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Abstract

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions
to a class of periodic advection–reaction–diffusion systems. Under certain conditions, we prove that there
exists a maximal wave speed c∗ such that for each wave speed c ≤ c∗, there is a time periodic traveling wave
connecting two periodic solutions of the corresponding kinetic system. It is shown that such a traveling
wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We
also show that the traveling wave solutions with wave speed c ≤ c∗ are asymptotically stable in certain
sense. In addition, we establish the nonexistence of time periodic traveling waves with speed c > c∗.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Traveling wave solutions of reaction–diffusion systems have been studied intensively over
the last four decades since wave phenomena are observed in many time dependent processes
described by evolution equations (see Conley and Gardner [8], Dunbar [9], Gardner [12], Gour-
ley and Ruan [15], Hosono [19], Kan-On [20], Lewis et al. [21], Li et al. [22], Sandstede and
Scheel [31], Volpert et al. [32], Weinberger [34] and references therein). Moreover, the study
of traveling wave solutions has been such an essential part of mathematical analysis of evolv-
ing spatial patterns generated by nonlinear parabolic equations because of their importance in
governing the long time behavior and stability.

Although the study of traveling wave solutions has a longstanding history, most of the exist-
ing studies are devoted to autonomous equations. Recently, an interest in both space and time
periodic traveling wave solutions has been stimulated by a vast number of examples of biolog-
ical and physical systems where relevant parameters are either space periodic (Berestycki and
Hamel [4], Berestycki et al. [5–7]) or time periodic (Alikakos et al. [1], Liang et al. [24], Liang
and Zhao [25], Nolen and Xin [30], Xin [35], Zhao [36]). For pulsating fronts, Hamel [16] and
Hamel and Roques [17] presented a systematic analysis of the qualitative behavior, uniqueness,
and stability of monostable pulsating fronts for reaction–diffusion equations in periodic media
with KPP nonlinearities. The established results provide a complete classification of all KPP
pulsating fronts. Most recently, Zhao and Ruan [37] investigated time periodic traveling wave
solutions of a diffusive Lotka–Volterra competition with periodic forcing. The basic existence
and uniqueness results for traveling waves connecting two semi-trivial periodic solutions of the
corresponding kinetic system were obtained. The asymptotic stability of traveling wave solutions
was also established.

On the other hand, advection–reaction–diffusion equations have been used extensively to
model some reaction–diffusion processes taking place in moving media such as fluids, for exam-
ple, combustion, atmospheric chemistry, and plankton distributions in the sea, etc. Berestycki [2],
Gilding and Kersner [14], Malaguti and Marcelli [28], and Malaguti et al. [29] investigated the
influence of advection on the propagation of traveling wave fronts in some reaction–diffusion
systems. See also Liang and Wu [23] and Wang et al. [33].

In this paper, we are interested in studying the existence and other qualitative behaviors of
time periodic traveling wave solutions of a periodic advection–reaction–diffusion system of the
following form: {

ut = d1(t)�u+ k(t) · ∇u+ f (t, u, v),

vt = d2(t)�v + l(t) · ∇v + g(t, u, v),
(1.1)

where u = u(t, x), v = v(t, x), (t, x) ∈ R+ × Rn (n ≥ 1), � :=∑n
i=1

∂2

∂x2
i

, ∇ := ( ∂
∂x1

, · · · , ∂
∂xn

),

k(t) = (k1(t), · · · , kn(t)), l(t) = (l1(t), · · · , ln(t)), di (i = 1,2) and ki and li (i = 1, · · · , n) are
T -periodic and Hölder continuous functions of t , di is strictly positive in [0, T ], while ki and li
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may change sign, and both f and g are T -periodic in t . Nonlinear periodic advection–reaction–
diffusion systems like (1.1) arise in many areas of biology, chemistry and physics and may be
utilized to model a vast variety of phenomena. In such a system, diffusion and advection play a
crucial role in determining its spatio-temporal patterns and dynamics.

Time periodic traveling waves to (1.1) are solutions of the form(
u(t, x)

v(t, x)

)
=
(
X(t, x · ν − ct)

Y (t, x · ν − ct)

)
,

(
X(t + T , z)

Y (t + T , z)

)
=
(
X(t, z)

Y (t, z)

)
, z = x · ν − ct (1.2)

satisfying (
X(t,±∞)

Y (t,±∞)

)
= lim

z→±∞

(
X(t, z)

Y (t, z)

)
=
(
u±(t)
v±(t)

)
,

where the given vector ν = (ν1, · · · , νn) ∈ Rn with |ν| = 1 denotes the direction of motion of the

wave.
(
u+(t)

v+(t)

)
and

(
u−(t)

v−(t)

)
are the periodic solutions of the corresponding ordinary differential

equations ⎧⎪⎪⎨⎪⎪⎩
du

dt
= f (t, u, v),

dv

dt
= g(t, u, v).

(1.3)

Notice that time periodic traveling waves of the form (1.2) enjoy the property(
u(t, x), v(t, x)

)= (
u(t + T ,x + cT ν), v(t + T ,x + cT ν)

)
.

In the present work, define

J = 1

T

T∫
0

J (t)dt

as the average of a function J that is integrable in [0, T ]. We make the following assumptions:

(H1) f (t + T , ·, ·) = f (t, ·, ·), g(t + T , ·, ·) = g(t, ·, ·) for all t ∈ R, f and g ∈ Cβ,2(R × R2,R)

for some β ∈ ]0,1[, f (t,0,0) = g(t,0,0) = f (t,1,1) = g(t,1,1) = 0 for all t ∈ R, and
f (t, u, v) = uh(t, u, v).

(H2) fv(t, u, v) � 0 for all (t, u, v) ∈ R × R+ × R, gu(t, u, v) � 0 for all (t, u, v) ∈ R × R ×
(−∞,1].

(H3) h(t,0,0) > 0 and hv(t, u, v) > 0 for all (t, u, v) ∈ R × R+ × R+.

(H4) gv(t,0,0) < 0, θ−1g(t,0, θ) < 0 for any 0 < θ < 1.
(H5) f (t, u, v) ≥ fu(t,0,0)u + fv(t,0,0)v − �(|u| + |v|)1+γ and g(t, u, v) ≥ gu(t,0,0)u +

gv(t,0,0)v − �(|u| + |v|)1+γ for all (t, u, v) ∈ R × R × R, where � and γ are certain
positive constants.

(H6) f ∗(t, s) := f (t, s, s), g∗(t, s) := g(t, s, s). Assume that f ∗
s (t,0) ≥ g∗

s (t,0), f ∗
s (t,0)s ≥

f ∗(t, s), and g∗
s (t,0)s ≥ g∗(t, s) for all (t, s) ∈ R × R+.
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(H7) Let

Π0 :=
{(

pi(t), qi(t)
) ∈ [0,1] × [0,1]

∣∣∣ (pi(· + T )

qi(· + T )

)
=
(
pi(·)
qi(·)

)
,

d

dt

(
pi

qi

)
=
(
f (t,pi, qi)

g(t,pi, qi)

)}
,

where i = 1, · · · ,m. Assume that m is finite. Let Π+ = {(p(t), q(t)) ∈ Π0 | p(t)q(t) > 0
for all t ∈ [0, T ]}. Assume that Π+ = {(1,1)}.

(H8) Let μ+ be a characteristic exponent of the linear periodic system

dw
dt

−A(t)w = 0,

where A(t) =
(
fu(t,1,1) fv(t,1,1)
gu(t,1,1) gv(t,1,1)

)
. Let

(
ψ1(t)

ψ2(t)

)
be the eigensolution associated with μ+.

Assume that μ+ < 0, and both ψ1 and ψ2 are strictly positive in [0, T ].

The paper is organized as follows. In Section 2, under certain conditions we establish the
existence of c∗ such that there exists, for any c ≤ c∗, a time periodic traveling wave solution
to (1.1) which is monotone in z. In Section 3, we study the uniqueness of time periodic traveling
wave solutions of (1.1) for c ≤ c∗. Our approach is to obtain the exact exponential decay rate of a
traveling wave solution as it tends towards its unstable limiting state. We would like to point out
that unlike the diffusive Lotka–Volterra competition system studied in Zhao and Ruan [37] where
the diffusion coefficients are independent of time and advection is absent, the time dependence
of both diffusion and advection coefficients in system (1.1) cause substantial technical difficul-
ties, and one cannot use the Laplace transform method and spectral theory employed in [37] to
obtain the exponential decay rate of a traveling wave solution of (1.1). To obtain a good under-
standing of the asymptotic properties of travel wave solutions, different techniques have to be
utilized to address this issue. We also show that the components of such a solution are monotone
with respect to the variable z. With these asymptotic properties, we employ the sliding method
(Berestycki and Nirenberg [3]) to establish the uniqueness of the aforementioned solution. We
also show that the wave speed c∗ obtained in Section 2 is the maximal speed such that (1.1)
has no solutions with wave speed c > c∗. In Section 4, under the same conditions presented in
Section 3, we utilize similar methods as in Hamel and Roques [17] and Zhao and Ruan [37] to
study the asymptotic stability of the time periodic traveling wave solution of (1.1).

We would like to mention that the techniques and results in this paper can be used to study
some biological and epidemiological models described by advection–reaction–diffusion systems
with periodic coefficients. In particular, by applying the results in this paper we can obtain the
existence, uniqueness, and stability of time periodic traveling wave solutions for the two species
time-periodic Lotka–Volterra advection–reaction–diffusion systems that will generalize the cor-
responding results in Zhao and Ruan [37].

For future reference, we denote a vector by printing a letter in boldface u = (u1, · · · , ui,
· · · , un), where ui stands for the i-th component of u. The following notation shall be adopted.
Let I,Γ ⊆ R be two (possibly unbounded) intervals and M ⊆ Rn. Denote by BUC(I × Γ,M)

the space of uniformly continuous and bounded functions u : I × Γ → M and Cb(I × Γ,M)

the space of continuous and bounded functions u ∈ C(I × Γ,M). Given α ∈ ]0,1[, we let
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Cα/2,α(I × Γ,M), C1+α/2,2+α(I × Γ,M) be the space of functions defined in Lunardi [27]
(see page 177 of [27]). Set [a, b]2 := [a, b] × [a, b], where −∞ ≤ a < b < ∞. In what follows,
]a, b[ with a < b stands for an open interval with end points a and b.

2. Existence of time periodic traveling wave solutions

This section is devoted to the existence of periodic traveling wave solutions to system (1.1).

Definition 2.1. (See Fife and Tang [10].) Let D be an open and connected domain of R × Rn.
A vector valued function w ∈ C1,2(D,Rm) is called a regular super-solution of

∂uk

∂t
=

n∑
i,j=1

akij (t, x)
∂2uk

∂xi∂xj
+

n∑
i=1

bki (t, x)
∂uk

∂xi
+ hk(t, u1, · · · , um), k = 1, · · · ,m (2.1)

in D provided that

n∑
i,j=1

akij (t, x)
∂2wk

∂xi∂xj
+

n∑
i=1

bki (t, x)
∂wk

∂xi
+ hk(t,w1, · · · ,wm)− ∂wk

∂t
≤ 0, for (t, x) ∈ D,

for each k ∈ {1, · · · ,m}. It is called a regular sub-solution of (2.1) if the above inequal-
ity is reversed. Here aki,j , b

k
i ∈ C

θ/2,θ
b (D), θ ∈ ]0,1[. Moreover, there exists ω > 0 such that

aki,j (t, x)ξiξj ≥ ω
∑n

i=1 ξ
2
i for any n-tripe of real numbers (ξ1, · · · , ξn) and for any (t, x) ∈ D. In

addition, hi ∈ C0,1(I × Rm,R).

Remark 2.2. Let I × Γ ⊆ R × R be an open connected domain, where I ⊆ R and Γ ⊆ R are
both open intervals (possibly unbounded). If w(t, z) = (w1(t, z),w2(t, z)) ∈ C1,2(I × Γ ) is a
regular super-solution (sub-solution) of

{
ut = d1(t)uzz + [

c + k(t)
]
uz + f (t, u, v),

vt = d2(t)vzz + [
c + l(t)

]
vz + g(t, u, v)

(2.2)

in (t, z) ∈ I × Γ , where

k(t) =
n∑

i=1

νiki(t), l(t) =
n∑

i=1

νi li(t), (2.3)

then ŵ(t, x) := (w1(t, x · ν − ct),w2(t, x · ν − ct)) ∈ C1,2(D) with z = x · ν − ct is a regular
super-solution (sub-solution) of (1.1), where D = {(t, x) ∈ R × Rn | t ∈ I, x · ν − ct ∈ Γ }.

Definition 2.3. A vector function w(t, x) = (u(t, x · ν − ct), v(t, x · ν − ct)) ∈ C
1,2
b (R × Rn)

is said to be a nonnegative time periodic traveling wave of (1.1) connecting (0,0) and (1,1) if

(u(t, z), v(t, z)) ∈ C
1,2
b (R × R) and c solve
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ut = d1(t)uzz + [
c + k(t)

]
uz + f (t, u, v),

vt = d2(t)vzz + [
c + l(t)

]
vz + g(t, u, v),(

u(t, z), v(t, z)
)= (

u(t + T , z), v(t + T , z)
)
,

(
u(t, z), v(t, z)

)≥ (0,0),

lim
z→−∞

(
u(t, z), v(t, z)

)= (0,0), lim
z→∞

(
u(t, z), v(t, z)

)= (1,1).

(2.4)

Here z = x · ν − ct , and k(t) and l(t) are given by (2.3).

Remark 2.4. Suppose that {ki(t)} and {li (t)} are both linearly dependent, i.e., A := {ω ∈ Rn |∑n
i=1 ωiki(t) ≡ 0,

∏n
i=1 ωi �= 0} �= ∅ and B := {ω ∈ Rn |∑n

i=1 ωili(t) ≡ 0,
∏n

i=1 ωi �= 0} �= ∅,
where ω = (ω1, · · · ,ωn). In particular, if A ∩ B �= ∅, then it is easy to see that (U(t, x · ν̂ −
ct),W(t, x · ν̂ − ct)) is also a time periodic traveling wave of (1.1) with speed c provided that
(U(t, x · ν − ct),W(t, x · ν − ct)) and c solve (1.1) and (1.2) and (A ∩ B) \ span{ν} �= ∅, and
ν̂ − ν ∈ (A ∩ B) \ span{ν}.

Definition 2.5. (See Fife and Tang [10].) If u ∈ Rn and v ∈ Rn, the relation u < v (u ≤ v respec-
tively) is to be understood componentwise: ui < vi (ui ≤ vi ) for each i. The other relations, such
as “max”, “min”, “sup”, and “inf ”, are similarly to be understood componentwise.

Definition 2.6. (See Fife and Tang [10].) A vector valued function w is said to be an irregular
super-solution of (2.1) if there exist regular super-solutions w1, · · · ,wk of (2.1) such that v =
min{w1, · · · ,wk}. It is called an irregular sub-solution of (2.1) if there exist regular sub-solutions
v1, · · · ,vk of (2.1) with v = max{v1, · · · ,vk}.

Lemma 2.7. Suppose that there exist w(t, z) ∈ Cθ
b (R × R) and w(t, z) ∈ Cθ

b (R × R) such that
w(t, z) and w(t, z) are the irregular super- and sub-solutions of (2.2) in R×(−∞, z0) and R×R,
respectively. Here θ ∈ ]0,1[, z0 ∈ R. Assume further that w ≤ w for all (t, z) ∈ R × (−∞, z0]
and 0 ≤ w ≤ (1,1), w(0, z) ≥ w(T , z), w(T , z) ≥ w(0, z), and w(t, z0) ≤ 0 for all t ∈ R. Then

there exists a positive solution w∗ ∈ C
1,2
b (R × R) to (2.2) such that w∗(· + T , z) = w∗(·, z),

w∗ ≤ w for all (t, z) ∈ [0, T ] × R, and w∗ ≥ w for all (t, z) ∈ [0, T ] × (−∞, z0]. In addition, if
w is nondecreasing with respect to z, then either (w∗

i )z > 0 or (w∗
i )z ≡ 0.

Proof. The proof is essentially the same as that of Lemma 2.4 in [37]. We give a sketch for the
sake of clarity. Let the operator F : Cθ/2,θ

b ([0, T ] × R,R2) → C
θ/2,θ
b ([0, T ] × R,R2) be defined

by

(Fw)(t) = G(t,0)w(T )+
t∫

0

G(t, τ )
[
Kw(τ )+H

(
τ,w(τ )

)]
dτ, t ∈ (0, T ].

Here θ ∈ ]0,1[,

H(t,w) =
(
f (t,w1,w2)

g(t,w1,w2)

)
, w =

(
w1

w2

)
,
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K ≥ supR×[−2,2]2 [|f (t,w1,w2)|+ |g(t,w1,w2)|], and G(t, s)s≤t is the evolution operator asso-
ciated with the family A(t) : D(A(t)) ⊂ X0 → X0, D(A(t)) = X1, defined by

A(t)

(
u

v

)
=
(
d1(t)

∂2u

∂z2 + [c + k(t)] ∂u
∂z

−Ku 0

0 d2(t)
∂2v

∂z2 + [c + l(t)] ∂v
∂z

−Kv

)
,

where X0 = BUC(R,R2) and X1 = {( u
v

) ∈ ⋂
p≥1 W

2,p
loc (R,R2),

( u
v

)
,A(t)

( u
v

) ∈ X0}. In terms

of Corollary 6.1.8 of Lunardi [27], Fw ∈ Cθ/2,θ ([0, T ] × R) provided w ∈ Cθ/2,θ ([0, T ] × R)

for some θ ∈ ]0,1[. Note that Fw is the mild solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = d1(t)
∂2u

∂z2
+ [

k(t)+ c
]∂u
∂z

−Ku+Kw1 + f (t,w1,w2),

vt = d2(t)
∂2v

∂z2
+ [

l(t)+ c
]∂v
∂z

−Kv +Kw2 + g(t,w1,w2),(
u(0), v(0)

)= (
w1(T ),w2(T )

)
.

Now set w0 = w and wn+1 = Fwn, n = 0,1, · · · . Using the techniques given in [37] (see the
proof of Lemma 2.4 [37] for details), we can show that w ≤ wn in [0, T ]× (−∞, z0] and (0,0) �
wn ≤ w for all (t, z) ∈ [0, T ] × R. This implies that ‖wn‖Cθ/2,θ ([0,T ]×R) are uniformly bounded.
Moreover, there exists β ∈ ]0,1[ for which ‖wn(T )‖C2+β(R) are uniformly bounded for all n ≥ 1.
Thus, for n ≥ 2, Corollary 6.1.8 of Lunardi [27] implies that ‖wn‖C1+α/2,2+α([0,T ]×R) ≤ C for
some α ∈ ]0,1[ and a positive constant C depending only upon di , k, l, c, and ‖w‖Cθ/2,θ ([0,T ]×R).
Notice that wn+1 is in fact a strict solution with wn+1(0) = wn(T ) if n ≥ 1 (see page 123 of
Lunardi [27] for the definition of a strict solution). In particular, we have wn+1 ≤ wn. Therefore,
the sequence {wn} converges in C

1,2
loc ([0, T ] × R) to a function w∗, which solves (2.2). With the

same arguments as those of Lemma 2.4 of [37], we can finally show that w∗(0) = w∗(T ) and
either (w∗

i )z > 0 or (w∗
i )z ≡ 0 provided that w is nondecreasing with respect to z. The proof is

completed. �
In the following, we set

Λc(λ) = d1(t)λ
2 + c + k(t)λ+ fu(t,0,0), c ∈ R, λ ∈ R,

and

Φλ(t) = exp

( t∫
0

[
d1(s)λ

2 + (
c + k(s)

)
λ+ fu(s,0,0)−Λc(λ)

]
ds

)
,

that is,

Λc(λ)Φ
λ(t) = {

fu(t,0,0)+ [
c + k(t)

]
λ+ d1(t)λ

2}Φλ(t)− ∂Φλ(t)

∂t
. (2.5)
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We also let

κ = d1(t)fu(t,0,0), λc = −c − k(t)−
√
(c + k(t))2 − 4κ

2d1(t)
if c ≤ c∗ =: −2

√
κ − k(t).

(2.6)

Clearly, Λ(λ) has positive zeros if and only if c ≤ c∗ since fu(t,0,0) > 0.
In case that c ≤ c∗, we write, for convenience, that

ϕ1(t) = exp

( t∫
0

[
d1(τ )λ

2
c + cλc + k(τ )λc + fu(τ,0,0)

]
dτ

)
, c ≤ c∗. (2.7)

Let Θ : R → R+ be defined by

Θ(s) =
{
s if s > 0,

0 if s ≤ 0.
(2.8)

Throughout the paper, we will assume that

k(t)− l(t) ≥
√
κΘ(d2(t)− d1(t))

d1(t)
for all t ∈ [0, T ]. (2.9)

If (2.9) holds, then we set⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2(t) = ϕ2(0) exp

( t∫
0

�(s)ds

)
+

t∫
0

exp

( t∫
s

�(τ )dτ

)
gu(s,0,0)ϕ1(s)ds, c ≤ c∗,

ϕ2(0) =
[

1 − exp

( T∫
0

�(s)ds

)]−1 T∫
0

exp

( T∫
s

�(τ )dτ

)
gu(s,0,0)ϕ1(s)ds,

(2.10)

where �(t) = d2(t)λ
2
c +(c+ l(t))λc+gv(t,0,0). Note that ϕ2(t) is well defined and is the unique

positive periodic solution of

gu(t,0,0)ϕ1 + [
d2(t)λ

2
c + (

c + l(t)
)
λc + gv(t,0,0)

]
v − dv

dt
= 0, c ≤ c∗

since

�(t) = d2(t)λ2
c + (

c + l(t)
)
λc + gv(t,0,0) ≤ d1(t)λ2

c + (
c + k(t)

)
λc + gv(t,0,0)

= gv(t,0,0)− fu(t,0,0) < 0.

In case that c < c∗, we fix
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ε ∈
(

0,min

{
γ λc

2
,

√
(c + k(t))2 − 4κ

2d1(t)
,
d1(t)[fu(t,0,0)− gv(t,0,0)]

2
√
κ[d1(t)+ d2(t)]

}]
(2.11)

and let

Λε = Λc(λc + ε) = (λc + ε)2d1(t)+ (λc + ε)
(
c + k(t)

)+ fu(t,0,0), (2.12)

φ1(t) = exp

( t∫
0

[
d1(τ )(λc + ε)2 + (λc + ε)

(
c + k(τ )

)+ fu(τ,0,0)−Λε
]
dτ

)
. (2.13)

Clearly, Λε < 0 and φ1(t) is T -periodic and satisfies

[
d1(t)(λc + ε)2 + (λc + ε)

(
c + k(t)

)+ fu(t,0,0)−Λε
]
φ1(t)− dφ1

dt
= 0.

We also set⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ2(t) = φ2(0) exp

( t∫
0

�ε(s)ds

)
+

t∫
0

exp

( t∫
s

�ε(τ )dτ

)
gu(s,0,0)φ1(s)ds, c < c∗,

φ2(0) =
[

1 − exp

( T∫
0

�ε(s)ds

)]−1 T∫
0

exp

( T∫
s

�ε(τ )dτ

)
gu(s,0,0)φ1(s)ds,

(2.14)

where �ε(t) = d2(t)(λc + ε)2 + [c + l(t)](λc + ε)−Λε + gv(t,0,0). Since

�ε(t) = d2(t)(λc + ε)2 + (
c + l(t)

)
(λc + ε)−Λε + gv(t,0,0)

= λc
[
l(t)− k(t)+ λc

(
d2(t)− d1(t)

)]+ ε
[
l(t)− k(t)+ ε

(
d2(t)− d1(t)

)]
+ 2ελc

[
d2(t)− d1(t)

]− fu(t,0,0)+ gv(t,0,0) < 0,

it is easy to see that φ2(t) is the unique positive periodic solution to

gu(t,0,0)φ1 + [
d2(t)(λc + ε)2 + (

c + l(t)
)
(λc + ε)−Λε + gv(t,0,0)

]
v − dv

dt
= 0, c < c∗.

