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SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL
INFECTION MODEL*

GUANGYU ZHAO'? AND SHIGUI RUAN?

Abstract. Recent studies suggest that spatial heterogeneity plays an important role in the
within-host infection of viruses such as HBV, HCV, and HIV. In this paper we propose a spatial
model of viral dynamics on a bounded domain in which virus movement is described by a nonlocal
(convolution) diffusion operator. The model is a spatial generalization of a basic ODE viral infection
model that has been extensively studied in the literature. We investigate the principal eigenvalue
of a perturbation of the nonlocal diffusion operator and show that the principal eigenvalue plays a
key role similar to that of the basic reproduction number when it comes to determining the infection
dynamics. Through analyzing the spectra of two matrix operators, it is shown that the model
exhibits threshold dynamics. More precisely, if the principal eigenvalue is less or equal to zero, then
the infection-free steady state is asymptotically stable while there is an infection steady state which
is stable provided that the principal eigenvalue is greater than zero.

Key words. Nonlocal diffusion operator, spatial model, viral infection, principal eigenvalue,
stability

AMS subject classifications. 35B36, 35J05, 35P15, 45K05

1. Introduction. Infections with viruses, such as hepatitis B virus (HBV), hep-
atitis C virus (HCV), and human immunodeficiency virus (HIV), have caused very
serious public health problems and economic burdens worldwide since infections with
these viruses are chronic and incurable. Once entering the human body, the viral
capsid protein binds to the specific receptors on the host cellular surface and injects
its core. After an intracellular period associated with transcription, integration, and
the production of capsid proteins, an infected cell releases hundreds of viruses that in
turn infect other cells. Various mathematical models have been developed to describe
the within-host dynamics of these viral infections, such as HBV (Nowak et al. [23]),
HCV (Dixit et al. [11]), HIV (Nowak and Bangham [22], Nowak and May [24]), etc.
The basic within-host viral infection model consists of three components: uninfected
target cells, infected target cells and free virus, and is described by three ordinary
differential equations (ODEs) (see Nowak and Bangham [22], Nowak and May [24],
Perelson [25], Yang et al. [33]). Systems of ODEs have been long utilized as the
mathematical models applied to experimental data on viral infections.

While ODE models have proven quite useful in both empirical studied and the-
oretical research, there is now ample evidence suggesting that spatial heterogeneity
plays an important role in the within-host viral infection as well as the dynamics of
the immune response (Graw and Perelson [16]). For example, HCV predominantly
spreads among hepatocytes, which are epithelial cells that form tight junctions with
their neighbors and are spatially organized within the liver. The results of Shulla
and Randall [30] suggest a defined spatiotemporal regulation of HCV infection with
highly varied replication efficiencies at the single cell level. As HIV mainly infects
CD4* T cells which are most abundant and densely packed in secondary lymphoid
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2 GUANGYU ZHAO AND SHIGUI RUAN

organs, such as lymph nodes and the spleen, the spatial arrangement of cells might
influence the infection dynamics and spatial conditions, such as the local availability
of appropriate target cells, may strongly affect the outcome (Haase [18]). Thus, basic
ODE models are not able to capture the spatial aspects of infection and spatial models
may be preferred to ODE models (Graw and Perelson [16]).

Over the past few yeas, much effort has been made to combine an ODE model
with spatial aspects in modeling of viral dynamics. Under the assumption that target
cells and infected cells were stationary while virus particles were capable of migrating
from one grid site to a neighboring site, Funk et al. [15] used a discrete ordinary
differential equation model to study the interactions of target cells, infected cells, and
viral load at anatomical sites where each grid site represents different anatomical sites
inside the host. Through simulation of viral spread by such a spatially discrete model
of viral dynamics, it was shown that overall infection dynamics are altered, and that
models not accounting for spatial aspects might underestimate the genuine infection
dynamics. Strain et al. [31] introduced a cellular automaton model of viral propa-
gation based on the known biophysical properties of HIV including the competition
between viral lability and Brownian motion. Wang and Wang [32] generalized Funk
et al.’s model by assuming that the hepatocytes cannot move under normal conditions
and neglected their mobility, whereas virus particles, i.e., virions, can move freely and
their motion follows a Fickian diffusion, and proposed a spatial HBV model of two
ODEs coupled with a parabolic PDE for the virus particles, and proved the existence
of traveling waves.

Meanwhile, there is an increasing interest in nonlocal diffusion problems modeled
by nonlocal (convolution) diffusion operators such as

Lovi=d [ Je = 9)lo(s) = ola)ldy,

where v € X and X is a proper Banach space (see Andreu et al. [1], Bates et al. [4],
Bates and Zhao [5, 6], Cortazar et al. [9], Coville [10], Du et al. [12], Green et al.
[17], Hutson et al. [20], Kao et al. [21], Rawal and Shen [26] and references therein).
As shown in Bates et al. [4], J(z — y) is viewed as the probability distribution of
jumping from location y to location z; namely the convolution fQ J(x — y)u(t,y)dy
is the rate at which individuals are arriving at position x from other places and
Jo J(y—z)u(t, z)dy is the rate at which they are leaving location x to travel to other
sites. Such models with nonlocal diffusion operators have been used to study problems
in materials science (Bates [3]) and epidemiology (Ruan [28]).

In this paper, we propose a spatial model of viral dynamics with a nonlocal
(convolution) diffusion operator describing the spatial spread of virions between cells.
Let w(t, ), u(t, z), and v(t,x) denote the densities of target cells, infected cells, and
free virions, respectively, at time ¢ and in location z € Q C R™ (n > 1), where  is
a bounded and connected domain. d > 0 is a constant that stands for the diffusion
coefficient of free virions, J(-) is a linear dispersal kernel which gives probabilities of
rate of motion of virions from location y to location z. Target cells are produced at
a rate s(z) and die at a rate b. Target cells become infected cells at an infection rate
c(x) and infected cells die at a constant rate a, new virions generated from infected
cells have an average lifetime of 1/q, at rate p per cell. The nonlocal viral infection

This manuscript is for review purposes only.



83

84

85
86
87
88
89
90
91
92
93
94
95
96

97

112

113
114
115
116

117
118

SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL INFECTION MODEL 3

model takes the following form:

ow(t,z)
—5 = s(z) — bw(t,x) — c(x)w(t, z)v(t, x),
(1) 8ugft, 2) = —au(t,z) + c(z)w(t, z)v(t, x),
P —d [ @ = plett.s) = oty - qu(t.a) + pult. o)

for (t,z) € RT x Q. When d = 0, and w, u, v, and s and ¢ are all independent of
x, system (1) becomes the basic ODE model of viral dynamics proposed by Nowak
and Bangham [22], Nowak and May [24], Perelson [25], etc. Hence, model (1) may
be viewed as a spatial generalization of the ODE model of Nowak and Bangham [22]
and a counterpart of the spatially discrete model of Funk et al. [15] in which virus
movement is spatially continuous.

This paper is organized as follows: In section 2, some preliminaries are given. In
section 3, we consider positive stationary solutions of (1), which represent infection
steady states. We show that the existence of infection steady states hinges upon
the sign of the principal eigenvalue of a nonlocal operator. More precisely, when
the principal eigenvalue is less than or equal to zero, the only non-negative steady
state of (1) is the infection-free steady state, which is stable. While (1) has a unique
infection steady state if the principal eigenvalue is great than zero and this steady
state is stable. In section 4, we study the dependence of infection steady states on
the dispersal rate d. In section 5, we investigate the asymptotical stability of the
infection-free steady state in invariant regions. Numerical simulations are presented
in section 6. Finally, a brief discussion is given in section 7.

