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SPATIAL AND TEMPORAL DYNAMICS OF A NONLOCAL VIRAL
INFECTION MODEL\ast 

GUANGYU ZHAO\dagger AND SHIGUI RUAN\ddagger 

Abstract. Recent studies suggest that spatial heterogeneity plays an important role in the
within-host infection of viruses such as HBV, HCV, and HIV. In this paper we propose a spatial
model of viral dynamics on a bounded domain in which virus movement is described by a nonlocal
(convolution) diffusion operator. The model is a spatial generalization of a basic ODE viral infection
model that has been extensively studied in the literature. We investigate the principal eigenvalue
of a perturbation of the nonlocal diffusion operator and show that the principal eigenvalue plays a
key role similar to that of the basic reproduction number when it comes to determining the infection
dynamics. Through analyzing the spectra of two matrix operators, it is shown that the model exhibits
threshold dynamics. More precisely, if the principal eigenvalue is less than or equal to zero, then the
infection-free steady state is asymptotically stable, while there is an infection steady state which is
stable provided that the principal eigenvalue is greater than zero.
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stability
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1. Introduction. Infections with viruses, such as hepatitis B virus (HBV), hep-
atitis C virus (HCV), and human immunodeficiency virus (HIV), have caused very
serious public health problems and economic burdens worldwide since infections with
these viruses are chronic and incurable. Once entering the human body, the viral
capsid protein binds to the specific receptors on the host cellular surface and injects
its core. After an intracellular period associated with transcription, integration, and
the production of capsid proteins, an infected cell releases hundreds of viruses that in
turn infect other cells. Various mathematical models have been developed to describe
the within-host dynamics of these viral infections, such as HBV (Nowak et al. [23]),
HCV (Dixit et al. [11]), HIV (Nowak and Bangham [22], Nowak and May [24]), etc.
The basic within-host viral infection model consists of three components: uninfected
target cells, infected target cells, and free virus, and is described by three ordinary
differential equations (ODEs) (see Nowak and Bangham [22], Nowak and May [24],
Perelson [25], Yang, Zhou, and Ruan [33]). Systems of ODEs have long been utilized
as the mathematical models applied to experimental data on viral infections.

While ODE models have proven quite useful in both empirical studies and the-
oretical research, there is now ample evidence suggesting that spatial heterogeneity
plays an important role in the within-host viral infection as well as the dynamics of
the immune response (Graw and Perelson [16]). For example, HCV predominantly
spreads among hepatocytes, which are epithelial cells that form tight junctions with
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A NONLOCAL VIRAL INFECTION MODEL 1955

their neighbors and are spatially organized within the liver. The results of Shulla
and Randall [30] suggest a defined spatiotemporal regulation of HCV infection with
highly varied replication efficiencies at the single cell level. As HIV mainly infects
CD4+ T cells which are most abundant and densely packed in secondary lymphoid
organs, such as lymph nodes and the spleen, the spatial arrangement of cells might
influence the infection dynamics, and spatial conditions, such as the local availability
of appropriate target cells, may strongly affect the outcome (Haase [18]). Thus, ba-
sic ODE models are not able to capture the spatial aspects of infection, and spatial
models may be preferred to ODE models (Graw and Perelson [16]).

Over the past few years, much effort has been made to combine an ODE model
with spatial aspects in modeling of viral dynamics. Under the assumption that target
cells and infected cells were stationary while virus particles were capable of migrating
from one grid site to a neighboring site, Funk et al. [15] used a discrete ODE model to
study the interactions of target cells, infected cells, and viral load at anatomical sites,
where each grid site represents different anatomical sites inside the host. Through
simulation of viral spread by such a spatially discrete model of viral dynamics, it was
shown that overall infection dynamics are altered, and that models not accounting
for spatial aspects might underestimate the genuine infection dynamics. Strain et
al. [31] introduced a cellular automaton model of viral propagation based on the
known biophysical properties of HIV including the competition between viral lability
and Brownian motion. Wang and Wang [32] generalized Funk et al.'s model by
assuming that the hepatocytes cannot move under normal conditions and neglected
their mobility (whereas virus particles, i.e., virions, can move freely, and their motion
follows a Fickian diffusion), and they proposed a spatial HBV model of two ODEs
coupled with a parabolic PDE for the virus particles and proved the existence of
traveling waves.

Meanwhile, there is increasing interest in nonlocal diffusion problems modeled by
nonlocal (convolution) diffusion operators such as

L0v := d

\int 
\Omega 

J(x - y)[v(y) - v(x)]dy,

where v \in X and X is a proper Banach space (see Andreu et al. [1], Bates et al. [4],
Bates and Zhao [5, 6], Cortazar et al. [9], Coville [10], Du et al. [12], Green et al.
[17], Hutson et al. [20], Kao, Lou, and Shen [21], Rawal and Shen [26] and references
therein). As shown in Bates et al. [4], J(x - y) is viewed as the probability distribution
of jumping from location y to location x; namely the convolution

\int 
\Omega 
J(x - y)u(t, y)dy

is the rate at which individuals are arriving at position x from other places, and\int 
\Omega 
J(y - x)u(t, x)dy is the rate at which they are leaving location x to travel to other

sites. Such models with nonlocal diffusion operators have been used to study problems
in materials science (Bates [3]) and epidemiology (Ruan [28]).

In this paper, we propose a spatial model of viral dynamics with a nonlocal
(convolution) diffusion operator describing the spatial spread of virions between cells.
Let w(t, x), u(t, x), and v(t, x) denote the densities of target cells, infected cells, and
free virions, respectively, at time t and in location x \in \Omega \subset \BbbR n (n \geq 1), where \Omega is
a bounded and connected domain. d > 0 is a constant that stands for the diffusion
coefficient of free virions, and J(\cdot ) is a linear dispersal kernel which gives probabilities
of rate of motion of virions from location y to location x. Target cells are produced at
a rate s(x) and die at a rate b. Target cells become infected cells at an infection rate
c(x), infected cells die at a constant rate a, and new virions generated from infected
cells have an average lifetime of 1/q, at rate p per cell. The nonlocal viral infection
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1956 GUANGYU ZHAO AND SHIGUI RUAN

model takes the following form:

(1)

\left\{               

\partial w(t, x)

\partial t
= s(x) - bw(t, x) - c(x)w(t, x)v(t, x),

\partial u(t, x)

\partial t
=  - au(t, x) + c(x)w(t, x)v(t, x),

\partial v(t, x)

\partial t
= d

\int 
\Omega 

J(x - y)[v(t, y) - v(t, x)]dy  - qv(t, x) + pu(t, x)

for (t, x) \in \BbbR + \times \Omega . When d = 0, and w, u, v, and s and c are all independent of
x, system (1) becomes the basic ODE model of viral dynamics proposed by Nowak
and Bangham [22], Nowak and May [24], Perelson [25], etc. Hence, model (1) may
be viewed as a spatial generalization of the ODE model of Nowak and Bangham [22]
and a counterpart of the spatially discrete model of Funk et al. [15] in which virus
movement is spatially continuous.

This paper is organized as follows. In section 2, some preliminaries are given. In
section 3, we consider positive stationary solutions of (1) which represent infection
steady states. We show that the existence of infection steady states hinges upon
the sign of the principal eigenvalue of a nonlocal operator. More precisely, when
the principal eigenvalue is less than or equal to zero, the only nonnegative steady
state of (1) is the infection-free steady state, which is stable, while (1) has a unique
infection steady state if the principal eigenvalue is greater than zero, and this steady
state is stable. In section 4, we study the dependence of infection steady states on
the dispersal rate d. In section 5, we investigate the asymptotical stability of the
infection-free steady state in invariant regions. Numerical simulations are presented
in section 6. Finally, a brief discussion is given in section 7.

2. Preliminaries. We first list a set of notions that will be used in the rest of
the paper. Let Y be a complex Banach space, and let \scrL (Y ) be the space of bounded
linear operators on Y with the usual operator norm. Let A \in \scrL (Y ) be a closed linear
operator on Y. Denote the resolvent and spectrum of A by

\rho (A) = \{ \lambda \in \BbbC | ker(\lambda I  - A) = \{ 0\} , (\lambda I  - A) - 1 \in \scrL (Y )\} and \sigma (A) = \BbbC \setminus \rho (A),

respectively. The point spectrum of A is defined by

\sigma p(A) = \{ \lambda \in \BbbC | ker(\lambda I  - A) \setminus \{ 0\} \not = \varnothing \} .

An operator is semi-Fredholm if it has closed range and its kernel or cokernel is finite-
dimensional. The discrete, essential, continuous, and residual spectra of A are defined
by

\sigma d(A) =

\biggl\{ 
\lambda \in \BbbC | \lambda \in \sigma p(A) is isolated and dim

\infty \bigcup 
k=1

ker(\lambda I  - A)k <\infty 
\biggr\} 
,

\sigma ess(A) = \{ \lambda \in \BbbC | \lambda I - A is not semi-Fredholm\} (= \sigma (A)\setminus \sigma d(A) if A is self-adjoint),

\sigma c(A) = \{ \lambda \in \BbbC | ker(\lambda I - A) = \{ 0\} , (\lambda I - A) - 1 is unbounded with \scrR (\lambda I  - A) = Y \} ,

and

\sigma r(A) = \{ \lambda \in \BbbC | ker(\lambda I  - A) = \{ 0\} with \scrR (\lambda I  - A) \not = Y \} ,
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A NONLOCAL VIRAL INFECTION MODEL 1957

respectively. Following Appell, Pascale, and Vignoli [2], we also write the compression
spectrum of A as

\sigma co(A) = \{ \lambda \in \BbbC | \scrR (\lambda I  - A) \not = Y \} 

and the approximate point spectrum of A as

\sigma q(A) = \{ \lambda \in \BbbC | there exists a Weyl sequence for \lambda I  - A\} ,

where a sequence \{ zn\} \in Y is called a Weyl sequence for A if \| zn\| Y = 1 and
\| Azn\| Y \rightarrow 0 as n\rightarrow \infty .

In the following, given that r \in C(\Omega ), we define Lr : C(\Omega ) \rightarrow C(\Omega ) by

(2) (Lrz)(x) := d

\int 
\Omega 

J(x - y)[z(y) - z(x)]dy + r(x)z(x).

Let Cc(\BbbR n) denote the space of continuous functions in \BbbR n with compact support.
We first present the following lemma.

Lemma 2.1. Assume that J \in Cc(\BbbR n) is a nonnegative radial function with J(0) >
0 and r \in C(\Omega ), where \Omega \subset \BbbR n (n \geq 1) is a bounded and connected domain. Let
b(x) = r(x) - d

\int 
\Omega 
J(x - y)dy. Suppose that there exists a bounded subdomain \Omega \prime \subset \Omega 

such that [\kappa  - b(x)] - 1 \not \in L1(\Omega \prime ), where \kappa = supx\in \Omega b(x). Then Lr possesses a principal
eigenpair (\mu r, \phi r) with \phi r \in C(\Omega ) and \phi r > 0. Moreover, there holds

(3) \mu r =  - inf
\varphi \in L2(\Omega ),\varphi \not =0

d

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\varphi (y) - \varphi (x)]2dydx - 
\int 
\Omega 

r(x)\varphi 2(x)dx

\| \varphi \| 2L2(\Omega )

.