We now construct a regular sub-solution for system (2.2).

Proposition 2.8. Suppose that (H1)–(H5) are satisfied. Let ν ∈ Rn with |ν| = 1. Let k(t) and l(t)

be given by (2.3). Assume that k(t) − l(t) ≥
√
κΘ(d2(t)−d1(t))

d1(t)
for any t ∈ [0, T ]. For each c <

c∗ = −2
√
d1(t)fu(t,0,0)− k(t), set

(
U(t, z),W(t, z)

)=
(
δ1ϕ1e

λcz

[
1 − n0φ1

ϕ1
eεz

]
, δ2ϕ2e

λcz

[
1 − δ1n0φ2

δ2ϕ2
eεz

])
,

∀(t, z) ∈ R × (−∞, z0].
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Here λc is specified by (2.6), ε is given by (2.11), and

z0 ≤ z∗ := −1

(γ λc − ε)
ln

(�Cγ [2 + | maxt
φ1
ϕ1

min{mint
φ1
ϕ1

,mint
φ2
ϕ2

} |
1+γ + | maxt

φ2
ϕ2

min{mint
φ1
ϕ1

,mint
φ2
ϕ2

} |
1+γ ]

|Λε |min{mint φ1,mint φ2}
)
,

(2.15)

n0 = e−εz0

min{mint
φ1
ϕ1
,mint

φ2
ϕ2

} , 0 < δ2 ≤ δ1 ≤ min

{
min

{
e−λcz0

maxt ϕ1
,
e−λcz0

maxt ϕ2

}
, n

1
γ

0

}
, (2.16)

where Cγ > 0 is the least constant such that |a + b|1+γ ≤ Cγ (|a|1+γ + |b|1+γ ), a, b ∈ R. Then
(U,W) is a regular sub-solution of (2.2) for (t, z) ∈ R × ]−∞, z0[.

Proof. We assume without loss of generality that ‖ϕi‖ ≤ 1 and ‖φi‖ ≤ 1 (i = 1,2). It is easy to
see that (U(t, z),W(t, z)) ≤ (1,1) for all (t, z) ∈ R× (−∞, z0] and (U(t, z0),W(t, z0)) ≤ (0,0)
for all t ∈ R. Moreover, when (t, z) ∈ R × ]−∞, z0[, we have

f (t,U,W)+ d1(t)Uzz + (
c + k(t)

)
Uz −Ut

≥ δ1e
λczfu(t,0,0)ϕ1(t)−�

(|U |1+γ + |W |1+γ
)

+ δ1e
λcz

[(
d1(t)λ

2
c + (

c + k(t)
)
λc
)
ϕ1(t)− ϕ′

1(t)
]

− δ1n0e
(λc+ε)z

{[
d1(t)(λc + ε)2 + (λc + ε)

(
c + k(t)

)+ fu(t,0,0)
]
φ1(t)− φ′

1(t)
}

= eλcz
{
δ1n0

∣∣Λε
∣∣φ1e

εz − (
�δ

1+γ

1 ϕ
1+γ

1 eγλcz
)∣∣∣∣1 − n0

φ1

ϕ1
eεz

∣∣∣∣1+γ

− (
�ϕ

1+γ

2 eγλcz
)∣∣∣∣δ2 − δ1n0

φ2

ϕ2
eεz

∣∣∣∣1+γ}

≥ eλcz
{
δ1n0

∣∣Λε
∣∣φ1e

εz −Cγ�δ
1+γ

1 ϕ
1+γ

1 eγλcz
[

1 +
(
n0

φ1

ϕ1
eεz

)1+γ ]

−Cγ�δ
1+γ

1 ϕ
1+γ

2 eγλcz
[(

δ2

δ1

)1+γ

+
(
n0

φ2

ϕ2
eεz

)1+γ ]}

≥ δ1n0e
(λc+ε)z

{∣∣Λε
∣∣φ1 −Cγ�

δ
γ

1

n0
e(γ λc−ε)z

[
2 +

∣∣∣∣ maxt
φ1
ϕ1

min{mint
φ1
ϕ1
,mint

φ2
ϕ2

}

∣∣∣∣1+γ

+
∣∣∣∣ maxt

φ2
ϕ2

min{mint
φ1
ϕ1
,mint

φ2
ϕ2

}

∣∣∣∣1+γ ]}
≥ 0

and

g(t,U,W)+ d2(t)Wzz + (
c + l(t)

)
Wz −Wt

≥ gu(t,0,0)
[
δ1ϕ1e

λcz − δ1n0φ1e
(λc+ε)z

]+ gv(t,0,0)
[
δ2ϕ2e

λcz − δ1n0φ2e
(λc+ε)z

]
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−�
(|U |1+γ + |W |1+γ

)+ δ2e
λcz

[(
d2(t)λ

2
c + (

c + l(t)
)
λc
)
ϕ2 − ϕ′

2

]
− δ1n0e

(λc+ε)z
{[
d2(t)(λc + ε)2 + (λc + ε)

(
c + l(t)

)]
φ2(t)− φ′

2(t)
}

≥ δ2e
λcz

{
gu(t,0,0)ϕ1 + [

d2(t)λ
2
c + (

c + l(t)
)
λc + gv(t,0,0)

]
ϕ2 − ϕ′

2

}
−�

(|U |1+γ + |W |1+γ
)− δ1n0e

(λc+ε)z
{
gu(t,0,0)φ1

+ [
d2(t)(λc + ε)2 + (λc + ε)

(
c + l(t)

)+ gv(t,0,0)
]
φ2 − φ′

2

}
≥ eλcz

{
δ1n0

∣∣Λε
∣∣φ2e

εz − (
� [δ1ϕ1]1+γ eγλcz

)∣∣∣∣1 − n0
φ1

ϕ1
eεz

∣∣∣∣1+γ

− (
�ϕ

1+γ

2 eγλcz
)∣∣∣∣δ2 − δ1n0

φ2

ϕ2
eεz

∣∣∣∣1+γ}
≥ 0.

The proof is completed. �
We are in a position to state and prove the existence of time periodic traveling wave solutions

for system (1.1) when c < c∗.

Theorem 2.9. Suppose all the assumptions given in Proposition 2.8 are satisfied. In addition,
assume that (H6) and (H7) hold. Then, for any c < c∗, there exists w(t, x) = (u(t, x · ν − ct),

v(t, x ·ν−ct)) ∈ C
1,2
b (R×Rn) such that w is a nonnegative time periodic traveling wave of (1.1)

connecting (0,0) and (1,1). Moreover, (uz(t, z), vz(t, z)) > (0,0) for all (t, z) ∈ R × R, where
z = x · ν − ct .

Proof. We utilize Lemma 2.7 and Proposition 2.8 to establish the existence of a periodic travel-
ing wave solution satisfying (1.1). We will first establish the existence of a periodic solution
to (2.2). To this end, a pair of ordered (irregular) super- and sub-solutions is needed. Let
w(t, z) = mϕ1(t)e

λcz and (U,W) = min{(w,w), (1,1)}, where m > 0 is an arbitrary constant.
We now show that (U,W) is an irregular super-solution of (2.2). Since (1,1) is a solution of (2.2),
it suffices to show that (w,w) is a super-solution of (2.2). Note that

[
d1(t)λ

2
c + (

c + k(t)
)
λc + fu(t,0,0)

]
ϕ1 − dϕ1

dt
= 0.

It follows from (H1) and (H2) that f ∗
s (t,0) = h(t,0,0) = fu(t,0,0) and f (t, s, s) ≤ f ∗

s (t,0)
and g(t, s, s) ≤ g∗

s (t,0) for all (t, s) ∈ R × R+. In addition, f ∗
s (t,0) ≥ g∗

s (t,0) for all t ∈ R.
Hence, we have

d1(t)wzz + [
c + k(t)

]
wz + f (t,w,w)−wt

≤ d1(t)wzz + [
c + k(t)

]
wz + f ∗

s (t,0)w −wt

= meλcz
{[
d1(t)λ

2
c + (

c + k(t)
)
λc + fu(t,0,0)

]
ϕ1 − ϕ′

1

}
= 0,
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d2(t)wzz + (
c + l(t)

)
wz + g(t,w,w)−wt

≤ d2(t)wzz + (
c + l(t)

)
wz + g∗

s (t,0)w −wt

≤ d1(t)wzz + (
c + k(t)

)
wz + f ∗

s (t,0)w −wt + [
d2(t)− d1(t)

]
wzz + [

l(t)− k(t)
]
wz

= mϕ1λce
λcz

[
l(t)− k(t)+ λc

(
d2(t)− d1(t)

)]
≤ mϕ1λce

λcz

[
l(t)− k(t)+

√
κ

d1(t)
Θ
(
d2(t)− d1(t)

)]
≤ 0.

Now in view of Lemma 2.7 and Proposition 2.8, we can conclude that for each c < c∗, there
exists w(t, z) ∈ C

1,2
b (R × R) such that w and c solve (2.2). Clearly, w(t + T , z) = w(t, z) for all

(t, z) ∈ R × R. Moreover, by arguing with the same way as in the proof of Theorem 2.5 of [37],
we have limz→−∞ w(t, z) = (0,0) uniformly in t ∈ R and limz→∞ w(t, z) = (1,1) uniformly in
t ∈ R. The proof is completed. �

The following result is about the existence of time periodic traveling wave solutions for sys-
tem (1.1) when c = c∗.

Theorem 2.10. Suppose all the assumptions given in Theorem 2.9 are satisfied. Then, for c = c∗,
there exists w∗(t, x) = (u∗(t, x · ν − c∗t), v∗(t, x · ν − c∗t)) ∈ C

1,2
b (R × Rn) such that w∗ is

a nonnegative time periodic traveling wave of (1.1) connecting (0,0) and (1,1). In addition,
(u∗

z(t, z), v
∗
z (t, z)) > (0,0) for all (t, z) ∈ R × R, where z = x · ν − ct .

Proof. Let wc(t, x) = (uc(t, x · ν − ct), vc(t, x · ν − ct)) ∈ C
1,2
b (R × Rn) be nonnegative time

periodic traveling waves of (1.1) connecting (0,0) and (1,1) with c ∈ [c∗ − 1, c∗). Clearly,
(uc(t, z), vc(t, z)) solves (2.2) with z = x · ν − ct . Since |uc| and |vc| are uniformly bounded, it
follows from parabolic estimates that

∥∥uc∥∥
C

1+ α
2 ,2+α

(R×R)
+ ∥∥vc∥∥

C
1+ α

2 ,2+α
(R×R)

< ∞

for some α ∈ ]0,1[. Let {cn} be a sequence with cn ∈ [c∗ − 1, c∗) such that cn → c∗ as
n → ∞. Note that (uc(t, z + s), vc(t, z + s)) is still a solution of (2.4) for fixed s ∈ R. Let
(pi(t), qi(t)) ∈ Π0, where Π0 is specified by (H7). Now we fix η ∈ ]0,1[ such that η < pi(0),
i = 1, · · · ,m. Since (0,0) < (ucn, vcn) < (1,1) for all (t, z) ∈ R × R, by translation, we may
assume without loss of generality that ucn(0,0) = η for all n. By taking a subsequence of
{(ucn, vcn)} if necessary, we conclude that {(ucn, vcn)} converges in C

1,2
loc (R

2,R) × C
1,2
loc (R

2,R)

to a function denoted by (u∗, v∗). Since (0,0) < (ucn, vcn) < (1,1) and (u
cn
z , v

cn
z ) > (0,0),

we have (0,0) ≤ (u∗, v∗) ≤ (1,1) and (u∗
z , v

∗
z ) ≥ (0,0) for all (t, z) ∈ R × R. In particular,

(u∗(t +T , ·), v∗(t +T , ·)) = (u∗(t, ·), v∗(t, ·)) for all t ∈ R, and u∗(0,0) = η since ucn(0,0) ≡ η.
By taking the limits in (2.2), we find that (u∗, v∗) solves (2.2) in (t, z) ∈ R×R with c = c∗. More-
over, it follows from the (strong) maximum principle that either u∗

z > 0 for all (t, z) ∈ R × R or
u∗
z ≡ 0. Likewise, the same holds for v∗

z . Next we show by contradiction that u∗
z > 0 and v∗

z > 0
for all (t, z) ∈ R × R.
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First, assume that u∗
z ≡ 0 and v∗

z ≡ 0, that is, (u∗, v∗) = (u∗(t), v∗(t)). Thus, (u∗, v∗) ∈ Π0.
However, this contradicts the fact that u∗(0) = η �= pi(0). Consequently, either u∗

z > 0 or v∗
z > 0.

Suppose that u∗
z ≡ 0 while v∗

z > 0. Then, we have

du∗(t)
dt

= f
(
t, u∗(t), v∗(t, z)

)= u∗(t)h
(
t, u∗(t), v∗(t, z)

)
.

By virtue of (H3), this is impossible. Hence we are led to consider the case that u∗
z > 0 and

v∗
z ≡ 0. If this is true, then u∗ and c = c∗ solve

du(t)

dt
= ∂2u(t, z)

∂z2
+ [

c + k(t)
]∂u(t, z)

∂z
+ u(t, z)h

(
t, u(t, z), v∗(t)

)
. (2.17)

Recall that v∗(t) ≥ 0. Due to (H2), v∗(t) � 0. Define ĉ =: −2
√
d1(t)h(t,0, v∗(t))−k(t). In view

of (H1) and (H3), it is easy to see that

ĉ < c∗ = −2
√
d1(t)fu(t,0,0)− k(t) = −2

√
d1(t)h(t,0,0)− k(t).

Meanwhile, from the same reasoning as that of Proposition 3.2, it follows that (2.17) has no
bounded positive solutions with uz �= 0 provided that c > ĉ, and we reached a contradiction since
ĉ < c∗. This contradiction excludes the possibility that u∗

z > 0 and v∗
z ≡ 0, and we readily con-

clude that u∗
z > 0 and v∗

z > 0 for all (t, z) ∈ R×R. Next we show that limz→−∞(u∗, v∗) = (0,0)
and limz→∞(u∗, v∗) = (1,1). To this end, let (u∗(t,±∞), v∗(t,±∞)) := limz→±∞(u∗, v∗).
Thanks to the periodicity of (u∗, v∗) with respect to t and the regularity of (u∗, v∗) with re-
spect to (t, z), we see that (u∗(t, z), v∗(t, z)) converges to (u∗(t,±∞), v∗(t,±∞)) uniformly
in t as z → ±∞, and both (u∗(t,±∞), v∗(t,±∞)) are the periodic solutions to (1.3). Clearly,
(u∗(t,−∞), v∗(t,−∞)) < (u∗(t, z), v∗(t, z)) < (u∗(t,+∞), v∗(t,+∞)) for any finite (t, z) ∈
R × R. In view of (H7), we readily infer that (u∗(t,+∞), v∗(t,+∞)) ≡ (1,1). In particular, as
u∗(0,0) < pi(0), where pi(t) are given in (H7), it is easy to see that u∗(t,−∞) ≡ 0. Thanks
to (H4), the kinetic system (1.3) has no semi-trivial periodic solutions of the form (0, q(t)) with
0 < q(t) < 1. Hence, it follows that v∗(t,−∞) ≡ 0. The proof is completed. �
Remark 2.11. In the proof of Theorem 2.10, it is shown that (ucn, vcn) converges lo-
cally to (u∗, v∗). As a matter of fact, we can show that limn→∞(‖ucn − u∗‖C(R×R) +
‖vcn − u∗‖C(R×R)) = 0. Indeed, let ε > 0 be given, since (u∗(t,−∞), v∗(t,−∞)) = (0,0)
and (u∗(t,∞), v∗(t,∞)) = (1,1), there exists M > 0 such that |u∗(t, z)| + |v∗(t, z)| ≤ ε

4 for
all (t, z) ∈ R × (−∞,−M], and |1 − u∗(t, z)| + |1 − v∗(t, z)| ≤ ε

4 for all (t, z) ∈ R × [M,∞).

As {(ucn, vcn)} converges in C
1,2
loc (R

2,R) × C
1,2
loc (R

2,R) to (u∗, v∗), there exists N > 0 such
that |ucn(t,−M)| + |vcn(t,−M)| ≤ ε

2 for all t ∈ R whenever n > N and |1 − ucn(t,M)| + |1 −
vcn(t,M)| ≤ ε

2 for all t ∈ R as n >N . As a result, for any (t, z) ∈ R × (−∞,M], we find that∣∣ucn(t, z)− u∗(t, z)
∣∣+ ∣∣vcn(t, z)− v∗(t, z)

∣∣
≤ (

ucn(t,−M)+ u∗(t,−M)
)+ (

vcn(t,−M)+ v∗(t,−M)
)≤ ε

provided that n >N . While, for any (t, z) ∈ R × [M,∞), we have that
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∣∣ucn(t, z)− u∗(t, z)
∣∣+ ∣∣vcn(t, z)− v∗(t, z)

∣∣
≤ (∣∣1 − ucn(t, z)

∣∣+ ∣∣1 − u∗(t, z)
∣∣)+ (∣∣1 − vcn(t, z)

∣∣+ ∣∣1 − v∗(t, z)
∣∣)

≤ [(
1 − ucn(t,M)

)+ (
1 − u∗(t,M)

)]+ [(
1 − vcn(t,M)

)+ (
1 − v∗(t,M)

)]
≤ ε

if n > N . Here we used the fact that both (ucn, vcn) and (u∗, v∗) are monotonically increasing
with respect to z.

3. Uniqueness of time periodic traveling wave solutions

In this section we study the uniqueness and asymptotic behavior of periodic traveling waves
of (1.1). We hereafter consider the following system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = d1(t)uzz + [
c + k(t)

]
uz + f (t, u, v),

vt = d2(t)vzz + [
c + l(t)

]
vz + g(t, u, v),(

u(t + T , z), v(t + T , z)
)= (

u(t, z), v(t, z)
)
, (u, v) ≥ (0,0),

lim
z→−∞(u, v) = (0,0), lim

z→∞(u, v) = (1,1),

(3.1)

where f (t + T ,u, v) = f (t, u, v), g(t + T ,u, v) = g(t, u, v) for any (t, u, v) ∈ R × R2, and
f,g ∈ Cθ,1(R × R2,R) for some θ ∈ ]0,1[. Throughout this section, the notations specified in
Section 2 will be maintained. For the sake of convenience, a few technical lemmas and proposi-
tions used in this section are placed in Appendix A. The following result is Lemma 3.6 in Földes
and Poláčik [11].

Lemma 3.1. Let the differential operators Lk := ∑n
i,j=1 a

k
i,j (t, x)

∂2

∂xi∂xj
+ ∑n

i=1 b
k
i

∂
∂xi

− ∂
∂t

(k = 1,2, · · · , l) be uniformly parabolic in an open domain ]τ,M[ × Ω of (t, x) ∈ R × Rn;
that is, there is α0 > 0 such that aki,j (t, x)ξiξj ≥ α0

∑n
i=1 ξ

2
i for any n-tuples of real numbers

(ξ1, ξ2, · · · , ξn), where −∞ < τ < M ≤ ∞ and Ω ⊂ Rn is an open bounded region. Sup-
pose that aki,j , b

k ∈ C([τ,M) × Ω,R) and |bk(t, x)| + |aki,j (t, x)| ≤ β0 for some β0 and all

(t, x) ∈ [τ,M)×Ω . Assume that w = (w1,w2, · · · ,wl) ∈ C([τ,M)×Ω)∩C1,2(]τ,M[×Ω,Rl )

satisfies

l∑
s=1

ck,s(t, x)ws +Lkw
k ≤ 0, (t, x) ∈ ]τ,M[ ×Ω, k = 1,2, · · · , l (3.2)

where ck,s ∈ C((τ,M) × Ω,R) and ck,s ≥ 0 if k �= s, and |ck,s | ≤ β0 (k, s = 1,2, · · · , l). Let D
and U be domains in Ω such that D ⊂⊂ U , dist(D, ∂U) > �, and |D| > ε for some positive
constants � and ε. Let θ be a positive constant with τ + 4θ ≤ M . Then there exist positive
constants p, ω and ω1, determined only by α0, β0, �, ε, n, diamΩ and θ , such that

inf]τ+3θ,τ+4θ [×D
wk ≥ ω

∥∥w+
k

∥∥
Lp(]τ+θ,τ+2θ [×D)

−ω1 max
j=1,···,k

sup
∂P (]τ,τ+4θ [×U)

w−
j .
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Here w+
k = max{wk,0}, w−

k = max{−wk,0}, and ∂P ((τ, τ +4θ)×U) = {τ }×U ∪[τ, τ +4θ ]×
∂U . Moreover, if all inequalities in (3.2) are replaced by equalities, then the conclusion holds
with p = ∞ and ω, ω1 independent of ε.

Proposition 3.2. Suppose that (H1)–(H3) are satisfied. Assume that (u, v) ∈ C
1,2
b (R × R) and

c ∈ R solve (2.2) with (0,0) ≤ (u, v) ≤ (1,1), limz→−∞ u(t, z) = limz→−∞ v(t, z) = 0, and
uzvz �= 0. Then

0 < λ := lim inf
z→−∞

{
inf
t∈R

uz(t, z)

u(t, z)

}
≤ λ := lim sup

z→−∞

{
sup
t∈R

uz(t, z)

u(t, z)

}
< ∞. (3.3)

Here λ and λ satisfy the equation

d1(t)λ
2 + c + k(t)λ+ fu(t,0,0) = 0. (3.4)

Moreover, (2.2) has no solutions satisfying (0,0) ≤ (u, v) ≤ (1,1), limz→−∞(u(t, z), v(t, z)) =
0, and uzvz �= 0 provided that c > c∗ := −2

√
κ − k(t), where κ = d1(t)fu(t,0,0).

Proof. As (0,0) is a solution of (2.2), it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1(t)

∂2u

∂z2
+ [

c + k(t)
]∂u
∂z

+
[ 1∫

0

fu(t, su, sv)ds

]
u+

[ 1∫
0

fv(t, su, sv)ds

]
v

∂v

∂t
= d2(t)

∂2v

∂z2
+ [

c + l(t)
]∂v
∂z

+
[ 1∫

0

gu(t, su, sv)ds

]
u+

[ 1∫
0

gv(t, su, sv)ds

]
v.

(3.5)

Let l > 0 be a fixed constant. Let D = ]z− l
4 , z+ l

4 [, U = ]z− l
2 , z+ l

2 [, and Ω = ]z− l, z+ l[,
τ = 0, and θ = T . In light of the periodicity and positivity of u and v, by applying Lemma 3.1
to (3.5), we obtain that

sup
s∈Il/4(z)

u
(
t ′, s

)≤ Nl inf
s∈Il/4(z)

u(t, s), sup
s∈Il/4(z)

v
(
t ′, s

)≤ Nl inf
s∈Il/4(z)

v(t, s), ∀z, t, t ′ ∈ R,

(3.6)

where Il/4(z) = ]z − l
4 , z + l

4 [, Nl > 0 is a constant independent of u and v. Note that

ut = d1(t)uzz + [
c + k(t)

]
uz +

[
f (t, u, v)

u

]
u.

