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Abstract

Measles, a highly contagious infection caused by the measles virus, is a major public-health
problem in China. The reported measles cases decreased dramatically from 2004 to 2012 due to
the mandatory measles vaccine program started in 2005 and the goal of eliminating measles by
2012. However, after reaching its lowest level in 2012, measles has resurged again since 2013.
Since the monthly data of measles cases exhibit a seasonally fluctuating pattern, based on the
measles model in Earn et al. (Science 287 (2000), 667-670) we propose a susceptible, exposed,
infectious, and recovered (SEIR) model with periodic transmission rate to investigate the sea-
sonal measles epidemics and the effect of vaccination. We calculate the basic reproduction
number R0, analyze the dynamical behavior of the model, and use the model to simulate the
monthly data of measles cases reported in China. We also carry out some sensitivity analysis
of R0 in the terms of various model parameters which shows that measles can be controlled
and eventually eradicated by increasing the immunization rate, improving the effective vaccine
management, and enhancing the awareness of people about measles.

Key words: Measles · SEIR model · Basic reproduction number · Periodic solution ·
Vaccination

1 Introduction

Measles, a highly contagious disease caused by the measles virus, is spread by coughing and
sneezing via close interpersonal contact or direct contact with secretions. It is one of the leading
causes of death among young children globally, despite the availability of a safe and effective
vaccine. Approximately 134,200 people died from measles in 2015, mostly children under the age
of 5. Since there is no specific treatment for measles, routine measles vaccination for children is
the key public health strategy to prevent the disease (WHO [38]).

Measles virus continues to circulate and cause significant morbidity in China which accounts
for a large proportion of the measles cases reported in the Western Pacific Region (WHO [37]).
In 1978, China established the national Expanded Programme on Immunization and began to
implement a standard schedule for routine immunization that included a dose of measles vaccine
administered at 8 months of age. In 1986, a second routine dose of measles vaccine, at 7 years of
age, was recommended (Ma et al. [22]). The mean annual measles incidence reported in China
was 572.0/100,000 population in the 1960s, 355.3/100,000 population in the 1970s, 52.9/100,000
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population in the 1980s, and 7.6/100,000 population in the 1990s (Wang et al. [35]). A nationwide
measles supplementary immunization activity was conducted in 2010 and the incidence of measles
in mainland China subsequently reached its lowest reported level in 2012 (6,183 cases, 0.46/100,000
population). However, in 2013 a nationwide resurgence of measles occurred primarily among young,
unvaccinated children with 27,647 cases and an incidence rate 2.05/100,000 population, and in 2014
there were 52,628 cases and the incidence reached 3.88/100,000 population (National Health and
Family Planning Commission of PRC [26], Ma et al. [23]) (see Fig. 1.1). This outbreak was
believed to be a result of measles vaccination coverage gaps among young children and adults, and
insufficient hospital isolation of cases (Zheng et al. [44]).

(a)

(b)

Figure 1.1: The reported human measles (a) annual data and (b) monthly data in mainland China
from January 2004 to December 2016 (National Health and Family Planning Commission of PRC
[26]).

The transmission dynamics of measles epidemics have been extensively modeled and studied
(Measles is probably the first and the most studied infectious disease using mathematical models).
In 1906, Hamer [17] studied the regular occurrence of measles in London. In 1929, Soper [32]
was the first to propose a mathematical model to explain the periodic occurrence of measles. In
1957, Bartlett [5] observed that the number of localized extinctions of measles was related to
the population size of the community. Later, Bartlett [6] and Bolker and Grenfell [9] observed
that in small communities epidemics are often followed by extinction of disease as the chain of
transmission breaks down by mass vaccination. Bolker and Grenfell [7] and Keeling and Grenfell
[20] found that the critical community size above which measles can persist may depend on the
spatial structure and connectedness of the regional population. Many researchers have studied the
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periodic reoccurrence of measles which is believed to be strongly related to the seasonal forcing
(Bartlett [5], London and Yorke [21], Yorke and London [40], Anderson and May [1, 2], Hethcote
[18], Conlan and Grenfell [11]). In fact, sinusoidal functions have been extensively used to describe
the seasonal factor in modeling measles (Dietz [12], Schenzle [30], Bolker and Grenfell [7], Earn
et al. [13]). Various mathematical models have also been developed to study the transmission
dynamics of measles in different countries and regions (Bartlett [6], Bolker and Grenfell [9], Earn
et al. [13], Ferrari et al. [15], Mclean and Anderson [24], Pang et al. [27]).

