquito abundance is time-varying by setting its ratio to the

human population as m(t). Moreover, to represent the local environmental conditions for

a specific region, this ratio is assumed to have two components

m(t) = mcomm(t) + ξipi(t),

where mcomm(t) is the common flexible component (in the form of exponential of a cubic113

spline function) and pi(t) is the local precipitation with a parameter ξi. We assumed that114

French Polynesia and Colombia share a common component with nm nodes which are115

evenly distributed over the time duration. Following the steps in [21], we first found the116

optimal flexibility in the common trend (number of nodes in the cubic spline, nm). Then117

we obtained the maximum log-likelihood estimates for the reproduction number, reporting118

ratio, and infection attack rate with the fixed nm. The reporting ratio is defined as the119

proportion of symptomatic cases that were reported, and the infection attack rate is120

defined as the proportion of population that were infected during the outbreak.121
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We downloaded monthly mean climatic data for the most populous city in each place122

(Tahiti in French Polynesia, Bogota in Colombia, Salvador for Bahia) from www.bbc.123

com/weather/. Since the seasonal fluctuations in temperature were much milder than in124

precipitation, we only focused on precipitation in this work. We used the loess function125

(Local Polynomial Regression Fitting) in R to convert monthly precipitation data to daily126

data and then incorporated the daily precipitation into our model simulations. Our model127

was simulated with a fixed step-size of 1 day using the Euler-multinomial integration128

method [23].129
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Results130

We used our mathematical model (Gao et al. [21]) to simulate the reported ZIKV131

cases from French Polynesia in 2013-14 (Figure 2(a)), Colombia in 2015-16 (Figure 2(b))132

and the State of Bahia in Brazil in 2015-2016 (Figure 2(c)). We found that the model133

simulations for French Polynesia and Colombia attain the smallest BIC at nm = 3 (see134

inset panel of Figure 2 (b)). While for the State of Bahia in Brazil, since the data are135

monthly, we used a separate mcomm(t), denoted as m̃comm(t), and ξbpb(t), and found that136

the State of Bahia in Brazil attains the smallest BIC at ñm = 4 (see inset panel of Figure 2137

(c)). We showed the maximum log-likelihood as a function of the precipitation parameter138

ξ and reporting ratio ρ in the three regions in Figures 3 and 4. The estimated ξ has139

wide confidence intervals (containing zero) in French Polynesia and Bahia which suggests140

that the effect of precipitation is indistinguishable in these two places. This is different141

from Colombia, where the confidence interval of ξ does not contain zero. The estimated142

reporting ratio is higher in French Polynesia with smaller confidence interval in French143

Polynesia than in the other two places.144
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Figure 2: Fitting model to ZIKV cases in (a) French Polynesia in 2013-14; (b) Colom-
bia in 2015-16; and (c) the State of Bahia in Brazil in 2015-2016. Black circle curves
represent observed cases, red curves indicate the medians of 1000 simulations with esti-
mated parameters, the shaded regions are the 95% ranges, and blue dashed curves show
the estimated reproduction numbers. The insert shows the profile Bayesian Information
Criterion (BIC) as a function of the number of nodes in the mosquito abundance.
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Polynesia, ρf; (b) Colombia, ρc; and (c) the State of Bahia in Brazil, ρb, respectively. The
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We estimated an infection attack rate of 78.0% (95% CI: 63.5-86.3%) for French Poly-145

nesia which is largely in line with a previous estimate of 66% (95% CI: 62-70%) among146

6-16 years old children obtained by Cauchemez et al. [4]. According to [7], the ZIKV147

incidence rates are significantly lower among children (younger than 15 years old) than in148

adults, which could explain our slightly higher estimates. We also applied our framework149

to the weekly archipelago level data in French Polynesia, with the weekly proportion of150

stations reporting, and obtained reasonable attack rates as well, 71.3%(95% CI: 67.4-151

94.1%) in Tahiti, 70.1% (95%CI: 66.3-92.5%) in Ile Sous, and 62.5% (95%CI: 59.2-82.5%)152

in other four archipelagos.153

Not only our estimated attack rates are more reasonable, but also the goodness-of-fit

of our model works better than previous studies with the same number of parameters, see