Due to (H1), f (t,u,v)
u

= h(t, u, v) is uniformly bounded for (t, z) ∈ R × R. From the (interior)
parabolic Lp estimates, it follows that

( 2T∫
T

z+ l
8∫

z− l
8

∣∣uτ (τ, s)∣∣p + ∣∣us(τ, s)∣∣p + ∣∣uss(τ, s)∣∣pdsdτ)
1
p

≤ C

( 2T∫
0

z+ l
4∫

z− l
4

∣∣u(τ, s)∣∣p) 1
p
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for some positive constant C independent of t and z. Thus

( 2T∫
T

l
8∫

− l
8

∣∣uτ (τ, s + z)
∣∣p + ∣∣us(τ, s + z)

∣∣p + ∣∣uss(τ, s + z)
∣∣pdsdτ) 1

p

≤ C sup
(t,s)∈[0,2T ]×Il/4(z)

∣∣u(τ, s)∣∣.
By Sobolev imbedding theorem and (3.6), we readily conclude that there exists a constant CT > 0
such that

|uz(t, z)|
|u(t, z)| ≤ CT for all (t, z) ∈ R × R.

Consequently

−∞ < λ := lim inf
z→−∞

{
inf
t∈R

uz(t, z)

u(t, z)

}
≤ λ := lim sup

z→−∞

{
sup
t∈R

uz(t, z)

u(t, z)

}
< ∞.

Now we proceed to show (3.4). To this end, we adopt a technique presented in Nolen and
Xin [30] (see also Hamel [16]). Let λ be defined by (3.4) and let {(tn, zn)} be the sequence such
that

lim
n→∞

uz(tn, zn)

u(tn, zn)
= λ.

Since both uz and u are T -periodic in t , we may without loss of generality assume that tn ∈
[0, T ]. Define un(t, z) = u(t,z+zn)

u(tn,zn)
. Then

unt = d1(t)u
n
zz + [

c + k(t)
]
unz + f (t, u(t, z + zn), v(t, z + zn))

u(t, z + zn)
un.

Owing to Lemma 3.1, un are locally uniformly bounded. In view of the parabolic estimates and
the fact that f (t, u, v) = [∫ 1

0 fu(t, su, v)ds]u, there exists a subsequence of {un}, still labeled

by {un}, such that {un} converges in C
1,2
loc (R × R) to a function w which satisfies

wt = d1(t)wzz + [
c + k(t)

]
wz + fu(t,0,0)w. (3.7)

Note that un ≥ 0. Assume that limn→∞ tn = t∗. Then w(t∗,0) = 1, and hence w > 0 in terms of

the strong maximal principle. In addition, observe that
unz (t,z)

un(t,z)
= uz(t,z+zn)

u(t,z+zn)
. Therefore wz(t,z)

w(t,z)
≥ λ

and wz(t
∗,0)

w(t∗,0) = λ. A direct calculation shows that wz(t,z)
w(t,z)

solves

0 = d1(t)ζzz + 2
[
c + k(t)

]wz

w
ζz − ζt for all (t, z) ∈ R × R.

It then follows from the strong maximum principle that wz(t,z)
w(t,z)

≡ λ. This further implies that

∂z(w(t, z)e−λz) = 0. Thus, w(t, z) must be of the form w(t, z) = eλzφ(t). Since w is strictly
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positive and is T -periodic in t , we have φ(t) > 0 and φ(t + T ) = φ(t) for all t ∈ R. Substituting
w(t, z) = eλzφ(t) into (3.7), we find that

0 = [
d1(t)λ

2 + [
c + k(t)

]
λ+ fu(t,0,0)

]
φ(t)− dφ(t)

dt
.

Hence λ has to be a real zero of Λc(λ) := d1(t)λ
2 + c + k(t)λ + fu(t,0,0). Similarly, we can

show that λ is also a real zero of Λc(λ).

Note that Λc(λ) has no real zeros if |c + k(t)| < 2
√
d1(t)× fu(t,0,0) := 2

√
κ . This imme-

diately implies that (2.4) has no solutions when −2
√
κ − k(t) < c < 2

√
κ − k(t). On the other

hand, Λc(λ) has two real zeros with the same sign provided |c + k(t)| ≥ 2
√
κ (counting the

multiplicity). In particular, it has two positive zeros if c ≤ −2
√
κ − k(t) and two negative zeros

provided that c ≥ 2
√
κ − k(t). Since u(t, z) > 0 for all (t, z) ∈ R × R and limz→−∞ u(t, z) = 0,

we must have 0 < λ ≤ λ. As a result, (2.4) has solutions only if c ≤ c∗ := −2
√
κ − k(t). �

Theorem 3.3. Suppose that (H1)–(H4) and (H8) are satisfied. Let (u, v) ∈ C
1,2
b (R × R) and c

solve (2.4) with c ≤ c∗ := −2
√
κ − k(t). Then (uz, vz) > (0,0) for all (t, z) ∈ R × R.

Proof. The proof will be divided into two steps.
Step 1. We first show that there exists s such that (u(t, z + s), v(t, z + s)) ≥ (u(t, z), v(t, z))

for all (t, z, s) ∈ R × R × [s,∞), or equivalently, (u(t, z), v(t, z)) ≥ (u(t, z− s), v(t, z− s)) for
all (t, z, s) ∈ R × R × [s,∞).

To this end, we denote gv(t,0,0) by μ− and set

η∗ := sup{η | |fu(t, ·, ·)− fu(t,1,1)| + |fv(t, ·, ·)− fv(t,1,1)| ≤ θ+|μ+|
2 , ∀(t, ·, ·) ∈ R × [1 − η,1 + η]2}

‖ψ1‖ + ‖ψ2‖

η∗ := sup{η | |gu(t, ·, ·)− gu(t,1,1)| + |gv(t, ·, ·)− gv(t,1,1)| ≤ θ+|μ+|
2 , ∀(t, ·, ·) ∈ R × [1 − η,1 + η]2}

‖ψ1‖ + ‖ψ2‖ ,

where η ≥ 0 and θ+ = min{mint ψ1,mint ψ1}‖ψ1‖+‖ψ2‖ .
Let

η0 = min
{
η∗, η∗

}
min

{
min
t

ψ1,min
t

ψ2

}
(3.8)

and

ϕ̂(t) = exp

( t∫
0

[
gv(s,0,0)−μ−]ds), μ− = gv(t,0,0). (3.9)

We also set

η0 = sup
{
η ∈ R+ ∣∣ ∣∣gv(t, ·, ·)− gv(t,0,0)

∣∣≤ θ−∣∣μ−∣∣, ∀(t, ·, ·)× R × [−η,η]2}, (3.10)

where θ− = mint ϕ̂
‖ϕ̂‖ .
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In view of Proposition 3.2, we see that uz > 0 for all (t, z) ∈ R× (−∞, z] with some z ∈ R. In
addition, as limz→−∞(u, v) = (0,0) and limz→∞(u, v) = (1,1) uniformly in t ∈ R, there exists
M > 0 such that

−M ≤ z,
∣∣u(t, z)∣∣+ ∣∣v(t, z)∣∣≤ η0 for all (t, z) ∈ R × (−∞,−M] (3.11)

and

∣∣u(t, z)− 1
∣∣+ ∣∣v(t, z)− 1

∣∣≤ η0 for all (t, z) ∈ R × [M,∞). (3.12)

Since min{inf(t,z)∈R×[−M,M] u(t, z), inf(t,z)∈R×[−M,M] v(t, z)} > 0, there exists s ∈ R+ such
that

(
u(t, z), v(t, z)

)≥ (
u(t, z − s), v(t, z − s)

)
for all (t, z, s) ∈ R × [−M,M] × [s,∞). (3.13)

We now proceed to show that

(
u(t, z), v(t, z)

)≥ (
u(t, z − s), v(t, z − s)

)
for all (t, z, s) ∈ R × R × [s,∞). (3.14)

To achieve this goal, we first show that for each s ≥ s, (u(0, z), v(0, z)) ≥ (u(0, z − s),

v(0, z − s)) for all z ∈ [M,∞). Let s ≥ s be fixed. Assume to the contrary that the above
statement is not true, then there exists z′ > M such that either u(0, z′) < u(0, z′ − s) or
v(0, z′) < v(0, z′ − s). Assume without loss of generality that

u
(
0, z′)− u

(
0, z′ − s

)= −ε for some ε > 0. (3.15)

As (u(0, z−s), v(z−s)) < (1,1) for all z ∈ R, in light of (3.12), there exists 0 < η ≤ min{η∗, η∗}
such that

(
u(0, z)+ ηψ1(0), v(0, z)+ ηψ2(0)

)≥ (
u(0, z − s), v(0, z − s)

)
for all z ∈ [M,∞).

Now write

(
uη(t, z), vη(t, z)

)= (
u(t, z)+ ηψ1(t)e

μ+ t
2 , v(t, z)+ ηψ2(t)e

μ+ t
2
)
, (t, z) ∈ R+ × [M,∞).

We then show that (uη(t, z), vη(t, z)) is a regular super-solution of (2.2) in ]0,∞[×]M,∞[, the
argument employed here is similar to that given for Theorem 2.1 in Alikakos at el. [1]. In fact,
for any (t, z) ∈ ]0,∞[ × ]M,∞[, we have

f
(
t, uη, vη

)+ d1(t)u
η
zz + [

c + k(t)
]
uηz − u

η
t

= f
(
t, uη, vη

)− f (t, u, v)− ηe
μ+ t

2

[
fu(t,1,1)ψ1 + fv(t,1,1)ψ2 + μ+

2
ψ1

]



Author's personal copy

1096 G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078–1147

= ηe
μ+

2 t

{ 1∫
0

[
fu
(
t, u+ τηψ1(t)e

μ+ t
2 , v + τηψ2(t)e

μ+ t
2
)
dτ − fu(t,1,1)

]
ψ1

+
1∫

0

[
fv
(
t, u+ τηψ1(t)e

μ+ t
2 , v + τηψ2(t)e

μ+ t
2
)
dτ − fv(t,1,1)

]
ψ2 + μ+

2
ψ1

}

≤ 0

and

g
(
t, uη, vη

)+ d2(t)v
η
zz + [

c + l(t)
]
vηz − v

η
t

= g
(
t, uη, vη

)− g(t, u, v)− ηe
μ+ t

2

[
gu(t,1,1)ψ1 + gv(t,1,1)ψ2 + μ+

2
ψ2

]
≤ 0.

In terms of (3.13), (uη(t,M), vη(t,M)) ≥ (u(t,M−s), v(t,M−s)) for all t ≥ 0. Thus, Proposi-
tion A.3 (see Appendix A for its proof) implies that (uη(t, z), vη(t, z)) ≥ (u(t, z− s), v(t, z− s))

for all (t, z) ∈ R+ × [M,∞). Consequently, we have

u
(
0, z′)− u

(
0, z′ − s

)= u
(
n′T , z′)− u

(
n′T , z′ − s

)≥ −ηψ1
(
n′T

)
e

μ+n′T
2 ≥ −ε

2
,

where n′ ∈ N and n′ ≥ 2 ln ε
2ψ(0)η /μ

+T , ε is given by (3.15). This obviously contradicts (3.15).
The contradiction shows that (u(0, z), v(0, z)) ≥ (u(0, z − s), v(0, z − s)) for all z ∈ [M,∞),
and hence it follows from Proposition A.3 that (u(t, z), v(t, z)) ≥ (u(t, z − s), v(t, z − s)) for
all (t, z, s) ∈ R+ × [M,∞) × [s,∞). Thanks to the periodicity of (u, v) with respect to t , we
have (u(t, z), v(t, z)) ≥ (u(t, z − s), v(t, z − s)) for all (t, z, s) ∈ R × [M,∞) × [s,∞). Fur-
thermore, note that uz > 0 for all (t, z) ∈ R × ]−∞,−M[. This together with (3.13) shows
that u(t, z) ≥ u(t, z − s) for all (t, z, s) ∈ R × R × [s,∞). Thus, it remains to show that
v(t, z) ≥ v(t, z − s) for all (t, z, s) ∈ R × (−∞,−M] × [s,∞). Again, let s ≥ s be fixed. Due
to (H2), we see that

g
(
t, u(t, z − s), v(t, z)

)+ d2(t)
∂2v(t, z)

∂z2
+ [

c + l(t)
]∂v(t, z)

∂z
− ∂v(t, z)

∂t
≤ 0.

Now write ws(t, z) = v(t, z)− v(t, z − s). Then

[ 1∫
0

gv
(
t, u(t, z − s), u+ τws

)
dτ

]
ws + d2(t)w

s
zz + [

c + l(t)
]
ws

z −ws
t ≤ 0, (t, z) ∈ R × R.

(3.16)

As ws(·, z) is T -periodic, we only need to show that ws(t, z) ≥ 0 for all (t, z) ∈ [0,2T ] ×
(−∞,M]. First, in terms of (3.10) and (3.11), for any (t, z) ∈ R × (−∞,−M], we observe
that
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[ 1∫
0

gv
(
t, u(t, z − s), u+ τws

)
dτ

]
ϕ̂ + d2(t)ϕ̂zz + [

c + l(t)
]
ϕ̂z − ϕ̂t

=
[ 1∫

0

gv
(
t, u(t, z − s), u+ τws

)
dτ − gv(t,0,0)+μ−

]
ϕ̂ ≤ 0.

Since ws is bounded in [0,2T ] × (−∞,−M] and ϕ̂ is strictly positive, there exists δ1 > 0 such
that ws + δ1ϕ̂ ≥ 0 for all (t, z) ∈ [0,2T ] × (−∞,−M]. Now define

δ∗ = inf
{
δ ∈ R+ ∣∣ws + δϕ̂ ≥ 0 for all (t, z) ∈ [0,2T ] × (−∞,−M]}.

To complete Step 1, it suffices to prove that δ∗ = 0. Assume that this is not true, that is, δ∗ > 0.
Then, in view of (3.13), we see that ws(t,−M) + δ∗ϕ̂(t) > 0 for all t ∈ [0,2T ]. In addition,
limz→−∞{inft∈[0,2T ] ws + δ∗ϕ̂} ≥ δ∗ mint ϕ̂ > 0, and for any (t, z) ∈ ]0,2T [ × (−∞,M], there
holds

[ 1∫
0

gv
(
t, u(t, z − s), u+ τws

)
dτ

](
ws + δ∗ϕ̂

)+ d2(t)
[
ws + δ∗ϕ̂

]
zz

+ [
c + l(t)

][
ws + δ∗ϕ̂

]
z
− [

ws + δ∗ϕ̂
]
t
≤ 0.

By continuity, we have inf(t,z)∈[0,2T ]×(−∞,−M] ws + δ∗ϕ̂ = 0. Thus, there exists (t∗, z∗) ∈
]0,2T [ × ]−∞,−M[ such that (ws + δ∗ϕ̂)(t∗, z∗) = 0. However, the (strong) maximum prin-
ciple implies that ws + δ∗ϕ̂ ≡ 0 for all (t, z) ∈ [0, t∗] × (−∞,−M], which contradicts that
ws(t,−M) + δ∗ϕ̂(t) > 0 for all t ∈ [0,2T ]. Therefore, from this contradiction, we finally de-
duce that (3.14) holds.

Step 2. Now define

s∗ = inf
{
s ∈ R

∣∣ (u(t, z), v(t, z))≥ (
u(t, z − η), v(t, z − η)

)
for all (t, z, η) ∈ R × R × [s,∞)

}
.

Clearly, (3.14) implies that s∗ is bounded from above. Furthermore, since uz > 0 for all
(t, z) ∈ R × ]−∞,M[, where M > 0 is given in Step 1, it is easy to see that s∗ ≥ 0. We next
argue by contradiction that s∗ = 0. Assume that this is not true, then we show that there ex-
ists (t ′, z′) ∈ R × R such that either u(t ′, z′) = u(t ′, z′ − s∗), or v(t ′, z′) = v(t ′, z′ − s∗). If not,
namely, (u(t, z), v(t, z)) > (u(t, z − s∗), v(t, z − s∗)) for all (t, z) ∈ R × R. Then, by following
the same lines of Step 1 and using the definition of s∗, we can infer that(

u(t, z), v(t, z)
)≥ (

u
(
t, z − s∗ + δ′ − η

)
, v
(
t, z − s∗ + δ′ − η

))
, (t, z, η) ∈ R × R × R+.

This however contradicts the definition of s∗. Thus, there exists (t ′, z′) ∈ R × R such that
either u(t ′, z′) = u(t ′, z′ − s∗) or v(t ′, z′) = v(t ′, z′ − s∗). Therefore, the maximum principle
yields that v(t, z) ≡ v(t, z− s∗) and u(t, z) ≡ u(t, z− s∗). This is clearly impossible since uz > 0
for all (t, z) ∈ R × (−∞, z), where z is given in Step 1. Hence this contradiction confirms that
s∗ = 0. As a consequence, we have (u(t, z), v(t, z)) ≥ (u(t, z − η), v(t, z − η)) for all (t, z, η) ∈
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R × R × R+. In particular, in light of the maximum principle, it is clear that (u(t, z), v(t, z)) >
(u(t, z − η), v(t, z − η)) for all (t, z) ∈ R × R provided that η > 0. The proof is completed. �
Lemma 3.4. Suppose that (H1)–(H3) are satisfied. Let (u, v) ∈ C

1,2
b (R × R) and c solve (2.4)

with c ≤ c∗ := −2
√
κ − k(t). Then there exists a positive constant Mc such that u(t, z) ≤

Mcv(t, z) for all (t, z) ∈ R × R.

Proof. Since limz→∞(u(t, z), v(t, z)) = (1,1) uniformly in t , there exist positive constants C

and M such that u(t, z) ≤ Cv(t, z) whenever z ≥ M . Since v(t, z) > 0 for all (t, z) ∈ R × R, v is
bounded from below by certain positive constants on any compact subsets of R × R. In addition,
recall that u and v are both periodic in t . Thus, to complete the proof, it suffices to show that
u is bounded by a constant multiple of v whenever (t, z) ∈ R × (−∞,−M ′] for some positive
constant M ′. Assume to the contrary that this is not true. Then there must be a sequence {(tn, zn)}
such that

lim
n→∞ zn → −∞, lim

n→∞
v(tn, zn)

u(tn, zn)
= 0.

Now define

un(t, z) = u(t, z + zn)

u(tn, zn)
, vn(t, z) = v(t, z + zn)

u(tn, zn)
.

Since both u and v are T -periodic in t , we once again assume that tn ∈ [0, T ]. Note that
vn(t, z) = v(t,z+zn)

v(tn,zn)
v(tn,zn)
u(tn,zn)

. Given M > 0, it follows from (3.6) that un and vn are uniformly
bounded for all (t, z) ∈ R × [−M,M]. In particular, limn→∞ vn(t, z) = 0 uniformly for all
(t, z) ∈ R × [−M,M]. We have

unt = d1(t)u
n
zz + [

c + k(t)
]
unz + f (t, u(t, z + zn), v(t, z + zn))

u(t, z + zn)
un, (t, z) ∈ R × ]−M,M[

and

vnt = d2(t)v
n
zz + [

c + l(t)
]
vnz + gu(t,0,0)un + gv(t,0,0)vn

+
[
g(t, u(t, z + zn), v(t, z + zn))

u(tn, zn)
− gu(t,0,0)vn − gv(t,0,0)un

]
,

(t, z) ∈ R × ]−M,M[.
Note that |g(t, u, v) − gu(t,0,0)u − gv(t,0,0)v| ≤ C(|u|2 + |u||v| + |v|2) for some positive
constant C independent of t and z. As un(·, z) and vn(·, z) are T -periodic functions, the parabolic
(interior) estimates imply that, up to an extraction of a subsequence of {(un, vn)}, {(un, vn)}
converges uniformly in C

1,2
b (R × [−M

2 , M
2 ]) to a function denoted by (u∗, v∗) which solves⎧⎪⎪⎨⎪⎪⎩

fu(t,0,0)u∗ + [
c + k(t)

]∂u∗

∂z
+ d1(t)

∂u∗

∂z
− ∂u∗

∂t
= 0,

gu(t,0,0)u∗ + gv(t,0,0)v∗ + [
c + l(t)

]∂v∗

∂z
+ d2(t)

∂2v∗

∂z2
− ∂v∗

∂t
= 0.
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Note that un ≥ 0. Let t∗ = limn→∞ tn. Then u∗(t∗,0) = 1, hence the (strong) maximum principle
implies that u∗(t, z) > 0 for all (t, z) ∈ R×]−M

2 , M
2 [. On the other hand, as limn→∞ vn(t, z) = 0

uniformly in R × [−M,M], v∗(t, z) = 0 for all (t, z) ∈ R × [−M,M]. Consequently, we find
that

gu(t,0,0)u∗(t, z) = 0, (t, z) ∈ R ×
]
−M

2
,
M

2

[
.

This is impossible since gu(t,0,0) � 0. Therefore, the desired conclusion follows. �
To establish the uniqueness of time periodic traveling wave solutions we now consider two

cases, namely, c < c∗ and c = c∗.

Case I: c < c∗.

Lemma 3.5. Suppose that (H1)–(H8) are satisfied. Assume that k(t) − l(t) ≥
√
κΘ(d2(t)−d1(t))

d1(t)
.

Let (u, v) ∈ C
1,2
b (R × R) and c solve (2.4) with c < c∗ = −2

√
κ − k(t). Then

lim sup
z→−∞

{
sup
t∈R

u(t, z)

ϕ1(t)eλcz

}
< ∞, and lim inf

z→−∞

{
inf
t∈R

u(t, z)

ϕ1(t)eλcz

}
> 0. (3.17)

Here

ϕ1(t) = exp

( t∫
0

[
d1(τ )λ

2
c + cλc + k(τ )λc + fu(τ,0,0)

]
dτ

)

is defined by (2.7) and κ = d1(t)fu(t,0,0).

Proof. The proof will be broken into several steps for the sake of clarity.
Step 1. We show in this step that

lim sup
z→−∞

{
sup
t∈R

u(t, z)

ϕ1(t)eλcz

}
< ∞. (3.18)

Assume this is not true. Then there exists a sequence {(tn, zn)} such that

zn → −∞ as n → ∞, and lim
n→∞

u(tn, zn)

ϕ1(tn)eλczn
= ∞. (3.19)

Let ẑ0 ∈ (−∞, z∗] be fixed, where z∗ is given by (2.15). Let n̂0 and δ̂ be fixed positive constants
such that

n̂0 = 1

eε̂z0 min{mint
φ1
ϕ1
,mint

φ2
ϕ2

} , δ̂ ≤ min

{
e−λĉz0 min

{
1

maxt ϕ1
,

1

maxt ϕ2

}
, n̂

1
γ

0

}
.
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Now set

u(t, z) = δ̂ϕ1(t)e
λcz

(
1 − n̂0

φ1(t)

ϕ1(t)
eεz

)
.

As limz→−∞ u(t, z) = 0 uniformly in t and u(t, z) > 0 for all (t, z) ∈ R × (−∞, z′] with some
z′ ≤ ẑ0, there exist (t1, z1) ∈ R×(−∞, z′] and s1 ≤ 0 such that u(t1, z1 +s1) ≤ u(t1, z1). Without
loss of generality, we may assume that s1 = 0. Now if (3.19) were true, then there would be an n∗
such that

zn < z1 and u(tn, zn) ≥ Nlδ̂
maxt ϕ1

mint ϕ1
ϕ1(tn)e

λczn whenever n ≥ n∗,

where Nl is the positive constant specified by (3.6). It then follows from (3.6) that

u(t, zn∗) ≥ δ̂ϕ1(t)e
λczn∗ > u(t, zn∗) for all t ∈ R.