Though measles is a serious public health problem, there are very few studies on modeling the
transmission dynamics of measles in China (Bai and Liu [4]). Since the monthly measles data from
China exhibit periodic pattern, in this paper we adapt the periodic measles model from Earn et
al. [13] to study the effect of vaccination and seasonality on the transmission dynamics of measles
and use the model to simulate the monthly data in China from January 2004 to December 2016.

The paper is organized as follows. In section 2 the periodic measles model will be introduced.
Mathematical analysis, including the boundedness of solutions, calculation of the basic reproduc-
tion number, global stability of the disease-free equilibrium, and existence of positive periodic
solutions, is carried out in section 3. Sensitivity analysis of the basic reproduction number and
simulation of the measles data from China are given in section 4. A brief discussion is presented
in section 5.

2 Mathematical Modeling

We denote the total numbers of humans by N(t) and classify human population into four sub-
classes: susceptible, exposed, infections and removed, with the numbers denoted by S(t), E(t), I(t)
and R(t) at time t, respectively. The transmission dynamics associated with these subpopulations
are illustrated in Fig. (2).

A(1−ρ)
y
S

β(t)SI−−−−→ E
σI−−−−→ I

γI−−−−→ R
Aρ←−−−−

µS

y µE

y µI

y µR

y
Figure 2.1: Flowchart of measles transmission in a population.

The transmission rate between S(t) and I(t) is described β(t). Since the monthly measles
data in China exhibit seasonal pattern, we use the periodic function β(t) = a[1 + b sin

(
π
6 t+ 8

)
]

to describe the transmission rate, where a is the baseline contact rate and b is the magnitude of
forcing (Dietz [12], Zhang et al. [42]). The birth numbers of humans per unit time are constant.
Natural death rate is µ. Based on the model in Earn et al. [13] with periodic transmission rate,
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we consider the following periodic measles model:

dS

dt
= A(1− ρ)− β(t)IS − µS,

dE

dt
= β(t)IS − (σ + µ)E,

dI

dt
= σE − (γ + µ)I,

dR

dt
= Aρ+ γI − µR,

(2.1)

where all parameters are positive constants and the interpretations and values are described in
Table 1.

Table 1: Parameters in model (2.1).

Para. Value Unit Interpretation Source

A 1.34 ×106 month−1 Human birth rate NBSC [25]
µ 0.00053 month−1 Human natural mortality rate NBSC [25]
i 0.5 month Human incubation period China CDC [10]
σ 2 month−1 1

i China CDC [10]
ρ 0.8216 month−1 Human vaccination rate Estimation
a 1.2527×10−9 none The baseline contact rate Estimation
b 0.3346 none The magnitude of forcing Estimation
j 0.6333 month Human ill period China CDC [10]
γ 1.579 month−1 1

j China CDC [10]

3 Mathematical Analysis

3.1 Extinction and persistence of the disease

Notice that from the equations in model (2.1), we have

dN

dt
= A− µN. (3.1)

Letting Λ =
{

(S,E, I,R) | S > 0, E ≥ 0, I ≥ 0, R > 0, 0 < S + E + I +R < A
µ

}
, we have the fol-

lowing results.

Theorem 3.1 The region Λ is positively invariant with respect to system (2.1). In particular,
(S(t), E(t), I(t), R(t)) is positive for all t > 0 if the initial values S(0) = S0 > 0, E(0) = E0 >
0, I(0) = I0 > 0, R(0) = R0 > 0 at t = 0.

Proof. On the nonnegativity of solutions of system (2.1) with nonnegative initial conditions, by
the continuous dependence of solutions with respect to initial values, we only need to show that
when S0 > 0, E0 > 0, I0 > 0 and R0 > 0, (S(t), E(t), I(t), R(t)) is positive for all t > 0. Let

n(t) = min {S(t), E(t), I(t), R(t)} , ∀t > 0.