2. Preliminaries. We first list a set of notions that will be used in the rest of
the paper. Let Y be a complex Banach Space and L(Y") be the space of bounded
linear operators on Y with the usual operator norm. Let A € £(Y) be a closed linear
operator on Y. Denote the resolvent and spectrum of A by

p(A) = {\ € C | ker(A — A) = {0}, (M — A)~' € L(Y)} and o(A) = C\ p(A),
respectively. The point spectrum of A is defined by
op(A) ={A € C | ker(A] — A)\ {0} # o}

An operator is semi-Fredholm if it has closed range and its kernel or cokernel is finite-
dimensional. The discrete, essential, continuous, and residual spectra of A are defined
by

ga(A) = {\ € C| X € 0,(A) is isolated and dim | J ker(AT — A)* < oo},
k=1
Oess(A) ={A € C | AT—A is not semi-Fredholm}(= o(A)\oq(A) if A is self-adjoint),
0.(A) = {\ € C | ker(A\[—A) = {0}, (A\[-A)~" is unbounded with R(A\[ — A) =Y},

and
o.(A) ={A € C | ker(A\] — A) = {0} with R(A — A) #Y},
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4 GUANGYU ZHAO AND SHIGUI RUAN

respectively. Following Appell et al. [2], we also write the compression spectrum of A

h TeolA) ={AeC|ROA — A) £Y},

and the approximate point spectrum of A as
04(A) = {X € C | there exists a Weyl sequence for A\ — A},

where a sequence {z,} € Y is called a Weyl sequence for A if ||z,|ly = 1 and
|Azp]ly — 0 as n — oc. - - -
In the following, given that r € C(2), we define L, : C(2) — C(Q) by

(2) (Lr2)(x) := d/Q J(x —y)lz(y) — 2(2)ldy + r(z)z(2).

Let C.(R™) denote the space of continuous functions in R™ with compact support.
We start it by presenting the following lemma.

LEMMA 2.1. Assume that J € C.(R™) is a non-negative radial function with
J(0) > 0 and r € C(Q2), where @ CR™ (n > 1) is a bounded and connected domain.
Let b(z) = r(xz) — d [, J(x — y)dy. Suppose that there exists a bounded sub-domain
Q' C Q such that [k — b(x)]~t & LY (Q), where k = sup,cq b(x). Then L, possesses
a principal eigenpair (., ) with ¢, € C(Q) and ¢, > 0. Moreover, there holds

g /Q /Q J(@ = y)lely) — (o) dyde — / r(xw(x)dx.

Q

3 == inf
T TP

In particular, suppose that r(x) # constant, then p,. > 0 provided that ¥ > 0, where
T = ﬁ Jor(x)de.

Proof. The existence of a principal eigenpair (., ¢,) was proved in Coville [10]
where the existence of a principal eigenpair was established for a more general nonlocal
operator and 2 is allowed to be unbounded. In particular, it was shown in Theorem
1.1 of Coville [10] that s, > sup,cq b(z). Recall that b(z) = r(z) — d [, J(z — y)dy.
This implies that (A — b(z))~! is a bounded and continuous function for all = € Q
whenever A > .. Let K : L2(Q) — L?(Q) and B : L?(2) — L?(Q) be defined by

@) (p)e) = ~d | T =y)pl)dy and (Be)a) = —Hapla), ¢ € L),
respectively. Clearly, —L, = K + B on L?(Q2) and both K and B are self-adjoint.
Moreover, due to the facts that K is compact and that A € p(B) if A\ < —pu,, it
follows from Theorem 8.15 of Schmiidgen [29] that (—oco, —pu,] C [o0a(—L) U p(—L:)].
Since ¢, € L*(Q), as a result, —u, € o4(—L,) with D(—L,) = L?(2). Note that
—L, is a lower semi-bounded self-adjoint operator on L?(Q2). In fact, let (-,-) be
the inner product for L*(2), then we have (—L,p,¢) > —ml¢|/r2(q) as long as
m > |r(x)| (o). In addition, as — L, is bounded, we have (—oc, —||L,||—1] C p(—~L,).
Let w, = inf{u € R | p € 0ess(—L;)}, it follows that —p, < w,. Apparently,
(=lILrll = Lwr) Noa(—Lr) # @ as —py € (|| Lp[| = 1,0r).

Let A\ = infcr2(0),00 H‘PHZ22(9)<_LT%<P>- Clearly, A1 < —pp < w,. It then
follows from Theorem XIII.1 of Reed and Simon [27] that A\; € g4(—L,). Indeed, we
have A\; = —pu,. If otherwise, let ¢; be an eigenfunction associated with A;. Note that
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SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL INFECTION MODEL 5

|¢1] is also an eigenfunction for \; since (—L.|¢|, |¢|) < (=L, p) for all p € L?(Q).
Then we find that (|¢1], ¢,) = 0 since — L, is self-adjoint. This is impossible as ¢, > 0.
Thus, A1 = —p,. Namely, (3) holds, and

il < (CLeve) = 5 [ [ I = )iet) = e@Pdude - [ r(@) e
for all p € L?(9).

It remains to prove the last part of the lemma. Let ¢ > 0 be an eigenfunction
associated with .., that is,

tAJ@—yNﬂw—¢®Ww+r@M@)=m¢@)

Multiplying both sides of the above equation by 1/¢ and integrating the resulting
equation over 2 yield that

md 9
5[] =it~ o@Pdyda + [ r(@de < 0.

Here m = 1/]¢|7 o) and we used the fact that

b
¢()

=5 [ [ 3@ = totw) ~ o) 575 ~ 55 | dve
>5[ [ g =niet) - oar

/Q/Q J(x —y)o(y) — o(x)ldy——dx

since

[6(y) — o(2)]?

60) = 90| 505 = 55| 2 oo

o(y) o)

for all z,y € Q. Moreover, it follows from the Poincaré type inequality of Andreu et
al. [1] that

[ [ 3= o - ofe)Payd > 5 |

where 8 > 0 is a constant depending only upon J and §2. Since ¢ # constant and
7 > 0. The desired conclusion follows. 0

PROPOSITION 2.2. Assume that r1,72 € C(Q). Let bj(z) = ri(z) — [, J(z —
y)dy (i = 1,2). Suppose that there exists sub-domains ; C Q such that [k; —
bi(x)]7t & LY(), where k; = supyeqbi. Let Ly, : C(Q) — C(Q) be defined by
(2). Assume that 11 > 1o for all x € Q. Then w1 > po, where p; is the principal
eigenvalue of L,, (1 = 1,2).

>
OB~

2
dx,

1
o) - /Q 6(2)dz

Proof. Let ¢; be an eigenfunction associated with p; (i =1,2). Then we have

/Q (& - 9)[61() — S1(@)]dy + 11 (2)br (@) = éa (@),

/Q J(@ — ) [ba(y) — ba(@)]dy + r2(2)da(x) = pada(a).

This manuscript is for review purposes only.
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6 GUANGYU ZHAO AND SHIGUI RUAN

Multiplying both sides of the first equation by ¢, both sides of the second equation
by ¢2, and integrating the resulting equations over 2, we have (i = 1,2)

[ [ 3@ =)o) = 6r@)ieat) = oa(oldude + [ ri@ioréade = s [ or0ad.
Note that ¢; > 0 for all € Q. Subtracting these two equalities yields that

0§@M@—MM%@@@W=WVWQA%@%WW-

Since the right side of the above equation is strictly positive, it follows that puy > po.0

3. Existence and stability of stationary solutions. We now proceed to
study the steady states of (1) and their stabilities. Note that (1) always has an
infection-free steady state given by (w?,u°,v%) = (S(; ) ,0, O). A positive steady state
of (1) is particularly of interest as it represents an infection state, we hence are led to
study the solution(s) to

pe(x)s(z) o)
6) 4 [ Ta=pll) - v@ldy+ole)| LEDD —g| <0, zeD
Unless otherwise stated, the following assumptions will be needed throughout the rest
of paper.

(H1) J € CLR™) (n=1or 2), J >0, and J(0) > 0;

(H2) a,b,d,p, q are positive constants, s € C*(Q) and s > 0 forallz € 2, c € C?*(Q)
and ¢ > 0 for all z € Q, where Q@ C R" (n = 1 or 2) is a bounded and
connected domain.

Set

d
Sp=— inf f//Jx— — o(2))?dydz
: wEL%Q%|¢hg“D=1{2 [ [ 5= letw) - elo)ay

[ [ )],
ok [ [0 L

Q
pe(z)w’(z)

S\, z) = Nt a

—(A+4q), ReA> —a.
Also define an operator Lg , : C(Q2) — C(Q) by

(6) Lsap(z) = /Q J(x —y)lp(y) — e(@)ldy + S\, 2)p(x), ¢ € C(Q), Rel > —a.

