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Abstract. Recent studies suggest that spatial heterogeneity plays an important role in the4
within-host infection of viruses such as HBV, HCV, and HIV. In this paper we propose a spatial5
model of viral dynamics on a bounded domain in which virus movement is described by a nonlocal6
(convolution) diffusion operator. The model is a spatial generalization of a basic ODE viral infection7
model that has been extensively studied in the literature. We investigate the principal eigenvalue8
of a perturbation of the nonlocal diffusion operator and show that the principal eigenvalue plays a9
key role similar to that of the basic reproduction number when it comes to determining the infection10
dynamics. Through analyzing the spectra of two matrix operators, it is shown that the model11
exhibits threshold dynamics. More precisely, if the principal eigenvalue is less or equal to zero, then12
the infection-free steady state is asymptotically stable while there is an infection steady state which13
is stable provided that the principal eigenvalue is greater than zero.14
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1. Introduction. Infections with viruses, such as hepatitis B virus (HBV), hep-18

atitis C virus (HCV), and human immunodeficiency virus (HIV), have caused very19

serious public health problems and economic burdens worldwide since infections with20

these viruses are chronic and incurable. Once entering the human body, the viral21

capsid protein binds to the specific receptors on the host cellular surface and injects22

its core. After an intracellular period associated with transcription, integration, and23

the production of capsid proteins, an infected cell releases hundreds of viruses that in24

turn infect other cells. Various mathematical models have been developed to describe25

the within-host dynamics of these viral infections, such as HBV (Nowak et al. [23]),26

HCV (Dixit et al. [11]), HIV (Nowak and Bangham [22], Nowak and May [24]), etc.27

The basic within-host viral infection model consists of three components: uninfected28

target cells, infected target cells and free virus, and is described by three ordinary29

differential equations (ODEs) (see Nowak and Bangham [22], Nowak and May [24],30

Perelson [25], Yang et al. [33]). Systems of ODEs have been long utilized as the31

mathematical models applied to experimental data on viral infections.32

While ODE models have proven quite useful in both empirical studied and the-33

oretical research, there is now ample evidence suggesting that spatial heterogeneity34

plays an important role in the within-host viral infection as well as the dynamics of35

the immune response (Graw and Perelson [16]). For example, HCV predominantly36

spreads among hepatocytes, which are epithelial cells that form tight junctions with37

their neighbors and are spatially organized within the liver. The results of Shulla38

and Randall [30] suggest a defined spatiotemporal regulation of HCV infection with39

highly varied replication efficiencies at the single cell level. As HIV mainly infects40

CD4+ T cells which are most abundant and densely packed in secondary lymphoid41
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organs, such as lymph nodes and the spleen, the spatial arrangement of cells might42

influence the infection dynamics and spatial conditions, such as the local availability43

of appropriate target cells, may strongly affect the outcome (Haase [18]). Thus, basic44

ODE models are not able to capture the spatial aspects of infection and spatial models45

may be preferred to ODE models (Graw and Perelson [16]).46

Over the past few yeas, much effort has been made to combine an ODE model47

with spatial aspects in modeling of viral dynamics. Under the assumption that target48

cells and infected cells were stationary while virus particles were capable of migrating49

from one grid site to a neighboring site, Funk et al. [15] used a discrete ordinary50

differential equation model to study the interactions of target cells, infected cells, and51

viral load at anatomical sites where each grid site represents different anatomical sites52

inside the host. Through simulation of viral spread by such a spatially discrete model53

of viral dynamics, it was shown that overall infection dynamics are altered, and that54

models not accounting for spatial aspects might underestimate the genuine infection55

dynamics. Strain et al. [31] introduced a cellular automaton model of viral propa-56

gation based on the known biophysical properties of HIV including the competition57

between viral lability and Brownian motion. Wang and Wang [32] generalized Funk58

et al.’s model by assuming that the hepatocytes cannot move under normal conditions59

and neglected their mobility, whereas virus particles, i.e., virions, can move freely and60

their motion follows a Fickian diffusion, and proposed a spatial HBV model of two61

ODEs coupled with a parabolic PDE for the virus particles, and proved the existence62

of traveling waves.63

Meanwhile, there is an increasing interest in nonlocal diffusion problems modeled
by nonlocal (convolution) diffusion operators such as

L0v := d

∫
Ω

J(x− y)[v(y)− v(x)]dy,

where v ∈ X and X is a proper Banach space (see Andreu et al. [1], Bates et al. [4],64

Bates and Zhao [5, 6], Cortazar et al. [9], Coville [10], Du et al. [12], Green et al.65

[17], Hutson et al. [20], Kao et al. [21], Rawal and Shen [26] and references therein).66

As shown in Bates et al. [4], J(x − y) is viewed as the probability distribution of67

jumping from location y to location x; namely the convolution
∫

Ω
J(x − y)u(t, y)dy68

is the rate at which individuals are arriving at position x from other places and69 ∫
Ω
J(y−x)u(t, x)dy is the rate at which they are leaving location x to travel to other70

sites. Such models with nonlocal diffusion operators have been used to study problems71

in materials science (Bates [3]) and epidemiology (Ruan [28]).72

In this paper, we propose a spatial model of viral dynamics with a nonlocal73

(convolution) diffusion operator describing the spatial spread of virions between cells.74

Let w(t, x), u(t, x), and v(t, x) denote the densities of target cells, infected cells, and75

free virions, respectively, at time t and in location x ∈ Ω ⊂ Rn (n ≥ 1), where Ω is76

a bounded and connected domain. d > 0 is a constant that stands for the diffusion77

coefficient of free virions, J(·) is a linear dispersal kernel which gives probabilities of78

rate of motion of virions from location y to location x. Target cells are produced at79

a rate s(x) and die at a rate b. Target cells become infected cells at an infection rate80

c(x) and infected cells die at a constant rate a, new virions generated from infected81

cells have an average lifetime of 1/q, at rate p per cell. The nonlocal viral infection82
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model takes the following form:83

(1)



∂w(t, x)

∂t
= s(x)− bw(t, x)− c(x)w(t, x)v(t, x),

∂u(t, x)

∂t
= −au(t, x) + c(x)w(t, x)v(t, x),

∂v(t, x)

∂t
= d

∫
Ω

J(x− y)[v(t, y)− v(t, x)]dy − qv(t, x) + pu(t, x)

84

for (t, x) ∈ R+ × Ω. When d = 0, and w, u, v, and s and c are all independent of85

x, system (1) becomes the basic ODE model of viral dynamics proposed by Nowak86

and Bangham [22], Nowak and May [24], Perelson [25], etc. Hence, model (1) may87

be viewed as a spatial generalization of the ODE model of Nowak and Bangham [22]88

and a counterpart of the spatially discrete model of Funk et al. [15] in which virus89

movement is spatially continuous.90

This paper is organized as follows: In section 2, some preliminaries are given. In91

section 3, we consider positive stationary solutions of (1), which represent infection92

steady states. We show that the existence of infection steady states hinges upon93

the sign of the principal eigenvalue of a nonlocal operator. More precisely, when94

the principal eigenvalue is less than or equal to zero, the only non-negative steady95

state of (1) is the infection-free steady state, which is stable. While (1) has a unique96

infection steady state if the principal eigenvalue is great than zero and this steady97

state is stable. In section 4, we study the dependence of infection steady states on98

the dispersal rate d. In section 5, we investigate the asymptotical stability of the99

infection-free steady state in invariant regions. Numerical simulations are presented100

in section 6. Finally, a brief discussion is given in section 7.101

2. Preliminaries. We first list a set of notions that will be used in the rest of102

the paper. Let Y be a complex Banach Space and L(Y ) be the space of bounded103

linear operators on Y with the usual operator norm. Let A ∈ L(Y ) be a closed linear104

operator on Y. Denote the resolvent and spectrum of A by105

ρ(A) = {λ ∈ C | ker(λI −A) = {0}, (λI −A)−1 ∈ L(Y )} and σ(A) = C \ ρ(A),106

respectively. The point spectrum of A is defined by107

σp(A) = {λ ∈ C | ker(λI −A) \ {0} 6= ∅}.108

An operator is semi-Fredholm if it has closed range and its kernel or cokernel is finite-109

dimensional. The discrete, essential, continuous, and residual spectra of A are defined110

by111

σd(A) = {λ ∈ C | λ ∈ σp(A) is isolated and dim

∞⋃
k=1

ker(λI −A)k <∞},112

113
σess(A) = {λ ∈ C | λI−A is not semi-Fredholm}(= σ(A)\σd(A) if A is self-adjoint),114

115

σc(A) = {λ ∈ C | ker(λI−A) = {0}, (λI−A)−1 is unbounded with R(λI −A) = Y },116

and117

σr(A) = {λ ∈ C | ker(λI −A) = {0} with R(λI −A) 6= Y },118
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respectively. Following Appell et al. [2], we also write the compression spectrum of A119

as120

σco(A) = {λ ∈ C | R(λI −A) 6= Y },121

and the approximate point spectrum of A as122

σq(A) = {λ ∈ C | there exists a Weyl sequence for λI −A},123

where a sequence {zn} ∈ Y is called a Weyl sequence for A if ‖zn‖Y = 1 and124

‖Azn‖Y → 0 as n→∞.125

In the following, given that r ∈ C(Ω), we define Lr : C(Ω)→ C(Ω) by126

(2) (Lrz)(x) := d

∫
Ω

J(x− y)[z(y)− z(x)]dy + r(x)z(x).127

Let Cc(Rn) denote the space of continuous functions in Rn with compact support.128

We start it by presenting the following lemma.129

Lemma 2.1. Assume that J ∈ Cc(Rn) is a non-negative radial function with130

J(0) > 0 and r ∈ C(Ω), where Ω ⊂ Rn (n ≥ 1) is a bounded and connected domain.131

Let b(x) = r(x) − d
∫

Ω
J(x − y)dy. Suppose that there exists a bounded sub-domain132

Ω′ ⊂ Ω such that [κ− b(x)]−1 6∈ L1(Ω′), where κ = supx∈Ω b(x). Then Lr possesses133

a principal eigenpair (µr, φr) with φr ∈ C(Ω) and φr > 0. Moreover, there holds134