Let v(t, z) = εδ̂ϕ2(t)e
λcz − n̂0φ2(t)e

(λc+ε)z, where ε ∈ ]0,1[ is a constant sufficiently small
such that mint ϕ1

Mc
≥ εmaxt ϕ2. Then it follows from Lemma 3.4 that

v(t, zn∗) ≥ u(t, zn∗)

Mc

≥ εδ̂ϕ2(t)e
λcz > v(t, zn∗) for all t ∈ R.

Note that (u, v) < (1,1) for all (t, z) ∈ R × (−∞, ẑ0] and (u(t, ẑ0), v(t, ẑ0)) ≤ (0,0) for all
t ∈ R. Thanks to Proposition 2.8, (u, v) is a (regular) sub-solution in R× (−∞, ẑ0]. On the other
hand, Theorem 3.3 shows that (uz, vz) > (0,0), that is, (u(t, z), v(t, z)) ≥ (u(t, zn∗), v(t, zn∗))
for all (t, z) ∈ R × [zn∗ ,∞). Hence Lemma A.2 implies that u(t, z) > u(t, z) for all (t, z) ∈
R × [zn∗ , ẑ0]. However, this contradicts the fact that u(t1, z1) ≤ u(t1, z1). Therefore (3.18) fol-
lows.

Step 2. We show in this step that

u(t, z) ≤ Kce
λcz, v(t, z) ≤ Kce

λcz, (t, z) ∈ R × R (3.20)

for some positive constant Kc . Note that the first inequality is an immediate consequence
of (3.18). To show the second inequality, recall μ− = gv(t,0,0), we let w = v

ϕ̂
, where ϕ̂ is

given by (3.9). Then a direct computation yields that

[g(t, u, v)− gu(t,0,0)u− gv(t,0,0)v]
ϕ̂

+ gu(t,0,0)
u

ϕ̂

+μ−w + d2(t)wzz + [
c + l(t)

]
wz −wt = 0.

Since u → 0 and v → 0 uniformly in t as z → −∞, for each ε ∈ (0, |μ−|
2 ], there exists Mε > 0

such that |g(t, u, v)−gu(t,0,0)u−gv(t,0,0)v| ≤ ε(u+v) whenever z ≤ −Mε . Let ε ∈ (0, |μ−|
2 ]

be fixed, then, when (t, z) ∈ R × ]−∞,−Mε[, it is easy to see that w = v
ϕ̂

satisfies

[
ε + gu(t,0,0)

]u
ϕ̂

+ μ−

2
w + d2(t)wzz + [

c + l(t)
]
wz −wt ≥ 0, (t, z) ∈ R × ]−∞,Mε[.
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Now let ϕε(t) be the unique positive periodic solution to

[ε + gu(t,0,0)]
ϕ̂(t)

+
[
d2(t)λ

2
c + (

c + l(t)
)
λc + μ−

2

]
ξ − dξ

dt
= 0.

Note that ϕε exists and is unique and positive since

d2(t)λ2
c + [

c + l(t)
]
λc + μ−

2
≤ d1(t)λ2

c + [
c + k(t)

]
λc + μ−

2
= μ−

2
− fu(t,0,0) < 0.

We next let w(t, z) = Cεϕε(t)e
λcz, where Cε ≥ Kc. It is straightforward to verify that

[
ε + gu(t,0,0)

]u
ϕ̂

+ μ−

2
w + d2(t)wzz + [

c + l(t)
]
wz −wt

≤ eλcz[ε + gu(t,0,0)]
ϕ̂

(Kc −Cε) ≤ 0.

Since v is bounded, we may choose Cε such that w(t,−Mε) ≥ v(t,−Mε) for all t ∈ R. In
addition, we have

μ−

2
(w −w)+ d2(t)(w −w)zz + [

c + l(t)
]
(w −w)z − (w −w)t ≥ 0,

(t, z) ∈ R × ]−∞,Mε[.

Since limz→−∞(w − w) = 0, w(t,−Mε) − w(t,−Mε) ≤ 0, and μ−
2 < 0, it follows from the

maximum principle that w −w ≤ 0 for all (t, z) ∈ R × (−∞,Mε]. As v is bounded, there exists
C′
ε > 0 for which v(t, z) ≤ C′

εe
λcz for all (t, z) ∈ R × R. Without loss of generality, we assume

that C′
ε ≤ Kc . This confirms the existence of Kc .

Step 3. We now proceed to prove by contradiction that

lim inf
z→−∞

{
inf
t∈R

u(t, z)

ϕ1(t)eλcz

}
> 0. (3.21)

Assume that (3.21) is not true, then there exists a sequence {(tn, zn)} such that

lim
n→∞ zn = −∞, lim

n→∞
u(tn, zn)

ϕ1(tn)eλczn
= 0. (3.22)

Once again, we assume without loss of generality that tn ∈ [0, T ] because of the periodicity of u
with respect to t . We next show that limn→∞ v(tn,zn)

ϕ1(tn)e
λczn

= 0 provided that (3.22) is true.
Let

un(t, z) = u(t, z + zn)

ϕ1(t)eλc(z+zn)
, vn(t, z) = v(t, z + zn)

ϕ1(t)eλc(z+zn)
.
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Write

f n(t, z) = f (t, u(t, z + zn), v(t, z + zn))

u(t, z + zn)
,

gn(t, z) = [g(t, u(t, z + zn), v(t, z + zn))− gu(t,0,0)u(t, z + zn)− gv(t,0,0)v(t, z + zn)]
v(t, z + zn)

,

ω(t) = gv(t,0,0)− fu(t,0,0)+ λc
[
λc
(
d2(t)− d1(t)

)+ l(t)− k(t)
]
.

Note that ω(t) < 0. As shown in (3.20), un and vn are uniformly bounded. Furthermore,
a straightforward calculation gives that⎧⎪⎪⎨⎪⎪⎩

[
f n(t, z)− fu(t,0,0)

]
un + d1(t)

∂2un

∂z2
+ [

2λcd1(t)+ c + k(t)
]∂un
∂z

− ∂un

∂t
= 0,

[
gn(t, z)+ω(t)

]
vn + gu(t,0,0)un + d2(t)

∂2vn

∂z2
+ [

2λcd2(t)+ c + l(t)
]∂vn
∂z

− ∂vn

∂t
= 0.

(3.23)

From the parabolic estimates, it follows that there exists a subsequence of {(un, vn)}
(which we continue to denote by {(un, vn)} for convenience) such that {(un, vn)} converges in
C

1,2
loc (R × R) to a function denoted by (u�, v�) ∈ C

1,2
b (R × R).

Since |g(t, u, v)−gu(t,0,0)u−gv(t,0,0)v| ≤ C(|u|2 +|u||v|+ |v|2) for some positive con-
stant C and limn→∞ u(t, z + zn) = 0 and limn→∞ v(t, z + zn) = 0 uniformly in any compact
subset of R × R, by taking the limit in (3.23), we find that⎧⎪⎪⎨⎪⎪⎩

d1(t)
∂2u�

∂z2
+ [

2λcd1(t)+ c + k(t)
]∂u�

∂z
− ∂u�

∂t
= 0,

gu(t,0,0)u� +ω(t)v� + d2(t)
∂2v�

∂z2
+ [

2λcd2(t)+ c + l(t)
]∂v�

∂z
− ∂v�

∂t
= 0.

Observe that un ≥ 0 and vn ≥ 0, and hence u� ≥ 0 and v� ≥ 0. Moreover, let t∗ = limn→∞ tn,
then we have u�(t∗,0) = limn→∞ un(tn,0) = 0. It follows from the maximum principle that
u�(t, z) ≡ 0 for all (t, z) ∈ R × R. Thus, v� is a bounded periodic solution to

ξt = d2(t)ξzz + [
2λcd2(t)+ c + l(t)

]
ξz +ω(t)ξ, z ∈ R. (3.24)

Let G�(t, s)t≥s be the family of evolution operators associated with (3.24) on BUC(R).

As ω− := ω(t) < 0, it is easy to see ±Ke
ω− t

2 e
∫ t

0 [ω(s)−ω−]ds are the sub- and super-solutions
of (3.24), respectively, where K > 0 is arbitrary. Thus, the comparison principle implies that

‖G�(t, s)‖ ≤ Ce
ω−(t−s)

2 , t ≥ s, for some positive constant C. Namely G�(t, s) enjoys a (trivial)
exponential dichotomy, in view of Exercise 4* in Henry [18], we must have v�(t, z) ≡ 0. Thus,
(3.22) implies that

lim
n→∞

v(tn, zn)

ϕ1(tn)eλczn
= 0.



Author's personal copy

G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078–1147 1103

For the sake of contradiction, we let

w(t, z) = Nl maxt ϕ1(t)

mint ϕ1(t)
ϕ1(t)e

λcz,
(
u(t, z), v(t, z)

)= min
{(
w(t, z),w(t, z)

)
, (1,1)

}
,

where l > 0 is a fixed constant and Nl is given by (3.6). In view of the proof of Theorem 2.9,
(w(t, z),w(t, z)) is a regular super-solution of (2.2). Thus (u, v) is an irregular super-solution
of (2.2) in R × R. In particular, it is nondecreasing in z. Obviously, there exists σ such that
(u(t, z), v(t, z)) = (1,1) for all (t, z) ∈ R × [σ ,∞). As (u(t, z), v(t, z)) → (0,0) uniformly in t

as z → −∞ and (u(t, z), v(t, z)) → (1,1) uniformly in t as z → ∞, there exist (t ′, z′) and
s′ > 0 such that (u(t ′, z′), v(t ′, z)) ≤ (u(t ′, z′ + s′), v(t ′, z′ + s′)) < (1,1). Clearly, z′ < σ . As-
sume without loss of generality that s′ = 0 (otherwise we may consider (us

′
(t, z), vs

′
(t, z)) =

(u(t, z + s′), v(t, z + s′)), which is also a solution of (2.4)).
Now if (3.22) is true, we then have

εn := u(tn, zn)

ϕ1(tn)eλczn
→ 0, εn := v(tn, zn)

ϕ1(tn)eλczn
→ 0 as n → ∞.

Furthermore, it follows from (3.6) that

(
u(t, zn), v(t, zn)

)≤ Nl

maxt ϕ1(t)

mint ϕ1(t)
[εn + εn]ϕ1(t)

(
eλczn, eλczn

)
for all t ∈ R.

Let n′ be sufficiently large such that zn′ < z′ and

Nl

maxt ϕ1(t)

mint ϕ1(t)
[εn + εn]ϕ1(t)e

λczn′ <Nl

maxt ϕ1(t)

mint ϕ1(t)
ϕ1(t)e

λczn′ ≤ 1

2
for all t ∈ R.

Namely

(
u(t, zn′), v(t, zn′)

)
<
(
u(t, zn′), v(t, zn′)

)≤
(

1

2
,

1

2

)
for all t ∈ R.

Therefore, Lemma A.1 implies that(
u(t, z), v(t, z)

)
<
(
u(t, z), v(t, z)

)
for all (t, z) ∈ R×[zn′ ,∞). However this contradicts the fact that (u(t ′, z′), v(t ′, z′)) ≥ (u(t ′, z′),
v(t ′, z′)). Hence, we deduce from this contradiction that (3.21) is true. The proof is com-
pleted. �

We now state and prove a result on the exponential decay rate of the time periodic traveling
wave solutions when c < c∗.

Theorem 3.6. Suppose all the assumptions given in Lemma 3.5 are satisfied. Let (u, v) ∈
C

1,2
b (R × R) and c solve (2.4) with c < c∗ = −2

√
κ − k(t). Then

lim
z→−∞

u(t, z)

ρeλczϕ1(t)
= 1, lim

z→−∞
v(t, z)

ρeλczϕ2(t)
= 1, uniformly in t ∈ R
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for some positive constant ρ. Here ϕ1 and ϕ2 are given by (2.7) and (2.10), respectively, and

λc = −c−
√
c2−4κ

2 .

Proof. By virtue of Lemma 3.5, we have

0 < ρ∗ := lim inf
z→−∞

{
inf
t∈R

u(t, z)

eλczϕ1(t)

}
≤ lim sup

z→−∞

{
sup
t∈R

u(t, z)

eλczϕ1(t)

}
= ρ∗ < ∞.

We next show that

ρ∗ = lim
z→−∞

{
inf
t∈R

u(t, z)

eλczϕ1(t)

}
. (3.25)

This idea is motivated by Hamel [16]. Given ε > 0, we claim that there exists zε ∈ R such that{
inf
t∈R

u(t, z)

eλczϕ1(t)

}
< ρ∗(1 + 2ε) whenever z ≤ zε.

Assume to the contrary that this is not true, then there exists a sequence {zn} such that

zn → −∞, inf
t∈R

{
u(t, zn)

ϕ1(t)eλczn

}
≥ ρ∗(1 + 2ε).

Let z̃0 ≤ z∗ be chosen so that

ρ∗(1 + 2ε) ≤ min

{
e−λcz̃0 min

{
1

maxt ϕ1
,

1

maxt ϕ2

}
, ñ

1
γ

0

}
,

ñ0 = 1

eε̃z0 min{mint
φ1
ϕ1
,mint

φ2
ϕ2

} ,

where z∗ is specified by (2.15), φ1 and φ2 are given by (2.13) and (2.14), respectively.
Now define

(
u(t, z), v(t, z)

)= eλcz
(
δ∗

1ϕ1

[
1 − ñ0φ1

ϕ1
eεz

]
, δ∗

2ϕ2

[
1 − δ∗

1 ñ0φ2

δ∗
2ϕ1

eεz
])

,

(t, z) ∈ R × (−∞, z̃0],

where δ∗
1 = ρ∗(1 + 3

2ε) and δ∗
2 = min{1,Mcρ(1 + 3

2ε)}, and Mc is specified by Lemma 3.4.
Therefore, we have

lim
n→∞

u(t, zn)

u(t, zn)
> 1, lim

n→∞
v(t, zn)

v(t, zn)
> 1 for all t ∈ R. (3.26)

On the other hand, by the definition of ρ∗, there exists a sequence {(τn, sn)}n∈N such that

sn → −∞,
u(τn, sn)

eλcznϕ1(τn)
= ρ∗ as n → ∞.
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Therefore, there exists n∗ such that sn∗ < z̃0 and

u(τn∗ , sn∗) ≤ ρ

(
1 + ε

2

)
ϕ1(τn∗)eλcsn∗ ≤ u(τn∗ , sn∗). (3.27)

In view of (3.26), there exists n′ such that zn′ < sn∗ and(
u(t, zn′), v(t, zn′)

)
<
(
u(t, zn′), v(t, zn′)

)
for all t ∈ R.

Observe that (u, v) is a (regular) sub-solution of (2.2) in R× (−∞, z̃0[ with (u(t, z̃0), v(t, z̃0)) ≤
(0,0) for all t ∈ R and sup(t,z)∈R×(−∞,̃z0](u, v) < (1,1), hence Lemma A.2 implies that
(u(t, z), v(t, z)) < (u(t, z), v(t, z)) for all (t, z) ∈ R × [zn′ , z̃0]. However, this contradicts (3.27)
since (τn∗ , sn∗) ∈ R × [zn′ , z̃0]. As ε > 0 is arbitrary, we readily conclude that (3.25) is true.

Now let {(t ′n, z′
n)} ∈ R × R be the sequence such that

z′
n → −∞, lim

z′
n→−∞

u(t ′n, z′
n)

eλcz
′
nϕ1(t ′n)

= ρ∗, as n → −∞.

Since both u and φ are T -periodic in t , we may assume that tn ∈ [0, T ] for all n. Set

un(t, z) = u(t, z + z′
n)

eλc(z+z′
n)ϕ1(t)

.

Clearly, {un} is uniformly bounded for all (t, z) ∈ R × R. In particular, un satisfies

f (t, u, v)

u
un − fu(t,0,0)un + d1(t)u

n
zz + [

2λc + c + k(t)
]
unz − unt = 0.

With the same reasoning as that presented in the proof of Lemma 3.5, we may assume, by taking
a subsequence if necessary, that {un} converges in C

1,2
loc (R × R) to a function u ≥ 0 that solves

d1(t)u
 
zz + [

2λc + c + k(t)
]
u z − u t = 0. (3.28)

Thanks to the compactness of [0, T ], t ′n → t for some t ∈ [0, T ]. Clearly, u (t ,0) = ρ∗. More-
over, owing to the definition of ρ∗, it is easy to see that u ≤ ρ∗. Note that u (·, z) is also
T -periodic. Therefore, the strong maximum principle implies that u ≡ ρ∗. Consequently,

lim
z′
n→−∞

u(t, z′
n)

eλcz
′
nϕ1(t)

= ρ∗ uniformly in t ∈ [0, T ].

As u is periodic in t , it is readily seen that limz′
n→−∞{inft∈R

u(t,z′
n)

eλcz
′
nϕ1(t)

} = ρ∗. It then follows

from (3.25) that ρ∗ = ρ∗. More precisely, we have

lim
z→−∞

u(t, z)

ρeλczφ(t)
= 1 uniformly in t ∈ R (3.29)

for some positive constant ρ.
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We now proceed to prove the claimed asymptotic behavior for v. Set

ς(t, z) = u(t, z)− ρϕ1(t)e
λcz, r(t, z) = v(t, z)− ρϕ2(t)e

λcz.

Then it is easy to see that r and ς are both T -periodic in t and satisfy

R(t, z)+ gu(t,0,0)ς + gv(t,0,0)r + d2(t)rzz + [
c + l(t)

]
rz − rt = 0, (t, z) ∈ R × R

where R(t, z) = g(t, u(t, z), v(t, z)) − gu(t,0,0)u(t, z) − gv(t,0,0)v(t, z). As shown in
Lemma 3.5 (see Step 2), there exists some positive constant C′ such that |ς | ≤ C′eλcz and
|r| ≤ C′eλcz for all (t, z) ∈ R × R.

Now let

m∗ = lim inf
z→−∞

{
inf
t∈R

r(t, z)

ϕ2(t)eλcz

}
, m∗ = lim sup

z→−∞

{
sup
t∈R

r(t, z)

ϕ2(t)eλcz

}
.

To complete the proof, it suffices to show that m∗ = m∗ = 0. We only show that m∗ = 0 since the
arguments for the other are similar. Let {(tn, zn)} be the sequence such that zn → −∞ as n → ∞
and limn→∞ r(tn,zn)

ϕ2(tn)e
λczn

= m∗. Once again, we assume without loss of generality that tn ∈ [0, T ]
and limn→∞ tn = t∗ for some t∗ ∈ [0, T ]. Set

ςn(t, z) = ς(t, z + zn)

ϕ1(t)eλc(z+zn)
, rn(t, z) = r(t, z + zn)

ϕ1(t)eλc(z+zn)
.

Note that {ςn} and {rn} are uniformly bounded. In particular, (3.29) implies that
limn→∞ ςn(t, z) = 0 uniformly in any compact subsets of R × R. Moreover, the same calcu-
lation as that given for Lemma 3.5 yields that

R(t, z + zn)

ϕ1(t)eλc(z+zn)
+ gu(t,0,0)ςn +ω(t)rn + d2(t)r

n
zz + [

2λcd2(t)+ c + l(t)
]
rnz − rnt = 0.

By following the same reasoning as the above, we see that {rn} converges uniformly to zero in
any compact subset of R × R. Thus,

0 = lim
n→∞ rn(tn,0) = lim

n→∞
r(tn, zn)

ϕ1(tn)eλczn
= m∗

ϕ2(t
∗)

ϕ1(t∗)
.

As ϕ2(t
∗)

ϕ1(t
∗) > 0, we must have m∗ = 0. Likewise, we can deduce that m∗ = 0. Therefore, it follows

that

lim
z→−∞

v(t, z)

ρϕ2(t)eλcz
= 1 uniformly in t ∈ R.

This completes the proof. �
Case II: c = c∗.

We now turn to the case c = c∗. In this case, note that λc∗ =
√
κ

d1(t)
, where λc (c ≤ c∗) is given

by (2.6). Here and subsequently, we will write λ∗ = λc∗ . In order to derive an a priori estimate
similar to (3.17), with slightly abuse of symbols, we introduce the following notations:
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ϕ1(t) = exp

( t∫
0

[
d1(τ )λ

2∗ + cλ∗ + k(τ )λ∗ + fu(τ,0,0)
]
dτ

)
(3.30)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2(t) = ϕ2(0) exp

( t∫
0

�∗(s)ds
)

+
t∫

0

exp

( t∫
s

�∗(τ )dτ
)
gu(s,0,0)ϕ1(s)ds,

ϕ2(0) =
[

1 − exp

( T∫
0

�∗(s)ds
)]−1 T∫

0

exp

( T∫
s

�∗(τ )dτ
)
gu(s,0,0)ϕ1(s)ds,

(3.31)

where �∗(t) = d2(t)λ
2∗ + (c∗ + l(t))λ∗ + gv(t,0,0).

Let ε∗ > 0 be fixed such that

0 < ε∗ ≤ min

{
γ λ∗,

fu(t,0,0)− gv(t,0,0)d1(t)

2
√
κ[d1(t)+ d1(t)]

}
(3.32)

and set

Λε∗ = Λc∗
(
λ∗ + ε∗)= d1(t)

(
λ∗ + ε∗)2 + [

c∗ + k(t)
](
λ∗ + ε∗)+ fu(t,0,0). (3.33)

Clearly, Λε∗
> 0. Accordingly, we set

φ1(t) = exp

( t∫
0

[
d1(τ )λ

2∗ + cλ∗ + k(τ )λ∗ + fu(τ,0,0)−Λε∗]
dτ

)
(3.34)

and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ2(t) = φ2(0) exp

( t∫
0

�ε∗(s)ds

)
+

t∫
0

exp

( t∫
s

�ε∗(τ )dτ

)
gu(s,0,0)φ1(s)ds,

φ2(0) =
[

1 − exp

( T∫
0

�ε∗(s)ds

)]−1 T∫
0

exp

( T∫
s

�ε∗(τ )dτ

)
gu(s,0,0)φ1(s)ds,

(3.35)

where �ε∗(t) = d2(t)(λ∗ + ε∗)2 + [c + l(t)](λ∗ + ε∗)−Λε∗ + gv(t,0,0). Note that

�ε∗(t) = d2(t)
(
λ∗ + ε∗)2 + [

c∗ + l(t)
](
λ∗ + ε∗)−Λε∗ + gv(t,0,0)

= λ∗
[
l(t)− k(t)+ λ∗

(
d2(t)− d1(t)

)]+ ε∗[l(t)− k(t)+ ε∗(d2(t)− d1(t)
)]

+ 2ε∗λ∗
[
d2(t)− d1(t)

]− fu(t,0,0)+ gv(t,0,0) < 0.
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Thus, φ2(t) is well defined. It is easy to see that φ2(t) is positive and periodic and solves

gu(t,0,0)φ2 + {
gv(t,0,0)+ d2(t)

(
λ∗ + ε∗)2 + [

c + l(t)
]
(λ∗ + ε)−Λε∗}

ξ − dξ

dt
= 0.