Clearly, n(0) > 0. Assuming that there exists a t1 > 0 such that n(t1) = 0 and n(t) > 0, ∀t ∈ [0, t1) .
If n(t1) = S(t1), from the first equation of system (2.1), we have

dS

dt
> −(β(t)I + µ)S, ∀t > [0, t1].
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Thus,

0 = S(t1) > S0e
−

∫ t1
0 (β(t)I+µ)ds > 0,

which leads to a contradiction.
If n(t1) = E(t1), since I(t) ≥ 0 and S(t) ≥ 0 for all t ∈ [0, t1], from the second equation of

system (2.1), it follows that
dE

dt
> −(σ + µ)E, ∀t > [0, t1].

Hence,
0 = E(t1) > E0e

−(σ+µ)t1 > 0,

which also leads to a contradiction.
Similar contradictions can be deduced in the cases of n(t1) = I(t1) and n(t1) = R(t1). There-

fore, S(t) > 0, E(t) > 0, I(t) > 0 and R(t) > 0 for all t > 0.
Concerning (3.1), we have N(t) = A

µ +N0e
−µt, where N0 = S(0) +E(0) + I(0) +R(0). Hence,

N(t) is bounded for all t > 0 and

lim sup
t→∞

N(t) =
A

µ
,

which implies S(t), E(t), I(t) and R(t) are also bounded for all t > 0. This completes the proof.
It is easy to see that system (2.1) has one disease-free equilibrium

P0 =
(
Ŝ, 0, 0, R̂

)
,

where Ŝ = A(1−ρ)
µ , R̂ = Aρ

µ . Now, we deduce the basic reproduction number R0 for model (2.1)
following the definition of Bacaër and Guernaoui [3] and the general calculation procedure in Wang
and Zhao [36]. Firstly, we can verify that model (2.1) satisfies the conditions (A1)− (A7) given in
Wang and Zhao [36].

Denote

F (t) =

(
0 β(t)Ŝ
0 0

)
, V (t) =

(
σ + µ 0
−σ γ + µ

)
.

Let Y (t, s) be the 2× 2 matrix solution of the following initial value problem{
dY (t,s)
dt = −V (t)Y (t, s),

Y (s, s) = I.

Further, let ω = 12 and Cω be the ordered Banach space of all ω−periodic continuous functions
from R to R2 with maximum norm ‖·‖ and positive cone C+

ω := {ϕ ∈ Cω : ϕ(t) > 0, ∀t ∈ R}.
Suppose ϕ ∈ C+

ω is the initial distribution of infections individuals, then F (s)ϕ(s) is the rate of new
infection produced by the infectious individuals who were introduced at time s, and Y (t, s)F (s)ϕ(s)
represents the distributions of those infection individuals who were newly infected at time s and
remain in the infected compartments at time t for t > s. Naturally,∫ t

−∞
Y (t, s)F (s)ϕ(s)ds =

∫ +∞

0
Y (t, t− a)F (t− a)ϕ(t− a)da (3.2)

is the distribution of accumulative new infections at times t produced by all those infected indi-
viduals ϕ(s) introduced at times previous to t. Then, we define a linear operator L : Cω → Cω as
follows

(Lϕ) =

∫ +∞

0
Y (t, t− a)F (t− a)ϕ(t− a)da,∀t ∈ R, ϕ ∈ Cω. (3.3)

L is called the next infection operator.
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By the definition of Bacaër and Guernaoui [3] and the general calculation procedure in Wang
and Zhao [36], the basic reproduction number R0 for the model (2.1) is defined as the spectral
radius ρ(L) of operator L, that is,

R0 = ρ(L). (3.4)

Employing Theorem 2.1 and Theorem 2.2 given in Wang and Zhao [36], we can deduce the following
results with respect to R0 and the locally asymptotical stability of the disease-free equilibrium P0

for model (2.1).

Theorem 3.2 On the basic reproduction number R0 of model (2.1), we have

(i) R0 < 1 if and only if ρ(ΦF−V (ω)) < 1;

(ii) R0 = 1 if and only if ρ(ΦF−V (ω)) = 1;

(iii) R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

Moreover, P0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1, where ΦF−V (t) is
the monodromy matrix of the linear ω-periodic system du

dt = [F (t)− V (t)]u.

Lemma 3.3 For an arbitrary positive number θ, there exists t1 > 0 such that for all t > t1,
S(t) ≤ Ŝ + θ.

Proof. From the first two equations of system (2.1), we have

d(S + E)

dt
= A(1− ρ)− µS − (σ + µ)E

≤ A(1− ρ)− µS − µE
= A(1− ρ)− µ(S + E)

which implies that

lim sup
t→∞

(S(t) + E(t)) ≤ A(1− ρ)

µ
.