(3) µr = − inf
ϕ∈L2(Ω),ϕ6=0

d

2

∫
Ω

∫
Ω

J(x− y)[ϕ(y)− ϕ(x)]2dydx−
∫

Ω

r(x)ϕ2(x)dx

‖ϕ‖2L2(Ω)

.135

In particular, suppose that r(x) 6= constant, then µr > 0 provided that r ≥ 0, where136

r = 1
|Ω|
∫

Ω
r(x)dx.137

Proof. The existence of a principal eigenpair (µr, φr) was proved in Coville [10]138

where the existence of a principal eigenpair was established for a more general nonlocal139

operator and Ω is allowed to be unbounded. In particular, it was shown in Theorem140

1.1 of Coville [10] that µr > supx∈Ω b(x). Recall that b(x) = r(x) − d
∫

Ω
J(x − y)dy.141

This implies that (λ − b(x))−1 is a bounded and continuous function for all x ∈ Ω142

whenever λ ≥ µr. Let K : L2(Ω)→ L2(Ω) and B : L2(Ω)→ L2(Ω) be defined by143

(4) (Kϕ)(x) = −d
∫

Ω

J(x− y)ϕ(y)dy and (Bϕ)(x) = −b(x)ϕ(x), ϕ ∈ L2(Ω),144

respectively. Clearly, −Lr = K + B on L2(Ω) and both K and B are self-adjoint.145

Moreover, due to the facts that K is compact and that λ ∈ ρ(B) if λ ≤ −µr, it146

follows from Theorem 8.15 of Schmüdgen [29] that (−∞,−µr] ⊂ [σd(−Lr)
⋃
ρ(−Lr)].147

Since φr ∈ L2(Ω), as a result, −µr ∈ σd(−Lr) with D(−Lr) = L2(Ω). Note that148

−Lr is a lower semi-bounded self-adjoint operator on L2(Ω). In fact, let 〈·, ·〉 be149

the inner product for L2(Ω), then we have 〈−Lrϕ,ϕ〉 ≥ −m‖ϕ‖L2(Ω) as long as150

m ≥ |r(x)|L∞(Ω). In addition, as −Lr is bounded, we have (−∞,−‖Lr‖−1] ⊂ ρ(−Lr).151

Let ωr = inf{µ ∈ R | µ ∈ σess(−Lr)}, it follows that −µr < ωr. Apparently,152

(−‖Lr‖ − 1, ωr)
⋂
σd(−Lr) 6= ∅ as −µr ∈ (−‖Lr‖ − 1, ωr).153

Let λ1 = infϕ∈L2(Ω),ϕ6=0 ‖ϕ‖−2
L2(Ω)〈−Lrϕ,ϕ〉. Clearly, λ1 ≤ −µr < ωr. It then154

follows from Theorem XIII.1 of Reed and Simon [27] that λ1 ∈ σd(−Lr). Indeed, we155

have λ1 = −µr. If otherwise, let φ1 be an eigenfunction associated with λ1. Note that156
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|φ1| is also an eigenfunction for λ1 since 〈−Lr|ϕ|, |ϕ|〉 ≤ 〈−Lrϕ,ϕ〉 for all ϕ ∈ L2(Ω).157

Then we find that 〈|φ1|, φr〉 = 0 since −Lr is self-adjoint. This is impossible as φr > 0.158

Thus, λ1 = −µr. Namely, (3) holds, and159

−µr‖ϕ‖L2(Ω) ≤ 〈−Lrϕ,ϕ〉 =
1

2

∫
Ω

∫
Ω

J(x− y)[ϕ(y)− ϕ(x)]2dydx−
∫

Ω

r(x)ϕ2(x)dx160

for all ϕ ∈ L2(Ω).161

It remains to prove the last part of the lemma. Let φ > 0 be an eigenfunction162

associated with µr, that is,163 ∫
Ω

J(x− y)[φ(y)− φ(x)]dy + r(x)φ(x) = µrφ(x).164

Multiplying both sides of the above equation by 1/φ and integrating the resulting165

equation over Ω yield that166

md

2

∫
Ω

∫
Ω

J(x− y)[φ(y)− φ(x)]2dydx+

∫
Ω

r(x)dx ≤ |Ω|µr.167

Here m = 1/|φ|2L∞(Ω) and we used the fact that168 ∫
Ω

∫
Ω

J(x− y)[φ(y)− φ(x)]dy
1

φ(x)
dx169

= −1

2

∫
Ω

∫
Ω

J(x− y)[φ(y)− φ(x)]

[
1

φ(y)
− 1

φ(x)

]
dydx170

≥ m

2

∫
Ω

∫
Ω

J(x− y)[φ(y)− φ(x)]2171

since172

−[φ(y)− φ(x)]

[
1

φ(y)
− 1

φ(x)

]
≥ 1

|φ|2L∞(Ω)

[φ(y)− φ(x)]2173

for all x, y ∈ Ω. Moreover, it follows from the Poincaré type inequality of Andreu et174

al. [1] that175 ∫
Ω

∫
Ω

J(x− y)[φ(y)− φ(x)]2dydx ≥ β
∫

Ω

∣∣∣∣φ(x)− 1

|Ω|

∫
Ω

φ(z)dz

∣∣∣∣2dx,176

where β > 0 is a constant depending only upon J and Ω. Since φ 6= constant and177

r ≥ 0. The desired conclusion follows.178

Proposition 2.2. Assume that r1, r2 ∈ C(Ω). Let bi(x) = ri(x) −
∫

Ω
J(x −179

y)dy (i = 1, 2). Suppose that there exists sub-domains Ωi ⊂ Ω such that [κi −180

bi(x)]−1 6∈ L1(Ωi), where κi = supx∈Ω bi. Let Lri : C(Ω) → C(Ω) be defined by181

(2). Assume that r1 
 r2 for all x ∈ Ω. Then µ1 > µ2, where µi is the principal182

eigenvalue of Lri (i = 1, 2).183

Proof. Let φi be an eigenfunction associated with µi (i = 1, 2). Then we have184 ∫
Ω

J(x− y)[φ1(y)− φ1(x)]dy + r1(x)φ1(x) = µ1φ1(x),185

186 ∫
Ω

J(x− y)[φ2(y)− φ2(x)]dy + r2(x)φ2(x) = µ2φ2(x).187

This manuscript is for review purposes only.



6 GUANGYU ZHAO AND SHIGUI RUAN

Multiplying both sides of the first equation by φ2, both sides of the second equation188

by φ2, and integrating the resulting equations over Ω, we have (i = 1, 2)189 ∫
Ω

∫
Ω

J(x− y)[φ1(y)− φ1(x)][φ2(y)− φ2(x)]dydx+

∫
Ω

ri(x)φ1φ2dx = µi

∫
Ω

φ1φ2dx.190

Note that φi > 0 for all x ∈ Ω. Subtracting these two equalities yields that191

0 <

∫
Ω

[r1(x)− r2(x)]φ1(x)φ2(x)dx = (µ1 − µ2)

∫
Ω

φ1(x)φ2(x)dx.192

Since the right side of the above equation is strictly positive, it follows that µ1 > µ2.193

3. Existence and stability of stationary solutions. We now proceed to194

study the steady states of (1) and their stabilities. Note that (1) always has an195

infection-free steady state given by (w0, u0, v0) =
( s(x)

b , 0, 0
)
. A positive steady state196

of (1) is particularly of interest as it represents an infection state, we hence are led to197

study the solution(s) to198

(5) d

∫
Ω

J(x− y)[v(y)− v(x)]dy + v(x)

[
pc(x)s(x)

a[b+ c(x)v(x)]
− q
]

= 0, x ∈ Ω.199

Unless otherwise stated, the following assumptions will be needed throughout the rest200

of paper.201

(H1) J ∈ C1
c (Rn) (n = 1 or 2), J 
 0, and J(0) > 0;202

(H2) a, b, d, p, q are positive constants, s ∈ C2(Ω) and s 
 0 for all x ∈ Ω, c ∈ C2(Ω)203

and c > 0 for all x ∈ Ω, where Ω ⊂ Rn (n = 1 or 2) is a bounded and204

connected domain.205

Set206

S0 = − inf
ϕ∈L2(Ω),‖ϕ‖L2(Ω)=1

{
d

2

∫
Ω

∫
Ω

J(x− y)[ϕ(y)− ϕ(x)]2dydx207

−
∫

Ω

[
pc(x)w0(x)

a
− q
]
ϕ2(x)dx

}
,208

Ŝ0 =
1

|Ω|

∫
Ω

[
pc(x)w0(x)

a
− q
]
dx,209

S(λ, x) =
pc(x)w0(x)

λ+ a
− (λ+ q), Reλ > −a.210

Also define an operator LS,λ : C(Ω)→ C(Ω) by211

(6) LS,λϕ(x) =

∫
Ω

J(x− y)[ϕ(y)− ϕ(x)]dy + S(λ, x)ϕ(x), ϕ ∈ C(Ω), Reλ > −a.212

Remark 3.1. Thanks to (H1) and (H2), for each λ > −a, S(λ, x) −
∫

Ω
J(x −

y)dy ∈ C2(Ω), which, as shown in Coville [10], guarantees the existence a principal
eigenvalue of LS,λ. Denote the principal eigenvalue of LS,λ in C(Ω) by µ(λ). Note
that µ(λ) is analytic in λ and µ(0) = S0. In particular, when λ takes on real values,
simple calculation shows that µ′(λ) < 0. In light of Lemma 2.1, S0 > 0 provided that
Ŝ0 ≥ 0. In case that s and c are independent of x, we have

Ŝ0 =
pcs

ab
− q = q(R0 − 1),
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where R0 = pcs
qab is the basic reproduction number of the virus (Nowak and May [24]).213

Thus, S0 has the same sign as the basic reproduction number minus unity (R0 − 1).214