In particular, suppose that r(x) \not = constant, then \mu r > 0 provided that r \geq 0, where
r = 1

| \Omega | 
\int 
\Omega 
r(x)dx.

Proof. The existence of a principal eigenpair (\mu r, \phi r) was proved in Coville [10],
where the existence of a principal eigenpair is established for a more general nonlocal
operator and \Omega is allowed to be unbounded. In particular, it was shown in Theorem
1.1 of Coville [10] that \mu r > supx\in \Omega b(x). Recall that b(x) = r(x)  - d

\int 
\Omega 
J(x  - y)dy.

This implies that (\lambda  - b(x)) - 1 is a bounded and continuous function for all x \in \Omega 
whenever \lambda \geq \mu r. Let \scrK : L2(\Omega ) \rightarrow L2(\Omega ) and \scrB : L2(\Omega ) \rightarrow L2(\Omega ) be defined by

(4) (\scrK \varphi )(x) =  - d
\int 
\Omega 

J(x - y)\varphi (y)dy and (\scrB \varphi )(x) =  - b(x)\varphi (x), \varphi \in L2(\Omega ),

respectively. Clearly,  - Lr = \scrK + \scrB on L2(\Omega ), and both \scrK and \scrB are self-adjoint.
Moreover, due to the facts that \scrK is compact and that \lambda \in \rho (\scrB ) if \lambda \leq  - \mu r, it
follows from Theorem 8.15 of Schm\"udgen [29] that ( - \infty , - \mu r] \subset [\sigma d( - Lr)

\bigcup 
\rho ( - Lr)].

Since \phi r \in L2(\Omega ), as a result,  - \mu r \in \sigma d( - Lr) with D( - Lr) = L2(\Omega ). Note that
 - Lr is a lower semibounded self-adjoint operator on L2(\Omega ). In fact, let \langle \cdot , \cdot \rangle be
the inner product for L2(\Omega ); then we have \langle  - Lr\varphi ,\varphi \rangle \geq  - m\| \varphi \| L2(\Omega ) as long as
m \geq | r(x)| L\infty (\Omega ). In addition, as  - Lr is bounded, we have ( - \infty , - \| Lr\|  - 1] \subset \rho ( - Lr).
Let \omega r = inf\{ \mu \in \BbbR | \mu \in \sigma ess( - Lr)\} ; it follows that  - \mu r < \omega r. Apparently,
( - \| Lr\|  - 1, \omega r)

\bigcap 
\sigma d( - Lr) \not = \varnothing as  - \mu r \in ( - \| Lr\|  - 1, \omega r).

Let \lambda 1 = inf\varphi \in L2(\Omega ),\varphi \not =0 \| \varphi \|  - 2
L2(\Omega )\langle  - Lr\varphi ,\varphi \rangle . Clearly, \lambda 1 \leq  - \mu r < \omega r. It then

follows from Theorem XIII.1 of Reed and Simon [27] that \lambda 1 \in \sigma d( - Lr). Indeed, we
have \lambda 1 =  - \mu r. Otherwise, let \phi 1 be an eigenfunction associated with \lambda 1. Note that
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1958 GUANGYU ZHAO AND SHIGUI RUAN

| \phi 1| is also an eigenfunction for \lambda 1 since \langle  - Lr| \varphi | , | \varphi | \rangle \leq \langle  - Lr\varphi ,\varphi \rangle for all \varphi \in L2(\Omega ).
Then we find that \langle | \phi 1| , \phi r\rangle = 0 since  - Lr is self-adjoint. But this is impossible
because \phi r > 0. Thus, \lambda 1 =  - \mu r. Namely, (3) holds, and

 - \mu r\| \varphi \| L2(\Omega ) \leq \langle  - Lr\varphi ,\varphi \rangle =
1

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\varphi (y) - \varphi (x)]2dydx - 
\int 
\Omega 

r(x)\varphi 2(x)dx

for all \varphi \in L2(\Omega ).
It remains to prove the last part of the lemma. Let \phi > 0 be an eigenfunction

associated with \mu r, that is,\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]dy + r(x)\phi (x) = \mu r\phi (x).

Multiplying both sides of the above equation by 1/\phi and integrating the resulting
equation over \Omega yield that

md

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]2dydx+

\int 
\Omega 

r(x)dx \leq | \Omega | \mu r.

Here m = 1/| \phi | 2L\infty (\Omega ) and we used the fact that\int 
\Omega 

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]dy
1

\phi (x)
dx

=  - 1

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]

\biggl[ 
1

\phi (y)
 - 1

\phi (x)

\biggr] 
dydx

\geq m

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]2

since

 - [\phi (y) - \phi (x)]

\biggl[ 
1

\phi (y)
 - 1

\phi (x)

\biggr] 
\geq 1

| \phi | 2L\infty (\Omega )

[\phi (y) - \phi (x)]2

for all x, y \in \Omega . Moreover, it follows from the Poincar\'e type inequality of Andreu et
al. [1] that\int 

\Omega 

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]2dydx \geq \beta 

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \phi (x) - 1

| \Omega | 

\int 
\Omega 

\phi (z)dz

\bigm| \bigm| \bigm| \bigm| 2dx,
where \beta > 0 is a constant depending only on J and \Omega . Since \phi \not = constant and r \geq 0,
the desired conclusion follows.

Proposition 2.2. Assume that r1, r2 \in C(\Omega ). Let bi(x) = ri(x)  - 
\int 
\Omega 
J(x  - 

y)dy (i = 1, 2). Suppose there exists subdomains \Omega i \subset \Omega such that [\kappa i  - bi(x)]
 - 1 \not \in 

L1(\Omega i), where \kappa i = supx\in \Omega bi. Let Lri : C(\Omega ) \rightarrow C(\Omega ) be defined by (2). Assume
that r1 \gneq r2 for all x \in \Omega . Then \mu 1 > \mu 2, where \mu i is the principal eigenvalue of
Lri (i = 1, 2).

Proof. Let \phi i be an eigenfunction associated with \mu i (i = 1, 2). Then we have\int 
\Omega 

J(x - y)[\phi 1(y) - \phi 1(x)]dy + r1(x)\phi 1(x) = \mu 1\phi 1(x),\int 
\Omega 

J(x - y)[\phi 2(y) - \phi 2(x)]dy + r2(x)\phi 2(x) = \mu 2\phi 2(x).
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Multiplying both sides of the first equation by \phi 2 and both sides of the second equation
by \phi 2 and integrating the resulting equations over \Omega , we have (i = 1, 2)\int 

\Omega 

\int 
\Omega 

J(x - y)[\phi 1(y) - \phi 1(x)][\phi 2(y) - \phi 2(x)]dydx+

\int 
\Omega 

ri(x)\phi 1\phi 2dx = \mu i

\int 
\Omega 

\phi 1\phi 2dx.

Note that \phi i > 0 for all x \in \Omega . Subtracting these two equalities yields that

0 <

\int 
\Omega 

[r1(x) - r2(x)]\phi 1(x)\phi 2(x)dx = (\mu 1  - \mu 2)

\int 
\Omega 

\phi 1(x)\phi 2(x)dx.

Since the right-hand side of the above equation is strictly positive, it follows that
\mu 1 > \mu 2.

3. Existence and stability of stationary solutions. We now proceed to
study the steady states of (1) and their stabilities. Note that (1) always has an

infection-free steady state given by (w0, u0, v0) =
\bigl( s(x)

b , 0, 0
\bigr) 
. A positive steady state

of (1) is particularly of interest as it represents an infection state, and hence we are
led to study the solution(s) to

(5) d

\int 
\Omega 

J(x - y)[v(y) - v(x)]dy + v(x)

\biggl[ 
pc(x)s(x)

a[b+ c(x)v(x)]
 - q

\biggr] 
= 0, x \in \Omega .

Unless otherwise stated, the following assumptions will be needed throughout the rest
of the paper:

(H1) J \in C1
c (\BbbR n) (n = 1 or 2), J \gneq 0, and J(0) > 0;

(H2) a, b, d, p, q are positive constants, s \in C2(\Omega ) and s \gneq 0 for all x \in \Omega , c \in C2(\Omega )
and c > 0 for all x \in \Omega , where \Omega \subset \BbbR n (n = 1 or 2) is a bounded and
connected domain.

Set

\scrS 0 =  - inf
\varphi \in L2(\Omega ),\| \varphi \| L2(\Omega )=1

\biggl\{ 
d

2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\varphi (y) - \varphi (x)]2dydx

 - 
\int 
\Omega 

\biggl[ 
pc(x)w0(x)

a
 - q

\biggr] 
\varphi 2(x)dx

\biggr\} 
,

\^S0 =
1

| \Omega | 

\int 
\Omega 

\biggl[ 
pc(x)w0(x)

a
 - q

\biggr] 
dx,

S(\lambda , x) =
pc(x)w0(x)

\lambda + a
 - (\lambda + q), Re\lambda >  - a.

Also define an operator LS,\lambda : C(\Omega ) \rightarrow C(\Omega ) by

(6) LS,\lambda \varphi (x) =

\int 
\Omega 

J(x - y)[\varphi (y) - \varphi (x)]dy + S(\lambda , x)\varphi (x), \varphi \in C(\Omega ), Re\lambda >  - a.

Remark 3.1. Thanks to (H1) and (H2), for each \lambda >  - a, S(\lambda , x)  - 
\int 
\Omega 
J(x  - 

y)dy \in C2(\Omega ), which, as shown in Coville [10], guarantees the existence of a principal
eigenvalue of LS,\lambda . Denote the principal eigenvalue of LS,\lambda in C(\Omega ) by \mu (\lambda ). Note
that \mu (\lambda ) is analytic in \lambda and \mu (0) = \scrS 0. In particular, when \lambda takes on real values,
simple calculation shows that \mu \prime (\lambda ) < 0. In light of Lemma 2.1, \scrS 0 > 0 provided that
\^S0 \geq 0. In the case when s and c are independent of x, we have

\^S0 =
pcs

ab
 - q = q(R0  - 1),
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1960 GUANGYU ZHAO AND SHIGUI RUAN

where R0 = pcs
qab is the basic reproduction number of the virus (Nowak and May [24]).

Thus, \scrS 0 has the same sign as the basic reproduction number minus unity (R0  - 1).
In what follows, we will see that \scrS 0 plays a role in determining the stabilities of
stationary solutions to (5).

Theorem 3.2. Assume that (H1) and (H2) are satisfied. Suppose that \scrS 0 \leq 0.
Then (5) has no positive solutions. Namely, model (1) has no nonnegative steady

states other than (w0, u0, v0) = ( s(x)b , 0, 0). Moreover, (w0, u0, v0) is uniformly asymp-

totically stable in X provided that \scrS 0 < 0, where X = C(\Omega )\times C(\Omega )\times C(\Omega ).

Proof. We first show that (5) has no positive solutions by contradiction. Assume
to the contrary that (5) has a positive solution v\ast \in C(\Omega ). Let v\ast (x\ast ) = infx\in \Omega v

\ast (x)
for some x\ast \in \Omega and v\ast (x\ast ) = supx\in \Omega v

\ast (x) for some x\ast \in \Omega . Clearly, v\ast (x\ast ) \not = v\ast (x\ast )
as v\ast \not = constant. It is easy to see that v\ast (x) > 0 for all x \in \Omega . Note that\int 

\Omega 

J(x - y)[v\ast (y) - v\ast (x\ast )]dy \geq 0 for all x \in \Omega .