Because E ≥ 0, it follows that

lim sup
t→∞

S(t) ≤ A(1− ρ)

µ
= Ŝ.

Thus, there is t1 > 0, such that for all t > t1, S(t) ≤ Ŝ + θ for arbitrary positive number θ.

Theorem 3.4 The disease-free equilibrium P0 is globally asymptotically stable when R0 < 1.

Proof. If R0 < 1, we know that ρ(ΦF−V (ω)) < 1 and P0 is locally asymptotically stable by
Theorem 3.2. We can choose θ > 0 small enough such that ρ(ΦF−V+Mθ

(ω)) < 1, where

Mθ =

(
0 θ
0 0

)
.

Considering the region X and using Lemma 3.3, when t > t1, we have{
dE
dt ≤ β(t)(Ŝ + θ)I − (σ + µ)E,
dI
dt = σE − (γ + µ) I.

(3.5)
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with the following comparison system{
dE
dt = β(t)(Ŝ + θ)I − (σ + µ)E,
dI
dt = σE − (γ + µ) I,

(3.6)

that is
dh

dt
= (F (t)− V (t) +Mθ)h(t), h(t) = (E(t), I(t))T . (3.7)

By Lemma 2.1 in Zhang and Zhao [41], it follows that there exists a positive ω−periodic functions
ĥ(t) such that h(t) = eptĥ(t) is a solution of system (3.7), where p = 1

ω ln ρ(ΦF−V+Mθ
(ω)). We

know that ρ(ΦF−V+Mθ
(ω)) < 1 when R0 < 1. Therefore, we have h(t) → 0 as t → ∞, which

implies that the zero solution of system (3.6) is globally asymptotically stable. Applying the
comparison principle (Smith and Waltman [31]), we know that for system (2.1), E(t) → 0 and
I(t) → 0 as t → ∞. By the theory of asymptotic autonomous systems (Thieme [33]), it is also
known that S(t) → Ŝ and R(t) → R̂ as t → ∞. So P0 is globally attractive when R0 < 1. It
follows that P0 is globally asymptotically stable when R0 < 1.

3.2 Existence of Positive Periodic Solutions

Define
X := {(S,E, I,R) ∈ X : S > 0, E ≥ 0, I ≥ 0, R > 0} ,

X0 := {(S,E, I,R) ∈ X : E > 0, I > 0} ,

∂X0 = X \X0 = {(S,E, I,R) ∈ X : E = I = 0} .

Let u(t, x0) be the unique solution of system (2.1) with the initial value x0 = (S0, E0, I0, R0). Let
P : X → X be the Pincaré map associated with system (2.1), i.e.,

P (x0) = u(ω, x0), ∀x0 ∈ X,

where ω = 12 is the period. Applaying the existence-uniqueness theorem (Perko [28]), we know
that u(t, x0) is the unique solution of system (2.1) with u(0, x0) = x0. From Theorem 3.1, we know
the X is positively invariant and P is point dissipative.

Lemma 3.5 When R0 > 1, then there exist a δ > 0 such that when

‖(S0, E0, I0, R0)− P0‖ ≤ δ

for any (S0, E0, I0, R0) ∈ X0, we have

lim sup
m→∞

d [Pm(S0, E0, I0, R0), P0] ≥ δ,

where P0 = (Ŝ, 0, 0, R̂).

Proof. If R0 > 1, we obtain ρ(ΦF−V (ω)) > 1 by Theorem 2.2 in Wang and Zhao [36]. Choose
ε > 0 small enough such that ρ(ΦF−V+Mε(ω)) > 1, where

Mε =

(
0 ε
0 0

)
.

Now we proceed by contradiction to prove that

lim sup
m→∞

d [Pm(S0, E0, I0, R0), P0] ≥ δ.
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If not, then
lim sup
m→∞

d [Pm(S0, E0, I0, R0), P0] < δ

for some (S0, E0, I0, R0) ∈ X0. Without loss of generality, we assume that d [Pm(S0, E0, I0, R0), P0] <
δ for all m ≥ 0. By the continuity of the solutions with respect to the initial values, we obtain

‖u (t1, P
m(S0, E0, I0, R0))− u(t1, P0)‖ ≤ ε, ∀m ≥ 0, ∀t1 ∈ [0, ω] .