REMARK 3.1. Thanks to (H1) and (H2), for each A > —a, S(\,z) — [, J(z —
y)dy € C?(2), which, as shown in Coville [10], guarantees the existence a principal
eigenvalue of Lg ). Denote the principal eigenvalue of Lg x in C(Q2) by u()\). Note
that () is analytic in A and ©(0) = Sp. In particular, when A takes on real values,
simple calculation shows that p/(\) < 0. In light of Lemma 2.1, Sy > 0 provided that
S’o > 0. In case that s and ¢ are independent of x, we have

£ pcs

SO—E_C]:Q(RO_U’
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where Ry = p s

is the basic reproduction number of the virus (Nowak and May [24]).
Thus, Sy has the same sign as the basic reproduction number minus unity (Ro — 1).
In what follows, we will see that Sy plays a role in determining the stabilities of

stationary solutions to (5).

THEOREM 3.2. Assume that (H1) and (H2) are satisfied. Suppose that Sy < 0.

Then (5) has no positive solutions. Namely, model (1) has no non-negative steady

states other than (w°,u®,v°) = (S(m) 0,0). Moreover, (w®,u®,v°) is uniformly asymp-

totically stable in X provided that Sy < 0, where X = C(Q) x C() x C ().

Proof. We first show that (5) has no p031t1ve solutions by contradiction. Assume
to the contrary that (5) has a positive solution v* € C’( ). Let v*(xy) = infyeq v*(x)
for some z, € Q and v*(z*) = sup,cq v*(z) for some z* € Q. Clearly, v*(x.) # v*(z*)
as v* # constant. It is easy to see that v*(x) > 0 for all z € Q. Note that

/QJ(.T —y)[v*(y) —v*(zs)]dy >0 for all x € Q.

As a result, we have that % — ¢ < 0. Hence, v*(z,) > ps(;*) _ C(I;Cq*)_

Likewise, we have v*(z*) < % - c(l;f)

pinfeqs(x) bq <v'(2) < PSUPcq S(z) bq

: < for all z € Q.
a inf,eq c(x) a SUp,eq c(x

Now let ¢ be a positive eigenfunction corresponding to Sp. Namely,

[ 3= ivt) sty + [P o) = sy
Q

By multiplying this equation by v* and (5) by %, respectively, and integrating the
resulting equations over €2, we find that

d * *
2 /Q /Q J(x —y)[(y) — Y(@)][v"(y) — v" (z)|dydx
[pe(z)wO (z

a

d ) *
2 /Q /Q J(x —y)*(y) — v" (@)W (y) — P(x)|dydx

[ pe(x)w® (z) _ z)v*(x)dz =
+/Q La[l + (c(z)v*(2))/b] q]W) (z)dx = 0.

Subtracting these equations yields that

/ [pC(w)wO(a?) pe(z)w’(x)
) a [1+( (w)o*(x))/0]

As ¢, v* > 0 for all z € Q, and pe(z)w’(x)/a — pe(z)w®(z)/a[l + (c(x)v*(z))/b] = 0
for x € Q, the integral of the right hand side of the above equation is strictly greater
than zero, which obviously is a contradiction. This contradiction confirms that (5)
has no positive solutions if Sp < 0. It is easy to see that (1) has no non-negative

steady state other than (w?,u®,v?).

}zb() dx—so/w z)dz < 0.

This manuscript is for review purposes only.



244
245
246

261

262
263
264
265
266

8 GUANGYU ZHAO AND SHIGUI RUAN

It remains to show that (w®,u°,v") is stable in X if Sy < 0. The linearization of

(1) around (w®,u®,v°) for perturbatlon of functions (w,u,v) € C([0,T), X) is given

by the system

PAL b 0 —cu® w

— = 0 —a cu’ u |,

ot 0 p L, v

where L, : C(Q) — C(Q) is defined by L = [ J( [e(y) — p(2)]dy — gp(z).
Now let
b 0 —cu®
Lo = 0 —a cuwd

0 »p L,

Obviously, Ly is a bounded linear operator on X and is the generator of the strongly
(actually uniformly) continuous semigroup {e“°*};>q given by

tn Ly
Lot __ 0
e~ = E ] ,t>0.
n=0

Denote the spectral bound of Ly by
§(Ly) = sup{ReA | A € a(Lo)}.
Given € > 0, it follows from Engel and Nagel [14] that
He[lotH < ‘2\466(5(50)-1-6):‘.7 t>0

for some positive constant M.. Therefore, to complete the proof, it is sufficient to
show that s(Ly) < 0. To this end, we proceed to show that there exists § > 0 for which
{A € C | ReX > =6} C p(Ly). Let Lg x be the operator defined by (6). Again, let
p(X) be the principal eigenvalue of Lg y in C(9). Clearly, u(0) = Sp. As Sy < 0, from
the monotonicity of S(A, z) in A, it follows that u(A\) < 0 for all A > 0, which implies
that 0 € p(Lg,») for all A > 0. In addition, by virtue of the continuity of S(\, z) with
respect to A, there exists § > 0 with § < 1min{b,a,q} such that () < 0 for all
€ [-0,0). Consequently, 0 € p(Lg ) for all A > —4.

Given that A > —4, to show A € p(Ly), we consider the resolvent equation

(M — Lo)(w,u,v)T = (h1, ha, h3)T, where (hi, ha, h3)T € X. Namely,

A+ b)w + cw’v = hy,
(7) (A + a)u — cwv = ha,
—pu+ Av — Lyv = hs.

As A+ a#0and A+ b # 0, it is easy to see that

hi + cw®Lgt (hs + 2 a) hy — cw®Lg} (hs + phfl) h
(w,u,v) = S Atal 5.2 Ater —Lg N(hs+~—— s )
A+b Ata A+a

is the unique solution to (7). Hence A € p(Ly) if A > —4.

In case that A € C and Im\ # 0, we write A = A\; + iAo with A, A2 € R, and
v = v1 + ive, where vy, vy take real values. In view of the above argument, in order
to prove that A € p(Ly) whenever ReX > —§, it suffices to show that 0 € p(Lg »)
if ReA > —4. First notice that Lg  is also a bounded linear operator on L?(£2).
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Moreover, it is not difficult to show that ker(Lg ) = {0} for all A € C with ReA > —4.
In fact, consider

pe(@)uw’ (z)v

=0 L3(Q).
YT a , veEL(Q)

[ @ =let) = v@ldy = O +-a)o +
By multiplying both sides of this equation by —v, we have that

1
9 A /Q {['Ul(y) - U1(1‘)}2 + [vg(y) — U2($)]2}dydx

[ [t
Q (M +a)? + N3

— (M +q)|vodr = 0.

Notice that
pe(z)w () (M + a)
(A1 +a)2+ A3

if Ay > —6 and Ay # 0. Then Lemma 2.1 and Remark 2.2 imply that

— ()\1 +q) S S(.’I?, )\1)

Ol < 5 [ [ {10 = 0@ + f2(0) — va(o) e

0
pew® (A + a) _
- — = — (M1 + dx.

/Q[()\H-G)Q‘f‘)\% o+ q) | ovde

As p(A) < 0if Ay > —0, this implies that v = 0. Namely, ker(Ls ) = {0} if
ReA > —4. Let L , be the adjoint operator of Lg x on L*(Q). Then we have
pe(z)w’(z)v

Ata

Law@w:LJ@—ymmofwmuy—u+qw+

The same reasoning shows that ker(L%,) = {0}. Thus, R(Lsx) = L*(Q). Clearly,
0 € C\ 0co(Ls,n) if ReA > —4. Furthermore, we have 0 € C\ 04(Lg »). In fact, if
0 € o4(Lsg,»), there would be a Weyl sequence {v,,} such that (—Lg yvp,v,) — 0 as
n — oo, which as above implies that —pu(A1)||vn||L2() — 0 as n — oco. This is a
contradiction. Thus, we must have that 0 € C\ [04(Ls,x) U0co(Ls,2)]. Then, from
the fact that p(Ls ) = C\ [04(Lsa) U0co(Ls,\)], we infer that 0 € p(Lg ) for all
ReA > —4§ with D(LS,)\) = L2(Q)
Now fix A € C with Rel > —6. Let P : L2(Q2) — L?(Q) be defined by

(Po)(z) = P(z)v(z) = [- /Q J(x —y)dy + S(z,A)]v(z),

(8)

P(z) = —/ J(x —y)dy + S(x, N).
Q

Note that P € C(£). We next show that 0 € A¢, where A = {2 € C | z = P(x),x € Q}.
Assume to the contrary this is not true, then in view of Schmiidgen [29], there holds
that 0 € A C o(P). Since P is a normal operator on L?*(), we have o(P) =
op(P) U oc(P). It is easy to see that 0,(P) C o,(P). In fact, if A € 0,(P), let
1 € L2(2) be an eigenfunction corresponding to \, then