In what follows, we will see that S0 plays a role in determining the stabilities of215

stationary solutions to (5).216

Theorem 3.2. Assume that (H1) and (H2) are satisfied. Suppose that S0 ≤ 0.217

Then (5) has no positive solutions. Namely, model (1) has no non-negative steady218

states other than (w0, u0, v0) = ( s(x)
b , 0, 0). Moreover, (w0, u0, v0) is uniformly asymp-219

totically stable in X provided that S0 < 0, where X = C(Ω)× C(Ω)× C(Ω).220

Proof. We first show that (5) has no positive solutions by contradiction. Assume221

to the contrary that (5) has a positive solution v∗ ∈ C(Ω). Let v∗(x∗) = infx∈Ω v
∗(x)222

for some x∗ ∈ Ω and v∗(x∗) = supx∈Ω v
∗(x) for some x∗ ∈ Ω. Clearly, v∗(x∗) 6= v∗(x∗)223

as v∗ 6= constant. It is easy to see that v∗(x) > 0 for all x ∈ Ω. Note that224 ∫
Ω

J(x− y)[v∗(y)− v∗(x∗)]dy ≥ 0 for all x ∈ Ω.225

As a result, we have that pc(x∗)s(x∗)
a[b+c(x∗)v(x∗)]

− q ≤ 0. Hence, v∗(x∗) ≥ ps(x∗)
a − bq

c(x∗)
.226

Likewise, we have v∗(x∗) ≤ ps(x∗)
a − bq

c(x∗) . That is,227

p infx∈Ω s(x)

a
− bq

infx∈Ω c(x)
≤ v∗(x) ≤

p supx∈Ω s(x)

a
− bq

supx∈Ω c(x)
for all x ∈ Ω.228

Now let ψ be a positive eigenfunction corresponding to S0. Namely,229

d

∫
Ω

J(x− y)[ψ(y)− ψ(x)]dy +

[
pc(x)w0(x)

a
− q
]
ψ(x) = S0ψ(x).230

By multiplying this equation by v∗ and (5) by ψ, respectively, and integrating the231

resulting equations over Ω, we find that232

−d
2

∫
Ω

∫
Ω

J(x− y)[ψ(y)− ψ(x)][v∗(y)− v∗(x)]dydx233

+

∫
Ω

[
pc(x)w0(x)

a
− q
]
ψ(x)v∗(x)dx = S0

∫
Ω

ψ(x)v∗(x)dx,234

−d
2

∫
Ω

∫
Ω

J(x− y)[v∗(y)− v∗(x)][ψ(y)− ψ(x)]dydx235

+

∫
Ω

[
pc(x)w0(x)

a[1 + (c(x)v∗(x))/b]
− q
]
ψ(x)v∗(x)dx = 0.236

Subtracting these equations yields that237 ∫
Ω

[
pc(x)w0(x)

a
− pc(x)w0(x)

a[1 + (c(x)v∗(x))/b]

]
ψ(x)v∗(x)dx = S0

∫
Ω

ψ(x)v∗(x)dx ≤ 0.238

As ψ, v∗ > 0 for all x ∈ Ω, and pc(x)w0(x)/a − pc(x)w0(x)/a[1 + (c(x)v∗(x))/b] 
 0239

for x ∈ Ω, the integral of the right hand side of the above equation is strictly greater240

than zero, which obviously is a contradiction. This contradiction confirms that (5)241

has no positive solutions if S0 ≤ 0. It is easy to see that (1) has no non-negative242

steady state other than (w0, u0, v0).243
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It remains to show that (w0, u0, v0) is stable in X if S0 < 0. The linearization of244

(1) around (w0, u0, v0) for perturbation of functions (w, u, v) ∈ C([0, T ), X) is given245

by the system246

∂

∂t

wu
v

 =

 −b 0 −cw0

0 −a cw0

0 p Lq

wu
v

 ,247

where Lq : C(Ω)→ C(Ω) is defined by Lqϕ(x) =
∫

Ω
J(x− y)[ϕ(y)−ϕ(x)]dy− qϕ(x).248

Now let249

L0 =

 −b 0 −cw0

0 −a cw0

0 p Lq

 .250

Obviously, L0 is a bounded linear operator on X and is the generator of the strongly
(actually uniformly) continuous semigroup {eL0t}t≥0 given by

eL0t =
∞∑
n=0

tnLn0
n!

, t ≥ 0.

Denote the spectral bound of L0 by

s(L0) = sup{Reλ | λ ∈ σ(L0)}.

Given ε > 0, it follows from Engel and Nagel [14] that

‖eL0t‖ ≤Mεe
(s(L0)+ε)t, t ≥ 0

for some positive constant Mε. Therefore, to complete the proof, it is sufficient to251

show that s(L0) < 0. To this end, we proceed to show that there exists δ > 0 for which252

{λ ∈ C | Reλ ≥ −δ} ⊂ ρ(L0). Let LS,λ be the operator defined by (6). Again, let253

µ(λ) be the principal eigenvalue of LS,λ in C(Ω). Clearly, µ(0) = S0. As S0 < 0, from254

the monotonicity of S(λ, x) in λ, it follows that µ(λ) < 0 for all λ > 0, which implies255

that 0 ∈ ρ(LS,λ) for all λ ≥ 0. In addition, by virtue of the continuity of S(λ, x) with256

respect to λ, there exists δ > 0 with δ ≤ 1
2 min{b, a, q} such that µ(λ) < 0 for all257

λ ∈ [−δ, 0). Consequently, 0 ∈ ρ(LS,λ) for all λ ≥ −δ.258

Given that λ ≥ −δ, to show λ ∈ ρ(L0), we consider the resolvent equation259

(λI − L0)(w, u, v)T = (h1, h2, h3)T , where (h1, h2, h3)T ∈ X. Namely,260

(7)

 (λ+ b)w + cw0v = h1,
(λ+ a)u− cw0v = h2,
−pu+ λv − Lqv = h3.

261

As λ+ a 6= 0 and λ+ b 6= 0, it is easy to see that

(w, u, v) =

(
h1 + cw0L−1

S,λ(h3 + ph2

λ+a )

λ+ b
,
h2 − cw0L−1

S,λ(h3 + ph2

λ+a )

λ+ a
,−L−1

S,λ(h3 +
ph2

λ+ a
)

)
is the unique solution to (7). Hence λ ∈ ρ(L0) if λ ≥ −δ.262

In case that λ ∈ C and Imλ 6= 0, we write λ = λ1 + iλ2 with λ1, λ2 ∈ R, and263

v = v1 + iv2, where v1, v2 take real values. In view of the above argument, in order264

to prove that λ ∈ ρ(L0) whenever Reλ ≥ −δ, it suffices to show that 0 ∈ ρ(LS,λ)265

if Reλ ≥ −δ. First notice that LS,λ is also a bounded linear operator on L2(Ω).266
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Moreover, it is not difficult to show that ker(LS,λ) = {0} for all λ ∈ C with Reλ ≥ −δ.267

In fact, consider268 ∫
Ω

J(x− y)[v(y)− v(x)]dy − (λ+ q)v +
pc(x)w0(x)v

λ+ a
= 0, v ∈ L2(Ω).269

By multiplying both sides of this equation by −v, we have that270

1

2

∫
Ω

∫
Ω

{
[v1(y)− v1(x)]2 + [v2(y)− v2(x)]2

}
dydx271

−
∫

Ω

[
pc(x)w0(x)(λ1 + a)

(λ1 + a)2 + λ2
2

− (λ1 + q)

]
vvdx = 0.272

Notice that
pc(x)w0(x)(λ1 + a)

(λ1 + a)2 + λ2
2

− (λ1 + q) ≤ S(x, λ1)

if λ1 ≥ −δ and λ2 6= 0. Then Lemma 2.1 and Remark 2.2 imply that273

−µ(λ1)‖v‖2L2(Ω) ≤
1

2

∫
Ω

∫
Ω

{
[v1(y)− v1(x)]2 + [v2(y)− v2(x)]2

}
dydx274

−
∫

Ω

[
pcw0(λ1 + a)

(λ1 + a)2 + λ2
2

− (λ1 + q)

]
vvdx.275

As µ(λ1) < 0 if λ1 ≥ −δ, this implies that v = 0. Namely, ker(LS,λ) = {0} if276

Reλ ≥ −δ. Let L∗S,λ be the adjoint operator of LS,λ on L2(Ω). Then we have277

L∗S,λv(x) =

∫
Ω

J(x− y)[v(y)− v(x)]dy − (λ+ q)v +
pc(x)w0(x)v

λ+ a
.278

The same reasoning shows that ker(L∗S,λ) = {0}. Thus, R(LS,λ) = L2(Ω). Clearly,279

0 ∈ C \ σco(LS,λ) if Reλ ≥ −δ. Furthermore, we have 0 ∈ C \ σq(LS,λ). In fact, if280

0 ∈ σq(LS,λ), there would be a Weyl sequence {vn} such that 〈−LS,λvn, vn〉 → 0 as281

n → ∞, which as above implies that −µ(λ1)‖vn‖L2(Ω) → 0 as n → ∞. This is a282

contradiction. Thus, we must have that 0 ∈ C \ [σq(LS,λ)
⋃
σco(LS,λ)]. Then, from283

the fact that ρ(LS,λ) = C \ [σq(LS,λ)
⋃
σco(LS,λ)], we infer that 0 ∈ ρ(LS,λ) for all284

Reλ ≥ −δ with D(LS,λ) = L2(Ω).285

Now fix λ ∈ C with Reλ ≥ −δ. Let P : L2(Ω)→ L2(Ω) be defined by286

(8)

(Pv)(x) = P (x)v(x) = [−
∫

Ω

J(x− y)dy + S(x, λ)]v(x),

P (x) = −
∫

Ω

J(x− y)dy + S(x, λ).