As a result, we have that pc(x\ast )s(x\ast )
a[b+c(x\ast )v(x\ast )]

 - q \leq 0. Hence, v\ast (x\ast ) \geq ps(x\ast )
a  - bq

c(x\ast )
.

Likewise, we have v\ast (x\ast ) \leq ps(x\ast )
a  - bq

c(x\ast ) . That is,

p infx\in \Omega s(x)

a
 - bq

infx\in \Omega c(x)
\leq v\ast (x) \leq 

p supx\in \Omega s(x)

a
 - bq

supx\in \Omega c(x)
for all x \in \Omega .

Now let \psi be a positive eigenfunction corresponding to \scrS 0. Namely,

d

\int 
\Omega 

J(x - y)[\psi (y) - \psi (x)]dy +

\biggl[ 
pc(x)w0(x)

a
 - q

\biggr] 
\psi (x) = \scrS 0\psi (x).

By multiplying this equation by v\ast and (5) by \psi , respectively, and integrating the
resulting equations over \Omega , we find that

 - d
2

\int 
\Omega 

\int 
\Omega 

J(x - y)[\psi (y) - \psi (x)][v\ast (y) - v\ast (x)]dydx

+

\int 
\Omega 

\biggl[ 
pc(x)w0(x)

a
 - q

\biggr] 
\psi (x)v\ast (x)dx = \scrS 0

\int 
\Omega 

\psi (x)v\ast (x)dx,

 - d
2

\int 
\Omega 

\int 
\Omega 

J(x - y)[v\ast (y) - v\ast (x)][\psi (y) - \psi (x)]dydx

+

\int 
\Omega 

\biggl[ 
pc(x)w0(x)

a[1 + (c(x)v\ast (x))/b]
 - q

\biggr] 
\psi (x)v\ast (x)dx = 0.

Subtracting these equations yields that\int 
\Omega 

\biggl[ 
pc(x)w0(x)

a
 - pc(x)w0(x)

a[1 + (c(x)v\ast (x))/b]

\biggr] 
\psi (x)v\ast (x)dx = \scrS 0

\int 
\Omega 

\psi (x)v\ast (x)dx \leq 0.

As \psi , v\ast > 0 for all x \in \Omega , and pc(x)w0(x)/a  - pc(x)w0(x)/a[1 + (c(x)v\ast (x))/b] \gneq 0
for x \in \Omega , the integral of the right-hand side of the above equation is strictly greater
than zero, which obviously is a contradiction. This contradiction confirms that (5)
has no positive solutions if \scrS 0 \leq 0. It is easy to see that (1) has no nonnegative steady
state other than (w0, u0, v0).
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A NONLOCAL VIRAL INFECTION MODEL 1961

It remains to show that (w0, u0, v0) is stable in X if \scrS 0 < 0. The linearization of
(1) around (w0, u0, v0) for perturbation of functions (w, u, v) \in C([0, T ), X) is given
by the system

\partial 

\partial t

\left(  wu
v

\right)  =

\left(   - b 0  - cw0

0  - a cw0

0 p Lq

\right)  \left(  wu
v

\right)  ,

where Lq : C(\Omega ) \rightarrow C(\Omega ) is defined by Lq\varphi (x) =
\int 
\Omega 
J(x - y)[\varphi (y) - \varphi (x)]dy - q\varphi (x).

Now let

\scrL 0 =

\left(   - b 0  - cw0

0  - a cw0

0 p Lq

\right)  .

Obviously, \scrL 0 is a bounded linear operator on X and is the generator of the strongly
(actually uniformly) continuous semigroup \{ e\scrL 0t\} t\geq 0 given by

e\scrL 0t =
\infty \sum 

n=0

tn\scrL n
0

n!
, t \geq 0.

Denote the spectral bound of \scrL 0 by

s(\scrL 0) = sup\{ Re\lambda | \lambda \in \sigma (\scrL 0)\} .

Given \epsilon > 0, it follows from Engel and Nagel [14] that

\| e\scrL 0t\| \leq M\epsilon e
(s(\scrL 0)+\epsilon )t, t \geq 0,

for some positive constant M\epsilon . Therefore, to complete the proof, it is sufficient to
show that s(\scrL 0) < 0. To this end, we proceed to show that there exists \delta > 0 for which
\{ \lambda \in \BbbC | Re\lambda \geq  - \delta \} \subset \rho (\scrL 0). Let LS,\lambda be the operator defined by (6). Again, let
\mu (\lambda ) be the principal eigenvalue of LS,\lambda in C(\Omega ). Clearly, \mu (0) = \scrS 0. As \scrS 0 < 0, from
the monotonicity of S(\lambda , x) in \lambda , it follows that \mu (\lambda ) < 0 for all \lambda > 0, which implies
that 0 \in \rho (LS,\lambda ) for all \lambda \geq 0. In addition, by virtue of the continuity of S(\lambda , x) with
respect to \lambda , there exists \delta > 0 with \delta \leq 1

2 min\{ b, a, q\} such that \mu (\lambda ) < 0 for all
\lambda \in [ - \delta , 0). Consequently, 0 \in \rho (LS,\lambda ) for all \lambda \geq  - \delta .

Given that \lambda \geq  - \delta , to show \lambda \in \rho (\scrL 0), we consider the resolvent equation
(\lambda I  - \scrL 0)(w, u, v)

T = (h1, h2, h3)
T , where (h1, h2, h3)

T \in X. Namely,

(7)

\left\{   (\lambda + b)w + cw0v = h1,
(\lambda + a)u - cw0v = h2,
 - pu+ \lambda v  - Lqv = h3.

As \lambda + a \not = 0 and \lambda + b \not = 0, it is easy to see that

(w, u, v) =

\biggl( 
h1 + cw0L - 1

S,\lambda (h3 +
ph2

\lambda +a )

\lambda + b
,
h2  - cw0L - 1

S,\lambda (h3 +
ph2

\lambda +a )

\lambda + a
, - L - 1

S,\lambda 

\Bigl( 
h3+

ph2
\lambda + a

\Bigr) \biggr) 
is the unique solution to (7). Hence \lambda \in \rho (\scrL 0) if \lambda \geq  - \delta .

In the case when \lambda \in \BbbC and Im\lambda \not = 0, we write \lambda = \lambda 1 + i\lambda 2 with \lambda 1, \lambda 2 \in \BbbR , and
v = v1 + iv2, where v1, v2 take real values. In view of the above argument, in order
to prove that \lambda \in \rho (\scrL 0) whenever Re\lambda \geq  - \delta , it suffices to show that 0 \in \rho (LS,\lambda )
if Re\lambda \geq  - \delta . First, notice that LS,\lambda is also a bounded linear operator on L2(\Omega ).

D
ow

nl
oa

de
d 

07
/2

0/
18

 to
 1

29
.1

71
.6

.1
77

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1962 GUANGYU ZHAO AND SHIGUI RUAN

Moreover, it is not difficult to show that ker(LS,\lambda ) = \{ 0\} for all \lambda \in \BbbC with Re\lambda \geq  - \delta .
In fact, consider\int 

\Omega 

J(x - y)[v(y) - v(x)]dy  - (\lambda + q)v +
pc(x)w0(x)v

\lambda + a
= 0, v \in L2(\Omega ).

By multiplying both sides of this equation by  - v, we have that

1

2

\int 
\Omega 

\int 
\Omega 

\bigl\{ 
[v1(y) - v1(x)]

2 + [v2(y) - v2(x)]
2
\bigr\} 
dydx

 - 
\int 
\Omega 

\biggl[ 
pc(x)w0(x)(\lambda 1 + a)

(\lambda 1 + a)2 + \lambda 22
 - (\lambda 1 + q)

\biggr] 
vvdx = 0.

Notice that
pc(x)w0(x)(\lambda 1 + a)

(\lambda 1 + a)2 + \lambda 22
 - (\lambda 1 + q) \leq S(x, \lambda 1)

if \lambda 1 \geq  - \delta and \lambda 2 \not = 0. Then Lemma 2.1 and Proposition 2.2 imply that

 - \mu (\lambda 1)\| v\| 2L2(\Omega ) \leq 
1

2

\int 
\Omega 

\int 
\Omega 

\bigl\{ 
[v1(y) - v1(x)]

2 + [v2(y) - v2(x)]
2
\bigr\} 
dydx

 - 
\int 
\Omega 

\biggl[ 
pcw0(\lambda 1 + a)

(\lambda 1 + a)2 + \lambda 22
 - (\lambda 1 + q)

\biggr] 
vvdx.

As \mu (\lambda 1) < 0 if \lambda 1 \geq  - \delta , this implies that v = 0. Namely, ker(LS,\lambda ) = \{ 0\} if
Re\lambda \geq  - \delta . Let L\ast 

S,\lambda be the adjoint operator of LS,\lambda on L2(\Omega ). Then we have

L\ast 
S,\lambda v(x) =

\int 
\Omega 

J(x - y)[v(y) - v(x)]dy  - (\lambda + q)v +
pc(x)w0(x)v

\lambda + a
.

The same reasoning shows that ker(L\ast 
S,\lambda ) = \{ 0\} . Thus, \scrR (LS,\lambda ) = L2(\Omega ). Clearly,

0 \in \BbbC \setminus \sigma co(LS,\lambda ) if Re\lambda \geq  - \delta . Furthermore, we have 0 \in \BbbC \setminus \sigma q(LS,\lambda ). In fact, if
0 \in \sigma q(LS,\lambda ), there would be a Weyl sequence \{ vn\} such that \langle  - LS,\lambda vn, vn\rangle \rightarrow 0 as
n \rightarrow \infty , which as above implies that  - \mu (\lambda 1)\| vn\| L2(\Omega ) \rightarrow 0 as n \rightarrow \infty . This is a
contradiction. Thus, we must have that 0 \in \BbbC \setminus [\sigma q(LS,\lambda )

\bigcup 
\sigma co(LS,\lambda )]. Then, from

the fact that \rho (LS,\lambda ) = \BbbC \setminus [\sigma q(LS,\lambda )
\bigcup 
\sigma co(LS,\lambda )], we infer that 0 \in \rho (LS,\lambda ) for all

Re\lambda \geq  - \delta with D(LS,\lambda ) = L2(\Omega ).
Now fix \lambda \in \BbbC with Re\lambda \geq  - \delta . Let \scrP : L2(\Omega ) \rightarrow L2(\Omega ) be defined by

(8)

(\scrP v)(x) = P (x)v(x) =

\biggl[ 
 - 
\int 
\Omega 

J(x - y)dy + S(x, \lambda )

\biggr] 
v(x),

P (x) =  - 
\int 
\Omega 

J(x - y)dy + S(x, \lambda ).