(A= P(2)]y) = Re[A — P(2)]¢ + ilm[A — P(x)]¢ = 0.
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Write £ = {2 € Q) # 0}. Obviously, the measure of Z is positive. Hence,
[\ — P(z)] = 0 in Z. This implies that any L? function with support in = belongs to
ker(AI—P) and dimker(A—P) = oo. Thus, 6,(P) C 04(P) and o(P) = g4(P). On the
other hand, note that Lg x = —K 4 P, where K is given by (4), hence it follows from
Proposition 1.5 of Appell et al. [2] that 0,(Ls\) = 04(P) and 0 € o4(Ls,»), which
however contradicts the fact that 0 € p(Lg ). Thus, we must have 0 € C\ A. As A
is a compact subset of R? for fixed ), there exists a wy > 0 for which dist(0,A) > wy.
In other words, |P(z)| > wy or |P(z)|~! < 1/wy for all z € Q. Clearly, P71 € C(Q).
Given f € C(Q), as f € L*(Q), there is a unique vy € L*(Q) such that Lg vf = f
and [|vrllr2) < K|l fllr2@) < KV/]Q||f|lx for some K > 0, that is independent of
f- Moreover, we have that
1 f(@)

0@ =~ 575 | T = poswidy + 55

It is clear that vy € C(€) and |[vs||x < K'||f|x for some K’ > 0. Consequently, for
any A € C with ReA > —4, 0 € p(Lg ) with D(Lg x) = C(€Q). Therefore, we infer
that {\ € C | ReA > —d} C p(Lo), which implies that s(Lg) < 0 as desired.

Now set

—cw(z)v(x)
Fw,u,v) = | cw(z)v(zx)
0

Then F € C'(X). Note that (w + w® u,v) is a solution of (1) with initial data
(w(0,2) + w®(x),u(0,2),v(0,z)) if and only if (w,u,v) is a solution to

o (® w
—lu|=L|u]|+F(wu,v)
o\, v

with initial data (w(0,z),u(0,z),v(0,2))T. Obviously, (0,0,0)” is a stationary solu-
tion of the above equation and ||F(w,u,v)||x = o(||(w,u,v)T||x) as ||(w,u,v)T||x —
0. By using Theorem 5.1.1 of Henry [19], we finally conclude that (w® u% v°) is
uniformly asymptotically stable in X. The proof is completed. a0

THEOREM 3.3. Assume that (H1) and (H2) are satisfied. Suppose that Sg > 0.
Then (w°,u°,v°) is unstable in X.

Proof. We shall prove that s(Ly) € 0,(Lo) and s(Ly) > 0, where Ly is given
in the proof of Theorem 3.2, and s(Ly) = sup{ReX | A € o(Loy)}. Let u(A\) be the
principal eigenvalue of Lg . By the assumption, we have p(0) = Sy > 0. Since
S(A\, ) = —oo uniformly as A — oo, by the monotonicity of () (1'(A) < 0), there
exists a A, > 0 such that p(A,,) < 0 for all A > A,,. It then follows from the mean
value theorem that pu(A*) = 0 for some A\* € (0, A,,). In addition, A\* is the only zero
of u(A) in [0,00) since p/(A) < 0. This also implies that p(A) < 0 for all A > A*.
In other words, 0 € p(Lg ) if A > A*. With the same reasoning as that used in the
proof of Theorem 3.2, we can infer that A € p(Ly) provided that ReA > A*. Now let
©* € ker(pw(A*)I — Lg x+). It is easy to see that

0, % 0, *
ker(A\*I — Lo) = span(cw LA 4 ,go*).

A +b M +a

Namely, A* € 0,(Lo) and s(Ly) = A* > 0. It then follows from Theorem 5.1.3 of
Henry [19] that (w®,u° v%) is unstable in X. The proof is completed. d
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PROPOSITION 3.4 (Coville [10]).  Assume that g(z,7) € C%Y(Q x RY) and
Og(x,7) < g(x,07) for @ > 1. Let vi,vo € X satisfy

/ J(z = )1 (9) — 01 (2))dy + g(z,v1) <0 < / J(& - y)[ea(y) — va(e)]dy + g(z, v2).
Q Q

Assume further that vi(x) > 0 for all x € Q. Then vi > vs.
Proof. See section 6.3 of Coville [10] for detail. |

THEOREM 3.5. Assume that (H1) and (H2) are satisfied. Suppose that Sp > 0.
Then (1) has a unique positive steady state (w*,u*,v*) which is uniformly asymptot-
ically stable in X.

Proof. Note that (1) has a positive steady state if and only if there exists a positive
solution to equation (5). We next show that v = e¢ is a sub-solution of (5), where
€ > 0 is a sufficiently small constant and ¢ > 0 is a eigenfunction associated with Sy.
Namely,

d [ o= lotw) - oty + | PIAD — o] o) = su0te)

Thus, whenever ¢ is sufficiently small, we find

pe(a)s(a)
[ o= neloty) — oy + | AT e

B pelz)s(@) _ pe(a)s(z)]
‘[3°+a[b+ec<x>¢>] ab ]¢>0'

Meanwhile, it is easy to see that [% —¢] <0, where M > 0 is a constant and
is sufficiently large. Now fix M and let v = M. Clearly, we have

SN pe(x)s(x) .
d/Q J(x —y)e[o(y) — v(x)]dy + L[bJrc(:U)v] - q]v <0.

Set f(z,7) = T[% —q] and let v > max, 5. 0.2n | fr(2,7)].

Now define 7 : X — X by
(Fu)(z) = (vI — L) vv + f(z,v)], v E X,

where (Lov)(z) = d [ J(x — y)[v(y) — v(z)]dy. As s(Lo) = 0, due to Bates and Zhao
[5], (WI—Lo)~! is well defined and is a positive operator on X; that is, (vI—Lg)~tv > 0
if v > 0. Consequently, Fv; > Fuvy provided that 0 < vy < vy < M. On the other
hand, simple calculation shows that f,,. < 0. Hence, f(x,t0;+(1—1t)02) > tf(x,01)+
(I —t)f(x,01) for t € [0,1] and 01,02 € R. This implies that F(tu + (1 — t)w) >
tFu+ (1 —t)Fw for u,w € X with u,w > 0. Notice that (5) is equivalent to Fv = v.
In addition, as (vI — Lo)~! is a positive operator, it is easy to see that Fv > v and
Fu < ©. Therefore, it follows from Du [13] that F has a unique fixed point v* in ©,
where © = {v € X | v < v < T}. Thus, v* is a positive solution of (5). To prove the
uniqueness of v*, let w* be a positive solution of (5). Then Proposition 3.4 implies
that v* > w* and v* < w*. Therefore, v* is the unique positive solution of (5). Now
clearly, (1) has a unique positive steady state whose w,u components are given by

s(x) s(x)v*(z)

@) = e @) alb + c(z)v*(z)]

() =
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12 GUANGYU ZHAO AND SHIGUI RUAN

To consider the stability of (w*,u*,v*), we linearize (1) around (w*,u*,v*) for
perturbation of functions (w,u,v) € C([0,T), X) and obtain the following system

o (v -b—cv* 0 —cw* w
En u | = cv* —a cw* u
v 0 D L, v

Let L. : C(Q) — C(Q) be defined by

—b—cv* 0 —cw*
L, = cv* —a cw*
0 p L,

In light of the proof of Theorem 3.2, to establish the stability of (w*,u*,v*), it is
sufficient to show that there exists § > 0 for which {A € C | ReA > —d} C p(L,).
To this end, we first prove that A € p(L,) if 0 € p(Lg, »). Here Lg, x is given by
Lo+ S«(\,x) and

pe(x)s(x)
Ot )b + (@) (@)]
pe(a)s(a)v* (x)

BRI s e o ] KGO

S\, z)v(z) = - (A+q)