287

Note that P ∈ C(Ω).We next show that 0 ∈ Λc, where Λ = {z ∈ C | z = P (x), x ∈ Ω}.
Assume to the contrary this is not true, then in view of Schmüdgen [29], there holds
that 0 ∈ Λ ⊆ σ(P). Since P is a normal operator on L2(Ω), we have σ(P) =
σp(P) ∪ σc(P). It is easy to see that σp(P) ⊆ σq(P). In fact, if λ ∈ σp(P), let
ψ ∈ L2(Ω) be an eigenfunction corresponding to λ, then

[λ− P (x)]ψψ = Re[λ− P (x)]ψψ + iIm[λ− P (x)]ψψ = 0.
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10 GUANGYU ZHAO AND SHIGUI RUAN

Write Ξ = {x ∈ Ω|ψψ 6= 0}. Obviously, the measure of Ξ is positive. Hence,288

[λ− P (x)] = 0 in Ξ. This implies that any L2 function with support in Ξ belongs to289

ker(λI−P) and dimker(λI−P) =∞. Thus, σp(P) ⊆ σq(P) and σ(P) = σq(P). On the290

other hand, note that LS,λ = −K+P, where K is given by (4), hence it follows from291

Proposition 1.5 of Appell et al. [2] that σq(LS,λ) = σq(P) and 0 ∈ σq(LS,λ), which292

however contradicts the fact that 0 ∈ ρ(LS,λ). Thus, we must have 0 ∈ C \ Λ. As Λ293

is a compact subset of R2 for fixed λ, there exists a ωλ > 0 for which dist(0,Λ) ≥ ωλ.294

In other words, |P (x)| ≥ ωλ or |P (x)|−1 ≤ 1/ωλ for all x ∈ Ω. Clearly, P−1 ∈ C(Ω).295

Given f ∈ C(Ω), as f ∈ L2(Ω), there is a unique vf ∈ L2(Ω) such that LS,λvf = f296

and ‖vf‖L2(Ω) ≤ K‖f‖L2(Ω) ≤ K
√
|Ω|‖f‖X for some K > 0, that is independent of297

f . Moreover, we have that298

vf (x) = − 1

P (x)

∫
Ω

J(x− y)vf (y)dy +
f(x)

P (x)
.299

It is clear that vf ∈ C(Ω) and ‖vf‖X ≤ K ′‖f‖X for some K ′ > 0. Consequently, for300

any λ ∈ C with Reλ ≥ −δ, 0 ∈ ρ(LS,λ) with D(LS,λ) = C(Ω). Therefore, we infer301

that {λ ∈ C | Reλ ≥ −δ} ⊂ ρ(L0), which implies that s(L0) < 0 as desired.302

Now set303

F (w, u, v) =

−cw(x)v(x)
cw(x)v(x)

0

 .304

Then F ∈ C1(X). Note that (w + w0, u, v) is a solution of (1) with initial data305

(w(0, x) + w0(x), u(0, x), v(0, x)) if and only if (w, u, v) is a solution to306

∂

∂t

wu
v

 = L0

wu
v

+ F (w, u, v)307

with initial data (w(0, x), u(0, x), v(0, x))T . Obviously, (0, 0, 0)T is a stationary solu-308

tion of the above equation and ‖F (w, u, v)‖X = o(‖(w, u, v)T ‖X) as ‖(w, u, v)T ‖X →309

0. By using Theorem 5.1.1 of Henry [19], we finally conclude that (w0, u0, v0) is310

uniformly asymptotically stable in X. The proof is completed.311

Theorem 3.3. Assume that (H1) and (H2) are satisfied. Suppose that S0 > 0.312

Then (w0, u0, v0) is unstable in X.313

Proof. We shall prove that s(L0) ∈ σp(L0) and s(L0) > 0, where L0 is given
in the proof of Theorem 3.2, and s(L0) = sup{Reλ | λ ∈ σ(L0)}. Let µ(λ) be the
principal eigenvalue of LS,λ. By the assumption, we have µ(0) = S0 > 0. Since
S(λ, x) → −∞ uniformly as λ → ∞, by the monotonicity of µ(λ) (µ′(λ) < 0), there
exists a λm > 0 such that µ(λm) < 0 for all λ ≥ λm. It then follows from the mean
value theorem that µ(λ∗) = 0 for some λ∗ ∈ (0, λm). In addition, λ∗ is the only zero
of µ(λ) in [0,∞) since µ′(λ) < 0. This also implies that µ(λ) < 0 for all λ > λ∗.
In other words, 0 ∈ ρ(LS,λ) if λ > λ∗. With the same reasoning as that used in the
proof of Theorem 3.2, we can infer that λ ∈ ρ(L0) provided that Reλ > λ∗. Now let
ϕ∗ ∈ ker(µ(λ∗)I − LS,λ∗). It is easy to see that

ker(λ∗I − L0) = span

(
cw0ϕ∗

λ∗ + b
,
cw0ϕ∗

λ∗ + a
, ϕ∗
)
.

Namely, λ∗ ∈ σp(L0) and s(L0) = λ∗ > 0. It then follows from Theorem 5.1.3 of314

Henry [19] that (w0, u0, v0) is unstable in X. The proof is completed.315
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Proposition 3.4 (Coville [10]). Assume that g(x, τ) ∈ C0,1(Ω × R+) and316

θg(x, τ) � g(x, θτ) for θ > 1. Let v1, v2 ∈ X satisfy317 ∫
Ω

J(x− y)[v1(y)− v1(x)]dy + g(x, v1) ≤ 0 ≤
∫

Ω

J(x− y)[v2(y)− v2(x)]dy + g(x, v2).318

Assume further that v1(x) > 0 for all x ∈ Ω. Then v1 ≥ v2.319

Proof. See section 6.3 of Coville [10] for detail.320

Theorem 3.5. Assume that (H1) and (H2) are satisfied. Suppose that S0 > 0.321

Then (1) has a unique positive steady state (w∗, u∗, v∗) which is uniformly asymptot-322

ically stable in X.323

Proof. Note that (1) has a positive steady state if and only if there exists a positive324

solution to equation (5). We next show that v = εφ is a sub-solution of (5), where325

ε > 0 is a sufficiently small constant and φ > 0 is a eigenfunction associated with S0.326

Namely,327

d

∫
Ω

J(x− y)[φ(y)− φ(x)]dy +

[
pc(x)s(x)

ab
− q
]
φ(x) = S0φ(x).328

Thus, whenever ε is sufficiently small, we find329

d

∫
Ω

J(x− y)ε[φ(y)− φ(x)]dy +

[
pc(x)s(x)

a[b+ εc(x)φ]
− q
]
εφ330

=

[
S0 +

pc(x)s(x)

a[b+ εc(x)φ]
− pc(x)s(x)

ab

]
εφ > 0.331

Meanwhile, it is easy to see that [ pc(x)s(x)
a[b+c(x)M ] − q] ≤ 0, where M > 0 is a constant and332

is sufficiently large. Now fix M and let v ≡M . Clearly, we have333

d

∫
Ω

J(x− y)ε[v(y)− v(x)]dy +

[
pc(x)s(x)

a[b+ c(x)v]
− q
]
v ≤ 0.334

Set f(x, τ) = τ [ pc(x)s(x)
a[b+c(x)τ ] − q] and let ν > max(x,τ)∈Ω×[0,2M ] |fτ (x, τ)|.335

Now define F : X → X by336

(Fv)(x) = (νI − L0)−1[νv + f(x, v)], v ∈ X,337

where (L0v)(x) = d
∫

Ω
J(x− y)[v(y)− v(x)]dy. As s(L0) = 0, due to Bates and Zhao338

[5], (νI−L0)−1 is well defined and is a positive operator onX; that is, (νI−L0)−1v ≥ 0339

if v ≥ 0. Consequently, Fv1 ≥ Fv2 provided that 0 ≤ v2 ≤ v1 ≤ M . On the other340

hand, simple calculation shows that fττ ≤ 0. Hence, f(x, tθ1 +(1− t)θ2) ≥ tf(x, θ1)+341

(1 − t)f(x, θ1) for t ∈ [0, 1] and θ1, θ2 ∈ R. This implies that F(tu + (1 − t)w) ≥342

tFu+ (1− t)Fw for u,w ∈ X with u,w ≥ 0. Notice that (5) is equivalent to Fv = v.343

In addition, as (νI − L0)−1 is a positive operator, it is easy to see that Fv ≥ v and344

Fv ≤ v. Therefore, it follows from Du [13] that F has a unique fixed point v∗ in Θ,345

where Θ = {v ∈ X | v ≤ v ≤ v}. Thus, v∗ is a positive solution of (5). To prove the346

uniqueness of v∗, let w∗ be a positive solution of (5). Then Proposition 3.4 implies347

that v∗ ≥ w∗ and v∗ ≤ w∗. Therefore, v∗ is the unique positive solution of (5). Now348

clearly, (1) has a unique positive steady state whose w, u components are given by349

w∗(x) =
s(x)

b+ c(x)v∗(x)
, u∗(x) =

s(x)v∗(x)

a[b+ c(x)v∗(x)]
.350
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12 GUANGYU ZHAO AND SHIGUI RUAN

To consider the stability of (w∗, u∗, v∗), we linearize (1) around (w∗, u∗, v∗) for351

perturbation of functions (w, u, v) ∈ C([0, T ), X) and obtain the following system352

∂

∂t

wu
v

 =

 −b− cv∗ 0 −cw∗
cv∗ −a cw∗

0 p Lq

wu
v

 .353

Let L∗ : C(Ω)→ C(Ω) be defined by354

L∗ =

 −b− cv∗ 0 −cw∗
cv∗ −a cw∗

0 p Lq

 .355

In light of the proof of Theorem 3.2, to establish the stability of (w∗, u∗, v∗), it is356

sufficient to show that there exists δ > 0 for which {λ ∈ C | Reλ ≥ −δ} ⊂ ρ(L∗).357

To this end, we first prove that λ ∈ ρ(L∗) if 0 ∈ ρ(LS∗,λ). Here LS∗,λ is given by358

L0 + S∗(λ, x) and359

S∗(λ, x)v(x) =

[
pc(x)s(x)

(λ+ a)[b+ c(x)v∗(x)]
− (λ+ q)360

− pc2(x)s(x)v∗(x)

(λ+ a)(λ+ b+ cv∗)[b+ c(x)v∗(x)]

]
v(x).361

Setm(x) = pc(x)s(x)
a[b+c(x)v∗(x)]−q and let Lm : C(Ω)→ C(Ω) be defined by Lm = L0+m(x).362

As v∗ is the unique positive solution of (5), that is, Lmv
∗ = 0, it follows from [5] that363

the principal eigenvalue of Lm is zero. Denote the principal eigenvalue of LS∗,λ by364