Observe that Λc∗(λ∗) = dΛc∗
dλ

|λ=λ∗ = 0. Set ψ∗
1 (t) = − ∂Φλ(t)

∂λ
|λ=λ∗ . By differentiating both

sides of (2.5) with respect to λ at λ∗, we find that

[
c∗ + k(t)+ 2λ∗d1(t)

]
ϕ1(t) = {

fu(t,0,0)+ [
c∗ + k(t)

]
λc + d1(t)λ

2∗
}
ψ∗

1 (t)

− dψ∗
1 (t)

dt
. (3.36)

Let ψ∗
2 (t) be the periodic solution of

gu(t,0,0)ψ∗
1 − [

c∗ + l(t)+ 2λ∗d2(t)
]
ϕ2

+ [
gv(t,0,0)+ (

c∗ + l(t)
)
λ∗ + d2(t)λ

2∗
]
ς − dς

dt
= 0. (3.37)

As shown before, gv(t,0,0)+ (c∗ + l(t))λ∗ + d2(t)λ2∗ < 0, thus, ψ∗
2 exists and is unique. We

also let ž ≥ 0 be the least number such that

ln z ≤ (1 + γ )−1 ln

(
Λε∗

min{mint∈R φ1,mint∈R φ2}
�2 · 61+γ

)
+ (γ λ∗ − ε∗)z

1 + γ
for all z ≥ ž. (3.38)

Set

z∗ = min

{
−ž,−1,− 1

λ∗
,−max

t∈R

∣∣∣∣ψ∗
1 (t)

ϕ1(t)

∣∣∣∣,−max
t∈R

∣∣∣∣ψ∗
2 (t)

ϕ2(t)

∣∣∣∣}, (3.39)

n0 = e−ε∗z0

maxt∈R|φ1(t)
ϕ1(t)

| + maxt∈R|φ2(t)
ϕ2(t)

| , M0 = 3|z0|, −∞ < z0 ≤ z∗, (3.40)

0 < δ2 ≤ δ1 ≤ min

{
e−λ∗z0

6|z0|[supt∈R(ϕ1 + ϕ2)] , n
1
γ

0

}
. (3.41)

Proposition 3.7. Suppose that (H1)–(H5) are satisfied. Assume that k(t)− l(t) ≥
√
κΘ(d2(t)−d1(t))

d1(t)
.

Let

(
U(t, z),W(t, z)

)
=
(
δ1e

λ∗zϕ1

[
|z| + ψ∗

1

ϕ1
−M0 + n0φ1e

ε∗z

ϕ1

]
, δ2e

λ∗zϕ2

[
|z| + ψ∗

2

ϕ2
− δ1M0

δ2
+ δ1n0φ2e

ε∗z

δ2ϕ2

])
provided that c = c∗. Then (U,W) is a regular sub-solution of (2.2) in R × (−∞, z0[, where z0,
n0, M0, δ1, and δ2 are given in (3.40) and (3.41), respectively.
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Proof. First observe that eλ∗z|z| is nondecreasing in (−∞, z0] if z0 ≤ z∗. Thus, in view of (3.40)
and (3.41), we see that (U,W) < (1,1) for all (t, z) ∈ R × (−∞, z0]. In particular, it is easy to
see that (U(t, z0),W(t, z0)) ≤ (0,0) for all t ∈ R. Moreover, for any (t, z) ∈ R × ]−∞, z0[,
a direct computation shows that

f (t,U,W)+ [
c∗ + k(t)

]
Uz + d1(t)Uzz −Ut

≥ δ1e
λ∗zfu(t,0,0)

[−zϕ1 +ψ∗
1 −M0ϕ1

]
+ δ1e

λ∗z[c + k(t)
][−ϕ1 − zλ∗ϕ1 + λ∗ψ∗

1 −M0λ∗ϕ1
]

+ d1(t)δ1e
λ∗z[−2λ∗ϕ1 − λ2∗zϕ1 + λ2∗ψ∗

1 −M0λ
2∗ϕ1

]− δ1e
λ∗z[−zϕ′

1 +ψ∗ ′
1 −M0ϕ

′
1

]
+ δ1n0e

(λ∗+ε∗)z{[fu(t,0,0)+ (
c∗ + k(t)

)(
λ∗ + ε∗)+ d1(t)

(
λ∗ + ε∗)2]

φ1 − φ′
1

}
−�

(|U |1+γ + |W |1+γ
)

≥ −(M0 + z)δ1e
λ∗z{[fu(t,0,0)+ (

c∗ + k(t)
)
λ∗ + d1(t)λ

2∗
]
ϕ1 − ϕ′

1

}
+ δ1e

λ∗z{−[
c∗ + k(t)+ 2d1(t)λ∗

]
ϕ1 + [

fu(t,0,0)+ (
c∗ + k(t)

)
λ∗ + d1(t)λ

2∗
]
ψ∗

1 −ψ∗ ′
1

}
+ eλ∗z

{
eε

∗zδ1n0Λ
ε∗
φ1 −�δ

1+γ

1 eγλ∗zϕ1
(
6|z|)1+γ −�δ

1+γ

2 eγλ∗zϕ2

(
6
δ1

δ2
|z|
)1+γ}

≥ δ1n0e
(λ∗+ε∗)z

{
Λε∗

φ1 −�
δ
γ

1

n0
2 · 6(1+γ )|z|1+γ e(γ λ∗−ε∗)z

}
≥ 0

and

g(t,U,W)+ [
c∗ + l(t)

]
Wz + d2(t)Wzz −Wt

≥ δ2e
λ∗z{gu(t,0,0)

[−zϕ1 +ψ∗
1

]+ gv(t,0,0)
[−zϕ2 +ψ∗

2

]}
+ δ1n0e

(λ∗+ε∗)z{gu(t,0,0)φ1 + [
gv(t,0,0)+ c∗ + l(t)+ d2(t)λ

2∗
]
φ2 − φ′

2

}
−M0δ1e

λ∗z{gu(t,0,0)ϕ1 + [
gv(t,0,0)+ c∗ + l(t)+ d2(t)λ

2∗
]
ϕ2 − ϕ′

2

}
+ δ2e

λ∗z[c∗ + l(t)
][−ϕ2 − zλ∗ϕ2 + λ∗ψ∗

2

]+ δ2e
λ∗zd2(t)

[−2λ∗ϕ2 − zλ2∗ϕ2 + λ2∗ψ∗
2

]
− δ2e

λ∗z[−zϕ′
2 +ψ∗ ′

2

]−�
(|U |1+γ + |W |1+γ

)
≥ −(M0δ1 + zδ2)e

λ∗z{gu(t,0,0)ϕ1 + [
gv(t,0,0)+ c∗ + l(t)+ d2(t)λ

2∗
]
ϕ2 − ϕ′

2

}
+ δ2e

λ∗z{gu(t,0,0)ψ∗
1 − [

c∗ + l(t)+ 2λ∗d2(t)
]
ϕ2

+ [
gv(t,0,0)+ (

c∗ + l(t)
)
λ∗ + d2(t)λ

2∗
]
ψ∗

2 −ψ∗ ′
2

}
+ eλ∗z

{
eε

∗zδ1n0Λ
ε∗
φ2 −�δ

1+γ

1 eγλ∗zϕ1
(
6|z|)1+γ −�δ

1+γ

2 eγλ∗zϕ2

(
6
δ1

δ2
|z|
)1+γ}

≥ δ1n0e
(λ∗+ε∗)z

{
Λε∗

φ2 −�
δ
γ

1

n0
2 · 6(1+γ )|z|1+γ e(γ λ∗−ε∗)z

}
≥ 0.

Thus, (U,W) is a regular sub-solution of (2.2) in R × ]−∞, z0[. The proof is completed. �
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Proposition 3.8. Suppose that (H1)–(H4) and (H6) are satisfied. Assume that k(t) − l(t) ≥√
κΘ(d2(t)−d1(t))

d1(t)
. Let

(
U(t, z),W(t, z)

)=
(
meλ∗zϕ1(t)

[
n+ ψ∗

1 (t)

ϕ1(t)
− z

]
,meλ∗zϕ1(t)

[
n+ ψ∗

1 (t)

ϕ1(t)
− z

])
provided that c = c∗, where m,n ∈ R+. Then (U,W) is a regular super-solution of (2.2) in

R × ]−∞, z0[, where z0 ≤ n− 2
λ∗ − maxt∈R|ψ∗

1
ϕ1

|, and ψ∗
1 is given by (3.36).

Proof. For the sake of simplicity, we write w(t, z) = meλ∗zϕ1(t)[n + ψ∗
1 (t)

ϕ1(t)
− z]. Notice that

w > 0, wz ≥ 0, and wzz ≥ 0 in (−∞, z0]. Moreover, when (t, z) ∈ R × ]−∞, z0[, we have

f (t,U,W)+ [
c + k(t)

]
Uz + d1(t)Uzz −Ut

= f (t,w,w)+ [
c + k(t)

]
wz + d1(t)wzz −wt

≤ meλ∗z
{
fu(t,0,0)

[
n+ ψ∗

1

ϕ1
− z

]
+ ϕ1

[
c∗ + k(t)

][
λ∗n− 1 − zλ∗ + λ∗

ψ∗
1

ϕ1

]
+ d1(t)ϕ1

[
−2λ∗ − zλ2∗ + λ2∗

ψ∗
1

ϕ1
+ nλ2∗

]
− ϕ′

1

[
n− z + ψ∗ ′

1

ϕ′
1

]}
= meλ∗z(n− z)

{[
fu(t,0,0)+ (

c∗ + k(t)
)
λ∗ + d1(t)λ

2∗
]
ϕ1 − ϕ′

1

}
+meλ∗z{−[

c∗ + k(t)+ 2λ∗
]
ϕ1 + [

fu(t,0,0)+ (
c∗ + k(t)

)
λ∗ + d1(t)λ

2∗
]
ψ∗

1 −ψ∗ ′
1

}
= 0

and

g(t,U,W)+ [
c + l(t)

]
Wz + d2(t)Wzz −Wt

≤ g∗
s (t,0,0)w + [

c + l(t)
]
wz + d2(t)wzz −wt

≤ fu(t,0,0)w + [
c + k(t)

]
wz + d1(t)wzz −wt + [

l(t)− k(t)
]
wz + [

d2(t)− d1(t)
]
wzz

≤ mλ∗eλ∗zϕ1

[
n− 2

λ∗
− z + ψ∗

1

ϕ1

][
l(t)− k(t)+ λ∗

(
d2(t)− d1(t)

)]
≤ 0.

Hence, (U,W) is a regular super-solution of (2.2) in R×]−∞, z0[. The proof is completed. �
Lemma 3.9. Suppose that (H1)–(H8) are satisfied. Let (u, v) ∈ C

1,2
b (R × R) and c solve (2.4)

with c = c∗ = −2
√
κ − k(t). Then

lim sup
z→−∞

{
sup
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
< ∞ and lim inf

z→−∞

{
inf
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
> 0. (3.42)
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Proof. Thanks to Proposition 3.7, by following the same reasoning as that in Lemma 3.5 (see
Step 1 of the proof for Lemma 3.5), we can infer that

lim sup
z→−∞

{
sup
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
< ∞. (3.43)

We next show that there exist positive constants K∗ and M∗ for which

u(t, z) ≤ K∗|z|eλ∗z, v(t, z) ≤ K∗|z|eλ∗z, for all (t, z) ∈ R × (−∞,−M∗]. (3.44)

Notice that the first inequality is an immediate consequence of (3.43). To show the second in-
equality, we let μ− = gv(t,0,0) and w = v

ϕ̂
again, where ϕ̂ is given by (3.9). Then by following

the same lines, we arrive

[
ε + gu(t,0,0)

]u
ϕ̂

+ μ−

2
w + d2(t)wzz + [

c + l(t)
]
wz −wt ≥ 0, ∀(t, z) ∈ R × ]−∞,−M+[

for some positive constant M+. We will assume without loss of generality that M+ ≥ M∗. Let
m∗ ≥ maxt∈[0,T ] |c∗+l(t)+2λ∗d2(t)|ϕ2(t)ϕ̂(t)[ε+gu(t,0,0)]ϕ1(t)

, and let ϕε(t) be the periodic solution to

[
ε + gu(t,0,0)

]
ϕ1 − 1

m∗
[
c∗ + l(t)+ 2λ∗d2(t)

]
ϕ2

+
[
μ−

2
+ λ∗

(
c∗ + l(t)

)+ λ2∗d2(t)

]
ξ − dξ

dt
= 0.

Since μ−
2 + λ∗(c∗ + l(t))+ λ2∗d2(t) < 0 and [ε+gu(t,0,0)]

ϕ̂
ϕ1 − 1

m∗ [c∗ + l(t) + 2λ∗d2(t)]ϕ2 ≥ 0,
ϕε(t) is unique and nonnegative.

Now set w(t, z) = Cε(−zeλ∗zϕ2 + m∗eλ∗zϕε), where Cε ≥ K∗
mint ϕ1

. Observe that w satisfies
the equation

[ε + gu(t,0,0)]
ϕ̂

[
Cε

(−zeλ∗zϕ1 +m∗eλ∗zϕ1
)]+ μ−

2
w + [

c∗ + l(t)
]
wz + d2(t)wzz −wt = 0.

As a consequence, there holds

[
ε + gu(t,0,0)

]u
ϕ̂

+ μ−

2
w + d2(t)wzz + [

c + l(t)
]
wz −wt ≤ 0, ∀(t, z) ∈ R × ]−∞,M∗[.

Since Cε ≥ K∗
mint ϕ∗

1
is arbitrary, by the same arguments as those given for Lemma 3.5, we can

deduce that there exists K∗ > 0 for which v(t, z) ≤ K∗|z|eλ∗z for all (t, z) ∈ R × (−∞,M∗].
The proof for the second inequality of (3.42) is analogous to that presented in the proof of

Lemma 3.5, we choose to skip it and leave the detailed calculations to interested readers. The
proof is completed. �

The exponential decay rate of the time periodic traveling wave solutions when c = c∗ is given
in the following result.
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Theorem 3.10. Suppose that (H1)–(H8) are satisfied. Let (u, v) ∈ C
1,2
b (R × R) and c solve (2.4)

with c = c∗ = −2
√
κ − k(t). Then

lim
z→−∞

u(t, z)

ρϕ1(t)|z|eλ∗z = 1, lim
z→−∞

v(t, z)

ρϕ2(t)|z|eλ∗z = 1 uniformly in t ∈ R

for some positive constant ρ, where ϕ1 and ϕ2 are given by (3.30) and (3.31), respectively.

Proof. In light of Lemma 3.9, there exist positive constants ρ∗ and ρ∗ such that

0 < ρ∗ = lim inf
z→−∞

{
inf
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
≤ lim sup

z→−∞

{
sup
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
= ρ∗ < ∞.

We next show that for a given ε ∈ (0,1], there exists zε ∈ R such that

inf
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z ≤ ρ∗(1 + 2ε) whenever z ≤ zε. (3.45)

Assume to the contrary that this is not true. Then, for given ε ∈ (0,1], there exists a sequence {zn}
such that

zn → −∞, inf
t∈R

u(t, zn)

ϕ1(t)|zn|eλ∗zn ≥ ρ∗(1 + 2ε). (3.46)

Pick δ > 0 sufficiently small such that mint ϕ1
Mc∗ ≥ δmaxt ϕ2, where Mc∗ is the positive number

specified in Lemma 3.4 with c = c∗. Let z0 ∈ (−∞, z∗] be chosen so that

ρ

(
1 + 3ε

2

)
≤ min

{
e−λ∗z0

6|z0|[supt∈R(ϕ1 + ϕ2)] ,
e−ε∗z0

maxt∈R|φ1(t)
ϕ1(t)

| + maxt∈R|φ2(t)
ϕ2(t)

|
}

where z∗ is given by (3.39) and ε∗ is given by (3.32). Define(
u(t, z), v(t, z)

)
= ρ∗

(
1 + 3ε

2

)
eλ∗z

(
ϕ1

[
|z| + ψ∗

1

ϕ1
−M0 + n0φ1e

ε∗z

ϕ1

]
, δϕ2

[
|z| + ψ∗

2

ϕ2
− M0

δ
+ n0φ2e

ε∗z

δϕ2

])
,

where n0 and M0 are specified by (3.40). In view of (3.46) and Lemma 3.4, we have

lim
n→∞

u(t, zn)

u(t, zn)
> 1 and lim

n→∞
v(t, zn)

v(t, zn)
> 1 uniformly in t.

Hence, there exists n∗ such that (u(t, zn), v(t, zn)) > (u(t, zn), v(t, zn)) for all t ∈ R and zn < z0
provided that n ≥ n∗.

On the other hand, by the definition of ρ∗, there exists a sequence {(tn, sn)} such that
limn→∞ u(tn,sn)

ϕ1(tn)|sn|eλ∗sn = ρ∗. Note that

lim
n→∞

u(tn, sn)

ρ∗(1 + ε
2 )ϕ1(tn)|sn|eλ∗sn > 1.
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Thus, there exists n∗ such that

u(tn, sn) ≤ ρ∗
(

1 + ε

2

)
ϕ1(tn)|sn|eλ∗sn ≤ u(tn, sn) and sn < z0 whenever n ≥ n∗.

Without loss of generality, we assume that zn∗+1 < sn∗+1. By virtue of Proposition 3.7, (u, v) is
a sub-solution of (2.2) for (t, z) ∈ R × ]−∞, z0[, and (u(t, z0), v(t, z0)) ≤ (0,0) for all t ∈ R.
It then follows from Lemma A.1 in Appendix A that (u(t, z), v(t, z)) > (u(t, z), v(t, z)) for all
(t, z) ∈ R × [zn∗+1, z0]. Consequently,

u(tn∗+1, sn∗+1) ≤ u(tn∗+1, sn∗+1) < u(tn∗+1, sn∗+1).

This is a contradiction and it shows that (3.45) holds. As ε > 0 is arbitrary, we readily conclude
that

lim
z→−∞

{
inf
t∈R

u(t, z)

ϕ1(t)|z|eλ∗z

}
= ρ∗. (3.47)

Again by following the same lines as those given in Theorem 3.6, we deduce that ρ∗ = ρ∗.
Namely,

lim
z→−∞

u(t, z)

ρϕ1(t)|z|eλ∗z = 1 uniformly in t ∈ R

for some positive constant ρ.
Now let

r(t, z) = v(t, z)− ρϕ2(t)e
λ∗z

[
|z| + ψ∗

2 (t)

ϕ2(t)

]
, ς(t, z) = u(t, z)− ρϕ1(t)e

λ∗z
[
|z| + ψ∗

1 (t)

ϕ1(t)

]
.

Then by using the same arguments as those given in the proof of Theorem 3.6, we infer that

lim inf
z→−∞

{
inf
t∈R

r(t, z)

ϕ2(t)|z|eλ∗z

}
= lim sup

z→−∞

{
sup
t∈R

r(t, z)

ϕ2(t)|z|eλ∗z

}
= 0.

Therefore, it follows that

lim
z→−∞

v(t, z)

ρϕ2(t)|z|eλ∗z = 1 uniformly in t ∈ R.

The proof is completed. �
Corollary 3.11. Suppose that (H1)–(H8) are satisfied. Assume that k(t)− l(t) ≥

√
κΘ(d2(t)−d1(t))

d1(t)
.

Let (u, v) ∈ C
1,2
b (R × R) and c solve (2.4) with c ≤ c∗ := −2

√
κ − k(t). Then there exists some

positive constant ρ such that

lim
z→−∞

uz(t, z)

ρϕ1(t)eλcz
= λc, lim

z→−∞
vz(t, z)

ρϕ2(t)eλcz
= λc uniformly in t ∈ R, if c < c∗, (3.48)
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where ϕ1 and ϕ2 are given by (2.7) and (2.10), respectively, and

lim
z→−∞

uz(t, z)

ρϕ1(t)|z|eλ∗z = λ∗,

lim
z→−∞

vz(t, z)

ρϕ2(t)|z|eλ∗z = λ∗ uniformly in t ∈ R, if c = c∗ (3.49)

where ϕ1 and ϕ2 are given by (3.30) and (3.31), respectively.

Proof. We will only give a proof for (3.49) since (3.48) can be proved similarly. Using (3.5) and
parabolic estimates, we see that

[ 2T∫
T

l
8∫

− l
8

(∣∣uτ (τ, s + z)
∣∣p + ∣∣us(τ, s + z)

∣∣p + ∣∣uss(τ, s + z)
∣∣p)dsdτ] 1

p

≤ C sup
[0,2T ]×[z− l

4 ,z+ l
4 ]

(|u| + |v|),
[ 2T∫

T

l
8∫

− l
8

(∣∣vτ (τ, s + z)
∣∣p + ∣∣vs(τ, s + z)

∣∣p + ∣∣vss(τ, s + z)
∣∣p)dsdτ] 1

p

≤ C sup
[0,2T ]×[z− l

4 ,z+ l
4 ]

(|u| + |v|)
for some positive constant C, where l > 0 is some constant and p ≥ 3.

Therefore, Sobolev embedding theorem implies that

|uz(t, z)− uz(τ, z)|
|t − τ |α ≤ C′∣∣u(t, z)∣∣, |vz(t, z)− vz(τ, z)|

|t − τ |α ≤ C′∣∣v(t, z)∣∣, ∀t, τ, z ∈ R, t �= τ

for some positive constant C′. This yields that, whenever z ≤ −M∗, there holds

|uz(t, z)− uz(τ, z)|
|t − τ |α|z|eλ∗z + |vz(t, z)− vz(τ, z)|

|t − τ |α|z|eλ∗z ≤ K for all t, τ ∈ R with t �= τ. (3.50)

On the other hand, for each fixed t ∈ R, l’Hôpital’s rule gives that

lim
z→−∞

uz(t, z)

λ∗ρϕ1(t)|z|eλ∗z = 1, lim
z→−∞

vz(t, z)

λ∗ρϕ2(t)|z|eλ∗z = 1. (3.51)

Since both uz and vz are periodic with t and [0, T ] is compact, (3.49) follows from (3.50)
and (3.51). The proof is completed. �

Summarizing the above results on the exponential decay rate, we finally can state and prove
the uniqueness of the time periodic traveling wave solutions for system (1.1).
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Theorem 3.12. Assume that (H1)–(H8) are satisfied. Suppose that wi (t, x) = (ui(t, x · ν − ct),

vi(t, x · ν − ct)) ∈ C
1,2
b (R × Rn) with c ≤ c∗ := −2

√
κ − k(t) are two time periodic traveling

waves of (1.1) (i = 1,2). Then there exists s0 ∈ R such that (u2(t, z), v2(t, z)) = (u1(t, z + s0),

v1(t, z + s0)) for all (t, z) ∈ R × R, where z = x · ν − ct .

Proof. The proof is similar to that of Theorem 3.11 in [37], we will give a sketch. Thanks to
Theorems 3.6 and 3.10, there exist two positive constants ρ1 and ρ1 such that

lim
z→−∞

ui(t, z)

ρiϕ1(t)eλcz
= 1, lim

z→−∞
vi(t, z)

ρiϕ2(t)eλcz
= 1, c < c∗ (i = 1,2)

and

lim
z→−∞

ui(t, z)

ρiϕ1(t)|z|eλ∗z = 1, lim
z→−∞

vi(t, z)

ρiϕ2(t)|z|eλ∗z = 1, c = c∗ (i = 1,2)

From the same reasoning as shown in Theorem 3.11 of [37], it follows that there exists s such
that (u1(t, z + s), v1(t, z + s)) ≥ (u2(t, z), v2(t, z)) for all (t, z) ∈ R × R whenever s ≥ s. Now
define

s∗ = inf
{
s ∈ R

∣∣ (u1(t, z + s), v1(t, z + s)
)≥ (

u2(t, z), v2(t, z)
)
, ∀(t, z) ∈ R × R

}
.

Clearly, s∗ is bounded. In addition, with the same arguments as that given for Theorem 3.11
in [37] together with Proposition A.5 in Appendix A, we can show that ρ1e

λcs
∗ = ρ2.

Next define

s∗ = sup
{
s ∈ R

∣∣ (u1(t, z + s), v1(t, z + s)
)≤ (

u2(t, z), v2(t, z)
)
, ∀(t, z) ∈ R × R

}
.