For any t ≥ 0, let t = mω + t1, where t1 ∈ [0, ω] and m =
[
t
ω

]
, which is the greatest integer less

than or equal to t
ω . Then we have

‖u(t, (S0, E0, I0, R0))− u(t, P0)‖ = ‖u (t1, P
m(S0, E0, I0, R0))− u(t1, P0)‖ ≤ ε

for any t > 0, which implies that when t ≥ 0, we have Ŝ − ε ≤ S(t) ≤ Ŝ + ε, 0 ≤ E(t) ≤ ε,
0 ≤ I(t) ≤ ε. Then for ‖(S0, E0, I0, R0)− P0‖ ≤ δ, we have{

dE
dt ≥ β(t)(Ŝ − ε)I − (σ + µ)E,
dI
dt = σE − (γ + µ) I.

(3.8)

Next we consider the linear system{
dE
dt = β(t)(Ŝ − ε)I − (σ + µ)E,
dI
dt = σE − (γ + µ) I.

(3.9)

Once again by Lemma 2.1 in Zhang and Zhao [41], it follows that there exists a positive ω−periodic
function ĝ(t) such that g(t) = (E(t), I(t)) = eptĝ(t) is a solution of system (3.9), where p =
1
ω ln ρ(ΦF−V+Mε(ω)). Because R0 > 1 and ρ(ΦF−V+Mε(ω)) > 1, when g(0) > 0, g(t) → ∞
as t → ∞. Applying the comparison principle (Smith and Waltman [31]), we know that when
E(0) > 0, I(0) > 0, E(t)→∞ and I(t)→∞ as t→∞. This is a contradiction. The proof of the
lemma is complete.

Theorem 3.6 If R0 > 1, then system (2.1) admits at least one positive periodic solution.

Proof. We need to prove that P is uniformly persistent with respect to (X0, ∂X0). First of all,
we claim that X0 and ∂X0 are positively invariant with respect to system (2.1). In fact, for any
(S0, E0, I0, R0) ∈ X0, solving the equations of system (2.1), we have

S(t) = e−
∫ t
0 (β(t)I+µ)dt

[
S0 +

∫ t

0
A(1− ρ)e

∫ t
0 (β(t)I+µ)dtdt

]
> A(1− ρ)e−

∫ t
0 (β(t)I+µ)dt

∫ t

0
e
∫ t
0 (β(t)I+µ)dtdt > 0, ∀t > 0, (3.10)

R(t) = e−µt
[
R0 +

∫ t

0
(Aρ+ γI(t))eµtdt

]
> e−µt

∫ t

0
(Aρ+ γI(t))eµtdt > 0, ∀t > 0, (3.11)

E(t) = e−(σ+µ)t
[
E0 +

∫ t

0
β(t)S(t)I(t)e(σ+µ)tdt

]
> e−(σ+µ)t

[∫ t

0
β(t)S(t)I(t)e(σ+µ)tdt

]
≥ 0, ∀t > 0, (3.12)

I(t) = e−(γ+µ)t
[
I0 +

∫ t

0
σE(t)e(γ+µ)tdt

]
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> e−(γ+µ)t
∫ t

0
σE(t)e(γ+µ)tdt > 0, ∀t > 0. (3.13)

So X0 is positively invariant. Clearly, ∂X0 is relatively closed in X. Set

M∂ = {(S0, E0, I0, R0) ∈ ∂X0 : Pm(S0, E0, I0, R0) ∈ ∂X0, ∀m ≥ 0} .

We firstly show that
M∂ = {(S, 0, 0, R) ∈ X : S > 0, R > 0} . (3.14)

Note that {(S, 0, 0, R) ∈ X : S > 0, R > 0} ⊆M∂ is obvious, we only need to prove that

M∂ ⊆ {(S, 0, 0, R) ∈ X : S > 0, R > 0} .

Otherwise, if M∂\ {(S, 0, 0, R) ∈ X : S > 0, R > 0} 6= ∅, then there exists at least a point
(S0, E0, I0, R0) ∈M∂ satisfying E0 > 0 or I0 > 0.

If E0 > 0, from the second equation of model (2.1) and Theorem 3.1, we have that for all t > 0

E(t) ≥ E0 exp−(σ+µ)t > 0.