Note that P \in C(\Omega ). We next show that 0 \in \Lambda c, where \Lambda = \{ z \in \BbbC | z = P (x), x \in 
\Omega \} . Assume to the contrary that this is not true; then in view of Schm\"udgen [29],
there holds that 0 \in \Lambda \subseteq \sigma (\scrP ). Since \scrP is a normal operator on L2(\Omega ), we have
\sigma (\scrP ) = \sigma p(\scrP )\cup \sigma c(\scrP ). It is easy to see that \sigma p(\scrP ) \subseteq \sigma q(\scrP ). In fact, if \lambda \in \sigma p(\scrP ), let
\psi \in L2(\Omega ) be an eigenfunction corresponding to \lambda ; then

[\lambda  - P (x)]\psi \psi = Re[\lambda  - P (x)]\psi \psi + iIm[\lambda  - P (x)]\psi \psi = 0.
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A NONLOCAL VIRAL INFECTION MODEL 1963

Write \Xi = \{ x \in \Omega | \psi \psi \not = 0\} . Obviously, the measure of \Xi is positive. Hence,
[\lambda  - P (x)] = 0 in \Xi . This implies that any L2 function with support in \Xi belongs
to ker(\lambda I  - \scrP ) and dimker(\lambda I  - \scrP ) = \infty . Thus, \sigma p(\scrP ) \subseteq \sigma q(\scrP ) and \sigma (\scrP ) = \sigma q(\scrP ).
On the other hand, note that LS,\lambda =  - \scrK + \scrP , where \scrK is given by (4), and hence it
follows from Proposition 1.5 of Appell, Pascale, and Vignoli [2] that \sigma q(LS,\lambda ) = \sigma q(\scrP )
and 0 \in \sigma q(LS,\lambda ), which, however, contradicts the fact that 0 \in \rho (LS,\lambda ). Thus, we
must have 0 \in \BbbC \setminus \Lambda . As \Lambda is a compact subset of \BbbR 2 for fixed \lambda , there exists an
\omega \lambda > 0 for which dist(0,\Lambda ) \geq \omega \lambda . In other words, | P (x)| \geq \omega \lambda or | P (x)|  - 1 \leq 1/\omega \lambda 

for all x \in \Omega . Clearly, P - 1 \in C(\Omega ). Given f \in C(\Omega ), as f \in L2(\Omega ), there is a unique
vf \in L2(\Omega ), such that LS,\lambda vf = f and \| vf\| L2(\Omega ) \leq K\| f\| L2(\Omega ) \leq K

\sqrt{} 
| \Omega | \| f\| X for

some K > 0, that is independent of f . Moreover, we have that

vf (x) =  - 1

P (x)

\int 
\Omega 

J(x - y)vf (y)dy +
f(x)

P (x)
.

It is clear that vf \in C(\Omega ) and \| vf\| X \leq K \prime \| f\| X for some K \prime > 0. Consequently, for
any \lambda \in \BbbC with Re\lambda \geq  - \delta , 0 \in \rho (LS,\lambda ) with D(LS,\lambda ) = C(\Omega ). Therefore, we infer
that \{ \lambda \in \BbbC | Re\lambda \geq  - \delta \} \subset \rho (\scrL 0), which implies that s(\scrL 0) < 0 as desired.

Now set

F (w, u, v) =

\left(   - cw(x)v(x)
cw(x)v(x)

0

\right)  .

Then F \in C1(X). Note that (w + w0, u, v) is a solution of (1) with initial data
(w(0, x) + w0(x), u(0, x), v(0, x)) if and only if (w, u, v) is a solution to

\partial 

\partial t

\left(  wu
v

\right)  = \scrL 0

\left(  wu
v

\right)  + F (w, u, v)

with initial data (w(0, x), u(0, x), v(0, x))T . Obviously, (0, 0, 0)T is a stationary solu-
tion of the above equation, and \| F (w, u, v)\| X = o(\| (w, u, v)T \| X) as \| (w, u, v)T \| X \rightarrow 
0. By using Theorem 5.1.1 of Henry [19], we finally conclude that (w0, u0, v0) is
uniformly asymptotically stable in X. The proof is completed.

Theorem 3.3. Assume that (H1) and (H2) are satisfied. Suppose that \scrS 0 > 0.
Then (w0, u0, v0) is unstable in X.

Proof. We shall prove that s(\scrL 0) \in \sigma p(\scrL 0) and s(\scrL 0) > 0, where \scrL 0 is given
in the proof of Theorem 3.2, and s(\scrL 0) = sup\{ Re\lambda | \lambda \in \sigma (\scrL 0)\} . Let \mu (\lambda ) be the
principal eigenvalue of LS,\lambda . By the assumption, we have \mu (0) = \scrS 0 > 0. Since
S(\lambda , x) \rightarrow  - \infty uniformly as \lambda \rightarrow \infty , by the monotonicity of \mu (\lambda ) (\mu \prime (\lambda ) < 0), there
exists a \lambda m > 0 such that \mu (\lambda m) < 0 for all \lambda \geq \lambda m. It then follows from the mean
value theorem that \mu (\lambda \ast ) = 0 for some \lambda \ast \in (0, \lambda m). In addition, \lambda \ast is the only zero
of \mu (\lambda ) in [0,\infty ) since \mu \prime (\lambda ) < 0. This also implies that \mu (\lambda ) < 0 for all \lambda > \lambda \ast .
In other words, 0 \in \rho (LS,\lambda ) if \lambda > \lambda \ast . With the same reasoning as that used in the
proof of Theorem 3.2, we can infer that \lambda \in \rho (\scrL 0) provided that Re\lambda > \lambda \ast . Now let
\varphi \ast \in ker(\mu (\lambda \ast )I  - LS,\lambda \ast ). It is easy to see that

ker(\lambda \ast I  - \scrL 0) = span

\biggl( 
cw0\varphi \ast 

\lambda \ast + b
,
cw0\varphi \ast 

\lambda \ast + a
, \varphi \ast 

\biggr) 
.

Namely, \lambda \ast \in \sigma p(\scrL 0) and s(\scrL 0) = \lambda \ast > 0. It then follows from Theorem 5.1.3 of
Henry [19] that (w0, u0, v0) is unstable in X. The proof is completed.
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1964 GUANGYU ZHAO AND SHIGUI RUAN

Proposition 3.4 (Coville [10]). Assume that g(x, \tau ) \in C0,1(\Omega \times \BbbR +) and
\theta g(x, \tau ) \lneq g(x, \theta \tau ) for \theta > 1. Let v1, v2 \in X satisfy\int 
\Omega 

J(x - y)[v1(y) - v1(x)]dy + g(x, v1) \leq 0 \leq 
\int 
\Omega 

J(x - y)[v2(y) - v2(x)]dy + g(x, v2).

Assume further that v1(x) > 0 for all x \in \Omega . Then v1 \geq v2.

Proof. See section 6.3 of Coville [10] for details.

Theorem 3.5. Assume that (H1) and (H2) are satisfied. Suppose that \scrS 0 > 0.
Then (1) has a unique positive steady state (w\ast , u\ast , v\ast ) which is uniformly asymptot-
ically stable in X.

Proof. Note that (1) has a positive steady state if and only if there exists a positive
solution to (5). We next show that v = \epsilon \phi is a subsolution of (5), where \epsilon > 0 is a
sufficiently small constant and \phi > 0 is an eigenfunction associated with \scrS 0. Namely,

d

\int 
\Omega 

J(x - y)[\phi (y) - \phi (x)]dy +

\biggl[ 
pc(x)s(x)

ab
 - q

\biggr] 
\phi (x) = \scrS 0\phi (x).

Thus, whenever \epsilon is sufficiently small, we find

d

\int 
\Omega 

J(x - y)\epsilon [\phi (y) - \phi (x)]dy +

\biggl[ 
pc(x)s(x)

a[b+ \epsilon c(x)\phi ]
 - q

\biggr] 
\epsilon \phi 

=

\biggl[ 
\scrS 0 +

pc(x)s(x)

a[b+ \epsilon c(x)\phi ]
 - pc(x)s(x)

ab

\biggr] 
\epsilon \phi > 0.

Meanwhile, it is easy to see that [ pc(x)s(x)
a[b+c(x)M ]  - q] \leq 0, where M > 0 is a constant and

is sufficiently large. Now fix M and let v \equiv M . Clearly, we have

d

\int 
\Omega 

J(x - y)\epsilon [v(y) - v(x)]dy +

\biggl[ 
pc(x)s(x)

a[b+ c(x)v]
 - q

\biggr] 
v \leq 0.

Set f(x, \tau ) = \tau [ pc(x)s(x)
a[b+c(x)\tau ]  - q] and let \nu > max(x,\tau )\in \Omega \times [0,2M ] | f\tau (x, \tau )| .

Now define \scrF : X \rightarrow X by

(\scrF v)(x) = (\nu I  - L0)
 - 1[\nu v + f(x, v)], v \in X,

where (L0v)(x) = d
\int 
\Omega 
J(x - y)[v(y) - v(x)]dy. As s(L0) = 0, due to Bates and Zhao

[5], (\nu I - L0)
 - 1 is well defined and is a positive operator onX; that is, (\nu I - L0)

 - 1v \geq 0
if v \geq 0. Consequently, \scrF v1 \geq \scrF v2 provided that 0 \leq v2 \leq v1 \leq M . On the other
hand, simple calculation shows that f\tau \tau \leq 0. Hence, f(x, t\theta 1+(1 - t)\theta 2) \geq tf(x, \theta 1)+
(1  - t)f(x, \theta 1) for t \in [0, 1] and \theta 1, \theta 2 \in \BbbR . This implies that \scrF (tu + (1  - t)w) \geq 
t\scrF u+ (1 - t)\scrF w for u,w \in X with u,w \geq 0. Notice that (5) is equivalent to \scrF v = v.
In addition, as (\nu I  - L0)

 - 1 is a positive operator, it is easy to see that \scrF v \geq v and
\scrF v \leq v. Therefore, it follows from Du [13] that \scrF has a unique fixed point v\ast in \Theta ,
where \Theta = \{ v \in X | v \leq v \leq v\} . Thus, v\ast is a positive solution of (5). To prove the
uniqueness of v\ast , let w\ast be a positive solution of (5). Then Proposition 3.4 implies
that v\ast \geq w\ast and v\ast \leq w\ast . Therefore, v\ast is the unique positive solution of (5). Now
clearly, (1) has a unique positive steady state whose w, u components are given by

w\ast (x) =
s(x)

b+ c(x)v\ast (x)
, u\ast (x) =

s(x)v\ast (x)

a[b+ c(x)v\ast (x)]
.
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To consider the stability of (w\ast , u\ast , v\ast ), we linearize (1) around (w\ast , u\ast , v\ast ) for
perturbation of functions (w, u, v) \in C([0, T ), X) and obtain the system

\partial 

\partial t

\left(  wu
v

\right)  =

\left(   - b - cv\ast 0  - cw\ast 

cv\ast  - a cw\ast 

0 p Lq

\right)  \left(  wu
v

\right)  .

Let \scrL \ast : C(\Omega ) \rightarrow C(\Omega ) be defined by

\scrL \ast =

\left(   - b - cv\ast 0  - cw\ast 

cv\ast  - a cw\ast 

0 p Lq

\right)  .

In light of the proof of Theorem 3.2, to establish the stability of (w\ast , u\ast , v\ast ), it is
sufficient to show that there exists \delta > 0 for which \{ \lambda \in \BbbC | Re\lambda \geq  - \delta \} \subset \rho (\scrL \ast ).
To this end, we first prove that \lambda \in \rho (\scrL \ast ) if 0 \in \rho (LS\ast ,\lambda ). Here LS\ast ,\lambda is given by
L0 + S\ast (\lambda , x) and

S\ast (\lambda , x)v(x) =

\biggl[ 
pc(x)s(x)

(\lambda + a)[b+ c(x)v\ast (x)]
 - (\lambda + q)

 - pc2(x)s(x)v\ast (x)

(\lambda + a)(\lambda + b+ cv\ast )[b+ c(x)v\ast (x)]

\biggr] 
v(x).