Clearly, s∗ is bounded. Indeed, note that

−s∗ = inf
{−s ∈ R

∣∣ (u2(t, z − s), v2(t, z − s)
)≥ (

u1(t, z), v1(t, z)
)
, ∀(t, z) ∈ R × R

}
.

By following the same lines, we can conclude that ρ2e
−λcs∗ = ρ1. It immediately follows that

s∗ = s∗. Therefore, by the definitions of s∗ and s∗, we have(
u1
(
t, z + s∗), v1

(
t, z + s∗))= (

u2(t, z), v2(t, z)
)

for all (t, z) ∈ R × R. This completes the proof. �
4. Asymptotic stability of time periodic traveling wave solutions

In this section, we concentrate on the asymptotic stability of time periodic traveling wave
solutions discussed in the previous sections. We thereafter consider⎧⎪⎨⎪⎩

ut = d1(t)�u+ k(t) · ∇u+ f (t, u, v),

vt = d2(t)�v + l(t) · ∇v + g(t, u, v),(
u(0, x,u0), v(0, x, v0)

)= (
u0(x), v0(x)

) (4.1)
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where (u0(x), v0(x)) ∈ Cθ(Rn,R2), 0 < θ ≤ 1, and (0,0) � (u0, v0) � (1,1). Throughout this
section, the assumptions (H1)–(H8) given in Section 2 will remain true. We often denote by
(u(t, x,u0), v(t, x, v0)) the solution of (4.1) with positive initial data (u0(x), v0(x)). Assume
that (0,0) � (u0, v0) � (1,1). Since (1,1) is a solution of (4.1), it is easy to show that (0,0) �
(u(t, x,u0), v(t, x, v0)) � (1,1) for all (t, x) ∈ R+ × Rn. In what follows, given ν ∈ Rn with
|ν| = 1, a time periodic traveling wave solution to (4.1) will be always denoted by (U(t, x · ν −
ct),W(t, x ·ν− ct)) or (U,W) in short. We shall always assume that (2.9) holds. We will use the
same type of methods as those given in Zhao and Ruan [37] to establish the asymptotic stability
of (U,W) (see also Hamel and Roques [17]).

As before, our main results will be completed through a series of lemmas and propositions.
We will divide our discussion into two cases.

Case I: c < c∗.
In this case, we let χ(s) be a smooth function such that χ(s) = 1 for s ≤ s; χ(s) = 0 for s ≥ s,

and 0 ≤ χ ′(s) and |χ ′| + |χ ′′| ≤ 1, where s and s are fixed constants with s < s.
Fix

ε ∈
(

0,min

{
γ λc

2
,

√
(c + k(t))2 − 4κ

2d1(t)
,
d1(t)[fu(t,0,0)− gv(t,0,0)]

2
√
κ[d1(t)+ d2(t)]

}]
(4.2)

such that

β := − (λc + ε)2d1(t)+ (λc + ε)(c + k(t))+ fu(t,0,0)

2
≤ |μ+|

2
. (4.3)

Set {
ξc(t, s) = χ(s)e(λc+ε)sφ1(t)+ (

1 − χ(s)
)
ψ1(t)

ςc(t, s) = χ(s)e(λc+ε)sφ2(t)+ (
1 − χ(s)

)
ψ2(t),

(4.4)

where φi (i = 1,2) are given by (2.13) and (2.14), respectively.
We also set

#+ := min

{
min

t∈[0,T ]
1

ψ1(t)
, min
t∈[0,T ]

1

ψ2(t)

}
. (4.5)

Proposition 4.1. Assume that (H1)–(H8) are satisfied. Let (U(t, x · ν − ct),W(t, x · ν − ct)) be
a traveling wave of (4.1) with c < c∗ such that (U(t, z),W(t, z)) and c solve (2.4). Then

lim sup
s→∞

sup
(t,z)∈R×R, #∈(0,#+]

U(t, z)− #ξc(t, z + s)− 1

#ψ1(t)
≤ −1,

lim sup
s→∞

sup
(t,z)∈R×R, #∈(0,#+]

W(t, z)− #ςc(t, z + s)− 1

#ψ2(t)
≤ −1.

Proof. The proof is similar to that of Proposition 4.2 in [37] and is omitted here. �
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In the following, we fix s0 ∈ R such that

sup
(t,s)∈R×R

U(t, s)− #ξc(t, s + s0)− 1

ψ1(t)
≤ −#

2
for all # ∈ (

0, #+] (4.6)

and

sup
(t,s)∈R×R

W(t, s)− #ςc(t, s + s0)− 1

ψ2(t)
≤ −#

2
for all # ∈ (

0, #+]. (4.7)

Lemma 4.2. Suppose that (H1)–(H8) are satisfied. Let (U(t, x · ν − ct),W(t, x · ν − ct)) be
a traveling wave of (4.1) with c < c∗ such that (U(t, z),W(t, z)) and c solve (2.4). Let ε, β ,
#+, and s0 be given by (4.2), (4.3), (4.5), and (4.6), respectively. Then there exists δc ∈ (0, #+]
such that for each z0 ∈ R and each σ ≥ 1/β , (u±(t, x), v±(t, x)) are respectively the super- and
sub-solutions of (4.1) in R+ × Rn whenever δ ∈ (0, δc]. Here

u±(t, x) = U
(
t, x · ν − ct + z0 ± σ

(
1 − e−βt

))
± δξc

(
t, x · ν − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±(t, x) = W
(
t, x · ν − ct + z0 ± σ

(
1 − e−βt

))
± δςc

(
t, x · ν − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt .

Proof. We will only show that u+ is a super-solution of (4.1), the other cases can be proved
similarly. Throughout the proof, we always let z′ = x · ν − ct + z0 + s0 + σ(1 − e−βt ) and
z = x · ν − ct + z0 + σ(1 − e−βt ). A straightforward calculation shows that

f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t

= f
(
t,U(t, z)+ e−βt δξc

(
t, z′),W(t, z)+ e−βt δςc

(
t, z′))

− f
(
t,U(t, z),W(t, z)

)+ δe−βtβξc
(
t, z′)

+ e−βt δ

{−σβ

δ
Uz + χe(λc+ε)z′[(

d1(t)(λc + ε)2 + (
c + k(t)

)
(λc + ε)

)
φ1 − φ′

1

]
− (1 − χ)ψ ′

1 + r1
(
t, z′)}

= e−βt δ
[
f1(t, z)ξc(t, z)+ f2(t, z)ςc

(
t, z′)+ βξc(t, z)

]
+ e−βt δ

{−σβ

δ
Uz − χe(λc+ε)z′[

fu(t,0,0)φ1 + fv(t,0,0)φ2 + 2βφ1
]

− (1 − χ)ψ ′
1 + r1

(
t, z′)}

= e−βt δ

{−σβ

δ
Uz + e(λc+ε)z′

χ
[(
f1 − fu(t,0,0)

)
φ1 + (

f2 − fv(t,0,0)
)
φ2 − βφ1

]
+ r1

(
t, z′)+ (1 − χ)

[(
f1 − fu(t,1,1)

)
ψ1 + (

f2 − fv(t,1,1)
)
ψ2 +μ+ψ1 + βψ1

]}
,
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where

r1
(
t, z′)= e(λc+ε)z′

φ1(t)
{
k(t)χ ′ + d1(t)

[
χ ′′ + 2χ ′(λc + ε)

]+ χ ′[c − σβe−βt
]}

+ψ1(t)
[
χ ′(σβe−βt − c

)− k(t)χ ′ − d1(t)χ
′′]− e(λc+ε)z′

φ1(t)(λc + ε)χσβe−βt ,

f1 = f1
(
t, z, z′)=

1∫
0

[
fu
(
t,U(t, z)+ τδξc

(
t, z′)e−βt ,W(t, z)+ τδςc

(
t, z′)e−βt

)]
dτ,

f2 = f2
(
t, z, z′)=

1∫
0

[
fv
(
t,U(t, z)+ τδξc

(
t, z′)e−βt ,W(t, z)+ τδςc

(
t, z′)e−βt

)]
dτ.

Likewise, we have

g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t

= g
(
t,U(t, z)+ e−βt δξc

(
t, z′),W(t, z)+ e−βt δςc

(
t, z′))

− g
(
t,U(t, z),W(t, z)

)+ δe−βtβςc
(
t, z′)+ e−βt δ

{−σβ

δ
Wz

+ χe(λc+ε)z′[(
d2(t)(λc + ε)2 + (

c + l(t)
)
(λc + ε)

)
φ2 − φ′

2

]− (1 − χ)ψ ′
2 + r2

(
t, z′)}

= e−βt δ
[
g1(t, z)ξc(t, z)+ g2(t, z)ςc

(
t, z′)+ βςc(t, z)

]+ e−βt δ

{−σβ

δ
Wz

− χe(λc+ε)z′[
gu(t,0,0)φ1 + gv(t,0,0)φ2 + 2βφ2

]− (1 − χ)ψ ′
1 + r2

(
t, z′)}

= e−βt δ

{−σβ

δ
Wz + e(λc+ε)z′

χ
[(
g1 − gu(t,0,0)

)
φ1 + (

g2 − gv(t,0,0)
)
φ2 − βφ2

]
+ r2

(
t, z′)+ (1 − χ)

[(
g1 − gu(t,1,1)

)
ψ1 + (

g2 − gv(t,1,1)
)
ψ2 +μ+ψ2 + βψ2

]}
,

where

r2
(
t, z′)= e(λc+ε)z′

φ2(t)
{
l(t)χ ′ + d2(t)

[
χ ′′ + 2χ ′(λc + ε)

]+ χ ′[c − σβe−βt
]}

+ψ2(t)
[
χ ′(σβe−βt − c

)− l(t)χ ′ − d2(t)χ
′′]− e(λc+ε)z′

φ2(t)(λc + ε)χσβe−βt ,

g1 = g1
(
t, z, z′)=

1∫
0

[
gu
(
t,U(t, z)+ τδξc

(
t, z′)e−βt ,W(t, z)+ τδςc

(
t, z′)e−βt

)]
dτ,

g2 = g2
(
t, z, z′)=

1∫
0

[
gv
(
t,U(t, z)+ τδξc

(
t, z′)e−βt ,W(t, z)+ τδςc

(
t, z′)e−βt

)]
dτ.
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Now denote

�L = ∣∣f1 − fu(t,0,0)
∣∣+ ∣∣f2 − fv(t,0,0)

∣∣+ ∣∣g1 − gu(t,0,0)
∣∣+ ∣∣g2 − gv(t,0,0)

∣∣,
�R = ∣∣f1 − fu(t,1,1)

∣∣+ ∣∣f2 − fv(t,1,1)
∣∣+ ∣∣g1 − gu(t,1,1)

∣∣+ ∣∣g2 − gv(t,1,1)
∣∣.

Notice that

lim
z→−∞�L = 0 uniformly in t, �R ≤ K

[
(U − 1)+ (W − 1)+ δ

(‖ψ1‖ + ‖ψ2‖
)]
,

where K > 0 depends only upon 4 max(t,u,v)∈R×[−2,2]2{|fuu|, |fvv|, |fuv|, |guu|, |gvv|, |guv|}.
Consequently, there exists M > 0 sufficiently large and δ0 > 0 such that −M < s and M > s,

δ0 ≤ #+, and

�L

(‖φ1‖ + ‖φ2‖
)≤ β

2
min

{
min
t

φ1,min
t

φ2

}
for all (t, z) ∈ R × (−∞,−M],

�R

(‖ψ1‖ + ‖ψ2‖
)≤ β

2
min

{
min
t

ψ1,min
t

ψ2

}
for all (t, z) ∈ R × [M,−∞).

As a result, with 0 < δ ≤ δ0 and σ > 0, we have

f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t ≤ e−βt δσβ

{
−Uz

δ
− e(λc+ε)z′

φ1(λc + ε)χ

}
< 0,

g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t ≤ e−βt δσβ

{
−Wz

δ
− e(λc+ε)z′

φ2(λc + ε)χ

}
< 0

for all (t, z) ∈ R × (−∞,M]. We have

f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t ≤ −e−βtσβUz < 0,

g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t ≤ −e−βtσβWz < 0

for all (t, z) ∈ R × [M,∞).
Let

�C = 1

σβ

{
e(λc+ε)z′[

�L

(‖φ1‖ + ‖φ2‖
)+�R

(‖ψ1‖ + ‖ψ2‖
)]+ ∣∣r1

(
t, z′)∣∣+ ∣∣r2

(
t, z′)∣∣}.

Choose σ ≥ 1
β

, then it is easy to see that

�C ≤ e(λc+ε)z′{[
�L

(‖φ1‖ + ‖φ2‖
)+�R

(‖ψ1‖ + ‖ψ2‖
)]+ (‖φ1‖ + ‖φ2‖

)[(‖k‖ + ‖l‖)∣∣χ ′∣∣
+ (‖d2‖ + ‖d2‖

)(∣∣χ ′′∣∣+ ∣∣χ ′∣∣(2λc + 2ε + c + 1)
)+ |χ |(λc + ε)

]
+ (‖ψ1‖ + ‖ψ2‖

)[∣∣χ ′∣∣(c + 1)+ (‖k‖ + ‖l‖)∣∣χ ′∣∣+ (‖d1‖ + ‖d2‖
)∣∣χ ′′∣∣]}.

Then, for all (t, z) ∈ R × [−M,M], it follows that
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f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t ≤ e−βt δσβ

[
−Uz

δ
+�C

]
g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t ≤ e−βt δσβ

[
−Wz

δ
+�C

]
.

Since (Uz,Wz) > (0,0), there exists γ > 0 for which γ ≤ min{inf(t,z)∈R×[−M,M] Uz,

inf(t,z)∈R×[−M,M] Wz}. Notice that z′ = z + s0 and it is easy to see that sup(t,z)∈R×[−M,M] �C is
finite. Now set δc = min{δ0, #+, γ

sup(t,z)∈R×[−M,M] �C
}. Then, as long as δ ∈ (0, δc], we have

f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t ≤ 0,

g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t ≤ 0

for all (t, z) ∈ R × [−M,M]. This completes the proof. �
In what follows, if c < c∗, we set

u±
σ (t, x, z0) = U

(
t, x · ν − ct + z0 + ±σ

(
1 − e−βt

))
± δcξc

(
t, x · ν − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±
σ (t, x, z0) = W

(
t, x · ν − ct + z0 ± σ

(
1 − e−βt

))
± δcςc

(
t, x · ν − ct + z0 + s0 ± σ

(
1 − e−βt

))
e−βt .

Lemma 4.3. Suppose that (H1)–(H8) are satisfied. Assume that

lim
x·ν→−∞

u0(x)

kϕ1(0)eλc(x·ν) = 1, lim
x·ν→−∞

v0(x)

kϕ2(0)eλc(x·ν) = 1

for some positive constant k. Furthermore, assume that

lim inf
x·ν→∞

(
u0(x)− 1

)≥ −ε0, lim inf
x·ν→∞

(
v0(x)− 1

)≥ −ε0

for some ε0 ∈ [0, δc

2#+ ). Then there exist z0 ∈ R, σc ≥ 1, and tc > 0 such that(
u−
σ (t, x, z0), v

−(t, x, z0)
)≤ (

u(t, x,u0), v(t, x, v0)
)≤ (

u+
σ (t, x, z0), v

+(t, x, z0)
)

for all (t, x) ∈ [tc,∞)× Rn and σ ≥ σc.

Proof. The proof is the same as that of Lemma 4.7 given below. We omit it and refer to
Lemma 4.7 for details. �
Lemma 4.4. Suppose that all the assumptions given in Lemma 4.3 are satisfied. Let (U,W) ∈
C

1,2
b (R × R) and c solve (2.4) with c < c∗. Let ε be given by (4.2). Let z0 be the number for

which

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)eλ∗(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)eλ∗(x·ν) = 1.
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Then for each η > 0, there exist θη ∈ R and Dη > 0 such that

U(t, x · ν − ct − η)−Dηϕ1(t)e
(λc+ε)(x·ν−ct) ≤ u(t, x,u0),

W(t, x · ν − ct − η)−Dηϕ2(t)e
(λc+ε)(x·ν−ct) ≤ v(t, x, v0),

and

u(t, x,u0) ≤ U(t, x · ν − ct + η)+Dηϕ1(t)e
(λc+ε)(x·ν−ct),

v(t, x, v0) ≤ W(t, x · ν − ct + η)+Dηϕ2(t)e
(λc+ε)(x·ν−ct)

for all (t, x) ∈ {(t, x) ∈ R+ × Rn | x · ν − ct ≤ θη}.

Proof. The proof is similar to that of Lemma 4.8 given later and is omitted here. �
Case II: c = c∗.

Fix

ε∗ ∈
(

0,min

{
λ∗
4
,
fu(t,0,0)− gv(t,0,0)d1(t)

2
√
κ[d1(t)+ d1(t)]

}]
(4.8)

such that

β := Λc∗
(
λ∗ + ε∗)= d1(t)

(
λ∗ + ε∗)2 + [

c∗ + k(t)
](
λ∗ + ε∗)+ fu(t,0,0) ≤ |μ+|

2
, (4.9)

where Λc∗(λ∗ + ε∗) > 0 is given by (3.33). Let

s = 1

ε∗ ln

(
min

{
min
t

ϕ1

φ1
,min

t

ϕ2

φ2

})
,

where ϕi (i = 1,2) are given by (3.30) and (3.31), and φi (i = 1,2) are given by (3.34)
and (3.35). Clearly,

1 − φ1

ϕ1
eε

∗s ≥ 0, 1 − φ2

ϕ2
eε

∗s ≥ 0 for all (t, s) ∈ R × (−∞, s].

Now let χ(s) be a smooth function such that χ(s) = 1 for s ≤ s; χ(s) = 0 for s ≥ s, and
0 ≤ χ ′(s) and |χ ′| + |χ ′′| ≤ 1, where s is a fixed constant with s < s. Set⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξ∗(t, s) = χ(s)eλ∗sϕ1(t)

[
1 − φ1(t)

ϕ1(t)
eε

∗s
]

+ (
1 − χ(s)

)
ψ1(t),

ς∗(t, s) = χ(s)eλ∗sϕ2(t)

[
1 − φ2(t)

ϕ2(t)
eε

∗s
]

+ (
1 − χ(s)

)
ψ2(t).

(4.10)
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Proposition 4.5. Assume that (H1)–(H8) are satisfied. Let (U(t, x · ν − ct),W(t, x · ν − ct)) be
a traveling wave of (4.1) with c = c∗ such that (U(t, z),W(t, z)) and c solve (2.4). Then

lim sup
s→∞

sup
(t,z)∈R×R, #∈(0,#+]

U(t, z)− #ξ∗(t, z + s)− 1

#ψ1(t)
≤ −1, (4.11)

lim sup
s→∞

sup
(t,z)∈R×R, #∈(0,#+]

W(t, z)− #ς∗(t, z + s)− 1

#ψ2(t)
≤ −1. (4.12)

Proof. Notice that both ξ∗ and ς∗ are nonnegative. Hence by arguing in a manner similar to that
of Proposition 4.1 or Proposition 4.2 in [37], we obtained the estimates. �

In what follows, we fix s0 ∈ R such that

sup
(t,s)∈R×R

U(t, s)− #ξ∗(t, s + s0)− 1

ψ1(t)
≤ −#

2
for all # ∈ (

0, #+] (4.13)

and

sup
(t,s)∈R×R

W(t, s)− #ς∗(t, s + s0)− 1

ψ2(t)
≤ −#

2
for all # ∈ (

0, #+]. (4.14)

Lemma 4.6. Suppose that (H1)–(H8) are satisfied. Let (U(t, x · ν − ct),W(t, x · ν − ct)) be a
traveling wave of (4.1) with c = c∗ such that (U(t, z),W(t, z)) and c∗ solve (2.4). Let ε∗, β ,
#+, and s0 be given by (4.8), (4.9), (4.5), and (4.13), respectively. Then there exists δ∗ ∈ (0, #+]
such that for each z0 ∈ R and each σ ≥ 1/β , (u±(t, x), v±(t, x)) are respectively the super- and
sub-solutions of (4.1) in R+ × Rn whenever δ ∈ (0, δ∗]. Here

u±(t, x) = U
(
t, x · ν − c∗t + z0 ± σ

(
1 − e−βt

))
± δξ∗

(
t, x · ν − c∗t + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±(t, x) = W
(
t, x · ν − c∗t + z0 ± σ

(
1 − e−βt

))
± δς∗

(
t, x · ν − c∗t + z0 + s0 ± σ

(
1 − e−βt

))
e−βt .

Proof. The proof is similar to the proof of Lemma 4.2. We will give a sketch. Once again we
only show that u+ is a super-solution of (4.1), the other case can be proved similarly. Set z′ =
x · ν − c∗t + z0 + s0 + σ(1 − e−βt ) and z = x · ν − c∗t + z0 + σ(1 − e−βt ). A straightforward
calculation yields that

f
(
t, u+, v+)+ k(t) · ∇u+ + d1(t)�u+ − u+

t

= f
(
t,U(t, z)+ e−βt δξ∗

(
t, z′),W(t, z)+ e−βt δς∗

(
t, z′))− f

(
t,U(t, z),W(t, z)

)
+ δe−βtβξ∗

(
t, z′)+ e−βt δ

{−σβ

δ
Uz + χeλ∗z′[(

d1(t)λ
2∗ + (

c∗ + k(t)
)
λ∗
)
ϕ1 − ϕ′

1

]
− χe(λ∗+ε∗)z′[(

d1(t)
(
λ∗ + ε∗)2 + (

c∗ + k(t)
)(
λ∗ + ε∗))φ1 − φ′

1

]− (1 − χ)ψ ′
1 + r1

(
t, z′)}
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= e−βt δ
[
f1(t, z)ξ∗(t, z)+ f2(t, z)ς∗

(
t, z′)+ βξ∗(t, z)

]
+ e−βt δ

{−σβ

δ
Uz + χeλ∗z′[−fu(t,0,0)ϕ1 − fv(t,0,0)ϕ2

]
− χe(λ∗+ε)z′[−fu(t,0,0)φ1 − fv(t,0,0)φ2 + βφ1

]− (1 − χ)ψ ′
1 + r1

(
t, z′)}

= e−βt δ

{−σβ

δ
Uz + eλ∗z′

χ
[(
f1 − fu(t,0,0)

)
ϕ1 + (

f2 − fv(t,0,0)
)
ϕ2 + βϕ1

]
− e(λ∗+ε∗)z′

χ
[(
f1 − fu(t,0,0)

)
φ1 + (

f2 − fv(t,0,0)
)
φ2 + 2βφ1

]+ r1
(
t, z′)

+ (1 − χ)
[(
f1 − fu(t,1,1)

)
ψ1 + (

f2 − fv(t,1,1)
)
ψ2 +μ+ψ1 + βψ1

]}
,

where

r1
(
t, z′)= eλ∗z′

ϕ1(t)
{
k(t)χ ′ + d1(t)

[
χ ′′ + 2χ ′λ∗

]+ χ ′[c∗ − σβe−βt
]}

− e(λ∗+ε∗)z′
φ1(t)

{
k(t)χ ′ + d1(t)

[
χ ′′ + 2χ ′(λ∗ + ε)

]+ χ ′[c∗ − σβe−βt
]}

+ψ1(t)
[
χ ′(σβe−βt − c∗)− k(t)χ ′ − d1(t)χ

′′]
− χσβe−βt eλ∗z′[

ϕ1(t)λ∗ − eε
∗z′

φ1(t)
(
λ∗ + ε∗)],

f1 = f1
(
t, z, z′)=

1∫
0

[
fu
(
t,U(t, z)+ τδξ∗

(
t, z′)e−βt ,W(t, z)+ τδς∗

(
t, z′)e−βt

)]
dτ,

f2 = f2
(
t, z, z′)=

1∫
0

[
fv
(
t,U(t, z)+ τδξ∗

(
t, z′)e−βt ,W(t, z)+ τδς∗

(
t, z′)e−βt

)]
dτ.