µ∗(λ). When λ ∈ R and λ ≥ 0, it is obvious that S∗(λ, x) � m(x) for all x ∈ Ω.365

Hence, it follows from Remark 2.2 that µ∗(λ) < 0 provided that λ ≥ 0. In addition,366

µ∗(λ) is analytic in λ whenever Reλ > max{−a,−b} since S∗(λ, x) is analytic in367

λ. Thus, there exists δ > 0 sufficiently small such that µ∗(λ) < 0 for all λ ≥ −δ.368

Consequently, 0 ∈ ρ(LS∗,λ) as long as λ ≥ −δ. Given (h1, h2, h3) ∈ X, the system369

(9)

 (λ+ b+ cv∗)w + cw∗v = h1,
−cv∗w + (λ+ a)u− cw∗v = h2,
−pu+ λv − Lqv = h3

370

has a unique solution given by371

w = − cw∗v

λ+ b+ cv∗
+

h1

λ+ b
,372

u = − c2w∗v∗v

(λ+ a)(λ+ b+ cv∗)
+
cw∗v

λ+ a
+

cv∗h1

(λ+ a)(λ+ b)
+

h2

λ+ a
,373

v = L−1
S∗,λ

[
−pcv∗h1

(λ+ a)(λ+ b)
+
−ph2

λ+ a
− h3

]
.374

Namely, λ ∈ ρ(L∗) if λ ≥ −δ. In case that λ ∈ C with Imλ 6= 0, by utilizing the same375

argument given in the proof of Theorem 3.2, we can show that λ ∈ ρ(L∗) if Reλ ≥ −δ.376

Therefore, {λ ∈ C | Reλ ≥ −δ} ⊂ ρ(L∗). The proof is completed.377

4. Impacts of dispersal rate. In this section, we discuss the impacts of dis-378

persal rate on solutions of (5). The discussion is motivated by an observation made in379
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Funk et al. [15] that the increased transport rate dv for viruses between the different380

sites may give rise to a smoothed viral load between different sites. As argued in Graw381

and Perelson [16], this may indicate that “the average virus load in the neighborhood382

of a grid site has a higher influence on the equilibrium viral load at this site than383

more distant sites”. Thus, it is a natural question to ask if similar phenomena can be384

observed for the spatial dynamics of (5). As matter of the fact, under suitable con-385

ditions, it can be shown that solutions of (5) tend to be more spatially homogeneous386

as d goes to infinity while the solutions of (5) display spatial heterogeneity as d goes387

to zero.388

Let ζ(x) ∈ C(Ω) be the function satisfying f(x, ζ(x)) ≡ 0. Namely,389

(10) ζ(x) =
ps(x)

aq
− b

c
390

Theorem 4.1. Let ζ(x) be defined by (10). Assume that ζ(x) > 0 for all x ∈ Ω.391

Then (5) possesses a unique positive solution vd for each d > 0. In particular, vd392

converges uniformly to ζ(x) in Ω as d goes to zero.393

Proof. Since ζ > 0, we have pcs/ab− q > 0. Hence S0 > 0. It then follows from394

Theorem 3.5 that (5) has a unique positive solution vd for each d > 0. Now set395

vd = ζ(x)−
√
d, vd = ζ(x) +

√
d.396

Write f(x, τ) = τh(x, τ); that is, h(x, τ) = pcs
a[b+cτ ] − q. Using the fact that h(x, ζ) = 0397

and the mean value theorem, we have that398

f(x, vd) = −
√
d

∫ 1

0

hτ (x, ζ − t
√
d)dtvd, f(x, vd) =

√
d

∫ 1

0

hτ (x, ζ + t
√
d)dtvd.399

Notice that400 ∫ 1

0

hτ (x, ζ − t
√
d)dtvd → hτ (x, ζ)ζ,

∫ 1

0

hτ (x, ζ + t
√
d)dtvd → hτ (x, ζ)ζ401

uniformly in Ω as d→ 0. On the other hand, we have402

L0vd = L0vd =
√
d

∫
Ω

√
dJ(x− y)[ζ(y)− ζ(x)]dy.403

As hτ (x, ζ) < 0 for all x ∈ Ω, there exists D > 0 such that vd and vd are the sub-404

solution and super-solution of (5), respectively if d ≤ D. Hence, Proposition 3.4405

implies that vd ≤ vd ≤ vd provided that d ≤ D. Then desired conclusion follows. The406

proof is completed.407

Proposition 4.2. Let vd be the unique positive solution of (5). Then vd ∈ Cα(Ω)408

provided that d is sufficiently large and vd satisfying ‖vd‖Cα ≤ K with some positive409

constants α ∈ (0, 1) and K > 0 for all d ≥ D.410

Proof. We first note that there exists M > 0 such that f(x,M) ≤ 0. It is obvious411

that vd = M is a sub-solution of (5) for all d > 0. Hence, it follows from Proposition412

3.4 that |vd|L∞(Ω) ≤ M. Given x ∈ Ω, let h > 0 be chosen so that Bh(x) ∩ Ω 6= ∅,413
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where Bh(x) := {y ∈ Rn | |y − x| < h}. Set vhd = vd(x+ h)− vd(x). Then we find414 [ ∫
Ω

J(x− y)dy − d−1

∫ 1

0

fs(x, tvd(x+ h) + (1− t)vd(x))dt

]
vhd415

=

∫
Ω

[J(x+ h− y)− J(x− y)]vd(y)dy −
∫

Ω

[J(x+ h− y)− J(x− y)]dyvd(x)416

+f(x+ h, vd(x+ h))− f(x, vd(x+ h)).417

Write

Rh(x) =

∫
Ω

J(x− y)dy − d−1

∫ 1

0

fs(x, tvd(x+ h) + (1− t)vd(x))dt.

As
∫

Ω
J(x − y)dy > 0 for all x ∈ Ω, it is easy to see that Rh(x) ≥ θ > 0 for some418

positive constant θ for all (x, h) ∈ Ω× (0, 1) as long as d is sufficiently large. In view419

of (H1) and (H2), we see that f ∈ Cα,1(Ω×R+) for some α ∈ (0, 1). Then notice that420

vhd
hα

=
1

Rh(x)

{∫
Ω

[J(x+ h− y)− J(x− y)

hα
]
vd(y)dy421

−
∫

Ω

[J(x+ h− y)− J(x− y)

hα
]
dyvd(x)

}
422

+
1

Rh(x)

{
f(x+ h, vd(x+ h))− f(x, vd(x+ h))

hα

}
.423

Due to the assumptions on J and f , there exists K > 0 independent of x and h,424

such that |h−αvhd |L∞ ≤ K provided that d is sufficiently small. Thus, the desired425

conclusion follows. The proof is completed.426

Owing to Proposition 4.2 and the Arzelà-Ascoli lemma, {vd} converges to some427

function v∗ ∈ C(Ω) uniformly in Ω as d→∞. By taking limit in (5), that is428

lim
d→∞

∫
Ω

J(x− y)[vd(y)− vd(x)]dy = − lim
d→∞

d−1f(x, vd),429

we immediately find that L0v
∗ = 0. Since ker(L0) = span{1}, v∗ must be a constant.430

We have the next theorem.431

Theorem 4.3. Assume that pcs(x)− abq ≥ 0. Let all the assumptions of Propo-432

sition 4.2 are satisfied. Assume that c(x) is independent of x ∈ Ω. Then (5) pos-433

sesses a unique positive solution vd for each d > 0. In particular, {vd} converges to434

v∗ = pcs(x)−abq
acq uniformly in Ω as d→∞.435

Proof. The existence of a unique positive solution vd of (5) follows from the same436

argument as that of Theorem 3.5. The rest of the proof relies on the Crandall-437

Rabinowitz bifurcation theorem and is similar to that of Theorem A.2 of Cantrell et438

al. [8]. Let V = {u ∈ C(Ω) |
∫

Ω
udx = 0}. Write µ = d−1. Let Ψ : R× V × R+ → X439

be defined by440

Ψ(k, u, µ) =

∫
Ω

J(x− y)[u(y)− u(x)]dy + µ(u+ k)

(
pcs(x)

a[b+ c(u+ k)]
− q
)
,441

where k is an arbitrary constant. Clearly, Ψ(k, u, µ) = 0 is equivalent to (5) when442

µ > 0. If µ = 0, then Ψ(k, u, 0) = 0 implies that u = 0. Let DΨ(k, u, µ) denote the443
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Fréchet derivative of Ψ at (u, µ). Then we have444

DΨ(k, u, µ)(v, η) =

∫
Ω

J(x− y)[v(y)− v(x)]dy + µ

(
abpcs(x)

[ab+ ac(u+ k)]2
− q
)
v445

+η(u+ k)

(
pcs(x)

a[b+ c(u+ k)]
− q
)
.446

Thus447

DΨ(k, 0, 0)(v, η) =

∫
Ω

J(x− y)[v(y)− v(x)]dy + ηk

(
pcs(x)

a[b+ ck]
− q
)
.448

If pcs(x) − abq > 0, then there exist two solutions to k(pcs(x)/[ab+ ack]− q) = 0,449

which are k1 = (pcs(x) − abq)/acq and k2 = 0. If k is equal to neither k1 nor450

k2, that is, k(pcs(x)/[ab+ ack]− q) 6= 0, following Cantrell et al. [8], we can show451

that DΨ(k, 0, 0) ∈ B(V × R, X) is invertible. In fact, assume to the contrary that452

kerDΨ(k, 0, 0) \ {0} 6= ∅. Let (u?, η?) 6= 0 and (u?, η?) ∈ kerDΨ(k, 0, 0). Then, it is453

easy to see that454

η?
[
k(pcs(x)/[ab+ ack]− q)

]
=

∫
Ω

∫
Ω

J(x− y)[u?(y)− u?(x)]dydx = 0.455

This implies that η? = 0, and consequently, u? = 0 as u? ∈ V , which is a contradiction.456

Hence, kerDΨ(k, 0, 0) \ {0} = ∅. Now let g ∈ X, as k(pcs(x)/[ab+ ack]− q) 6= 0, we457

write ηg = g/k(pcs(x)/[ab+ ack]− q). In other words, g = ηgk(pcs(x)/[ab+ ack]− q).458