Figure 5. This supports our estimates of other parameters. The estimated overall attack

rate in Colombia from August 2015 to May 2016 was 20.8% (95% CI: 1.1-50.3%) which

is substantially lower than that in the 2013-14 French Polynesia outbreak. Colombia has

a population size of 48 million and a birth rate of 0.0189 per capita. Since the reported

number of pregnant women infected with ZIKV as of the 33rd week of 2016 in Colombia

was 18,363 [7], if the population is completely homogeneous and 18% of the ZIKV-infected

pregnant women were detected [12], then the attack rate was approximately

1.8363/(0.0189× 4800)/0.18× 100% = 11.25%

which also indicates that the attack rate was low in Colombia. All other estimates (e.g.,154

reproductive number) and assumptions match previous studies [5].155

For comparison, we list the estimates of reporting ratios and infection attack rates156

with 95% confidence intervals of these regions in Table 1. The reporting ratio could be157

as high as our estimate and the data quality is guaranteed. The difference between our158

estimate and previous serological study (age 6-16 year) in French Polynesia could be due159

to lower incidence rate among children than the population mean incidence rate [7].160
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Table 1: Parameter estimates for French Polynesia, Colombia, and the State of Bahia in
Brazil. The 95% confidence intervals are given in the parentheses.

Region Population Reporting ratio ρi Infection attack rate Precip. ln ξi
French Polynesia 276,831 80.5% (72.8-100.0%) 78.0% (63.5-86.3%) -7.27 (-10,-3.36)

Colombia 48,000,000 5.1% (2.1-100.0%) 20.8% (1.1-50.3%) -2.82 (-4.38, -1.76)
Bahia Brazil 15,000,000 3.5% (2.7-100.0%) 32.4% (2.5-94.2%) -4.27 (-10, -2.91)

Tahiti 178,100 71.3% (67.4%, 94.1%)
Ile Sous 33,100 95.4% (70.9, 100.0%) 70.1% (66.3%, 92.5%) NA
Others 47,400 62.5% (59.2%, 82.5%)
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Discussion161

It is believed that the Brazil and Colombia ZIKV strain orignated from French Poly-162

nesia [22, 15]. All three outbreaks (French Polynesia, Colombia, the State of Bahia in163

Brazil) took off in a relatively dry season when the monthly precipitation was low. The164

seasonal fluctuations of the air temperature was much milder than the precipitation, thus165

we focused on precipitation only. Our flexible model framework allowed us to test the166

impact of precipitation on the transmission of ZIKV. We found that the effects of the167

precipitation on mosquito abundance (thus ZIKV transmission) are not consistent across168

the three places. The strongest impact occurred in Colombia.169

Since the effect of precipitation was not evident in French Polynesia, precipitation was170

not included in fitting regional level data. However, we took into account the weekly171

proportion of stations that reported cases as did in [5]. We achieved evidently better172

simulations (closer to observed cases with small confindence range) than in [5]. Moreover,173

our estimated attack rates are closer to previous serological study [4].174

Besides weekly (or monthly) ZIKV cases, other types of data (e.g., serological study)175

are needed to give more accurate estimate of the attack rate. At this stage, we can only176

conclude that the attack rates in Colombia and the State of Bahia in Brazil were most177

likely less than 50%.178

The estimates of the attack rates and reporting ratios are very crucial in studying the179

evolution of ZIKV and in assessing the severity of an outbreak. The low attack rate in180

Colombia implies that parts of population were not infected during the 2015-16 ZIKV181

outbreak, hence a second wave of the epidemic could sweep the country. The lower attack182

rate in Colombia could partly be due to higher altitude and cooler weather than the other183

places.184

To the best of our knowledge, this was the first attempt to fit these three outbreaks185

with a time-dependent mosquito abundance and to compare the ZIKV attack rates in186

these three regions. In the future, we believe that comprehensive studies on the bi-187
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ology/seasonality/distribution of mosquitoes in these places are needed, both directly188

on mosquitoes and indirectly through studies of other mosquito-borne diseases (such as189

dengue in these regions). The nonhomogeneities of incidence rates across gender and age190

also deserve further studies.191

References192

1. Cao-Lormeau, V.-M. et al. Zika virus, French Polynesia, South Pacific, 2013. Emerg.193

Infect. Dis. 20, 1085-1086 (2014).194

2. Cao-Lormeau, V.-M. et al. Guillain-Barré Syndrome outbreak associated with Zika195
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