Likewise, we have

g
(
t, u+, v+)+ l(t) · ∇v+ + d2(t)�v+ − v+

t

= g
(
t,U(t, z)+ e−βt δξ∗

(
t, z′),W(t, z)+ e−βt δς∗

(
t, z′))− g

(
t,U(t, z),W(t, z)

)
+ δe−βtβς∗

(
t, z′)+ e−βt δ

{−σβ

δ
Wz + χeλ∗z′[(

d2(t)λ
2∗ + (

c∗ + l(t)
)
λ∗
)
ϕ2 − ϕ′

2

]
− χe(λ∗+ε∗)z′[(

d2(t)
(
λ∗ + ε∗)2 + (

c∗ + l(t)
)(
λ∗ + ε∗))φ2 − φ′

2

]− (1 − χ)ψ ′
1 + r2

(
t, z′)}

= e−βt δ
[
g1(t, z)ξ∗(t, z)+ g2(t, z)ς∗

(
t, z′)+ βς∗(t, z)

]
+ e−βt δ

{−σβ

δ
Wz + χeλ∗z′[−gu(t,0,0)ϕ1 − gv(t,0,0)ϕ2

]
− χe(λ∗+ε)z′[−gu(t,0,0)φ1 − gv(t,0,0)φ2 + βφ2

]− (1 − χ)ψ ′
2 + r2

(
t, z′)}
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= e−βt δ

{−σβ

δ
Wz + eλ∗z′

χ
[(
g1 − gu(t,0,0)

)
ϕ1 + (

g2 − fv(t,0,0)
)
ϕ2 + βϕ2

]
− e(λ∗+ε∗)z′

χ
[(
g1 − gu(t,0,0)

)
φ1 + (

g2 − gv(t,0,0)
)
φ2 + 2βφ2

]+ r2
(
t, z′)

+ (1 − χ)
[(
g1 − gu(t,1,1)

)
ψ1 + (

g2 − gv(t,1,1)
)
ψ2 +μ+ψ2 + βψ2

]}
,

where

r2
(
t, z′)= eλ∗z′

ϕ2(t)
{
l(t)χ ′ + d2(t)

[
χ ′′ + 2χ ′λ∗

]+ χ ′[c∗ − σβe−βt
]}

− e(λ∗+ε∗)z′
φ2(t)

{
l(t)χ ′ + d1(t)

[
χ ′′ + 2χ ′(λ∗ + ε∗)]+ χ ′[c∗ − σβe−βt

]}
+ψ2(t)

[
χ ′(σβe−βt − c∗)− l(t)χ ′ − d2(t)χ

′′]
− χσβe−βt eλ∗z′[

ϕ2(t)λ∗ − eε
∗z′

φ2(t)
(
λ∗ + ε∗)],

g1 = g1
(
t, z, z′)=

1∫
0

[
gu
(
t,U(t, z)+ τδξ∗

(
t, z′)e−βt ,W(t, z)+ τδς∗

(
t, z′)e−βt

)]
dτ,

g2 = g2
(
t, z, z′)=

1∫
0

[
gv
(
t,U(t, z)+ τδξ∗

(
t, z′)e−βt ,W(t, z)+ τδς∗

(
t, z′)e−βt

)]
dτ.

In terms of Corollary 3.11, if z < 0 and |z| is sufficiently large, then Uz ≥ λ∗ρ
2 |z|eλ∗z and Wz ≥

λ∗ρ
2 |z|eλ∗z for some ρ > 0. Recall z′ = z + s0. The rest of the proof follows by using the same

arguments as that in the proof of Lemma 4.2. The proof is completed. �
In what follows, we set

u±
σ (t, x, z0) = U

(
t, x · ν − c∗t + z0 ± σ

(
1 − e−βt

))
± δ∗ξ∗

(
t, x · ν − c∗t + z0 + s0 ± σ

(
1 − e−βt

))
e−βt ,

v±
σ (t, x, z0) = W

(
t, x · ν − c∗t + z0 ± σ

(
1 − e−βt

))
± δ∗ς∗

(
t, x · ν − c∗t + z0 + s0 ± σ

(
1 − e−βt

))
e−βt .

Lemma 4.7. Suppose that (H1)–(H8) are satisfied. Assume that

lim
x·ν→−∞

u0(x)

kϕ1(0)|x · ν|eλ∗(x·ν) = 1, lim
x·ν→−∞

v0(x)

kϕ2(0)|x · ν|eλ∗(x·ν) = 1

for some positive constant k. Furthermore, assume that

lim inf
x·ν→∞

(
u0(x)− 1

)≥ −ε0, lim inf
x·ν→∞

(
v0(x)− 1

)≥ −ε0

for some ε0 ∈ [0, δ∗
2#+ ). Then there exist z0 ∈ R, σ ∗ ≥ 1, and t∗ > 0 such that
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(
u−
σ (t, x, z0), v

−
σ (t, x, z0)

)≤ (
u(t, x,u0), v(t, x, v0)

)≤ (
u+
σ (t, x, z0), v

+
σ (t, x, z0)

)
for all (t, x) ∈ [t∗,∞)× Rn and σ ≥ σ ∗.

Proof. Let the operator A(t) : D(A(t)) ⊂ X0 → X0 with D(A(t)) = X1 be defined by

A(t)

(
u

v

)
=
(
d1(t)�u+ k(t) · ∇u 0

0 d2(t)�v + l(t) · ∇v

)
,

where X0 = BUC(Rn,R2) and X1 = {( u
v

) ∈ ⋂
p≥1 W

2,p
loc (Rn,R2),

( u
v

)
,A(t)

( u
v

) ∈ X0}. Let
G(t, s)s≤t be the evolution operator for the family A(t), then we have

(
u(t, x,u0)

v(t, x, v0)

)
= G(t,0)

(
u0

v0

)
(x)+

t∫
0

G(t, s)

(
f (s,u, v)

g(s, u, v)

)
ds.

As (u(t, x,u0), v(t, x, v0)) is bounded, it follows that

lim
t→0

∥∥∥∥(u(t, ·, u0)− u0

v(t, ·, v0)− v0

)∥∥∥∥
X0

= 0.

In view of assumption, there exists α > 0 for which αε0 ≤ δ∗
2#+ . Since

lim inf
x·ν→∞

(
u(t, x,u0)− 1

)≥ lim inf
x·ν→∞

(
u(t, x,u0)− u0(x)

)+ lim inf
x·ν→∞

(
u0(x)− 1

)
and

lim inf
x·ν→∞

(
v(t, x, v0)− 1

)≥ lim inf
x·ν→∞

(
v(t, x, v0)− v0(x)

)+ lim inf
x·ν→∞

(
v0(x)− 1

)
,

there exists t∗ such that

lim inf
x·ν→∞

{
inf
t∈R

u(t∗, x,u0)− 1

ψ1(t)

}
> −#+αε0e

−βt∗ ,

lim inf
x·ν→∞

{
inf
t∈R

v(t∗, x, v0)− 1

ψ2(t)

}
> −#+αε0e

−βt∗ .

Consequently, (4.13) and (4.14) imply that

sup
(t,s)∈R×R

U(t, s)− δ∗ξ∗(t, s + s0)e
−βt∗ − 1

ψ1(t)
< lim inf

x·ν→∞

{
inf
t∈R

u(t∗, x,u0)− 1

ψ1(t)

}
(4.15)

and

sup
(t,s)∈R×R

W(t, s)− δ∗ς∗(t, s + s0)e
−βt∗ − 1

ψ2(t)
< lim inf

x·ν→∞

{
inf
t∈R

v(t∗, x, v0)− 1

ψ2(t)

}
. (4.16)



Author's personal copy

1126 G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078–1147

Now in view of Theorem 3.10, we can fix z0 ∈ R such that

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)|x · ν|eλ∗(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)|x · ν|eλ∗(x·ν) = 1.

Notice that such a z0 is uniquely determined by k. We next show that there exists σ ∗ ≥ 1 for
which

u−
σ (t∗, x, z0) ≤ u(t∗, x,u0) whenever σ ≥ σ ∗.

Assume to the contrary that this is not true, then there exist two sequences {xn} and {σn} such
that

σn → ∞ as n → ∞, and u−
σn
(t∗, xn, z0) > u(t∗, xn,u0). (4.17)

Let zn = xn · ν − c∗t∗ + z0 − σn(1 − e−βt∗). Note that u−(t∗, xn, z0) = U(t∗, zn)− δ∗ξ∗(t∗, zn +
s0)e

−βt∗ . Up to extraction of a subsequence of {zn}, two cases may occur: either limn→∞ zn =
−∞ or {zn} is bounded from below. If {zn} is bounded from below, then xn · ν → ∞ as n → ∞.
In case that limn→∞ zn = −∞, we need to consider two possibilities: either {xn · ν} is bounded
or {xn · ν} is unbounded. We shall focus on the possibility that {xn · ν} is bounded since by
utilizing (4.15) and (4.16) we can follow the same lines as those of Lemma 4.4 of [37] to reach
a contradiction provided that {xn · ν} is unbounded.

Suppose that {xn · ν} is bounded, then either {xn} is unbounded or bounded. If {xn} is un-
bounded, let yn = (xn · ν)ν and sn = xn−yn

T
. Note that snT · ν = 0. Now set (un(t, x), vn(t, x)) =

(u(t, x + snT ,u0), v(t, x + snT , v0)). Clearly, for each n, (un(t, x), vn(t, x)) is also a solution
of (4.1) with (un(0, x), vn(0, x)) = (u0(x + snT ), v0(x + snT )).

Recall yn is bounded, there exists R > 0 sufficiently large so that |yn| ≤ R
4 . In particular, by

virtue of assumption, we may choose R > 0 such that (u0(x
′ + snT ), v0(x

′ + snT )) ≥ 1−ε0
2 (1,1)

for some x′ ∈ {x ∈ Rn : |x| ≤ R
4 }. Due to the regularity of (un(t, x), vn(t, x)), up to extraction

of a subsequence, (un(t, x), vn(t, x)) converges uniformly on [0, t∗ + 1] × BR(x) to a function
(u∞(t, x), v∞(t, x)), where BR(x) = {x ∈ Rn : |x| ≤ R}. By passing the limits in (4.1), we find
that (u∞(t, x), v∞(t, x)) satisfies (4.1) in ]0, t∗ + 1[ × Ḃ R

2
(x). Here Ḃ R

2
(x) = {|x| < R

2 }. More-

over, it is easy to see that (u∞(t, x), v∞(t, x)) ≥ (0,0) for all (t, x) ∈ [0, t∗ + 1]× {|x| = R
2 } and

(u∞(0, x), v∞(0, x)) � (0,0) for x ∈ BR
2
(x). Hence, the comparison principle implies that

(
u∞(t∗, x), v∞(t∗, x)

)
> (0,0) for all x ∈ BR

4
(x).

On the other hand, if (4.17) is true, then

0 = lim
n→∞u−

σn
(t∗, xn, z0) ≥ lim

n→∞u(t∗, xn,u0) = lim
n→∞un(t∗, yn) = u∞(t∗, y∞) ≥ 0,

where y∞ = limn→∞ yn. This forces that u∞(t∗, y∞) = 0, which is a contradiction since
y∞ ∈ BR

4
(x) and u∞(t∗, y∞) > 0. If {xn} is bounded, the continuity of u(t, x,u0) yields

0 = lim
n→∞u−

σn
(t∗, xn, z0) ≥ lim

n→∞u(t∗, xn,u0) = u(t∗, x∞, u0) ≥ 0,
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where x∞ = limn→∞ xn. Thus, u(t∗, x∞, u0) = 0, which contradicts the fact that u(t∗, x,u0) > 0.
Therefore, we readily conclude that u−

σ (t∗, x, z0) ≤ u(t∗, x,u0) if σ ≥ σ1 for some σ1 ≥ 1. Like-
wise, we can show that v−

σ (t∗, x, z0) ≤ v(t∗, x,u0) if σ ≥ σ2 for some σ2 ≥ 1. Furthermore, by
using the same arguments as those given in the proof of Lemma 4.4 of [37], we can show that
there exist σ3 ≥ 1 and σ4 ≥ 1 such that

u+
σ (t∗, x, z0) ≥ u(t∗, x,u0) if σ ≥ σ3, v+

σ (t∗, x, z0) ≥ v(t∗, x, v0) provided σ ≥ σ4.

Now choose σ ∗ = max1≤i≤4{σi}. Clearly(
u−
σ (t∗, x, z0), v

−
σ (t∗, x, z0)

)≤ (
u(t∗, x,u0), v(t∗, x,u0)

)≤ (
u+
σ (t∗, x, z0), v

+
σ (t∗, x, z0)

)
for all σ ≥ σ ∗. Notice that (u−

σ (t∗, x, z0), v
−
σ (t∗, x, z0)) ≤ (1,1) and (u+

σ (t∗, x, z0),

v+
σ (t∗, x, z0)) > (0,0). The conclusion follows from Proposition A.3 in Appendix A. The proof

is completed. �
Lemma 4.8. Suppose that all the assumptions of Lemma 4.7 are satisfied. Let (U,W) ∈
C

1,2
b (R × R) and c solve (2.4) with c = c∗. Let ε∗ be given by (4.8). Let z0 be the number

for which

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)|z|eλ∗(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)|z|eλ∗(x·ν) = 1.

Then for each η > 0, there exist θη ≤ 1
ε∗ ln(min{mint

ϕ1
φ1
,mint

ϕ2
φ2

}) and Dη > 0 such that

U
(
t, x · ν − c∗t − η

)−Dηe
λ∗(x·ν−c∗t)ϕ1(t)

(
1 − φ1(t)

ϕ1(t)
eε

∗(x·ν−c∗t)
)

≤ u(t, x,u0), (4.18)

W
(
t, x · ν − c∗t − η

)−Dηe
λ∗(x·ν−c∗t)ϕ2(t)

(
1 − φ2(t)

ϕ2(t)
eε

∗(x·ν−c∗t)
)

≤ v(t, x, v0), (4.19)

and

u(t, x,u0) ≤ U
(
t, x · ν − c∗t + η

)+Dηe
λ∗(x·ν−c∗t)ϕ1(t)

(
1 − φ1(t)

ϕ1(t)
eε

∗(x·ν−c∗t)
)
, (4.20)

v(t, x, v0) ≤ W
(
t, x · ν − c∗t + η

)+Dηe
λ∗(x·ν−c∗t)ϕ2(t)

(
1 − φ2(t)

ϕ2(t)
eε

∗(x·ν−c∗t)
)

(4.21)

for all (t, x) ∈ {(t, x) ∈ R+ × Rn | x · ν − c∗t ≤ θη}.

Proof. We first chose z∗ ≤ 0 such that

1 − max
t

φ1(t)

ϕ1(t)
eε

∗z ≥ 1

2
, 1 − max

t

φ2(t)

ϕ2(t)
eε

∗z ≥ 1

2
for all z ∈ (−∞, z∗].

Again assume without loss of generality that z0 = 0. It follows from the monotonicity of
(U(0, ·),W(0, ·)) and the assumptions that
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lim
x·ν→−∞

U(0, x · ν − η)

u0(x)
< 1, lim

x·ν→−∞
W(0, x · ν − η)

v0(x)
< 1.

Thus, (U(0, x · ν − η),W(0, x · ν − η)) ≤ (u0(x), v0(x)) for x · ν ≤ −M , where M > 0 is suf-
ficiently large. Since min{infx·ν≥−M u0(x), infx·ν≥−M v0(x)} ≥ 0, there exists D̂0(η) > 1 such
that

U(0, x · ν − η)− D̂0(η)e
λ∗(x·ν)ϕ1(0)

(
1 − φ1(0)

ϕ1(0)
eε

∗(x·ν)
)

≤ u0(x),

W(0, x · ν − η)− D̂0(η)e
λ∗(x·ν)ϕ2(0)

(
1 − φ2(0)

ϕ2(0)
eε

∗(x·ν)
)

≤ v0(x)

as long as x · ν ≤ z∗. By virtue of Theorem 3.10, there exist ρ > 0 and z ≤ z∗ for which

∣∣U(t, z)
∣∣≤ 3ρ

2
|z|eλ∗zϕ1(t),

∣∣W(t, z)
∣∣≤ 3ρ

2
|z|eλ∗zϕ2(t).

Set m̂ = min{mint φ1,mint φ2}
maxt (φ1+φ2)

and m∗ = min{mint φ1,mint φ2}. As f,g ∈ C0,2, there exists ε ∈
]0,1[ such that

∣∣fu(t, u, v)− fu(t,0,0)
∣∣+ ∣∣fv(t, u, v)− fv(t,0,0)

∣∣≤ m̂β

2
,

∣∣gu(t, u, v)− gu(t,0,0)
∣∣+ ∣∣gv(t, u, v)− gv(t,0,0)

∣∣≤ m̂β

2

whenever |u| + |v| ≤ ε, and there exists K > 0 such that∣∣fu(t, u, v)− fu(t,0,0)
∣∣+ ∣∣fv(t, u, v)− fv(t,0,0)

∣∣≤ K|u| + |v|,∣∣gu(t, u, v)− gu(t,0,0)
∣∣+ ∣∣gv(t, u, v)− gv(t,0,0)

∣∣≤ K|u| + |v|
whenever |u| + |v| ≤ 1. Let m∗ = maxt (ϕ1 + ϕ2), and chose zη ≤ z with |zη| sufficiently large
such that |zη| ≥ D̂0(η), and

2|z|m∗
(

3ρ

2
+ 2

(
3ρ

2
+ 1

))
eλ∗z ≤ ε,

2K|z|(m∗)2
(

3ρ

2
+ 2

(
3ρ

2
+ 1

))
e(λ∗−ε∗)z ≤ m∗β

2
for all z ≤ zη.

Let D̂η = 2(3ρ
2 + 1)zη and define

uη(t, x) = U
(
t, x · ν − c∗t − η

)− D̂ηe
λ∗(x·ν−c∗t)ϕ1(t)

(
1 − φ1(t)

ϕ1(t)
eε

∗(x·ν−c∗t)
)
,

vη(t, x) = W
(
t, x · ν − c∗t − η

)− D̂ηe
λ∗(x·ν−c∗t)ϕ2(t)

(
1 − φ2(t)

ϕ2(t)
eε

∗(x·ν−c∗t)
)

It is clear that (uη(t, x), vη(t, x)) ≤ (0,0) for all (t, x) ∈ {x · ν − c∗t = zη}, and (uη(t, x),

vη(t, x)) ≤ (1,1) for all (t, x) ∈ {x · ν − c∗t ≤ zη}. As (u(t, x,u0), v(t, x, v0)) ≥ (0,0) for all
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(t, x) ∈ R+ × Rn, and D̂η ≥ D̂0(η), it follows that (uη(t, x), vη(t, x)) ≤ (u(t, x,u0), v(t, x, v0))

for all (t, x) ∈ {t = 0, x · ν ≤ zη} ∪ {t ≥ 0, x · ν − c∗t = zη}. In addition, whenever (t, x) ∈
{x · ν − c∗t < zη}, we find

f (uη, vη)+ k(t) · ∇uη + d1(t)�uη − (uη)t

= D̂ηe
λ∗z

{ 1∫
0

[
fu(t,0,0)− fu

(
t, suη + (1 − s)U, svη + (1 − s)W

)
ds
]
ϕ1

+
1∫

0

[
fv(t,0,0)− fv

(
t, suη + (1 − s)U, svη + (1 − s)W

)
ds
]
ϕ2

}

+ D̂ηe
(λ∗+ε∗)z

{ 1∫
0

[
fu
(
t, suη + (1 − s)U, svη + (1 − s)W

)− fu(t,0,0)ds
]
φ1

+
1∫

0

[
fv
(
t, suη + (1 − s)U, svη + (1 − s)W

)− fv(t,0,0)ds
]
φ2 + βφ1

}

≥ D̂η

[
−2K|z|(m∗)2

(
3ρ

2
+ 2

(
3ρ

2
+ 1

))
e2λ∗z + e(λ∗+ε∗)z m∗β

2

]
= D̂ηe

(λ∗+ε∗)z
[
m∗β

2
− 2K|z|(m∗)2

(
3ρ

2
+ 2

(
3ρ

2
+ 1

))
e(λ∗−ε∗)z

]
≥ 0.

Similarly, we have

g(uη, vη)+ l(t) · ∇vη + d2(t)�vη − (vη)t

= D̂ηe
λ∗z

{ 1∫
0

[
gu(t,0,0)− gu

(
t, suη + (1 − s)U, svη + (1 − s)W

)
ds
]
ϕ1

+
1∫

0

[
gv(t,0,0)− gv

(
t, suη + (1 − s)U, svη + (1 − s)W

)
ds
]
ϕ2

}

+ D̂ηe
(λ∗+ε∗)z

{ 1∫
0

[
gu
(
t, suη + (1 − s)U, svη + (1 − s)W

)− gu(t,0,0)ds
]
φ1

+
1∫

0

[
gv
(
t, suη + (1 − s)U, svη + (1 − s)W

)− gv(t,0,0)ds
][φ2 + βφ2]

}

≥ 0.
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Now let Γ = {(t, x) | t > 0, x · ν − c∗t < zη}. Obviously Γ is an open connected subset of
R+ × Rn, and ∂Γ = {(t, x) | t = 0, x · ν < zη} ∪ {(t, x) | t ≥ 0, x · ν − c∗t = zη}. Thus, it
follows from Proposition A.3 that(
uη(t, x), vη(t, x)

)≤ (
u(t, x,u0), v(t, x, v0)

)
for all (t, x) ∈ {

(t, x)
∣∣ t ≥ 0, x · ν − c∗t ≤ zη

}
.

Now what is left is to establish (4.20) and (4.21). Analogously, it can be shown that there
exist Ďη > 0 and zη ∈ R for which (u(t, x,u0), v(t, x, v0)) ≤ (uη(t, x), vη(t, x)) for all (t, x) ∈
{(t, x) | t ≥ 0, x · ν − c∗t ≤ zη}. Here

uη(t, x) = U
(
t, x · ν − c∗t + η

)+ Ďηe
λ∗(x·ν−c∗t)ϕ1(t)

(
1 − φ1(t)

ϕ1(t)
eε

∗(x·ν−c∗t)
)
,

vη(t, x) = W
(
t, x · ν − c∗t + η

)+ Ďηe
λ∗(x·ν−c∗t)ϕ2(t)

(
1 − φ2(t)

ϕ2(t)
eε

∗(x·ν−c∗t)
)
.