Set m(x) = %—q and let L,, : C(Q) — C(Q) be defined by L,, = Lo+m(x).
As v* is the unique positive solution of (5), that is, L, v* = 0, it follows from [5] that
the principal eigenvalue of L., is zero. Denote the principal eigenvalue of Lg, » by
ps(X). When A € R and A > 0, it is obvious that S.(\,z) < m(z) for all x € Q.
Hence, it follows from Remark 2.2 that p.(\) < 0 provided that A > 0. In addition,
t«(A) is analytic in A whenever ReA > max{—a, —b} since S.(A,x) is analytic in
A. Thus, there exists § > 0 sufficiently small such that p*(\) < 0 for all A > —¢.
Consequently, 0 € p(Lg, ») as long as A > —¢§. Given (hq, ho, h3) € X, the system

A+ b+ cv*)w + cw*v = hy,
(9) —cv*w + (A + a)u — cw*v = hg,
—pu + A — Lgv = hg

has a unique solution given by

e cw*v . h1
A+ bFevr AFD
cw*v*v cw*v cv*hy ho
u=- + - + :
A+a)A+bdb+cw*) A+a A+a)(A+Dd) A+a
_ - *h —ph2
=g pev — hs|.
VEMSA DT+l Ata

Namely, A € p(L,) if A > —4. In case that A € C with ImA # 0, by utilizing the same
argument given in the proof of Theorem 3.2, we can show that A € p(L,) if ReA > —4.
Therefore, {\ € C | ReA > —d} C p(L.). The proof is completed. |

4. Impacts of dispersal rate. In this section, we discuss the impacts of dis-
persal rate on solutions of (5). The discussion is motivated by an observation made in
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SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL INFECTION MODELL3

Funk et al. [15] that the increased transport rate d,, for viruses between the different
sites may give rise to a smoothed viral load between different sites. As argued in Graw
and Perelson [16], this may indicate that “the average virus load in the neighborhood
of a grid site has a higher influence on the equilibrium viral load at this site than
more distant sites”. Thus, it is a natural question to ask if similar phenomena can be
observed for the spatial dynamics of (5). As matter of the fact, under suitable con-
ditions, it can be shown that solutions of (5) tend to be more spatially homogeneous
as d goes to infinity while the solutions of (5) display spatial heterogeneity as d goes
to zero.
Let ¢(z) € C(2) be the function satisfying f(z,((z)) = 0. Namely,

(10) () = -

THEOREM 4.1. Let ((z) be defined by (10). Assume that ((z) > 0 for all x € Q.
Then (5) possesses a unique positive solution vq for each d > 0. In particular, vq
converges uniformly to (x) in Q as d goes to zero.

Proof. Since ¢ > 0, we have pcs/ab— g > 0. Hence Sy > 0. It then follows from
Theorem 3.5 that (5) has a unique positive solution v4 for each d > 0. Now set

vy = ((z) - Vd, T4= ¢(x) + V.

Write f(x,7) = Th(x, 7); that is, h(z,7) = % —q. Using the fact that h(z,{) =0

and the mean value theorem, we have that
1 1
flz,vg) = —\/g/ he(x, ¢ — tVd)dtv,, f(z,T4) = \/ﬁ/ he(, ¢ 4+ tVd)dtT,.
0 0
Notice that
1 1
/ he(z, ¢ — tVd)dtv, — he(2,¢)C, / he(z, ¢ + tVd)dtg — he(2,)¢
0 0
uniformly in Q as d — 0. On the other hand, we have
Loy = Lava = Vd | VI~ 9)[6) - (@)dy.
Q

As hy(z,¢) < 0 for all z € Q, there exists D > 0 such that v, and v, are the sub-
solution and super-solution of (5), respectively if d < D. Hence, Proposition 3.4
implies that v; < vq <04 provided that d < D. Then desired conclusion follows. The
proof is completed. 0

PROPOSITION 4.2. Let vg be the unique positive solution of (5). Then vg € C%(Q)

provided that d is sufficiently large and vy satisfying ||vq|ce < K with some positive
constants o € (0,1) and K > 0 for all d > D.

Proof. We first note that there exists M > 0 such that f(x, M) < 0. It is obvious
that vy = M is a sub-solution of (5) for all d > 0. Hence, it follows from Proposition
3.4 that |vg|~ ) < M. Given z € €2, let h > 0 be chosen so that Bj(xz) N Q # @,
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14 GUANGYU ZHAO AND SHIGUI RUAN

where By (z) := {y € R" | |y — | < h}. Set v = vy4(z + h) — va(z). Then we find
1
{/ J(x —y)dy —d™! / fs(@, tvg(x + h) + (1 — t)vd(x))dt] ot
Q 0

=/ﬁﬂx+h—y>—J@—ymu@wy—/ﬁﬂz+h—y»nﬂm—wuwaw
Q Q

+f(@+ h,va(z + h)) — f(z,va(z + h)).
Write
1
Ry (z) = / J(x —y)dy —d™* / fs(z, tvg(xz + h) + (1 — t)vg(x))dt.
Q 0
As [, J(z —y)dy > 0 for all z € €, it is easy to see that Ry(x) > 6 > 0 for some

positive constant @ for all (z,h) € Q x (0,1) as long as d is sufficiently large. In view
of (H1) and (H2), we see that f € C(Q x RT) for some « € (0,1). Then notice that

vi 1 J@+h—y) —Jx-y)
- mor ! e Jratu)ey
_/ [J(x+h_il_J(x_y)}dyvd(x)}
Q
1 flz+ hyva(x + h)) — f(z,v4(x + h))
*mm{ he }

Due to the assumptions on J and f, there exists K > 0 independent of x and h,
such that |[h=®v%| ~ < K provided that d is sufficiently small. Thus, the desired
conclusion follows. The proof is completed. 0

Owing to Proposition 4.2 and the Arzela-Ascoli lemma, {v4} converges to some
function v* € C(Q) uniformly in © as d — oo. By taking limit in (5), that is

lim [ J(z —y)[va(y) — ve(x)]dy = — lim d~'f(z,vq),

d—oo Jo d—oo
we immediately find that Lov* = 0. Since ker(Lg) = span{1}, v* must be a constant.
We have the next theorem.

THEOREM 4.3. Assume that pcs(x) — abg > 0. Let all the assumptions of Propo-
sition 4.2 are satisfied. Assume that c(x) is independent of x € Q. Then (5) pos-
sesses a unique positive solution vy for each d > 0. In particular, {vq} converges to

pes(xz)—abg
acq

vt = uniformly in Q as d — co.

Proof. The existence of a unique positive solution v4 of (5) follows from the same
argument as that of Theorem 3.5. The rest of the proof relies on the Crandall-
Rabinowitz bifurcation theorem and is similar to that of Theorem A.2 of Cantrell et
al. [8]. Let V ={ue C(Q)| [,udx =0}. Write p =d~'. Let V: R x V x Rt — X
be defined by

(k. 1) = /Q (@ — y)[uly) — u(@)]dy + plu+ k) <m _ q>7

where k is an arbitrary constant. Clearly, ¥(k,u, u) = 0 is equivalent to (5) when
w> 0. If p =0, then U(k,u,0) = 0 implies that u = 0. Let DU(k, u, ) denote the
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Fréchet derivative of ¥ at (u,u). Then we have

DUk u,)(wn) = [ o= plota) ~ v(oldy + u(

pes(x)
Fn(u+k) (a[b T eut B q)‘

abpes(z) >v

[ab+ ac(u+ k)2 e

Thus

DU 0,0)0n) = [ IGo = ot ~ ooy + ik FED ).

If pes(z) — abg > 0, then there exist two solutions to k(pes(z)/[ab+ ack] —q) = 0,
which are k; = (pes(xz) — abg)/acq and ko = 0. If k is equal to neither k; nor
ko, that is, k(pes(z)/[ab+ ack] — q) # 0, following Cantrell et al. [8], we can show
that D¥(k,0,0) € B(V x R, X) is invertible. In fact, assume to the contrary that
ker D¥(k,0,0) \ {0} # @. Let (u*,n*) # 0 and (u*,n*) € ker D¥(k,0,0). Then, it is
easy to see that

v el = ack] = )] = [ [ Ja = 9)lu () = o @)l =

This implies that n* = 0, and consequently, v* = 0 as u* € V, which is a contradiction.
Hence, ker D¥(k,0,0) \ {0} = @. Now let g € X, as k(pcs(x)/[ab + ack] — q) # 0, we
write n, = g/k(pcs(z)/jab + ack] — q). In other words, g = nyk(pes(z)/[ab + ack] — )]}
In view of the Poincaré-type inequality of Andreu et al. [1] and Lemma 2.2 of Bates
and Zhao [6], there exists a unique u, € L*() such that

kpes(z)
ab+ack 1|

/Q J(@ = y)lug(y) — ug(2)ldy = g — g [

In particular, we have

/ngdxzo, ug:M[/{)J(m—y)ug(y)dy+ngk<m—q)—g].