Thus, from the third equation of model (2.1) and inequality (3.13), we also have I(t) > 0 for all
t > 0. From S0 > 0 and inequality (3.10), we have S(t) > 0 for all t > 0. Similarly, From R0 > 0
and inequality (3.11), we have R(t) > 0 for all t > 0. Thus, with initial value (S0, E0, I0, R0),
we finally obtain that (S(t), E(t), I(t), R(t)) > (0, 0, 0, 0) for all t > 0, which contradicts that
(S0, E0, I0, R0) ∈M∂ that requires Pm(S0, E0, I0, R0) ∈ ∂X0, ∀m ≥ 0.

If I0 > 0, similarly, we can also prove that (S(t), E(t), I(t), R(t)) > (0, 0, 0, 0) for all t > 0,
which leads to a contradiction. Therefore, we finally have M∂ ⊆ {(S, 0, 0, R) ∈ X : S > 0, R > 0}.
So the claim (3.14) holds, which implies E0(S, 0, 0, R) is the only fixed point of P in M∂ .

Moreover, Lemma 3.5 implies that P0 = (Ŝ, 0, 0, R̂) is an isolated invariant set in X and
WS(P0)∩X0 = ∅. By the acyclicity theorem on uniform persistence for maps (Theorem 1.3.1 and
Remark 1.3.1 in Zhao [43]), it follows that P is uniformly persistent with respect to (X0, ∂X0).

Now Theorem 1.3.6 in Zhao [43] implies that P has a fixed point

(S∗(0), E∗(0), I∗(0), R∗(0)) ∈ X0.

From the first equation of system (2.1) we have

S∗(t) = e−
∫ t
0 (β(t)I+µ)dt

[
S∗(0) +

∫ t

0
A(1− ρ)e

∫ t
0 (β(t)I+µ)dtdt

]
> A(1− ρ)e−

∫ t
0 (β(t)I+µ)dt

∫ t

0
e
∫ t
0 (β(t)I+µ)dtdt

> 0, ∀t ∈ [0, ω] .

The periodicity of S∗(t) implies that S∗(t) > 0 for all t > 0. Following the processes as in
inequalities (3.10)-(3.13), we have E∗(t) > 0, I∗(t) > 0, R∗(t) > 0 for all t > 0. Therefore,
(S∗(t), E∗(t), I∗(t), R∗(t)) is a positive ω−periodic solution of system (2.1).

4 Simulations and Sensitivity Analysis

In this section, we firstly use the model (2.1) to simulate the reported measles data of China
from January 2004 to December 2016, predict the trend of the disease and seek for some control
and prevention measures. To do so, we need to estimate the parameter values. We obtain the
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annual number of human population using the annual birth and death data from the National
Bureau of Statistics of China [25]. Then we calculate the average and divide it by 12 to derive the
monthly human birth population A = 1340000. For β(t), ρ and µ by using the least-square fitting
of I(t) through discretizing the ordinary differential system (2.1) as follows:

I(ti +4t) = (σE − (γ + µ)I)4 t+ I(ti).

The least-square fitting is to minimize the objective function

J(θ) =
1

n

n∑
i=1

(I(ti − Î(ti)),

which is implemented by the instruction lsqnonlin, a part of the optimization toolbox in MATLAB.
By the least square method, we obtain a = 1.2527 × 10−9, b = 0.3346, and ρ = 0.8216. The
parameter values are listed in Table 1.

We need the initial values to perform the numerical simulations of the model. The number of
the initial susceptible population, S(0), is obtained from the China Statistical Yearbook. However,
the numbers of the initial exposed population E(0) and the recovered population R(0) cannot be
obtained. According to the least square method, We estimate E(0) and R(0) respectively. The
comparison between the reported measles data in mainland China from January 2004 to December
2016 and the simulation of I(t) from model (2.1) is given in Figure (4.1).

1/2004 1/2005 1/2006 1/2007 1/2008 1/2009 1/2010 1/2011 1/2012 1/2013 1/2014 1/2015 1/2016 1/2017
0

0.5

1

1.5

2

2.5

3

I(
t)

×104

Figure 4.1: The comparison between the reported human measles data in mainland China from
January 2004 to December 2016 and the simulation of I(t) from model (2.1). The dashed curve
represents the monthly measles data while the solid curve is simulated by using our model. The
values of parameters are given in Table 1. The initial values used in the simulations were S(0) =
1.29× 109, E(0) = 18527, I(0) = 1754, R(0) = 640000.