In view of the Poincaré-type inequality of Andreu et al. [1] and Lemma 2.2 of Bates459

and Zhao [6], there exists a unique ug ∈ L2(Ω) such that460 ∫
Ω

J(x− y)[ug(y)− ug(x)]dy = g − ηg
[
kpcs(x)

ab+ ack
− q
]
.461

In particular, we have462 ∫
Ω

ugdx = 0, ug =
1∫

Ω
J(x− y)dy

[ ∫
Ω

J(x− y)ug(y)dy + ηgk

(
pcs(x)

a[b+ ck]
− q
)
− g
]
.463

With the same argument as that given in the proof for Theorem 3.2, we infer that464

ug ∈ C(Ω). Namely, Range(DΨ(k, 0, 0)) = X. Thus, DΨ(k, 0, 0) has a bounded465

inverse. This implies that the line of constants {(k, 0, 0) | k ∈ R} is the only branch466

of solutions to Ψ(k, u, µ) = 0 in a neighborhood of (k, 0, 0).467

Now let k = k1 = (pcs(x)− abq)/acq, then the same reasoning implies that there468

exists a unique v◦ ∈ V such that469 ∫
Ω

J(x− y)[v◦(y)− v◦(x)]dy + k1

(
pcs(x)

a[b+ ck1]
− q
)

= 0.470

Therefore, kerDΨ(k1, 0, 0) = {τ(v◦, 1), τ ∈ R}. In addition, note that

DΨ(k1, 0, 0)(u, η) = [DΨ(k1, 0, 0) +H](u, η)−H(u, η),

where H : V × R → X is given by H(u, η) = θη, θ 6= 0 is a fixed constant, and so471

DΨ(k1, 0, 0)(u, η) is Fredholm of index 0 since [DΨ(k1, 0, 0) +H] is invertible and H472

is compact. Moreover, we have473

DkDΨ(k1, 0, 0)(u, η) = η[
abpcs(x)

(ab+ ck1)2
− q].474
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16 GUANGYU ZHAO AND SHIGUI RUAN

Since abpcs(x)/(ab+ ck1)2 − q 6= 0, DkDΨ(k1, 0, 0)(u◦, 1) 6∈ Range(DΨ(k1, 0, 0)).
Hence it follows from the Crandall-Rabinowitz bifurcation theorem that there is a
nontrivial continuously differentiable curve through (k1, 0, 0),

{(k(τ), v(τ), µ(τ)) ∈ R× V × R | τ ∈ (−δ, δ), (k(0), v(0), µ(0)) = (k1, 0, 0)}

such that Ψ(k(τ), v(τ), µ(τ)) = 0 for τ ∈ (−δ, δ), and (u, µ) = τ(v◦, 1) + o(τ). More-475

over, as µ′(0) > 0, it follows from the Inverse Function Theorem that µ(·) is a differ-476

morphism for τ ∈ (−ε, ε) with ε > 0 being sufficiently small and τ = τ∗(µ) for some477

τ∗ ∈ C1(R). Recall that µ = 1/d if µ > 0. Since k1 > 0 and k(τ∗(µ)) + τ∗(µ)v◦ > 0478

provided that µ is sufficiently small, thanks to the uniqueness of vd, there holds479

vd = k(τ∗(µ)) +u(τ∗(µ)). On the other hand, Proposition 4.2 shows that vd → v∗ for480

some v∗ ∈ C(Ω) as d → ∞. Thus, v∗ = (pcs(x) − abq)/acq. In addition, the same481

argument as that given for Theorem A.2 of [8] shows that k 6= 0 under the condition482

that pcs(x) − abq > 0. Hence, we must have vd → pcs(x) − abq)/acq as d → ∞. In483

case that pcs(x)− abq = 0, by employing the argument given in Theorem A.2 of [8],484

we infer that vd → 0 as d → ∞. Namely, vd → pcs(x) − abq as d → ∞. The proof is485

completed.486

It is also interesting to ask if vd as a function of d possesses extreme values,487

and if so, where the extreme values are attained. A study of the differentiability of488

vd with respect to d may offer useful clues. It can be shown that vd : d → C(Ω)489

is differentiable if d is sufficiently small. Suppose that all assumptions of Theorem490

4.1 are satisfied. Notice that fτ (x, ζ(x)) = ζ(x)hτ (x, ζ(x)) < 0 for all x ∈ Ω. Let491

Ldζ = dL0 + fτ (x, ζ(x)) and denote its principal eigenvalue by µζ . Due to Lemma492

2.1, we have −µζ = 〈−Lζu, u〉 ≥ infx∈Ω−fτ (x, ζ) > 0, which implies that 0 ∈ ρ(Lζ)493

if Ldζ is considered as an operator in L2(Ω). Let f ∈ L2(Ω). As Ldζ is self-adjoint in494

L2(Ω), ‖uf‖L2(Ω) ≤ θ−1‖f‖L2(Ω), where θ = infx∈Ω |fτ (x, ζ| and uf solves Ldζw = g.495

In particular, if g ∈ X := C(Ω), then simple calculation yields that496

ug = [d

∫
Ω

J(x− y)dy − fτ (x, ζ(x))]−1

{
d

∫
Ω

J(x− y)ug(y)dy + g

}
.497

Thus, ug ∈ X. Moreover, given that d < 1, then498

‖ug‖X ≤ sup
x∈Ω

θ−1

∫
Ω

|J(x− y)|2dy‖ug‖L2(Ω) + θ−1‖g‖X ≤ C‖g‖X .499

Here C > 0 is a constant depending only on J, |Ω|, and θ. Due to the continuity of500

fτ , there exists ε > 0 sufficiently small such that ε < ζ and fτ (x, ξ(x)) < 0 as long501

as ζ − ε ≤ ξ(x) ≤ ζ − ε. Given that ξ ∈ X. Let Ldξ := dL0 + fs(x, ξ). Then Ldξ is502

also invertible. In addition, it follows that ‖(Ldξ)−1‖ ≤ ϑ for some ϑ > 0 provided503

that ‖ξ − ς‖ ≤ ε and ε is sufficiently small. Hence, by following the same reasoning,504

Ldξu = g has a unique solution ug ∈ X for g ∈ X. In particular, ‖ug‖ ≤ C ′‖g‖X for505

some positive constant C ′. Given that h > 0, since506

(d+ h)L0vd+h + f(x, vd+h) = 0, dL0vd + f(x, vd) = 0,507

we have508

dL0[vd+h − vd] +

∫ 1

0

fτ (x, tvd+h + (1− t)vd)dt[vd+h − vd] = −hL0vd+h.509
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It follows that510

‖ud+h − ud + h(dL0 + fτ (x, vd))
−1L0vd‖X = o|h|,511

which apparently shows that vd is differentiable with respect to d. Notice that L0vd =512

d−1f(x, vd). Hence, ∂vd∂d = (dL0 + fτ (x, vd))
−1f(x, vd). In addition, a straightforward513

calculation yields that514 ∫
Ω

f(x, vd)
∂vd
∂d

dx = 0.515

5. Asymptotic stability of steady states. In this section, we study the516

asymptotic behavior of the positive solutions of (1). Similar to the evolution sys-517

tems studied in Cantrell et al. [7], bounded forward orbits of (1) are generally not518

pre-compact in the phase space, and so the LaSalle invariance principle is seemingly519

inapplicable. To cope with this difficulty, we adopt a super- and sub-solution tech-520

nique to investigate the asymptotic behavior of the bounded positive solutions of (1).521

Under certain conditions, this technique helps to show that bounded positive solutions522

of (1) in an invariant manifold (region) converge exponentially to the infection-free523

steady state (w0(x), 0, 0) provided that S0 < 0.524

Proposition 5.1. Assume that (w, u, v) ∈ C1([0,∞), Y ) satisfies

‖(w, u, v)‖C([0,∞),Y ) <∞

and525

wt ≤ a11w + a12u+ a13v,526

ut ≤ a21w + a22u+ a23v,527

vt ≤
∫

Ω

J(x− y)[v(y)− v(x)]dy + a31w + a32u+ a33v528

for (t, x) ∈ [0,∞) × Ω, where ai,j ∈ C([0, T ), X) and ai,j ≥ 0 if i 6= j. Furthermore,529

suppose that (w(0, x), u(0, x), v(0, x)) ≤ (0, 0, 0) for all x ∈ Ω. Then (w, u, v) ≤530

(0, 0, 0) a.e. in [0, T )× Ω.531

Proof. The proof is similar to that for parabolic systems. We only give a sketch.532

Write (w̌, ǔ, v̌) = (w ∨ 0, u ∨ 0, v ∨ 0) and (ŵ, û, v̂) = (−w ∨ 0,−u ∨ 0,−v ∨ 0). Note533

that534

wt ≤ a11w + a12ǔ+ a13v̌,535

ut ≤ a21w̌ + a22u+ a23v̌,536

vt ≤
∫

Ω

J(x− y)[v̌(t, y)− v̌(t, x)]dy +

∫
Ω

J(x− y)dyv̂ + a31w̌ + a32ǔ+ a33v.537

Then we find that538

d

dt

∫
Ω

w̌2dx ≤ 2

∫
Ω

[a11w̌
2 + a12ǔw̌ + a13v̌w̌]dx,539

d

dt

∫
Ω

ǔ2dx ≤ 2

∫
Ω

[a21w̌ǔ+ a22ǔ
2 + a23v̌ǔ]dx,540

d

dt

∫
Ω

v̌2dx ≤ 2

∫
Ω

[a31w̌v̌ + a32ǔv̌ + a33v̌
2]dx.541
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18 GUANGYU ZHAO AND SHIGUI RUAN

Thus, Hölder inequality implies that542

d

dt

∫
Ω

[w̌2 + ǔ2 + v̌2]dx ≤ K
∫

Ω

[w̌2 + ǔ2 + v̌2]dx543

for some positive constantK. As (w̌0, ǔ0, v̌0) = (0, 0, 0), it follows from the comparison544

principle that (w̌, ǔ, v̌) = (0, 0, 0).545

Definition 5.2. A pair of functions (w±, u±, v±) ∈ C1([0, T ), X) is said to be a546

pair of coupled non-negative super- and sub-solutions of (1) provided that (0, 0, 0) ≤547

(w−, u−, v−) ≤ (w+, u+, v+), and548

s(x)− bw+ − c(x)w+v− − ∂w+

∂t
≤ 0 ≤ s(x)− bw− − c(x)w−v+ − ∂w−

∂t
,549

−au+ + c(x)w+v+ − ∂u+

∂t
≤ 0 ≤ −au− + c(x)w−v− − ∂u−

∂t
,550

d

∫
Ω

J(x− y)[v+(t, y)− v+(t, x)]dy − qv+ + pu+ − ∂v+

∂t
≤ 0,551

d

∫
Ω

J(x− y)[v−(t, y)− v−(t, x)]dy − qv− + pu− − ∂v−

∂t
≥ 0,552

where 0 < T ≤ ∞ is a constant. In this pair, (w+, u+, v+) is called the super-solution553

and (w−, u−, v−) is called the sub-solution.554

Proposition 5.3. Assume that there exists a pair of coupled non-negative super-
and sub-solutions of (1) (w±, u±, v±) in [0,∞)× Ω. In addition, assume that

‖(w±, u±, v±)‖C([0,∞),X) <∞.