Set m(x) = pc(x)s(x)
a[b+c(x)v\ast (x)]  - q, and let Lm : C(\Omega ) \rightarrow C(\Omega ) be defined by Lm =

L0 +m(x). As v\ast is the unique positive solution of (5), that is, Lmv
\ast = 0, it follows

from [5] that the principal eigenvalue of Lm is zero. Denote the principal eigenvalue
of LS\ast ,\lambda by \mu \ast (\lambda ). When \lambda \in \BbbR and \lambda \geq 0, it is obvious that S\ast (\lambda , x) \lneq m(x) for all
x \in \Omega . Hence, it follows from Proposition 2.2 that \mu \ast (\lambda ) < 0 provided that \lambda \geq 0.
In addition, \mu \ast (\lambda ) is analytic in \lambda whenever Re\lambda > max\{  - a, - b\} since S\ast (\lambda , x) is
analytic in \lambda . Thus, there exists \delta > 0 sufficiently small such that \mu \ast (\lambda ) < 0 for all
\lambda \geq  - \delta . Consequently, 0 \in \rho (LS\ast ,\lambda ) as long as \lambda \geq  - \delta . Given (h1, h2, h3) \in X, the
system

(9)

\left\{   (\lambda + b+ cv\ast )w + cw\ast v = h1,
 - cv\ast w + (\lambda + a)u - cw\ast v = h2,
 - pu+ \lambda v  - Lqv = h3

has a unique solution given by

w =  - cw\ast v

\lambda + b+ cv\ast 
+

h1
\lambda + b

,

u =  - c2w\ast v\ast v

(\lambda + a)(\lambda + b+ cv\ast )
+
cw\ast v

\lambda + a
+

cv\ast h1
(\lambda + a)(\lambda + b)

+
h2

\lambda + a
,

v = L - 1
S\ast ,\lambda 

\biggl[ 
 - pcv\ast h1

(\lambda + a)(\lambda + b)
+

 - ph2
\lambda + a

 - h3

\biggr] 
.

Namely, \lambda \in \rho (\scrL \ast ) if \lambda \geq  - \delta . In the case when \lambda \in \BbbC with Im\lambda \not = 0, by utilizing the
argument given in the proof of Theorem 3.2, we can show that \lambda \in \rho (\scrL \ast ) if Re\lambda \geq  - \delta .
Therefore, \{ \lambda \in \BbbC | Re\lambda \geq  - \delta \} \subset \rho (\scrL \ast ). The proof is completed.
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1966 GUANGYU ZHAO AND SHIGUI RUAN

4. Impacts of dispersal rate. In this section, we discuss the impacts of dis-
persal rate on solutions of (5). The discussion is motivated by an observation made in
Funk et al. [15] that the increased transport rate dv for viruses between the different
sites may give rise to a smoothed viral load between different sites. As argued in Graw
and Perelson [16], this may indicate that ``the average virus load in the neighborhood
of a grid site has a higher influence on the equilibrium viral load at this site than more
distant sites."" Thus, a natural question is whether similar phenomena can be observed
for the spatial dynamics of (5). As a matter of fact, under suitable conditions, it can
be shown that solutions of (5) tend to be more spatially homogeneous as d goes to
infinity, while the solutions of (5) display spatial heterogeneity as d goes to zero.

Let \zeta (x) \in C(\Omega ) be the function satisfying f(x, \zeta (x)) \equiv 0. Namely,

(10) \zeta (x) =
ps(x)

aq
 - b

c
.

Theorem 4.1. Let \zeta (x) be defined by (10). Assume that \zeta (x) > 0 for all x \in \Omega .
Then (5) possesses a unique positive solution vd for each d > 0. In particular, vd
converges uniformly to \zeta (x) in \Omega as d goes to zero.

Proof. Since \zeta > 0, we have pcs/ab - q > 0. Hence \scrS 0 > 0. It then follows from
Theorem 3.5 that (5) has a unique positive solution vd for each d > 0. Now set

vd = \zeta (x) - 
\surd 
d, vd = \zeta (x) +

\surd 
d.

Write f(x, \tau ) = \tau h(x, \tau ); that is, h(x, \tau ) = pcs
a[b+c\tau ]  - q. Using the fact that h(x, \zeta ) = 0

and the mean value theorem, we have that

f(x, vd) =  - 
\surd 
d

\int 1

0

h\tau (x, \zeta  - t
\surd 
d)dtvd, f(x, vd) =

\surd 
d

\int 1

0

h\tau (x, \zeta + t
\surd 
d)dtvd.

Notice that\int 1

0

h\tau (x, \zeta  - t
\surd 
d)dtvd \rightarrow h\tau (x, \zeta )\zeta ,

\int 1

0

h\tau (x, \zeta + t
\surd 
d)dtvd \rightarrow h\tau (x, \zeta )\zeta 

uniformly in \Omega as d\rightarrow 0. On the other hand, we have

L0vd = L0vd =
\surd 
d

\int 
\Omega 

\surd 
dJ(x - y)[\zeta (y) - \zeta (x)]dy.

As h\tau (x, \zeta ) < 0 for all x \in \Omega , there exists D > 0 such that vd and vd are the
subsolution and supersolution of (5), respectively, if d \leq D. Hence, Proposition 3.4
implies that vd \leq vd \leq vd provided that d \leq D. Then the desired conclusion follows.
The proof is completed.

Proposition 4.2. Let vd be the unique positive solution of (5). Then vd \in C\alpha (\Omega )
provided that d is sufficiently large and vd satisfies \| vd\| C\alpha \leq K with some positive
constants \alpha \in (0, 1) and K > 0 for all d \geq D.

Proof. We first note that there exists M > 0 such that f(x,M) \leq 0. It is obvious
that vd = M is a subsolution of (5) for all d > 0. Hence, it follows from Proposition
3.4 that | vd| L\infty (\Omega ) \leq M. Given x \in \Omega , let h > 0 be chosen so that Bh(x) \cap \Omega \not = \varnothing ,
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A NONLOCAL VIRAL INFECTION MODEL 1967

where Bh(x) := \{ y \in \BbbR n | | y  - x| < h\} . Set vhd = vd(x+ h) - vd(x). Then we find\biggl[ \int 
\Omega 

J(x - y)dy  - d - 1

\int 1

0

fs(x, tvd(x+ h) + (1 - t)vd(x))dt

\biggr] 
vhd

=

\int 
\Omega 

[J(x+ h - y) - J(x - y)]vd(y)dy  - 
\int 
\Omega 

[J(x+ h - y) - J(x - y)]dyvd(x)

+f(x+ h, vd(x+ h)) - f(x, vd(x+ h)).

Write

Rh(x) =

\int 
\Omega 

J(x - y)dy  - d - 1

\int 1

0

fs(x, tvd(x+ h) + (1 - t)vd(x))dt.

As
\int 
\Omega 
J(x  - y)dy > 0 for all x \in \Omega , it is easy to see that Rh(x) \geq \theta > 0 for some

positive constant \theta for all (x, h) \in \Omega \times (0, 1) as long as d is sufficiently large. In view
of (H1) and (H2), we see that f \in C\alpha ,1(\Omega \times \BbbR +) for some \alpha \in (0, 1). Then notice that

vhd
h\alpha 

=
1

Rh(x)

\biggl\{ \int 
\Omega 

\biggl[ 
J(x+ h - y) - J(x - y)

h\alpha 

\biggr] 
vd(y)dy

 - 
\int 
\Omega 

\biggl[ 
J(x+ h - y) - J(x - y)

h\alpha 

\biggr] 
dyvd(x)

\biggr\} 
+

1

Rh(x)

\biggl\{ 
f(x+ h, vd(x+ h)) - f(x, vd(x+ h))

h\alpha 

\biggr\} 
.

Due to the assumptions on J and f , there exists K > 0 independent of x and h,
such that | h - \alpha vhd | L\infty \leq K provided that d is sufficiently small. Thus, the desired
conclusion follows. The proof is completed.

Owing to Proposition 4.2 and the Arzel\`a--Ascoli lemma, \{ vd\} converges to some
function v\ast \in C(\Omega ) uniformly in \Omega as d\rightarrow \infty . By taking limits in (5), that is,

lim
d\rightarrow \infty 

\int 
\Omega 

J(x - y)[vd(y) - vd(x)]dy =  - lim
d\rightarrow \infty 

d - 1f(x, vd),

we immediately find that L0v
\ast = 0. Since ker(L0) = span\{ 1\} , v\ast must be a constant.

We have the next theorem.

Theorem 4.3. Assume that pcs(x) - abq \geq 0. Let all the assumptions of Propo-
sition 4.2 be satisfied. Assume that c(x) is independent of x \in \Omega . Then (5) pos-
sesses a unique positive solution vd for each d > 0. In particular, \{ vd\} converges to

v\ast = pcs(x) - abq
acq uniformly in \Omega as d\rightarrow \infty .

Proof. The existence of a unique positive solution vd of (5) follows from the same
argument as that of Theorem 3.5. The rest of the proof relies on the Crandall--
Rabinowitz bifurcation theorem and is similar to that of Theorem A.2 of Cantrell,
Cosner, and Huston [8]. Let V = \{ u \in C(\Omega ) | 

\int 
\Omega 
udx = 0\} . Write \mu = d - 1. Let

\Psi : \BbbR \times V \times \BbbR + \rightarrow X be defined by

\Psi (k, u, \mu ) =

\int 
\Omega 

J(x - y)[u(y) - u(x)]dy + \mu (u+ k)

\biggl( 
pcs(x)

a[b+ c(u+ k)]
 - q

\biggr) 
,

where k is an arbitrary constant. Clearly, \Psi (k, u, \mu ) = 0 is equivalent to (5) when
\mu > 0. If \mu = 0, then \Psi (k, u, 0) = 0 implies that u = 0. Let D\Psi (k, u, \mu ) denote the
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1968 GUANGYU ZHAO AND SHIGUI RUAN

Fr\'echet derivative of \Psi at (u, \mu ). Then we have

D\Psi (k, u, \mu )(v, \eta ) =

\int 
\Omega 

J(x - y)[v(y) - v(x)]dy + \mu 

\biggl( 
abpcs(x)

[ab+ ac(u+ k)]2
 - q

\biggr) 
v

+ \eta (u+ k)

\biggl( 
pcs(x)

a[b+ c(u+ k)]
 - q

\biggr) 
.

Thus

D\Psi (k, 0, 0)(v, \eta ) =

\int 
\Omega 

J(x - y)[v(y) - v(x)]dy + \eta k

\biggl( 
pcs(x)

a[b+ ck]
 - q

\biggr) 
.

If pcs(x)  - abq > 0, then there exist two solutions to k(pcs(x)/[ab+ ack] - q) = 0,
which are k1 = (pcs(x) - abq)/acq and k2 = 0. If k is equal to neither k1 nor k2, that
is, k(pcs(x)/[ab+ ack] - q) \not = 0, following [8], we can show that D\Psi (k, 0, 0) \in B(V \times 
\BbbR , X) is invertible. In fact, assume to the contrary that kerD\Psi (k, 0, 0) \setminus \{ 0\} \not = \varnothing .
Let (u \star , \eta  \star ) \not = 0 and (u \star , \eta  \star ) \in kerD\Psi (k, 0, 0). Then, it is easy to see that

\eta  \star 
\bigl[ 
k(pcs(x)/[ab+ ack] - q)

\bigr] 
=

\int 
\Omega 

\int 
\Omega 

J(x - y)[u \star (y) - u \star (x)]dydx = 0.