Moreover, with these parameter values we can roughly estimate that the basic reproduction
number R0 = 0.4663 under the current circumstances in China. From Figure (4.2), we can see that
when R0 < 1, the number of infected humans I(t) tends to 0. On the contrary, when R0 > 1, I(t)
tends to a stable periodic solution. We can also predict the general tendency of the epidemic in a
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long term according to the current situation in China, which is presented in Figure (4.3), where
the basic reproduction number is R0 = 0.4663. From these figures we can see that the epidemic
of measles can be relieved in a short time and eradicated by strengthening the current prevention
and control measures.
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Figure 4.2: The tendency of the human measles cases I(t) in a long term with different values of
R0. A = 1900000 in the upper curve with R0 = 1.3614 and A = 1300000 in the lower curve with
R0 = 0.4663, respectively, and the other parameter values are in Table 1.
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Figure 4.3: The tendency of the human measles cases I(t) in short and long terms, where the basic
reproduction number is R0 = 0.4663.

Next we perform some sensitivity analysis to determine the influence of parameters ρ (vaccina-
tion rate) and a (the contact rate) on R0. From Figure (4.4)(a), we observe that ρ has an obvious
effect on R0 which indicates that immunization is an effective measure to control measles. Next,
we consider the effect of a on R0, which is depicted in Figure (4.4)(b). Although they are linear,
a is very small and a slight change of a can lead to large variations of R0. So reducing the contact
between susceptible and infective individuals is important to control measles.
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Figure 4.4: The influence of parameters on R0 (a) versus ρ and (b) versus a.

Finally we consider the combined influence of ρ and a on R0 in Figure (4.5). From the con-
tour surface we can see that when the increasing of vaccination and the reduction of contact are
combined, controlling measles will be more effective.
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Figure 4.5: The graph of R0 in the terms of a and ρ.

5 Discussion

Measles virus causes significant morbidity in China which accounts for a large proportion of
the measles cases reported in the Western Pacific Region (WHO [37]). Thanks to the national
Expanded Programme on Immunization established in 1978 and a national plan of action for
accelerated measles control (vaccine coverage of at least 90%) in 1997 (Ma et al. [22]), China
made significant progress in controlling measles and the mean annual measles incidence decreased
dramatically from 355.3/100,000 population in the 1970s to 7.6/100,000 population in the 1990s
(Wang et al. [35]).

In 2005, the Regional Committee of WHO Western Pacific Region established 2012 as the
target date for the complete regional elimination of measles (WHO [37], Perry et al. [29]). In
2006, the Chinese Ministry of Health initiated mandatory measles vaccination and set a goal of
accelerating the progress of eliminating measles by 2012 (Ma et al. [22]). In 2010, a nationwide
measles supplementary immunization activity was conducted and in 2012 the incidence of measles
in China reached its lowest reported level (6,183 cases, 0.46/100,000 population). However, in
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2013-2015 a nationwide resurgence of measles occurred in China (27,647 cases, 2.05/100,000 pop-
ulation; 52,628 cases, 3.88/100,000 population; 42,361 cases, 3.11 /100,000 population) (National
Health and Family Planning Commission of PRC [26]). Some believed that this outbreak was
a result of measles vaccination coverage gaps among young children and adults, and insufficient
hospital isolation of cases (Zheng et al. [44]). Other researchers suggested that multiple highly
connected foci of measles transmission coexist in China and that migrant workers likely facilitate
the transmission of measles across regions (Yang et al. [39]).

The data of human measles cases reported in China exhibits seasonal characteristics. In order to
study the transmission dynamics of measles in China, vaccination and seasonality of the spreading
of the measles were incorporated into a SEIR epidemic model with periodic transmission rate.
Firstly, we calculated the basic reproduction number R0 and analyzed the dynamics of the model
including the global stability of the disease-free equilibrium and the existence of periodic solutions.
The analytical results demonstrate that seasonality plays a key in the persistence of the disease in
terms of periodic solutions. Then we used the periodic model to simulate the monthly data on the
number of measles cases from January 2004 to December 2016 in China and predicted the general
tendency of disease in China. It was estimated that the basic reproduction number R0 = 0.4663
under the current circumstances in China. This indicates that the epidemic of measles in China can
be relieved in a short time but extra efforts are needed in order to eradicate the disease. Moreover,
we carried out some sensitivity analysis of parameters on R0 to test some control measures and
found that the vaccination rate ρ has an obvious effect on R0 which indicates that immunization
is an effective measure to control measles. We also observed that a slight change of the contact
rate a can lead to large variations of R0, so reducing the contact between susceptible and infective
individuals is also important to control measles. Our study shows that measles in China can be
controlled and eventually eradicated by increasing the immunization rate, improving the effective
vaccine management, and enhancing the awareness of people about measles.