Then given (w0, u0, v0) ∈ X with (w−, u−, v−) ≤ (w0, u0, v0) ≤ (w+, u+, v+), there is
a unique solution (w, u, v) to (1) satisfying

(w(0, x), u(0, x), v(0, x)) = (w0(x), u0(x), v0(x)) and (w0, u0, v0) ∈ C1([0,∞), X).

Moreover,555

(w−, u−, v−) ≤ (w, u, v) ≤ (w+, u+, v+) for all (t, x) ∈ [0,∞)× Ω.556

Proof. Write (w0, u0, v0) = (w+, u+, v+), (w0, u0, v0) = (w−, u−, v−), let α > 0557

be a constant sufficiently large so as that α > ‖cv+‖C([0,∞),X). Set558

wn+1 = e−(b+α)tw0 +

∫ t

0

e−(b+α)(t−τ)[s(x) + αwn(τ, x)− c(x)wn(τ, x)vn(τ, x)]dτ,559

un+1 = e−(a+α)tu0 +

∫ t

0

e−(a+α)(t−τ)αun+1 + αun(τ, x) + c(x)wn(τ, x)vn(τ, x)dτ,560

vn+1 = e−(q+α)tv0561

+

∫ t

0

e−(b+α)(t−τ)

[ ∫
Ω

J(x− y)[vn(τ, y)− vn(τ, x)]dy + αvn(τ, x) + pun(τ, x)

]
dτ,562
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and563

wn+1 = e−(b+α)tw0 +

∫ t

0

e−(b+α)(t−τ)[s(x) + αwn(τ, x)− c(x)wn(τ, x)vn(τ, x)]dτ,564

un+1 = e−(a+α)tu0 +

∫ t

0

e−(a+α)(t−τ)αun + c(x)wn(τ, x)vn(τ, x)dτ,565

vn+1 = e−(q+α)tv0566

+

∫ t

0

e−(b+α)(t−τ)

[ ∫
Ω

J(x− y)[vn(τ, y)− vn(τ, x)]dy + αvn(τ, x) + pun(τ, x)

]
dτ.567

First it is straightforward to verify that (w1, u1, v1), (w1, u1, v1) ∈ C1([0,∞), X).
Notice that αw+−cw+v− ≥ αw+−cw+v+ ≥ αw−−cw−v+ for all (t, x) ∈ [0,∞)×Ω.
Hence, the comparison principle implies that

(w−, u−, v−) ≤ (w1, u1, v1) ≤ (w1, u1, v1) ≤ (w+, u+, v+).

By induction, we see that568

(w−, u−, v−) ≤ (wn, un, vn) ≤ (wn, un, vn) ≤ (w+, u+, v+), n ≥ 1,569

and570

(wn, un, vn) ≤ (wn+1, un+1, vn+1) ≤ (wn+1, un+1, vn+1) ≤ (wn, un, vn).571

Clearly, (wn, un, vn) and (wn, un, vn) ∈ C1([0,∞), X). In particular, for each (t, x) ∈572

[0,∞) × Ω, both (wn, un, vn) and (wn, un, vn) are monotone and bounded in their573

components. For fixed (t, x) ∈ [0,∞)× Ω, let574

(w∗(t, x), u∗(t, x), v∗(t, x)) = lim
n→∞

(wn(t, x), un(t, x), vn(t, x))575

and576

(w∗(t, x), u∗(t, x), v∗(t, x)) = lim
n→∞

(wn(t, x), un(t, x), vn(t, x)).577

Apparently, we have578

(11) (w−, u−, v−) ≤ (w∗, u∗, v∗) ≤ (w∗, u∗, v∗) ≤ (w+, u+, v+)579

for all (t, x) ∈ [0,∞) × Ω. By using Lebesgue dominated convergence theorem and580

passing the limits in the above equations, we find that581

w∗ = e−(b+α)tw0 +

∫ t

0

e−(b+α)(t−τ)[s(x) + αw∗(τ, x)− c(x)w∗(τ, x)v∗(τ, x)]dτ,582

u∗ = e−(a+α)tu0 +

∫ t

0

e−(a+α)(t−τ)αu∗(τ, x) + c(x)w∗(τ, x)v∗(τ, x)dτ,583

v∗ = e−(q+α)tv0584

+

∫ t

0

e−(b+α)(t−τ)

[ ∫
Ω

J(x− y)[v∗(τ, y)− v∗(τ, x)]dy + αv∗(τ, x) + pu∗(τ, x)

]
dτ,585
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and586

w∗ = e−(b+α)tw0 +

∫ t

0

e−(b+α)(t−τ)[s(x) + αw∗(τ, x)− c(x)w∗(τ, x)v∗(τ, x)]dτ,587

u∗ = e−(a+α)tu0 +

∫ t

0

e−(a+α)(t−τ)αu∗(τ, x) + c(x)w∗(τ, x)v∗(τ, x)dτ,588

v∗ = e−(q+α)tv0589

+

∫ t

0

e−(b+α)(t−τ)

[ ∫
Ω

J(x− y)[v∗(τ, y)− v∗(τ, x)]dy + αv∗(τ, x) + pu∗(τ, x)

]
dτ.590

Let Y = L∞(Ω) × L∞(Ω) × L∞(Ω). Thanks to the fact that both (w∗, u∗, v∗) and591

(w∗, u∗, v∗) are bounded, we have that (w∗, u∗, v∗) and (w∗, u∗, v∗) ∈ C([0,∞), Y ).592

This implies that (w∗, u∗, v∗) and (w∗, u∗, v∗) ∈ C1([0,∞), Y ). Now set (ŵ, û, v̂) =593

(w∗−w∗, u∗−u∗, v∗−v∗). Clearly, (ŵ, û, v̂) ∈ C1([0,∞), Y ) and ‖(ŵ, û, v̂)‖C([0,∞),Y ) <594

∞. In addition, by the mean value theorem, we have595

ŵt ≤M(ŵ + v̂),596

ût ≤M(û+ ŵ + v̂),597

v̂t ≤
∫

Ω

J(x− y)[v̂(t, y)− v̂(t, x)]dy +M(û+ ŵ + v̂)598

for some positive constant M . As (ŵ(0, x), û(t, x), v̂(t, x)) = (0, 0, 0), it follows from599

Proposition 5.1 that (w∗(t, ·), u∗(t, ·), v∗(t, ·)) ≤ (w∗(t, ·), u∗(t, ·), v∗(t, ·)) a.e. in Ω. By600

(11), we see that (w∗(t, ·), u∗(t, ·), v∗(t, ·)) = (w∗(t, ·), u∗(t, ·), v∗(t, ·)) a.e. in Ω for each601

t ∈ (0,∞). Hence, (w∗, u∗, v∗) is a solution of (1) in Y with (w∗(0), u∗(0), v∗(0)) =602

(w0, u0, v0).603

We next show that (w∗, u∗, v∗) ∈ C1([0,∞), X). By virtue of Banach’s fixed point604

theorem, for (w0, u0, v0), there exists a unique solution (w̃, ũ, ṽ) ∈ C1([0, Tmax), X)605

to (1) satisfying (w̃(0), ũ(0), ṽ(0)) = (w0, u0, v0) for some Tmax > 0. Obviously,606

(w̃, ũ, ṽ) ∈ C1([0, Tmax), Y ), therefore the uniqueness implies that (w∗, u∗, v∗) =607

(w̃, ũ, ṽ). The standard argument shows that Tmax = ∞. Namely, (w∗, u∗, v∗) ∈608

C1([0,∞), X) is the unique solution of (1). The proof is completed.609

To state and prove the next result, denote

X+
1 = {(w, u, v) ∈ X | 0 ≤ w ≤ w0, u, v ≥ 0}.