This implies that \eta  \star = 0, and consequently, u \star = 0 as u \star \in V , which is a contradiction.
Hence, kerD\Psi (k, 0, 0)\setminus \{ 0\} = \varnothing . Now let g \in X. As k(pcs(x)/[ab+ ack] - q) \not = 0, we
write \eta g = g/k(pcs(x)/[ab+ ack] - q). In other words, g = \eta gk(pcs(x)/[ab+ ack] - q).
In view of the Poincar\'e-type inequality of Andreu et al. [1] and Lemma 2.2 of Bates
and Zhao [6], there exists a unique ug \in L2(\Omega ) such that\int 

\Omega 

J(x - y)[ug(y) - ug(x)]dy = g  - \eta g

\biggl[ 
kpcs(x)

ab+ ack
 - q

\biggr] 
.

In particular, we have\int 
\Omega 

ugdx = 0, ug =
1\int 

\Omega 
J(x - y)dy

\biggl[ \int 
\Omega 

J(x - y)ug(y)dy + \eta gk

\biggl( 
pcs(x)

a[b+ ck]
 - q

\biggr) 
 - g

\biggr] 
.

With the same argument as that given in the proof for Theorem 3.2, we infer that
ug \in C(\Omega ). Namely, Range(D\Psi (k, 0, 0)) = X. Thus, D\Psi (k, 0, 0) has a bounded
inverse. This implies that the line of constants \{ (k, 0, 0) | k \in \BbbR \} is the only branch
of solutions to \Psi (k, u, \mu ) = 0 in a neighborhood of (k, 0, 0).

Now let k = k1 = (pcs(x) - abq)/acq; then the same reasoning implies that there
exists a unique v\circ \in V such that\int 

\Omega 

J(x - y)[v\circ (y) - v\circ (x)]dy + k1

\biggl( 
pcs(x)

a[b+ ck1]
 - q

\biggr) 
= 0.

Therefore, kerD\Psi (k1, 0, 0) = \{ \tau (v\circ , 1), \tau \in \BbbR \} . In addition, note that

D\Psi (k1, 0, 0)(u, \eta ) = [D\Psi (k1, 0, 0) +\scrH ](u, \eta ) - \scrH (u, \eta ),

where \scrH : V \times \BbbR \rightarrow X is given by \scrH (u, \eta ) = \theta \eta , \theta \not = 0 is a fixed constant, and thus
D\Psi (k1, 0, 0)(u, \eta ) is Fredholm of index 0 since [D\Psi (k1, 0, 0) +\scrH ] is invertible and \scrH 
is compact. Moreover, we have

DkD\Psi (k1, 0, 0)(u, \eta ) = \eta 

\biggl[ 
abpcs(x)

(ab+ ck1)2
 - q

\biggr] 
.
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A NONLOCAL VIRAL INFECTION MODEL 1969

Since abpcs(x)/(ab+ ck1)2  - q \not = 0, DkD\Psi (k1, 0, 0)(u
\circ , 1) \not \in Range(D\Psi (k1, 0, 0)).

Hence, it follows from the Crandall--Rabinowitz bifurcation theorem that there is
a nontrivial continuously differentiable curve through (k1, 0, 0),

\{ (k(\tau ), v(\tau ), \mu (\tau )) \in \BbbR \times V \times \BbbR | \tau \in ( - \delta , \delta ), (k(0), v(0), \mu (0)) = (k1, 0, 0)\} ,

such that \Psi (k(\tau ), v(\tau ), \mu (\tau )) = 0 for \tau \in ( - \delta , \delta ), and (u, \mu ) = \tau (v\circ , 1) + o(\tau ). More-
over, as \mu \prime (0) > 0, it follows from the inverse function theorem that \mu (\cdot ) is a dif-
feomorphism for \tau \in ( - \epsilon , \epsilon ) with \epsilon > 0 sufficiently small and \tau = \tau \ast (\mu ) for some
\tau \ast \in C1(\BbbR ). Recall that \mu = 1/d if \mu > 0. Since k1 > 0 and k(\tau \ast (\mu )) + \tau \ast (\mu )v\circ > 0
provided that \mu is sufficiently small, thanks to the uniqueness of vd, there holds
vd = k(\tau \ast (\mu ))+u(\tau \ast (\mu )). On the other hand, Proposition 4.2 shows that vd \rightarrow v\ast for
some v\ast \in C(\Omega ) as d \rightarrow \infty . Thus, v\ast = (pcs(x)  - abq)/acq. In addition, the same
argument as that given for Theorem A.2 of [8] shows that k \not = 0 under the condition
that pcs(x)  - abq > 0. Hence, we must have vd \rightarrow pcs(x)  - abq)/acq as d \rightarrow \infty . In
the case when pcs(x) - abq = 0, by employing the argument given in Theorem A.2 of
[8], we infer that vd \rightarrow 0 as d\rightarrow \infty . Namely, vd \rightarrow pcs(x) - abq as d\rightarrow \infty . The proof
is completed.

It is also interesting to ask if vd as a function of d possesses extreme values
and if so, where the extreme values are attained. A study of the differentiability of
vd with respect to d may offer useful clues. It can be shown that vd : d \rightarrow C(\Omega )
is differentiable if d is sufficiently small. Suppose that all assumptions of Theorem
4.1 are satisfied. Notice that f\tau (x, \zeta (x)) = \zeta (x)h\tau (x, \zeta (x)) < 0 for all x \in \Omega . Let
Ld
\zeta = dL0 + f\tau (x, \zeta (x)) and denote its principal eigenvalue by \mu \zeta . Due to Lemma

2.1, we have  - \mu \zeta = \langle  - L\zeta u, u\rangle \geq infx\in \Omega  - f\tau (x, \zeta ) > 0, which implies that 0 \in \rho (L\zeta )

if Ld
\zeta is considered as an operator in L2(\Omega ). Let f \in L2(\Omega ). As Ld

\zeta is self-adjoint in

L2(\Omega ), \| uf\| L2(\Omega ) \leq \theta  - 1\| f\| L2(\Omega ), where \theta = infx\in \Omega | f\tau (x, \zeta | and uf solves Ld
\zeta w = g.

In particular, if g \in X := C(\Omega ), then simple calculation yields that

ug =

\biggl[ 
d

\int 
\Omega 

J(x - y)dy  - f\tau (x, \zeta (x))

\biggr]  - 1\biggl\{ 
d

\int 
\Omega 

J(x - y)ug(y)dy + g

\biggr\} 
.

Thus, ug \in X. Moreover, given that d < 1, then

\| ug\| X \leq sup
x\in \Omega 

\theta  - 1

\int 
\Omega 

| J(x - y)| 2dy\| ug\| L2(\Omega ) + \theta  - 1\| g\| X \leq C\| g\| X .

Here C > 0 is a constant depending only on J, | \Omega | , and \theta . Due to the continuity of
f\tau , there exists \epsilon > 0 sufficiently small such that \epsilon < \zeta and f\tau (x, \xi (x)) < 0 as long
as \zeta  - \epsilon \leq \xi (x) \leq \zeta  - \epsilon . Given that \xi \in X, let Ld

\xi := dL0 + fs(x, \xi ). Then Ld
\xi is

also invertible. In addition, it follows that \| (Ld
\xi )

 - 1\| \leq \vargamma for some \vargamma > 0 provided
that \| \xi  - \varsigma \| \leq \epsilon and \epsilon is sufficiently small. Hence, by following the same reasoning,
Ld
\xi u = g has a unique solution ug \in X for g \in X. In particular, \| ug\| \leq C \prime \| g\| X for

some positive constant C \prime . Given that h > 0, since

(d+ h)L0vd+h + f(x, vd+h) = 0, dL0vd + f(x, vd) = 0,

we have

dL0[vd+h  - vd] +

\int 1

0

f\tau (x, tvd+h + (1 - t)vd)dt[vd+h  - vd] =  - hL0vd+h.
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1970 GUANGYU ZHAO AND SHIGUI RUAN

It follows that

\| ud+h  - ud + h(dL0 + f\tau (x, vd))
 - 1L0vd\| X = o| h| ,

which apparently shows that vd is differentiable with respect to d. Notice that L0vd =
d - 1f(x, vd). Hence, \partial vd

\partial d = (dL0+ f\tau (x, vd))
 - 1f(x, vd). In addition, a straightforward

calculation yields that \int 
\Omega 

f(x, vd)
\partial vd
\partial d

dx = 0.

5. Asymptotic stability of steady states. In this section, we study the
asymptotic behavior of the positive solutions of (1). Similar to the evolution sys-
tems studied in Cantrell et al. [7], bounded forward orbits of (1) are generally not
precompact in the phase space, and so the LaSalle invariance principle is seemingly
inapplicable. To cope with this difficulty, we adopt a super- and subsolution technique
to investigate the asymptotic behavior of the bounded positive solutions of (1). Under
certain conditions, this technique helps to show that bounded positive solutions of (1)
in an invariant manifold (region) converge exponentially to the infection-free steady
state (w0(x), 0, 0) provided that \scrS 0 < 0.

Proposition 5.1. Assume that (w, u, v) \in C1([0,\infty ), Y ) satisfies

\| (w, u, v)\| C([0,\infty ),Y ) <\infty 

and

wt \leq a11w + a12u+ a13v,

ut \leq a21w + a22u+ a23v,

vt \leq 
\int 
\Omega 

J(x - y)[v(y) - v(x)]dy + a31w + a32u+ a33v

for (t, x) \in [0,\infty ) \times \Omega , where ai,j \in C([0, T ), X) and ai,j \geq 0 if i \not = j. Furthermore,
suppose that (w(0, x), u(0, x), v(0, x)) \leq (0, 0, 0) for all x \in \Omega . Then (w, u, v) \leq 
(0, 0, 0) a.e. in [0, T )\times \Omega .

Proof. The proof is similar to that for parabolic systems. We only give a sketch.
Write ( \v w, \v u, \v v) = (w \vee 0, u \vee 0, v \vee 0) and ( \^w, \^u, \^v) = ( - w \vee 0, - u \vee 0, - v \vee 0). Note
that

wt \leq a11w + a12\v u+ a13\v v,

ut \leq a21 \v w + a22u+ a23\v v,

vt \leq 
\int 
\Omega 

J(x - y)[\v v(t, y) - \v v(t, x)]dy +

\int 
\Omega 

J(x - y)dy\^v + a31 \v w + a32\v u+ a33v.

Then we find that

d

dt

\int 
\Omega 

\v w2dx \leq 2

\int 
\Omega 

[a11 \v w
2 + a12\v u \v w + a13\v v \v w]dx,

d

dt

\int 
\Omega 

\v u2dx \leq 2

\int 
\Omega 

[a21 \v w\v u+ a22\v u
2 + a23\v v\v u]dx,

d

dt

\int 
\Omega 

\v v2dx \leq 2

\int 
\Omega 

[a31 \v w\v v + a32\v u\v v + a33\v v
2]dx.
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A NONLOCAL VIRAL INFECTION MODEL 1971

Thus, H\"older's inequality implies that

d

dt

\int 
\Omega 

[ \v w2 + \v u2 + \v v2]dx \leq K

\int 
\Omega 

[ \v w2 + \v u2 + \v v2]dx

for some positive constantK. As ( \v w0, \v u0, \v v0) = (0, 0, 0), it follows from the comparison
principle that ( \v w, \v u, \v v) = (0, 0, 0).