With the same argument as that given in the proof for Theorem 3.2, we infer that
ug € C(Q). Namely, Range(D¥(k,0,0)) = X. Thus, D¥(k,0,0) has a bounded
inverse. This implies that the line of constants {(k,0,0) | £ € R} is the only branch
of solutions to ¥ (k,u, ) = 0 in a neighborhood of (k,0, 0).

Now let k = k1 = (pes(z) — abq)/acq, then the same reasoning implies that there

exists a unique v° € V such that

0 o pes(x) _
[ 96 =l - vy i (50 - q) <o

Therefore, ker DU (k1,0,0) = {r(v°,1),7 € R}. In addition, note that
DV (k1,0,0)(u,n) = [D¥(k1,0,0) + H](u,n) — H(u,n),

where H : V xR — X is given by H(u,n) = 0n, 0 # 0 is a fixed constant, and so
DV (k1,0,0)(u,n) is Fredholm of index 0 since [D¥(kq,0,0) 4+ H] is invertible and H
is compact. Moreover, we have

abpes(x)

DDV k1, 0,0) () = gy == 5g =

q.
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16 GUANGYU ZHAO AND SHIGUI RUAN

Since abpces(x)/(ab+ ck1)? —q # 0, Dy DVU(k1,0,0)(u’,1) ¢ Range(DV(kq,0,0)).
Hence it follows from the Crandall-Rabinowitz bifurcation theorem that there is a
nontrivial continuously differentiable curve through (k1,0,0),

{(k(7), v(7), u(7)) € RXV X R | 7 € (=0,0), (k(0), v(0), u(0)) = (k1,0,0)}

such that U(k(r),v(r), u(r)) =0 for 7 € (—6,9), and (u, p) = 7(v°,1) + o(7). More-
over, as p'(0) > 0, it follows from the Inverse Function Theorem that u(-) is a differ-
morphism for 7 € (—e¢,€) with € > 0 being sufficiently small and 7 = 7*(u) for some
7% € C*(R). Recall that u = 1/d if > 0. Since k; > 0 and k(7*(u)) + 7*(p)v° > 0
provided that p is sufficiently small, thanks to the uniqueness of vy, there holds
vg = k(7*(u)) +u(7*(1)). On the other hand, Proposition 4.2 shows that vy — v* for
some v* € C(Q) as d — oo. Thus, v* = (pes(x) — abq)/acq. In addition, the same
argument as that given for Theorem A.2 of [8] shows that k # 0 under the condition
that pes(x) — abg > 0. Hence, we must have vy — pes(x) — abg)/acq as d — 0. In
case that pcs(xz) — abg = 0, by employing the argument given in Theorem A.2 of [8],
we infer that vy — 0 as d — co. Namely, vy — pes(z) — abg as d — oo. The proof is
completed. 0

It is also interesting to ask if U4 as a function of d possesses extreme values,
and if so, where the extreme values are attained. A study of the differentiability of
Ty with respect to d may offer useful clues. It can be shown that vy : d — C(9Q)
is differentiable if d is sufficiently small. Suppose that all assumptions of Theorem
4.1 are satisfied. Notice that f,(z,((z)) = ((z)h,(z,{(z)) < O for all z € Q. Let
Lg = dLy + fr(x,¢((z)) and denote its principal eigenvalue by ¢ Due to Lemma
2.1, we have —p¢ = (=L¢u,u) > inf 5 —f;(x,{) > 0, which implies that 0 € p(L¢)
if Lg is considered as an operator in L*(Q). Let f € L*(Q). As Lg is self-adjoint in
L), llusllzz(e) < 07 1 fllzz2(), where § = inf g5
In particular, if g € X := C(Q), then simple calculation yields that

|f7(x,¢| and uy solves L?w =g.

wy =l [ =)y~ £ 6Nl [ I = gty + ).

Thus, ugy € X. Moreover, given that d < 1, then

lugllx < sup6~! 5 |7 (2 = y)I*dyllugll20) + 07 lgllx < Cligllx.
€

Here C' > 0 is a constant depending only on J, ||, and §. Due to the continuity of
fr, there exists € > 0 sufficiently small such that € < ¢ and f.(z,£&(z)) < 0 as long
as ¢ —e < &(z) < ¢ —e€. Given that £ € X. Let Lg = dLg + fs(x,£). Then Lg is
also invertible. In addition, it follows that H(Lg)_lﬂ < 9 for some ¥ > 0 provided
that ||€ — <] < e and e is sufficiently small. Hence, by following the same reasoning,
Liu = g has a unique solution u, € X for g € X. In particular, |lu,| < C’[|g||x for
some positive constant C’. Given that h > 0, since

(d+ h)Lovgin + f(x,v41r) =0, dLovg + f(z,v4) =0,

we have

1
dLo [Ud+h — Ud] +/ fT(ZL',tUd+h + (1 — t)vd)dt[’ud+h — ”Ud] = 7hL0’Ud+h.
0
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SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL INFECTION MODELL7
It follows that
1 o
|l wasn — uqg + h(dLo + fr(x,va))” Lovd| x = ol|hl,

which apparently shows that vy is differentiable with respect to d. Notice that Lovg =

d='f(x,vq). Hence, % = (dLo + f,(7,v4)) " f(x,v4). In addition, a straightforward

calculation yields that
/ f(z,vq) —dm =0.

5. Asymptotic stability of steady states. In this section, we study the
asymptotic behavior of the positive solutions of (1). Similar to the evolution sys-
tems studied in Cantrell et al. [7], bounded forward orbits of (1) are generally not
pre-compact in the phase space, and so the LaSalle invariance principle is seemingly
inapplicable. To cope with this difficulty, we adopt a super- and sub-solution tech-
nique to investigate the asymptotic behavior of the bounded positive solutions of (1).
Under certain conditions, this technique helps to show that bounded positive solutions
of (1) in an invariant manifold (region) converge exponentially to the infection-free
steady state (w%(z),0,0) provided that Sy < 0.

PROPOSITION 5.1. Assume that (w,u,v) € C1([0,00),Y) satisfies
[[(w, w, v)[le(po,00),v) < 00
and

we < anw + a2 + a13v,
Uy < a21W + azeu + a3,
vy < / J(z —y)[v(y) —v(x)]dy + az1w + assu + assv
Q
for (t,z) € [0,00) x Q, where a; ; € C([0,T),X) and a;; > 0 if i # j. Furthermore,
z),u

suppose that (w(0,z),u(0,z),v(0,2)) < (0,0,0) for all x € Q. Then (w,u,v) <
(0,0,0) a.e. in [O,T) x Q.

Proof. The proof is similar to that for parabolic systems. We only give a sketch.
Write (w,4,0) = (wV0,uV0,vV0)and (0, 4,0) = (—wV0,—uV0,—vVO0). Note
that

Wi S aiw + algﬂ + alg'lv},

up < a1W + az2u + az3v,
v < / J(x —y)[o(t,y) — o(t,x)]dy + / J(x — y)dyd + az1w + az2® + azzv.
Q Q
Then we find that
d .2 .2 . .
widr < 2 [ [apnw® + a1t + a130wdz,
dt Jo Q
d
—/ w?dr < 2/ [a0100 + agoti® + agsvi]de,

d
4 / Pdr < 2 / a3 @6 + azzih + azsi?]de.
dt Q Q
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Thus, Holder inequality implies that

d
dt/[w S deK/[wQ—i—ﬂQ—l—ﬁQ]dm
Q

for some positive constant K. As (g, @, 09) = (0, 0,0), it follows from the comparison
principle that (w, @, ) = (0,0, 0). d

DEFINITION 5.2. A pair of functions (w*,u®,v¥) € C1([0,T), X) is said to be a
pair of coupled non-negative super- and sub- solutzons of (1) provided that (0,0,0) <
(wu,v7) < (wh,ut,v"), and

Ow™ ow™
_ + _ tyT <0< _ - _ -yt 27
s(x) —bw™ — c(z)wT v 5 < 0<s(z)—bw™ —clx)w v 5
ou™ ou~
P Tyt 22 <0< —au— - _
au™ + c(z)wTw 5 S 0< —au™ +e(x)w v 5
+ +_ 0T
Jx— T(t,y) — v (t,2)]dy — qut + pu —Wgo,
_ _ Ov”
d/ x—y)v(t,y) — v (t,z)]dy — qv™ + pu —WEO,

where 0 < T' < 0o is a constant. In this pair, (w™,u™,vT) is called the super-solution
and (w™,u~,v") is called the sub-solution.