Since one of the main issues in controlling and eliminating measles is the optimal age to
vaccinate children in order to have the maximum impact on the incidence of measles related
morbidity and mortality for a given rate of vaccination coverage, age-structured epidemic models
have been extensively used to study the transmission dynamics and control of measles (Schenzle
[30], Tudor [34], Greenhalph [16], Hethcote [19], McLean and Anderson [24], Ferguson et al. [14]).
Taking the periodic and age-dependent transmission rate into consideration, it will be interesting
to study the following age-structured periodic measles model:

∂S

∂t
+
∂S

∂a
= −S(t, a)

∫ ∞
0

β(t; a, a′)I(t, a′)da′ − (µ(a) + ρ(a))S(t, a),

∂E

∂t
+
∂E

∂a
= S(t, a)

∫ ∞
0

β(t; a, a′)I(t, a′)da′ − (σ(a) + µ(a))E(t, a),

∂I

∂t
+
∂I

∂a
= σ(a)E(t, a)− (γ(a) + µ(a))I(t, a),

∂R

∂t
+
∂R

∂a
= ρ(a)S(t, a) + γ(a)I(t, a)− µ(a)R(t, a)

(5.1)

with boundary conditions

S(t, 0) = A, E(t, 0) = 0, I(t, 0) = 0, R(t, 0) = 0 (5.2)

and initial conditions

S(0, a) = S0(a), E(0, a) = E0(a), I(0, a) = I0(a), R(0, a) = R0(a), (5.3)

where β(t; a, a′) is the rate at which susceptible individuals of age a are infected by infectious
individuals of age a′ and is a time periodic function (Schenzle [30]). Interesting properties of the
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model such as existence and stability of periodic solutions, optimal age vaccinations, and so on
deserve further consideration.
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tonomous differential equations, J. Math. Biol. 30 (1992), 755-763.

[34] D. W. Tudor, An age-dependent epidemic model with application to measles, Math. Biosci.
73 (1985), 131-147.

[35] L. Wang, G. Zeng, L. A. Lee, Z. Yang, J. Yu, et al., Progress in accelerated measles control
in the People’s Republic of China, 1991-2000, J. Infect. Dis. 187 (2003), S252-S257.

15



[36] W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic
environments, J. Dyn. Diff. Equat. 20 (2008), 699-717.

[37] World Health Organization, Progress towards the 2012 measles elimination goal in WHO’s
Western Pacific Region, 1990-2008, Wkly. Epidemiol. Rec. 84 (2009), 271-279.

[38] World Health Organization, Measles, WHO Fact sheet No. 286, Updated March 2017.
http://www.who.int/mediacentre/factsheets/fs286/en/.

[39] W. Yang, L. Wen, S.-L. Li, K. Chen, W.-Y. Zhang and J. Shaman, Geospatial characteristics of
measles transmission in China during 2005-2014, PLoS Comput. Biol. 13 (2017) (4): e1005474.
https://doi.org/10.1371/journal.pcbi.1005474.

[40] J. A. Yorke and W. P. London, Recurrent outbreaks of measles, chickenpox and mumps II:
Systematic differences in contact rates and stochastic effects, Amer. J. Epidemiol. 98 (1973),
469-482.

[41] F. Zhang and X. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal.
Appl. 325 (2007), 496-516.

[42] J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun and S. Ruan, Modeling seasonal rabies epidemics in
China, Bull. Math. Biol. 74 (2012), 1226-1251.

[43] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2007.

[44] X. Zheng, N. Zhang, X. Zhang, L. Hao, Q. Su, et al., Investigation of a measles outbreak
in China to identify gaps in vaccination coverage, routes of transmission, and interventions,
PLoS ONE 11 (2016)(12): e0168222. https://doi.org/10.1371/journal.pone.0168222.

16