Definition 5.2. A pair of functions (w\pm , u\pm , v\pm ) \in C1([0, T ), X) is said to be
a pair of coupled nonnegative super- and subsolutions of (1) provided that (0, 0, 0) \leq 
(w - , u - , v - ) \leq (w+, u+, v+), and

s(x) - bw+  - c(x)w+v -  - \partial w+

\partial t
\leq 0 \leq s(x) - bw -  - c(x)w - v+  - \partial w - 

\partial t
,

 - au+ + c(x)w+v+  - \partial u+

\partial t
\leq 0 \leq  - au - + c(x)w - v -  - \partial u - 

\partial t
,

d

\int 
\Omega 

J(x - y)[v+(t, y) - v+(t, x)]dy  - qv+ + pu+  - \partial v+

\partial t
\leq 0,

d

\int 
\Omega 

J(x - y)[v - (t, y) - v - (t, x)]dy  - qv - + pu -  - \partial v - 

\partial t
\geq 0,

where 0 < T \leq \infty is a constant. In this pair, (w+, u+, v+) is called the supersolution
and (w - , u - , v - ) is called the subsolution.

Proposition 5.3. Assume that there exists a pair of coupled nonnegative super-
and subsolutions (w\pm , u\pm , v\pm ) of (1) in [0,\infty )\times \Omega . In addition, assume that

\| (w\pm , u\pm , v\pm )\| C([0,\infty ),X) <\infty .

Then given (w0, u0, v0) \in X with (w - , u - , v - ) \leq (w0, u0, v0) \leq (w+, u+, v+), there is
a unique solution (w, u, v) to (1) satisfying

(w(0, x), u(0, x), v(0, x)) = (w0(x), u0(x), v0(x)) and (w0, u0, v0) \in C1([0,\infty ), X).

Moreover,

(w - , u - , v - ) \leq (w, u, v) \leq (w+, u+, v+) for all (t, x) \in [0,\infty )\times \Omega .

Proof. Write (w0, u0, v0) = (w+, u+, v+), (w0, u0, v0) = (w - , u - , v - ), and let
\alpha > 0 be a constant sufficiently large so that \alpha > \| cv+\| C([0,\infty ),X). Set

wn+1 = e - (b+\alpha )tw0 +

\int t

0

e - (b+\alpha )(t - \tau )[s(x) + \alpha wn(\tau , x) - c(x)wn(\tau , x)vn(\tau , x)]d\tau ,

un+1 = e - (a+\alpha )tu0 +

\int t

0

e - (a+\alpha )(t - \tau )\alpha un+1 + \alpha un(\tau , x) + c(x)wn(\tau , x)vn(\tau , x)d\tau ,

vn+1 = e - (q+\alpha )tv0

+

\int t

0

e - (b+\alpha )(t - \tau )

\biggl[ \int 
\Omega 

J(x - y)[vn(\tau , y) - vn(\tau , x)]dy+\alpha vn(\tau , x)+pun(\tau , x)
\biggr] 
d\tau 
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1972 GUANGYU ZHAO AND SHIGUI RUAN

and

wn+1 = e - (b+\alpha )tw0 +

\int t

0

e - (b+\alpha )(t - \tau )[s(x) + \alpha wn(\tau , x) - c(x)wn(\tau , x)vn(\tau , x)]d\tau ,

un+1 = e - (a+\alpha )tu0 +

\int t

0

e - (a+\alpha )(t - \tau )\alpha un + c(x)wn(\tau , x)vn(\tau , x)d\tau ,

vn+1 = e - (q+\alpha )tv0

+

\int t

0

e - (b+\alpha )(t - \tau )

\biggl[ \int 
\Omega 

J(x - y)[vn(\tau , y) - vn(\tau , x)]dy+\alpha vn(\tau , x)+pun(\tau , x)
\biggr] 
d\tau .

First, it is straightforward to verify that (w1, u1, v1), (w1, u1, v1) \in C1([0,\infty ), X).
Notice that \alpha w+ - cw+v - \geq \alpha w+ - cw+v+ \geq \alpha w -  - cw - v+ for all (t, x) \in [0,\infty )\times \Omega .
Hence, the comparison principle implies that

(w - , u - , v - ) \leq (w1, u1, v1) \leq (w1, u1, v1) \leq (w+, u+, v+).

By induction, we see that

(w - , u - , v - ) \leq (wn, un, vn) \leq (wn, un, vn) \leq (w+, u+, v+), n \geq 1,

and

(wn, un, vn) \leq (wn+1, un+1, vn+1) \leq (wn+1, un+1, vn+1) \leq (wn, un, vn).

Clearly, (wn, un, vn) and (wn, un, vn) \in C1([0,\infty ), X). In particular, for each (t, x) \in 
[0,\infty ) \times \Omega , both (wn, un, vn) and (wn, un, vn) are monotone and bounded in their
components. For fixed (t, x) \in [0,\infty )\times \Omega , let

(w\ast (t, x), u\ast (t, x), v\ast (t, x)) = lim
n\rightarrow \infty 

(wn(t, x), un(t, x), vn(t, x))

and

(w\ast (t, x), u\ast (t, x), v\ast (t, x)) = lim
n\rightarrow \infty 

(wn(t, x), un(t, x), vn(t, x)).

Apparently, we have

(11) (w - , u - , v - ) \leq (w\ast , u\ast , v\ast ) \leq (w\ast , u\ast , v\ast ) \leq (w+, u+, v+)

for all (t, x) \in [0,\infty ) \times \Omega . By using Lebesgue's dominated convergence theorem and
passing the limits in the above equations, we find that

w\ast = e - (b+\alpha )tw0 +

\int t

0

e - (b+\alpha )(t - \tau )[s(x) + \alpha w\ast (\tau , x) - c(x)w\ast (\tau , x)v\ast (\tau , x)]d\tau ,

u\ast = e - (a+\alpha )tu0 +

\int t

0

e - (a+\alpha )(t - \tau )\alpha u\ast (\tau , x) + c(x)w\ast (\tau , x)v\ast (\tau , x)d\tau ,

v\ast = e - (q+\alpha )tv0

+

\int t

0

e - (b+\alpha )(t - \tau )

\biggl[ \int 
\Omega 

J(x - y)[v\ast (\tau , y) - v\ast (\tau , x)]dy + \alpha v\ast (\tau , x) + pu\ast (\tau , x)

\biggr] 
d\tau 
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and

w\ast = e - (b+\alpha )tw0 +

\int t

0

e - (b+\alpha )(t - \tau )[s(x) + \alpha w\ast (\tau , x) - c(x)w\ast (\tau , x)v
\ast (\tau , x)]d\tau ,

u\ast = e - (a+\alpha )tu0 +

\int t

0

e - (a+\alpha )(t - \tau )\alpha u\ast (\tau , x) + c(x)w\ast (\tau , x)v\ast (\tau , x)d\tau ,

v\ast = e - (q+\alpha )tv0

+

\int t

0

e - (b+\alpha )(t - \tau )

\biggl[ \int 
\Omega 

J(x - y)[v\ast (\tau , y) - v\ast (\tau , x)]dy + \alpha v\ast (\tau , x) + pu\ast (\tau , x)

\biggr] 
d\tau .

Let Y = L\infty (\Omega ) \times L\infty (\Omega ) \times L\infty (\Omega ). Thanks to the fact that both (w\ast , u\ast , v\ast ) and
(w\ast , u\ast , v\ast ) are bounded, we have that (w\ast , u\ast , v\ast ) and (w\ast , u\ast , v\ast ) \in C([0,\infty ), Y ).
This implies that (w\ast , u\ast , v\ast ) and (w\ast , u\ast , v\ast ) \in C1([0,\infty ), Y ). Now set ( \widehat w, \widehat u, \widehat v) =
(w\ast  - w\ast , u

\ast  - u\ast , v\ast  - v\ast ). Clearly, ( \widehat w, \widehat u, \widehat v) \in C1([0,\infty ), Y ) and \| ( \widehat w, \widehat u, \widehat v)\| C([0,\infty ),Y ) <
\infty . In addition, by the mean value theorem, we have

\widehat wt \leq M( \widehat w + \widehat v),\widehat ut \leq M(\widehat u+ \widehat w + \widehat v),
\widehat vt \leq \int 

\Omega 

J(x - y)[\widehat v(t, y) - \widehat v(t, x)]dy +M(\widehat u+ \widehat w + \widehat v)
for some positive constant M . As ( \widehat w(0, x), \widehat u(t, x), \widehat v(t, x)) = (0, 0, 0), it follows from
Proposition 5.1 that (w\ast (t, \cdot ), u\ast (t, \cdot ), v\ast (t, \cdot )) \leq (w\ast (t, \cdot ), u\ast (t, \cdot ), v\ast (t, \cdot )) a.e. in \Omega . By
(11), we see that (w\ast (t, \cdot ), u\ast (t, \cdot ), v\ast (t, \cdot )) = (w\ast (t, \cdot ), u\ast (t, \cdot ), v\ast (t, \cdot )) a.e. in \Omega for each
t \in (0,\infty ). Hence, (w\ast , u\ast , v\ast ) is a solution of (1) in Y with (w\ast (0), u\ast (0), v\ast (0)) =
(w0, u0, v0).

We next show that (w\ast , u\ast , v\ast ) \in C1([0,\infty ), X). By virtue of Banach's fixed point
theorem, for (w0, u0, v0), there exists a unique solution ( \~w, \~u, \~v) \in C1([0, Tmax), X)
to (1) satisfying ( \~w(0), \~u(0), \~v(0)) = (w0, u0, v0) for some Tmax > 0. Obviously,
( \~w, \~u, \~v) \in C1([0, Tmax), Y ), and therefore the uniqueness implies that (w\ast , u\ast , v\ast ) =
( \~w, \~u, \~v). The standard argument shows that Tmax = \infty . Namely, (w\ast , u\ast , v\ast ) \in 
C1([0,\infty ), X) is the unique solution of (1). The proof is completed.

To state and prove the next result, we denote

X+
1 = \{ (w, u, v) \in X | 0 \leq w \leq w0, u, v \geq 0\} .

Theorem 5.4. Assume that \scrS 0 < 0. Then (w0, u0, v0) is asymptotically stable
in X+

1 . More precisely, given that (w0, u0, v0) \in X+
1 , the solution (w(t, w0), u(t, u0),

v(t, v0)) of (1) satisfying (w(0, w0), u(0, u0), v(0, v0)) = (w0, u0, v0) exists globally and
(w(t, w0), u(t, u0), v(t, v0)) \in X+

1 for all t > 0. In particular, (w(t, w0), u(t, u0), v(t, v0))
converges exponentially to (w0(x), 0, 0) as t\rightarrow \infty .