PROPOSITION 5.3. Assume that there exists a pair of coupled non-negative super-
and sub-solutions of (1) (w*,u®, v¥) in [0,00) x Q. In addition, assume that

||( iv :t i)”C [Ooo)X) .

Then given (wo,ug,vo) € X with (w™,u™,v™) < (wo, ug,vo) < (wh,u™,v"), there is
a unique solution (w,u,v) to (1) satisfying

(w(0, ), u(0,2),v(0,2)) = (wo(z),uo(z),vo(x)) and (wo,ug,v) € C*([0,00), X).
Moreover,
(w,u",v7) < (w,u,v) < (whut, o) forall (t,2) €[0,00) x Q.

Proof. Write (w°,u°,7°) = (w*,u™,v?), (w® 1% 1°%) = (w™,u",v7), let @ > 0
be a constant sufficiently large so as that o > |lcv™ [ ¢(j0,00),x)- Set

t
Wt = = 0Tty 4 / e~ (b+a)(t=7) [s(z) + aw™ (7, x) — c(z)W" (T, )v" (7, x)]dT,
0

t
a Tt = e—(atadty 4 / e (@)= 0"+ L 0w (1, ) 4 c(z)w" (1, 2)0" (7, x)dr,
0

in+l — e—(q+a)tvo

t
+ / e—<b+@><t-f>[ / (@ — 9" (1) — 7 (r, 2)ldy + a¥(r,x) + pu* (7, 2) | dr,
0 Q
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and

t
Wt = =Tty 4 / e~ () (=) [s(z) + aw™ (T, 2) — c(z)w" (7, x)T" (1, x)]dT,
0

t
wH = ety g [0yt 4 a)u ()" ()
0

ynJrl _ 67(q+a)t,00

t
4 / e<”+a><”>[ / J(@ — )" (ryy) — o"(r, 2)ldy + av” (r, ) + pu” (r,
0 Q

First it is straightforward to verify that (w!,u',v!), (w!,w', ') € C*(]0, 00),

Notice that cw™ —cwtv™ > awt —cwTvt > aw™ —cw™v™ for all (¢,z) € [0,
Hence, the comparison principle implies that

By induction, we see that
(w™u™,07) < (W' u",0") < (@ a",0") < (whuteh), n>1,

and

(Mn,un’yn) S (Qn+1’un+l7yn+1) S (w"+17ﬂ”+1,§"+1) S (ﬁ"7ﬂ"’5”),

Clearly, (w™,u",v") and (@ ;
[0,00) x Q, both (w™, u™, v™) X
components. For ﬁxed ( x) € 10,00) x Q, let

(Wi (t, ), us(t, ), 04 (¢, 2)) = lim (w™ (¢, x),u" (¢, x), 0" (¢, x))

n—roo

and
(w*(t, z), u*(t, z),v*(t,x)) = lUm (@W"(¢t,z), " (¢, z),0"(t, x)).

n—oo

Apparently, we have

(11) (W, u",v7) < (Wey Un, v4) < (w0, 0%) < (wh,ut, o)

00) X

x)|dr.

X).

x ).

u",v") € C1([0,0), X). In particular, for each (¢,z) €
and (@w",u"™,v") are monotone and bounded in their

for all (t,x) € [0,00) x Q. By using Lebesgue dominated convergence theorem and

passing the limits in the above equations, we find that

t
w* = e~ Tty 4 / e~ U= 5(2) + aw* (1, 2) — c(z)w* (1, 2)v. (7, x))dr,
0

¢
ut = e @ty 4 / e @) 0 (7, ) + e(x)w* (1, 2)v* (7, x)dr,
0

o* = e—(q+a)tvo

¢
+/ e~ (bte)(t=7) [/ J(x —y)[v*(r,y) — v*(1,2)]dy + av™ (1, ) + pu* (7, z) | dT,
0 Q
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and

¢
w, = e~ Ty, 4 / e~ 0TI 5(2) + aw, (1, ) — c(x)w, (1, 2)v* (1, x)|dT,
0

t
Uy = e~ (@, 4 / e~ @I g, (1, 2) + c(z)w. (7, ©)v, (1, z)dT,
0

v, = e (aHty

t
+/ o~ (ba)(t—7) {/ J(x — ) (1,y) — v (7, 2)]dy + av. (7, 2) 4 pu. (7, 2) | dr.
0 0

(W* —w., u* —uy, v*—v,). Clearly, (@,4,v) € C1([0,00),Y) and ||(®, @, 6)”0([0700)7)/) <
0. In addition, by the mean value theorem, we have

@ < M(@+ 0,

Uy < /J:v— [O(t,y) —v(t,x)ldy + M@+ © + )

for some positive constant M. As (w(0,x),u(t, z),v(t,z)) = (0,0,0), it follows from
Proposition 5.1 that (w* (¢, ), u*(t,-),v*(t,-)) < (w. (t7~) i (t,+), vi(t,+)) a.e. in Q. By
(11), we see that (w*(t,-), uw*(t,-),v*(t,-)) = (w.(t,"), us(t, ), v4(t, ")) a.e. in Q for each

€ (0,00). Hence, (w*,u*,v*) is a solution of (1) in Y with (w*(0),u*(0),v*(0)) =
(’LUO,’LL(),’Uo).

We next show that (w*,u*,v*) € C1([0,0), X). By virtue of Banach’s fixed point
theorem, for (wp,ug,vp), there exists a unique solution (w, i, v) € C*([0, Trmaz), X)
to (1) satisfying (w(0),a(0),9(0)) = (wo,up,vo) for some Tpar > 0. Obviously,
(0, 1,0) € CH[0,Tmaz),Y), therefore the uniqueness implies that (w*,u*,v*) =
(w,w,v). The standard argument shows that T, = co. Namely, (w*,u*,v*) €
C1([0,00), X) is the unique solution of (1). The proof is completed. |

To state and prove the next result, denote
X ={(w,u,v) € X |0 <w<w u,v>0}.

THEOREM 5.4. Assume that So < 0. Then (w°,u°,v°) is asymptotically stable in
Xi". More precisely, given that (wo,up,ve) € X;", then the solution (w(t,wq), u(t, ug),
v(t,vo)) of (1) satisfying (w(0,wo), u(0,up), v(0,v0)) = (wo, uo,vo) exists globally and
(w(t, wo),u(t,uo),v(t,v0)) € X;" for allt > 0. In particular, (w(t,wo),u(t, uo), v(t,vo))l]
converges exponentially to (w°(z),0,0) as t — oco.

Proof. We again let p(A) be the principal eigenvalue of Lg  defined in (6). Note
that p(A) is continuous in A. Since u(0) = Sy < 0, there exists A* < 0 such that
w(A*) = X* < 0. Let ¢1 > 0 be an eigenfunction associated with p(A*). Next let & > 0
be a positive constant and set

(wt(t,z),u” (t,2),vT(t,x)) = (wo(:v),

for (t,z) € RT x Q and
(wi (tv x)’ u- (tv ’JJ), vi(t 1‘)) - (Oa 0, 0)

D @ (0 ()
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It is straightforward to verify that

+
n ow

s(z) — bw™ — c(z)wtv™ — 5 < 0,
ut . a *
—aut + c(x)wtvt — % = c(2)w’ (2) ¢y (z)e [~ e —Ilf—a +k- ML—\M] <0,
and
ovT
[ =)ot ) — o (el — v (to) +put (1)~ T
Q
c(z)w® (z
=1 [ e = plont) - el + (P2 < g)orto) - Nt
= ke 'y () [w(A7) = AT < 0.
In addition, we have
s(z) —bw™ —c(z)w vt — 8:;)—; =s(z) >0,
_ Ou”
—au” +c(x)w v — e 0,
/ J(x—y)v (t,y) — v (t,2)]dy — qu~ (t,z) + pu~ (t,z) — 88% =0.
Q

By Definition 5.2, (w®,u*,v*) given above is a pair of coupled super-sub solutions.
Given (wo,ug,v0) € X;, as c,w?, and ¢ are strictly positive, there exists k > 0 such
that (wo,ug,vg) < (wt,u™,vT) for all z € Q. Hence, it follows from Proposition 5.3
that

(O, 07 0) S ('lU(t, t07 wO)a U(t, th ’Z,Lo), ’U(ta th UO))

< (w’(2) c(z)w’ (x) ¢ (z)e ', kqﬁl(x)e)‘*t) for all (t,z) € RT x Q.