Theorem 5.4. Assume that S0 < 0. Then (w0, u0, v0) is asymptotically stable in610

X+
1 . More precisely, given that (w0, u0, v0) ∈ X+

1 , then the solution (w(t, w0), u(t, u0),611

v(t, v0)) of (1) satisfying (w(0, w0), u(0, u0), v(0, v0)) = (w0, u0, v0) exists globally and612

(w(t, w0), u(t, u0), v(t, v0)) ∈ X+
1 for all t > 0. In particular, (w(t, w0), u(t, u0), v(t, v0))613

converges exponentially to (w0(x), 0, 0) as t→∞.614

Proof. We again let µ(λ) be the principal eigenvalue of LS,λ defined in (6). Note615

that µ(λ) is continuous in λ. Since µ(0) = S0 < 0, there exists λ∗ < 0 such that616

µ(λ∗)−λ∗ < 0. Let φ1 > 0 be an eigenfunction associated with µ(λ∗). Next let k > 0617

be a positive constant and set618

(w+(t, x), u+(t, x), v+(t, x)) =

(
w0(x),

k

λ∗ + a
c(x)w0(x)φ1(x)eλ

∗t, kφ1(x)eλ
∗t

)
619

for (t, x) ∈ R+ × Ω and620

(w−(t, x), u−(t, x), v−(t, x)) = (0, 0, 0).621
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It is straightforward to verify that622

s(x)− bw+ − c(x)w+v− − ∂w+

∂t
≤ 0,623

−au+ + c(x)w+v+ − ∂u+

∂t
= c(x)w0(x)φ1(x)eλ

∗t[− ak

λ∗ + a
+ k − kλ∗

λ∗ + a
] ≤ 0,624

and625 ∫
Ω

J(x− y)[v+(t, y)− v+(t, x)]dy − qv+(t, x) + pu+(t, x)− ∂v+

∂t
626

= keλ
∗t

{∫
Ω

J(x− y)[φ1(y)− φ1(x)]dy +

(
pc(x)w0(x)

λ∗ + a
− q
)
φ1(x)− λ∗φ1(x)

}
627

= keλ
∗tφ1(x)[µ(λ∗)− λ∗] ≤ 0.628

In addition, we have629

s(x)− bw− − c(x)w−v+ − ∂w−

∂t
= s(x) ≥ 0,630

−au− + c(x)w−v− − ∂u−

∂t
= 0,631 ∫

Ω

J(x− y)[v−(t, y)− v−(t, x)]dy − qv−(t, x) + pu−(t, x)− ∂v−

∂t
= 0.632

By Definition 5.2, (w±, u±, v±) given above is a pair of coupled super-sub solutions.633

Given (w0, u0, v0) ∈ X+
1 , as c, w0, and φ1 are strictly positive, there exists k > 0 such634

that (w0, u0, v0) ≤ (w+, u+, v+) for all x ∈ Ω. Hence, it follows from Proposition 5.3635

that636

(0, 0, 0) ≤ (w(t, t0, w0), u(t, t0, u0), v(t, t0, v0))637

≤
(
w0(x),

k

λ∗ + a
c(x)w0(x)φ1(x)eλ

∗t, kφ1(x)eλ
∗t
)

for all (t, x) ∈ R+ × Ω.638

This immediately implies that (w(t, t0, w0), u(t, t0, u0), v(t, t0, v0)) exists for all t > 0639

and (u(t, t0, u0), v(t, t0, v0)) converges exponentially to (0, 0) as t→∞. We next show640

that w(t, t0, w0) also converges to 0 exponentially as t→∞.641

Notice that642

∂(w − w0)2

∂t
= −2b(w − w0)2 − 2cwv(w − w0).643

This shows that644

(w − w0)2 = e−2bt[w(0, x)− w0(x)]2 −
∫ t

0

e−2b(t−τ)2cwv(w − w0)vdτ.645

Assume without loss of generality that |λ∗| < 2b, let K = 2‖cw‖, then646

‖w − w0‖2 ≤ e−2bt‖w − w0‖2 +K

∫ t

0

e−2b(t−τ)‖v(τ)‖dτ647

≤ e−2bt‖w − w0‖2 +Ke−2bt

∫ t

0

e(λ∗+2b)τdτ648

= e−2bt‖w − w0‖2 +
K

λ∗ + 2b
[eλ
∗t(1− e(−2b−λ∗)t)].649

Namely, w(t, t0, w0) converges to 0 exponentially as t→∞. The proof is completed.650
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6. Numerical simulations. In this section, we provide numerical approxima-
tions of solutions of (1) to illustrate stabilities of both the disease-free steady state and
the infection steady state. For the sake of simplicity we assume that all coefficients
are a constant. Take

s = 1.5, b = 2, c = 0.001, a = 1, d = 10, q = 5.5, p = 1.

One can verify that S0 < 0, so Theorem 3.5 implies that the disease-free steady state651

(0.75, 0, 0) is the only non-negative steady state of (1). In addition, it is stable. Given652

that Ω ⊂ R is a bounded domain, we assume Ω = (−1, 1) and consider initial data as653

follows:654

w0(x) = 0.55 + 0.01 sin(3πx+ 0.1),655

u0(x) = 0.2 + 0.01 cos(2πx+ 0.1),656

v0(x) = 0.4 + 0.01 sin(20πx+ 0.1).657

The snapshots of the solution (w(t, x), u(t, x), v(t, x)) with t = 0, 1.3, 1.6, 1.9 are given658

in Fig. 1.659

In case that Ω ⊂ R2 is a bounded domain, we assume that Ω = (−1, 1)× (−1, 1)660

and select initial data as follows:661

w0(x, y) = 0.55 + 0.01 sin(3πx+ 0.1) cos(3πy + 0.1),662

u0(x, y) = 0.2 + 0.01 cos(2πx+ 0.1) sin(2πy + 0.1),663

v0(x, y) = 0.4 + 0.01 sin(5πx+ 0.1)(x2 + y2).664

The snapshots of the solution (w(t, x, y), u(t, x, y), v(t, x, y)) with t = 0, 0.5, 0.75, 1.0665

are given in Fig. 2.666

To demonstrate stability of the infection steady state, we assume that

s = 4, b = 2, c = 1, a = 1, d = 10, q = 0.5, p = 2.

Simple calculation shows that the infection steady state is given by (0.25, 3.5, 14),667

which is the only positive steady state of (1) and is stable. Note that S0 > 0. When668

Ω ⊂ R, we again assume that Ω = (−1, 1) and adopt initial data as follows:669

w0(x) = 0.3 + 0.01 sin(3πx+ 0.1),670

u0(x) = 3 + 0.01 cos(2πx+ 0.1),671

v0(x) = 12 + 0.001 sin(2πx+ 0.1)e−x
2

.672

The snapshots of the solution (w(t, x), u(t, x), v(t, x)) with t = 1, 1.3, 1.6, 1.9 are given673

in Fig. 3.674

In case that Ω ⊂ R2 is a bounded domain, we assume that Ω = (−1, 1)× (−1, 1)675

and choose initial data as follows:676

w0(x, y) = 0.3 + 0.01 sin(3πx+ 0.1) cos(3πy + 0.1),677

u0(x, y) = 3 + 0.01 cos(2πx+ 0.1) sin(2πy + 0.1),678

v0(x, y) = 12 + 0.01(x2 + y2) cos(2πy + 0.1)xe−(x2+y2).679

The snapshots of the solution (w(t, x, y), u(t, x, y), v(t, x, y)) with t = 0, 0.5, 0.75, 1.0680

are given in Fig. 4.681
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Fig. 1. The snapshots of the solution (w(t, x), u(t, x), v(t, x)) of (1) in a one-dimensional spatial
domain with t = 0, 1.3, 1.6, 1.9, which converges to the disease-free steady state (0.75, 0, 0).
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Fig. 2. The snapshots of the solutions (w(t, x, y), u(t, x, y), v(t, x, y)) of (1) converging to the
disease-free steady state (0.75, 0, 0) in a two dimensional spatial domain with t = 0, 0.5, 0.75, 1.0.
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Fig. 3. The snapshots of the solutions (w(t, x), u(t, x), v(t, x)) of (1) in a one-dimensional
spatial domain with t = 0, 1.3, 1.6, 1.9, which converges to the infection steady state (0.25, 3.5, 14).
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Fig. 4. The snapshots of the solutions (w(t, x, y), u(t, x, y), v(t, x, y)) of (1) converging to the
infection steady state (0.25, 3.5, 14) in a two-dimensional spatial domain with t = 0, 0.5, 0.75, 1.0.
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7. Discussion. Recent studies suggest that spatial heterogeneity plays an im-682

portant role in the within-host infection of viruses such as HBV, HCV, and HIV683

(Graw and Perelson [16], Haase [18], Shulla and Randall [30]). Thus, basic ODE684

models are not able to capture the spatial aspects of viral infections and spatial mod-685

els may be more realistic. Under the assumption that target cells and infected cells686

were stationary while viruses were capable of migrating from one grid site to a neigh-687

boring site, Funk et al. [15] used a discrete ordinary differential equation model to688

study the interactions of target cells, infected cells, and viral load at anatomical sites689

where each grid site represents different anatomical sites inside the host. Strain et690

al. [31] introduced a cellular automaton model of viral propagation based on the691

known biophysical properties of HIV including the competition between viral lability692

and Brownian motion. Wang and Wang [32] proposed a spatial HBV model of two693

ODEs coupled with a parabolic PDE for the virus particles and proved the existence694

of traveling waves.695

Nonlocal (convolution) diffusion operators have been used in nonlinear diffusion696

models to describe the spatial movement of particles or individuals, in which the697

convolutions represent the rates at which individuals are arriving at one position698

from other places and are leaving one location to travel to other sites. Such models699

have been used to study problems in materials science (Bates [3]) and epidemiology700

(Ruan [28]). In this paper, we proposed a spatial model of viral dynamics with701

a nonlocal (convolution) diffusion operator describing the spatial spread of virions702

between cells. The model is a spatial generalization of the ODE model of Nowak703

and Bangham [22] and a counterpart of the spatially discrete model of Funk et al.704

[15] in which viron movement is spatially continuous. In section 3, we considered705

positive stationary solutions of the model and showed that the existence of infection706

steady states depends upon the sign of the principal eigenvalue of a nonlocal operator.707

More precisely, when the principal eigenvalue is less than or equal to zero, the only708

non-negative steady state is the infection-free steady state, which is stable; when the709

principal eigenvalue is great than zero there is a unique infection steady state, which710

is stable. In section 4, we studied how the infection steady state depends on the711

dispersal rate. In section 5, we discussed the asymptotical stability of the infection-712

free steady state in invariant regions. Therefore, we established threshold dynamics713

for the nonlocal evolution model of viral infection.714

Compared to spatially discrete ODE models (Funk et al. [15]), cellular automaton715

models (Strain et al. [31]), and diffusive models (Wang and Wang [32]), our model716

(1) is a first spatial model with a nonlocal (convolution) diffusion operator describing717

the spatial spread of viruses between cells. The existing studies on other nonlocal718

evolution models in materials science (Bates [3]) and epidemiology (Ruan [28]) are719

either concerned with the stability of scalar equations or focused on the existence of720

traveling waves, while we studied the stability of the steady states for a system of721

three coupled equations using spectral theory of linear operators. We believe that the722

modeling approach and analysis technique can be used to investigate other nonlocal723

diffusion problems.724
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