Proof. We again let \mu (\lambda ) be the principal eigenvalue of LS,\lambda defined in (6). Note
that \mu (\lambda ) is continuous in \lambda . Since \mu (0) = \scrS 0 < 0, there exists \lambda \ast < 0 such that
\mu (\lambda \ast ) - \lambda \ast < 0. Let \phi 1 > 0 be an eigenfunction associated with \mu (\lambda \ast ). Next let k > 0
be a positive constant, and set

(w+(t, x), u+(t, x), v+(t, x)) =

\biggl( 
w0(x),

k

\lambda \ast + a
c(x)w0(x)\phi 1(x)e

\lambda \ast t, k\phi 1(x)e
\lambda \ast t

\biggr) 
for (t, x) \in \BbbR + \times \Omega and

(w - (t, x), u - (t, x), v - (t, x)) = (0, 0, 0).
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1974 GUANGYU ZHAO AND SHIGUI RUAN

It is straightforward to verify that

s(x) - bw+  - c(x)w+v -  - \partial w+

\partial t
\leq 0,

 - au+ + c(x)w+v+  - \partial u+

\partial t
= c(x)w0(x)\phi 1(x)e

\lambda \ast t

\biggl[ 
 - ak

\lambda \ast + a
+ k  - k\lambda \ast 

\lambda \ast + a

\biggr] 
\leq 0,

and\int 
\Omega 

J(x - y)[v+(t, y) - v+(t, x)]dy  - qv+(t, x) + pu+(t, x) - \partial v+

\partial t

= ke\lambda 
\ast t

\biggl\{ \int 
\Omega 

J(x - y)[\phi 1(y) - \phi 1(x)]dy +

\biggl( 
pc(x)w0(x)

\lambda \ast + a
 - q

\biggr) 
\phi 1(x) - \lambda \ast \phi 1(x)

\biggr\} 
= ke\lambda 

\ast t\phi 1(x)[\mu (\lambda 
\ast ) - \lambda \ast ] \leq 0.

In addition, we have

s(x) - bw -  - c(x)w - v+  - \partial w - 

\partial t
= s(x) \geq 0,

 - au - + c(x)w - v -  - \partial u - 

\partial t
= 0,\int 

\Omega 

J(x - y)[v - (t, y) - v - (t, x)]dy  - qv - (t, x) + pu - (t, x) - \partial v - 

\partial t
= 0.

By Definition 5.2, (w\pm , u\pm , v\pm ) given above is a pair of coupled super- and sub-
solutions. Given (w0, u0, v0) \in X+

1 , as c, w0, and \phi 1 are strictly positive, there exists
k > 0 such that (w0, u0, v0) \leq (w+, u+, v+) for all x \in \Omega . Hence, it follows from
Proposition 5.3 that

(0, 0, 0) \leq (w(t, t0, w0), u(t, t0, u0), v(t, t0, v0))

\leq 
\biggl( 
w0(x),

k

\lambda \ast + a
c(x)w0(x)\phi 1(x)e

\lambda \ast t, k\phi 1(x)e
\lambda \ast t

\biggr) 
for all (t, x) \in \BbbR + \times \Omega .

This immediately implies that (w(t, t0, w0), u(t, t0, u0), v(t, t0, v0)) exists for all t > 0,
and (u(t, t0, u0), v(t, t0, v0)) converges exponentially to (0, 0) as t\rightarrow \infty . We next show
that w(t, t0, w0) also converges to 0 exponentially as t\rightarrow \infty .

Notice that

\partial (w  - w0)2

\partial t
=  - 2b(w  - w0)2  - 2cwv(w  - w0).

This shows that

(w  - w0)2 = e - 2bt[w(0, x) - w0(x)]2  - 
\int t

0

e - 2b(t - \tau )2cwv(w  - w0)vd\tau .

Assume without loss of generality that | \lambda \ast | < 2b, and let K = 2\| cw\| ; then

\| w  - w0\| 2 \leq e - 2bt\| w  - w0\| 2 +K

\int t

0

e - 2b(t - \tau )\| v(\tau )\| d\tau 

\leq e - 2bt\| w  - w0\| 2 +Ke - 2bt

\int t

0

e(\lambda 
\ast +2b)\tau d\tau 

= e - 2bt\| w  - w0\| 2 + K

\lambda \ast + 2b
[e\lambda 

\ast t(1 - e( - 2b - \lambda \ast )t)].

Namely, w(t, t0, w0) converges to 0 exponentially as t\rightarrow \infty . The proof is completed.
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Fig. 1. Snapshots of the solution (w(t, x), u(t, x), v(t, x)) of (1) in a one-dimensional spatial
domain with t = 0, 1.3, 1.6, 1.9, which converges to the disease-free steady state (0.75, 0, 0).

6. Numerical simulations. In this section, we provide numerical approxima-
tions of solutions of (1) to illustrate stabilities of both the disease-free steady state and
the infection steady state. For the sake of simplicity we assume that all coefficients
are constants. Take

s = 1.5, b = 2, c = 0.001, a = 1, d = 10, q = 5.5, p = 1.

One can verify that \scrS 0 < 0, so Theorem 3.5 implies that the disease-free steady state
(0.75, 0, 0) is the only nonnegative steady state of (1). In addition, it is stable. Given
that \Omega \subset \BbbR is a bounded domain, we assume \Omega = ( - 1, 1) and consider initial data as
follows:

w0(x) = 0.55 + 0.01 sin(3\pi x+ 0.1),

u0(x) = 0.2 + 0.01 cos(2\pi x+ 0.1),

v0(x) = 0.4 + 0.01 sin(20\pi x+ 0.1).

Snapshots of the solution (w(t, x), u(t, x), v(t, x)) with t = 0, 1.3, 1.6, 1.9 are given in
Figure 1.

In the case when \Omega \subset \BbbR 2 is a bounded domain, we assume that \Omega = ( - 1, 1) \times 
( - 1, 1) and select initial data as follows:

w0(x, y) = 0.55 + 0.01 sin(3\pi x+ 0.1) cos(3\pi y + 0.1),

u0(x, y) = 0.2 + 0.01 cos(2\pi x+ 0.1) sin(2\pi y + 0.1),

v0(x, y) = 0.4 + 0.01 sin(5\pi x+ 0.1)(x2 + y2).

Snapshots of the solution (w(t, x, y), u(t, x, y), v(t, x, y)) with t = 0, 0.5, 0.75, 1.0 are
given in Figure 2.
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Fig. 2. Snapshots of the solutions (w(t, x, y), u(t, x, y), v(t, x, y)) of (1) converging to the
disease-free steady state (0.75, 0, 0) in a two-dimensional spatial domain with t = 0, 0.5, 0.75, 1.0.

To demonstrate stability of the infection steady state, we assume that

s = 4, b = 2, c = 1, a = 1, d = 10, q = 0.5, p = 2.

A simple calculation shows that the infection steady state is given by (0.25, 3.5, 14),
which is the only positive steady state of (1) and is stable. Note that \scrS 0 > 0. When
\Omega \subset \BbbR , we again assume that \Omega = ( - 1, 1) and adopt initial data as follows:

w0(x) = 0.3 + 0.01 sin(3\pi x+ 0.1),

u0(x) = 3 + 0.01 cos(2\pi x+ 0.1),

v0(x) = 12 + 0.001 sin(2\pi x+ 0.1)e - x2

.

Snapshots of the solution (w(t, x), u(t, x), v(t, x)) with t = 1, 1.3, 1.6, 1.9 are given in
Figure 3.

In the case when \Omega \subset \BbbR 2 is a bounded domain, we assume that \Omega = ( - 1, 1) \times 
( - 1, 1) and choose initial data as follows:

w0(x, y) = 0.3 + 0.01 sin(3\pi x+ 0.1) cos(3\pi y + 0.1),

u0(x, y) = 3 + 0.01 cos(2\pi x+ 0.1) sin(2\pi y + 0.1),

v0(x, y) = 12 + 0.01(x2 + y2) cos(2\pi y + 0.1)xe - (x2+y2).

Snapshots of the solution (w(t, x, y), u(t, x, y), v(t, x, y)) with t = 0, 0.5, 0.75, 1.0 are
given in Figure 4.
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Fig. 3. Snapshots of the solutions (w(t, x), u(t, x), v(t, x)) of (1) in a one-dimensional spatial
domain with t = 0, 1.3, 1.6, 1.9, which converges to the infection steady state (0.25, 3.5, 14).
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Fig. 4. Snapshots of the solutions (w(t, x, y), u(t, x, y), v(t, x, y)) of (1) converging to the infec-
tion steady state (0.25, 3.5, 14) in a two-dimensional spatial domain with t = 0, 0.5, 0.75, 1.0.

7. Discussion. Recent studies suggest that spatial heterogeneity plays an im-
portant role in the within-host infection of viruses such as HBV, HCV, and HIV (Graw
and Perelson [16], Haase [18], Shulla and Randall [30]). Thus, basic ODE models are
not able to capture the spatial aspects of viral infections, and spatial models may
be more realistic. Under the assumption that target cells and infected cells are sta-
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tionary while viruses are capable of migrating from one grid site to a neighboring
site, Funk et al. [15] used a discrete ODE model to study the interactions of target
cells, infected cells, and viral load at anatomical sites, where each grid site repre-
sents different anatomical sites inside the host. Strain et al. [31] introduced a cellular
automaton model of viral propagation based on the known biophysical properties of
HIV including the competition between viral lability and Brownian motion. Wang
and Wang [32] proposed a spatial HBV model of two ODEs coupled with a parabolic
PDE for the virus particles and proved the existence of traveling waves.

Nonlocal (convolution) diffusion operators have been used in nonlinear diffusion
models to describe the spatial movement of particles or individuals, in which the
convolutions represent the rates at which individuals are arriving at one site from
others and leaving one site to travel to others. Such models have been used to study
problems in materials science (Bates [3]) and epidemiology (Ruan [28]). In this paper,
we proposed a spatial model of viral dynamics with a nonlocal (convolution) diffusion
operator describing the spatial spread of virions between cells. The model is a spatial
generalization of the ODE model of Nowak and Bangham [22] and a counterpart of
the spatially discrete model of Funk et al. [15] in which virion movement is spatially
continuous. In section 3, we considered positive stationary solutions of the model and
showed that the existence of infection steady states depends on the sign of the principal
eigenvalue of a nonlocal operator. More precisely, when the principal eigenvalue is
less than or equal to zero, the only nonnegative steady state is the infection-free
steady state, which is stable; when the principal eigenvalue is greater than zero there
is a unique infection steady state, which is stable. In section 4, we studied how the
infection steady state depends on the dispersal rate. In section 5, we discussed the
asymptotical stability of the infection-free steady state in invariant regions. Therefore,
we established threshold dynamics for the nonlocal evolution model of viral infection.

Compared to spatially discrete ODE models (Funk et al. [15]), cellular automaton
models (Strain et al. [31]), and diffusive models (Wang and Wang [32]), our model (1)
is the first spatial model with a nonlocal (convolution) diffusion operator describing
the spatial spread of viruses between cells. The existing studies on other nonlocal
evolution models in materials science (Bates [3]) and epidemiology (Ruan [28]) are
either concerned with the stability of scalar equations or focused on the existence of
traveling waves, while we studied the stability of the steady states for a system of
three coupled equations using spectral theory of linear operators. We believe that the
modeling approach and analysis technique can be used to investigate other nonlocal
diffusion problems.

Acknowledgments. We would like to thank the two anonymous reviewers for
their helpful comments and suggestions, which helped us to improve the paper signif-
icantly.
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