"N +a
This immediately implies that (w(t, o, wo), u(t, to, uo),v(t, to, vo)) exists for all ¢ > 0
and (u(t, o, uo), v(t,to,v9)) converges exponentially to (0,0) as ¢t — co. We next show

that w(t, to, wo) also converges to 0 exponentially as t — oo.
Notice that

I(w — w?)?
ot

= —2b(w — w*)? = 2cwv(w — w°).
This shows that

(w —w®)? = e 2w (0, z) — w(x)]? — /Ot e~ 2= 2cwu(w — w®)vdr.
Assume without loss of generality that [A\*| < 2b, let K = 2||cw||, then

t
o — w|? < e w —w®| + K / e~ [y (7) | dr
0

t
< 672bt||'w _ U)O||2 +K672bt/ e()\*+2b)‘rd7_
0

— * *
_ 2bt _ .02 7‘K A"t _ (—20=2")t

Namely, w(t, to, wg) converges to 0 exponentially as ¢ — co. The proof is completed.O

This manuscript is for review purposes only.



658
659
660
661
662
663
664
665

666

22 GUANGYU ZHAO AND SHIGUI RUAN

6. Numerical simulations. In this section, we provide numerical approxima-
tions of solutions of (1) to illustrate stabilities of both the disease-free steady state and
the infection steady state. For the sake of simplicity we assume that all coeflicients
are a constant. Take

s=15,b=2¢=0001, a=1 d=10,¢g=55, p=1.

One can verify that Sp < 0, so Theorem 3.5 implies that the disease-free steady state
(0.75,0,0) is the only non-negative steady state of (1). In addition, it is stable. Given
that Q@ C R is a bounded domain, we assume {2 = (—1,1) and consider initial data as
follows:

wp(z) = 0.55 4 0.01sin(37z + 0.1),
uo(x) = 0.2 + 0.01 cos(2mz + 0.1),
vo(z) = 0.4 + 0.01sin(207wz 4 0.1).

The snapshots of the solution (w(t, x), u(t, z),v(t,x)) with ¢ = 0,1.3,1.6,1.9 are given
in Fig. 1.

In case that Q C R? is a bounded domain, we assume that Q = (—1,1) x (=1,1)
and select initial data as follows:

wo(z,y) = 0.55 + 0.01 sin(37x 4 0.1) cos(37y + 0.1),
uo(x,y) = 0.2 4+ 0.01 cos(2mx + 0.1) sin(27y + 0.1),
vo(z,y) = 0.4 + 0.01sin(57x + 0.1)(x? + y?).
The snapshots of the solution (w(t,z,y), u(t, z,y),v(t,z,y)) with ¢ = 0,0.5,0.75,1.0

are given in Fig. 2.
To demonstrate stability of the infection steady state, we assume that

s=4,b=2,c=1,a=1,d=10, ¢g=0.5, p=2.

Simple calculation shows that the infection steady state is given by (0.25,3.5,14),
which is the only positive steady state of (1) and is stable. Note that Sy > 0. When
2 C R, we again assume that Q@ = (—1,1) and adopt initial data as follows:

wo(z) = 0.3 4 0.01sin(37z + 0.1),
ug(z) = 3 4 0.01 cos(2mx + 0.1),
vo(x) = 12+ 0.001 sin(27z + 0.1)e ™.
The snapshots of the solution (w(t, z),u(t, z),v(t,z)) with t = 1,1.3,1.6,1.9 are given
in Fig. 3.
In case that Q C R? is a bounded domain, we assume that Q = (—=1,1) x (—1,1)
and choose initial data as follows:
wo(z,y) = 0.3 + 0.01sin(37z + 0.1) cos(3my + 0.1),
uo(x,y) = 3+ 0.01 cos(2mx 4 0.1) sin(27y + 0.1),
vo(z,y) = 124 0.01(z* + y?) cos(2my + 0.1)xe_(””2+y2).

The snapshots of the solution (w(t,z,y), u(t, x,y),v(t, z,y)) with ¢t = 0,0.5,0.75,1.0
are given in Fig. 4.
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Fia. 1. The snapshots of the solution (w(t, z), u(t,z),v(t,z)) of (1) in a one-dimensional spatial
domain with t = 0,1.3,1.6,1.9, which converges to the disease-free steady state (0.75,0,0).
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Fic. 2. The snapshots of the solutions (w(t,z,y),u(t, z,y),v(t,z,y)) of (1) converging to the
disease-free steady state (0.75,0,0) in a two dimensional spatial domain with ¢ = 0,0.5,0.75,1.0.
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Fic. 3. The snapshots of the solutions (w(t,z),u(t,z),v(t,z)) of (1) in a one-dimensional
spatial domain with t = 0,1.3,1.6,1.9, which converges to the infection steady state (0.25,3.5,14).
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Fic. 4. The snapshots of the solutions (w(t,z,y),u(t, z,y),v(t,z,y)) of (1) converging to the
infection steady state (0.25,3.5,14) in a two-dimensional spatial domain with t = 0,0.5,0.75,1.0.
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7. Discussion. Recent studies suggest that spatial heterogeneity plays an im-
portant role in the within-host infection of viruses such as HBV, HCV, and HIV
(Graw and Perelson [16], Haase [18], Shulla and Randall [30]). Thus, basic ODE
models are not able to capture the spatial aspects of viral infections and spatial mod-
els may be more realistic. Under the assumption that target cells and infected cells
were stationary while viruses were capable of migrating from one grid site to a neigh-
boring site, Funk et al. [15] used a discrete ordinary differential equation model to
study the interactions of target cells, infected cells, and viral load at anatomical sites
where each grid site represents different anatomical sites inside the host. Strain et
al. [31] introduced a cellular automaton model of viral propagation based on the
known biophysical properties of HIV including the competition between viral lability
and Brownian motion. Wang and Wang [32] proposed a spatial HBV model of two
ODEs coupled with a parabolic PDE for the virus particles and proved the existence
of traveling waves.

Nonlocal (convolution) diffusion operators have been used in nonlinear diffusion
models to describe the spatial movement of particles or individuals, in which the
convolutions represent the rates at which individuals are arriving at one position
from other places and are leaving one location to travel to other sites. Such models
have been used to study problems in materials science (Bates [3]) and epidemiology
(Ruan [28]). In this paper, we proposed a spatial model of viral dynamics with
a nonlocal (convolution) diffusion operator describing the spatial spread of virions
between cells. The model is a spatial generalization of the ODE model of Nowak
and Bangham [22] and a counterpart of the spatially discrete model of Funk et al.
[15] in which viron movement is spatially continuous. In section 3, we considered
positive stationary solutions of the model and showed that the existence of infection
steady states depends upon the sign of the principal eigenvalue of a nonlocal operator.
More precisely, when the principal eigenvalue is less than or equal to zero, the only
non-negative steady state is the infection-free steady state, which is stable; when the
principal eigenvalue is great than zero there is a unique infection steady state, which
is stable. In section 4, we studied how the infection steady state depends on the
dispersal rate. In section 5, we discussed the asymptotical stability of the infection-
free steady state in invariant regions. Therefore, we established threshold dynamics
for the nonlocal evolution model of viral infection.

Compared to spatially discrete ODE models (Funk et al. [15]), cellular automaton
models (Strain et al. [31]), and diffusive models (Wang and Wang [32]), our model
(1) is a first spatial model with a nonlocal (convolution) diffusion operator describing
the spatial spread of viruses between cells. The existing studies on other nonlocal
evolution models in materials science (Bates [3]) and epidemiology (Ruan [28]) are
either concerned with the stability of scalar equations or focused on the existence of
traveling waves, while we studied the stability of the steady states for a system of
three coupled equations using spectral theory of linear operators. We believe that the
modeling approach and analysis technique can be used to investigate other nonlocal
diffusion problems.

Acknowledgement. We would like to thank the two anonymous reviewers for
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