Set Dη = max{D̂η, Ďη} and θη = min{zη, zη}. Then (4.18), (4.19); (4.20), and (4.21) hold for all
(t, x) ∈ {(t, x) | t ≥ 0, x · ν − c∗t ≤ θη}. The proof is completed. �
Lemma 4.9. Suppose that (H1)–(H8) are satisfied. Assume that (U,W) ∈ C

1,2
b (R × R) and c

solve (2.4) with c ≤ c∗. Assume that (u(t, x), v(t, x)) ∈ C
1,2
b (R × Rn) solves the first and second

equations of (4.1) for all (t, x) ∈ R × Rn and satisfies that(
U(t, z + z0 +ω),W(t, z + z0 +ω)

)
≤ (

u(t, x), v(t, x)
)≤ (

U(t, z + z0 +ω),W(t, z + z0 +ω)
)

for certain constants ω, ω and z0 with ω ≤ 0 ≤ ω and z0 ∈ R, where z = x · ν − ct . In addition,
assume that for each η > 0, there exist θη ∈ R and Dη ∈ R+ such that

U(t, x · ν − ct + z0 − η)−Dηϕ1e
(λc+ε)(x·ν−ct)

≤ u(t, x) ≤ U(t, x · ν − ct + z0 + η)+Dηϕ1e
(λc+ε)(x·ν−ct)

W(t, x · ν − ct + z0 − η)−Dηϕ2e
(λc+ε)(x·ν−ct)

≤ v(t, x) ≤ W(t, x · ν − ct + z0 + η)+Dηϕ2e
(λc+ε)(x·ν−ct)

for all (t, x) ∈ {(t, x) | x · ν − ct ≤ θη} provided that c < c∗. In case that c = c∗, suppose that

U(t, z + z0 − η)−Dηϕ1e
λ∗z

(
1 − φ1

ϕ1
eε∗z

)
≤ u(t, x) ≤ U(t, z + z0 + η)+Dηϕ1e

λ∗z
(

1 − φ1

ϕ1
eε∗z

)
W(t, z + z0 − η)−Dηϕ2e

λ∗z
(

1 − φ2

ϕ2
eε∗z

)
≤ v(t, x) ≤ W(t, z + z0 + η)+Dηϕ2e

λ∗z
(

1 − φ2

ϕ2
eε∗z

)
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for all (t, x) ∈ {(t, x) | x · ν − c∗t ≤ θη} provided that c = c∗, where z = x · ν − c∗t . Then(
u(t, x), v(t, x)

)= (
U(t, x · ν − ct + z0),W(t, x · ν − ct + z0)

)
for all (t, x) ∈ R × Rn.

Proof. We only give a proof for the case of c = c∗ since the other can be proved similarly. The
proof will be divided into a few steps. Once again we assume without loss of generality that
z0 = 0.

Step 1. Define

η := inf

{
η ∈ [0,∞)

∣∣∣ (u(t, x)

v(t, x)

)
≤
(
U(t, x · ν − c∗t + η)

W(t, x · ν − c∗t + η)

)
, ∀(t, x) ∈ R × Rn

}
.

Clearly, η is bounded and satisfies 0 ≤ η ≤ ω since (U(t, ·),W(t, ·)) is monotonically increasing.
To complete the proof, we need to show that η = 0. Assume to the contrary that η > 0. Then, we
first claim that there exists θ ∈ (−∞, θ η

2
] such that

(
u(t, x), v(t, x)

)≤
(
U

(
t, x · ν − c∗t + η

2

)
,W

(
t, x · ν − c∗t + η

2

))
(4.22)

for all (t, x) ∈ {x · ν − c∗t ≤ θ}. Assume this is not true, then there exist two sequences such
that

lim
k→∞xk · ν − c∗tk = −∞ and

(
u(tk, xk), v(tk, xk)

)
>

(
U

(
tk, xk · ν − c∗tk + η

2

)
,W

(
tk, xk · ν − c∗tk + η

2

))
.

On the other hand, Theorem 3.10 shows that

lim
k→∞

U(tk, zk + η
4 )+Dη

4
ϕ1(tk)e

λ∗zk [1 − φ1(tk)
ϕ1(tk)

e(λ∗+ε∗)zk ]
U(tk, zk + η

2 )
< 1

and

lim
k→∞

W(tk, zk + η
4 )+Dη

4
ϕ2(tk)e

λ∗zk [1 − φ2(tk)
ϕ2(tk)

e(λ∗+ε∗)zk ]
W(tk, zk + η

2 )
< 1,

where zk = xk · ν − c∗tk . It then follows from the assumption that

(
u(tk, xk), v(tk, xk)

)≤
(
U

(
tk, xk · ν − c∗tk + η

2

)
,W

(
tk, xk · ν − c∗tk + η

2

))
whenever xk · ν − c∗tk ≤ θ ′ for some θ ′ ≤ θ η

4
. This is a contradiction. Thus, (4.22) holds.
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Step 2. In this step, we show that

inf
θ≤x·ν−c∗t≤θ

U
(
t, x · ν − c∗t + η

)− u(t, x) > 0,

inf
θ≤x·ν−c∗t≤θ

W
(
t, x · ν − c∗t + η

)− v(t, x) > 0 (4.23)

for any θ ≥ θ . We only prove the first inequality of (4.23) since the second can be proved in ex-
actly the same way. Assume to the contrary that infθ≤x·ν−c∗t≤θ U(t, x ·ν−c∗t +η)−u(t, x) = 0.
Then there exist two sequences {tk} and {xk} such that

θ ≤ xk · ν − c∗tk ≤ θ and lim
k→∞

[
U
(
t, xk · ν − c∗tk + η

)− u(tk, xk)
]= 0.

To reach a contradiction, we need to consider several scenarios, i.e., (a) {tk} is unbounded;
(b) {tk} is bounded while {xk} is unbounded, (c) both {tk} and {xk} are bounded. We only deal
with the case (a), the others can be treated similarly. If {tk} is unbounded, upon an extraction of a
subsequence, we may assume that tk → ∞ as k → ∞. Hence, there exists a sequence {jk} with
jk ∈ N+ such that limk→∞ jk = ∞ and tk ∈ [jkT , (jk + 1)T ]. Now let τk = tk − jkT . Clearly,
τk ∈ [0, T ]. We also write zk = xk ·ν−c∗jkT −c∗τk . Since zk and τk are bounded, xk ·ν−c∗jkT
must be bounded. We then set

yk = (
xk · ν − c∗jkT

)
ν, sk = xk − yk

T
.

Notice that

T sk · ν = (xk − yk) · ν = xk · ν − (
xk · ν − c∗jkT

)
ν · ν = c∗jkT .

Thus,

zk = xk · ν − c∗tk = yk · ν − c∗τk + T
(
sk · ν − c∗jk

)= yk · ν − c∗τk.

Note that θ ≤ zk ≤ θ , and both yk ∈ Rn and τk ∈ [0, T ] are bounded. Thus, up to an extraction of
subsequence, we may assume that there exist constants z∞ ∈ [θ, θ ], y∞ ∈ Rn, and τ∞ ∈ [0, T ]
for which

lim
k→∞ zk = z∞, lim

k→∞yk = y∞, lim
k→∞ τk = τ∞.

Now we set(
uk(t, x), vk(t, x)

)= (
u(t + jkT , x + skT ), v(t + jkT , x + skT )

)
.

Since both f and g are periodic in t with the period T , (uk(t, x), vk(t, x)) are the solutions
of (4.1) as well. Thanks to the regularities of {(uk, vk)} with respect to t and x, up to an extraction
of a subsequence, {(uk, vk)} converges uniformly in any compact subset of R × Rn to a solution
of (4.1), denoted by (u∞(t, x), v∞(t, x)). Note that (0,0) ≤ (u∞(t, x), v∞(t, x)) ≤ (1,1) for all
(t, x) ∈ R × Rn. Moreover, it is easy to see that
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(
uk(t, x), vk(t, x)

)
= (

u(t + jkT , x + skT ), v(t + jkT , x + skT )
)

≤ (
U
(
t, x · ν − c∗t + T

(
sk · ν − c∗jk

)+ η
)
,W

(
t, x · ν − c∗t + T

(
sk · ν − c∗jk

)+ η
))

= (
U
(
t, x · ν − c∗t + η

)
,W

(
t, x · ν − c∗t + η

))
.

By passing the limits in the above inequality, we find

(
u∞(t, x), v∞(t, x)

)≤ (
U
(
t, x · ν − c∗t + η

)
,W

(
t, x · ν − c∗t + η

))
, ∀(t, x) ∈ R × Rn.

In particular, we have

U
(
τ∞, y∞ · ν − c∗τ∞ + η

)− u∞(τ∞, y∞)

= lim
k→∞

[
U
(
τk, yk · ν − c∗τk + T

(
sk · ν − c∗jk

)+ η
)− uk(τk, yk)

]
= lim

k→∞
[
U
(
τk, xk · ν − c∗tk + η

)− u(τk + jkT , yk + skT )
]

= lim
k→∞

[
U
(
τk + jkT , xk · ν − c∗tk + η

)− u(τk + jkT , yk + skT )
]

= lim
k→∞

[
U
(
tk, xk · ν − c∗tk + η

)− u(tk, xk)
]= 0.

In other words, U(τ∞, y∞ · ν − c∗τ∞ + η) = u∞(τ∞, y∞). Set

(
Uη

(
t, x · ν − c∗t

)
,Wη

(
t, x · ν − c∗t

))= (
U
(
t, x · ν − c∗t + η

)
,W

(
t, x · ν − c∗t + η

))
.

Since

[ 1∫
0

fu
(
t, sUη + (1 − s)u∞, sWη + (1 − s)v∞

)
ds

](
Uη − u∞

)+ k(t) · ∇(
Uη − u∞

)
+ d1(t)�

(
Uη − u∞

)− (
Uη − u∞

)
t
≤ 0,

it follows from the maximum principle that Uη(t, x · ν − c∗t) = u∞(t, x) for all (t, x) ∈
(−∞, τ∞] × Rn. On the other hand, by (4.22), we have

(
uk(t, x), vk(t, x)

)≤
(
U

(
t, x · ν − c∗t + η

2

)
,W

(
t, x · ν − c∗t + η

2

))
as long as x · ν − c∗t ≤ θ . By taking the limit, we find that

(
u∞(t, x), v∞(t, x)

)≤
(
U

(
t, x · ν − c∗t + η

2

)
,W

(
t, x · ν − c∗t + η

2

))
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for all (t, x) ∈ {(t, x) | x · ν − c∗t ≤ θ}. This is a contradiction because

U

(
t, x · ν − c∗t + η

2

)
<U

(
t, x · ν − c∗t + η

)
for all (t, x) ∈ R × Rn. The contradiction shows that (4.23) is true if η > 0.

Step 3. In terms of the assumptions, we have

lim
z→∞ sup

x·ν−c∗t≥z

∣∣u(t, x)− 1
∣∣= 0, lim

z→∞ sup
x·ν−c∗t≥z

∣∣v(t, x)− 1
∣∣= 0.

Thus, there exists θ > θ such that

(
u(t, x), v(t, x)

) ∈ [
1 −ω0,1

)2
,(

U
(
t, x · ν − c∗t

)
,W

(
t, x · ν − c∗t

)) ∈ [
1 −ω0,1

)2 (4.24)

whenever x · ν − ct ≥ θ , where ω0 is specified by Proposition A.5 in Appendix A. Since
(U(t, ·),W(t, ·)) is uniformly continuous and (U(·, z),W(·, z)) is periodic, in view of (4.23),
there exists η̂ ∈ [ η2 , η) for which

inf
θ≤x·ν−c∗t≤θ

[
U
(
t, x · ν − c∗t + η̂

)− u(t, x)
]≥ 0,

inf
θ≤x·ν−c∗t≤θ

[
W
(
t, x · ν − c∗t + η̂

)− v(t, x)
]≥ 0. (4.25)

We next show that

inf
x·ν−c∗t≥θ

[
U
(
t, x · ν − c∗t + η̂

)− u(t, x)
]≥ 0,

inf
x·ν−c∗t≥θ

[
W
(
t, x · ν − c∗t + η̂

)− v(t, x)
]≥ 0. (4.26)

To this end, set

uδ(t, x) = U
(
t, x · ν − c∗t + η̂

)+ δψ1(t)− u(t, x);
vδ(t, x) = W

(
t, x · ν − c∗t + η̂

)+ δψ2(t)− v(t, x),

where ψi (i = 1,2) are specified by (H8). We now define

δ := {
δ ∈ [0,∞)

∣∣ (uδ(t, x), vδ(t, x))≥ (0,0), ∀(t, x) ∈ {
x · ν − c∗t ≥ θ

}}
.

To prove (4.26), it is sufficient to show that δ = 0. Assume to the contrary that δ > 0. Then we
must have either inf(t,x)∈{x·ν−c∗t≥θ} uδ = 0 or inf(t,x)∈{x·ν−c∗t≥θ} vδ = 0. To see this, recall that

(uδ, vδ) ≥ (0,0) for any δ ∈ [0, δ] as long as x · ν − c∗t ≤ θ . In addition, for any δ ∈ (0, δ], we
have
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lim
z→∞ inf

x·ν−c∗t≥z
uδ(t, x) ≥ δmin

t∈R
ψ1(t) > 0,

lim
z→∞ inf

x·ν−c∗t≥z
vδ(t, x) ≥ δmin

t∈R
ψ2(t) > 0. (4.27)

Thus, if both inf(t,x)∈{x·ν−c∗t≥θ} uδ and inf(t,x)∈{x·ν−c∗t≥θ} vδ are strictly positive, then there is

0 ≤ δ′ < δ for which (uδ
′
, vδ

′
) ≥ (0,0), which apparently contradicts the definition of δ. There-

fore, we must have that (inf(t,x)∈{x·ν−c∗t≥θ} uδ)(inf(t,x)∈{x·ν−c∗t≥θ} vδ) = 0.

Assume without loss of generality that inf(t,x)∈{x·ν−c∗t≥θ} vδ = 0. Then there exist two se-

quences {tk} and {xk} such that xk · ν − c∗tk ≥ θ and limk→∞ vδ(tk, xk) = 0. Notice that (4.27)
implies that {xk · ν − c∗tk} is bounded. We again reencounter three scenarios as shown in Step 2,
we retain the same notations used in Step 2 and consider only the case that {tk} is unbounded.
Set

uδk(t, x) = uδ(t + jkT , x + skT ) = U
(
t, x · ν − c∗t + η̂

)+ δψ1(t)− u(t + jkT , x + skT ),

vδk(t, x) = vδ(t + jkT , x + skT ) = W
(
t, x · ν − c∗t + η̂

)+ δψ2(t)− v(t + jkT , x + skT ).

Note that (uδk, v
δ
k) are uniformly bounded and nonnegative in R×Rn. Thanks to the regularities of

(uδk, v
δ
k) with respect to t and x, without loss of generality, we may assume that {uδk, vδk} converges

uniformly in any compact subset of R × Rn to a function denoted by (u∞, v∞). With a slightly
abuse of notation, we still denote by (u∞, v∞) the limit function of {(u(t + jkT , x + skT ),

v(t + jkT , x + skT ))}. Therefore,

u∞(t, x) = U
(
t, x · ν − c∗t + η̂

)+ δψ1(t)− u∞(t, x)

v∞(t, x) = W
(
t, x · ν − c∗t + η̂

)+ δψ2(t)− v∞(t, x).

Note that (uδk(t, x), v
δ
k(t, x)) ≥ (δmint ψ1(t), δmint ψ2(t)) if x · ν − c∗t ≤ θ . This implies that

(u∞(t, x), v∞(t, x)) > (0,0) for all (t, x) ∈ {x · ν − c∗t ≤ θ}. Since

z∞ = lim
k→∞xk · ν − c∗tk = lim

k→∞yk · ν − c∗τk = y∞ · ν − c∗τ∞,

it is easy to see that z∞ > θ and v∞(τ∞, y∞) = 0. Furthermore, by virtue of (4.24), we have

(
u∞(t, x), v∞(t, x)

) ∈ [
1 −ω0,1

]2
,(

U
(
t, x · ν − c∗t + η̂

)
,W

(
t, x · ν − c∗t + η̂

)) ∈ [
1 −ω0,1

]2

whenever x · ν − c∗t ≥ θ . Let (Uη̂,W η̂) = (U(t, x · ν − c∗t + η̂),W(t, x · ν − c∗t + η̂)). In view
of the proof of Proposition A.5 in Appendix A, we find that

[ 1∫
0

gv
(
t, sU η̂ + (1 − s)u∞, sW η̂ + (1 − s)v∞

)
ds

]
ψ2 + l(t)∇ψ2 + d2(t)�ψ2 −ψ ′

2 ≤ 0
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provided that x · ν − c∗t ≥ θ . It then follows that

[ 1∫
0

gv
(
t, sU η̂ + (1 − s)u∞, sW η̂ + (1 − s)v∞

)
ds

]
v∞ + l(t)∇v∞ + d2(t)�v∞ − v∞

t ≤ 0

for all (t, x) ∈ {x · ν − c∗t > θ}. Since y∞ · ν − c∗τ∞ > θ and v∞(τ∞, y∞) = 0, the maximum
principle implies that v∞(t, x) = 0 for all (t, x) ∈ {t ≤ τ∞, x · ν − c∗t ≥ θ}. This however
contradicts the fact that v∞(t, x) > 0 for any (t, x) ∈ {x · ν − c∗t = θ}. The contradiction shows
that δ = 0. Namely, (4.26) is true. As (U(·, · + η

2 ),W(·, · + η
2 )) ≤ (U(·, · + η̂),W(·, · + η̂)),

from (4.22), (4.25), and (4.26), it follows that(
u(t, x), v(t, x)

)≤ (
U
(
t, x · ν − c∗t + η̂

)
,W

(
t, x · ν − c∗t + η̂

))
for all (t, x) ∈ R × Rn.

It obviously contradicts the definition of η. Therefore, we must have η = 0. Consequently,(
u(t, x), v(t, x)

)≤ (
U
(
t, x · ν − c∗t

)
,W

(
t, x · ν − c∗t

))
for all (t, x) ∈ R × Rn.

Step 4. Define

η := inf

{
η ∈ [0,∞)

∣∣∣ (u(t, x)

v(t, x)

)
≥
(
U(t, x · ν − c∗t − η)

W(t, x · ν − c∗t − η)

)
, ∀(t, x) ∈ R × Rn

}
.

Clearly, 0 ≤ η ≤ −ω. Moreover, arguing in a similar manner, it can be shown that η = 0, that is,(
u(t, x), v(t, x)

)≥ (
U
(
t, x · ν − c∗t

)
,W

(
t, x · ν − c∗t

))
for all (t, x) ∈ R × Rn.

Therefore, (u(t, x), v(t, x)) = (U(t, x · ν − c∗t),W(t, x · ν − c∗t)) for all (t, x) ∈ R × Rn. �
We now state our main result in this section.

Theorem 4.10. Suppose that (H1)–(H8) are satisfied. Let (u(t, x,u0), v(t, x, v0)) be a solu-
tion of (4.1) with initial data (u0, v0) such that (0,0) � (u0(x), v0(x)) � (1,1). Let (U,W) ∈
C

1,2
b (R × R) and c solve (2.4) with c ≤ c∗. If c < c∗, assume further that all the assumptions of

Lemma 4.3 are satisfied. If c = c∗, assume that all the assumptions of Lemma 4.7 are satisfied.
Then

lim
t→∞

∣∣u(t, x,u0)−U(t, x · ν − ct + z0)
∣∣+ ∣∣v(t, x, v0)−W(t, x · ν − ct + z0)

∣∣= 0 (4.28)

for some z0 ∈ R. In particular, z0 is the unique number such that

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)eλc(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)eλc(x·ν) = 1, if c < c∗,

and

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)|x · ν|eλ∗(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)|x · ν|eλ∗(x·ν) = 1, if c = c∗.
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Proof. We will give a proof for the case that c = c∗. We again assume that z0 = 0. Assume to
the contrary that (4.28) is not true. Then there exist ε > 0 and a sequence {(tk, xk)} such that
limk→∞ tk = ∞, and

lim
k→∞

∣∣u(tk, xk, u0)−U
(
tk, xk · ν − c∗tk

)∣∣+ ∣∣v(tk, xk, v0)−W
(
t, xk · ν − c∗tk

)∣∣≥ ε. (4.29)

If zk = xk · ν − c∗tk are bounded, then we revisit the scenario (a) presented in the proof of
Lemma 4.9. To derive a contradiction, we proceed with the same notations used before and set(

uk(t, x), vk(t, x)
)= (

u(t + jkT , x + skT ,u0), v(t + jkT , x + skT , v0)
)
.

Clearly, for each k, (uk(t, x), vk(t, x)) is a solution of (4.1) in ]−jkT ,∞[ × Rn satisfying
(uk(−jkT , x), vk(−jkT , x)) = (u0(x+skT ), v0(x+skT )). Denote again by (u∞(t, x), v∞(t, x))

the solution of (4.1) to which {(uk, vk)} converges uniformly in any compact set of R × Rn. Due
to Lemma 4.7, we have

U
(
t, x · ν − c∗t − σ ∗)− δ∗Λe−β(t+jkT ) ≤ uk(t, x) ≤ U

(
t, x · ν − c∗t + σ ∗)+ δ∗Λe−β(t+jkT ),

W
(
t, x · ν − c∗t − σ ∗)− δ∗Λe−β(t+jkT ) ≤ vk(t, x) ≤ W

(
t, x · ν − c∗t + σ ∗)+ δ∗Λe−β(t+jkT )

for all [t∗ − jkT ,∞)× Rn, where Λ = max{sup(t,s)∈R2 ξ∗, sup(t,s)∈R2 ς∗}. It then follows that

U
(
t, x · ν − c∗t − σ ∗)≤ u∞(t, x) ≤ U

(
t, x · ν − c∗t + σ ∗),

W
(
t, x · ν − c∗t − σ ∗)≤ v∞(t, x) ≤ W

(
t, x · ν − c∗t + σ ∗)

for all (t, x) ∈ R × Rn.
Moreover, Lemma 4.8 shows that for each η > 0, there exist Dη > 0 and θη ∈ R such that

U
(
t, x · ν − c∗t − η

)−Dηϕ1e
λ∗(x·ν−c∗t)

(
1 − φ1

ϕ1
eε

∗(x·ν−c∗t)
)

≤ uk(t, x),

W
(
t, x · ν − c∗t − η

)−Dηϕ2e
λ∗(x·ν−c∗t)

(
1 − φ2

ϕ2
eε

∗(x·ν−c∗t)
)

≤ vk(t, x)

for all (t, x) ∈ {t ≥ −jkT , x · ν − c∗t ≤ θη}, and

U
(
t, x · ν − c∗t + η

)+Dηϕ1e
λ∗(x·ν−c∗t)

(
1 − φ1

ϕ1
eε

∗(x·ν−c∗t)
)

≥ uk(t, x),

W
(
t, x · ν − c∗t + η

)+Dηϕ2e
λ∗(x·ν−c∗t)

(
1 − φ2

ϕ2
eε

∗(x·ν−c∗t)
)

≥ vk(t, x)

for all (t, x) ∈ {t ≥ −jkT , x · ν − c∗t ≤ θη}. By taking the limits in the above inequalities, we
obtain that(

U−(t, z − η),W−(t, z − η)
)≤ (

u∞(t, x), v∞(t, x)
)≤ (

U+(t, z + η),W+(t, z + η)
)

for all z = x · ν − c∗t ≤ θη, where
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(
U±(t, z ± η),W±(t, z ± η)

)
=
(
U(t, z ± η)±Dηϕ1e

λ∗z
(

1 − φ1

ϕ1
eε

∗z
)
,W(t, z ± η)±Dηϕ2e

λ∗z
(

1 − φ2

ϕ2
eε

∗z
))

and z = x · ν − c∗t . Consequently, it follows from Lemma 4.9 that(
u∞(t, x), v∞(t, x)

)= (
U
(
t, x · ν − c∗t

)
,W

(
t, x · ν − c∗t

))
for all (t, x) ∈ R × Rn. (4.30)

On the other hand, we have(
u∞(τ∞, y∞), v∞(τ∞, y∞)

)= lim
k→∞

(
u(tk, xk, u0), v(tk, xk, v0)

)
and(
U
(
τ∞, y∞ · ν − c∗τ∞

)
,W

(
τk, y∞ · ν − c∗τ∞

))= lim
k→∞

(
U
(
tk, xk − c∗tk

)
,W

(
tk, xk − c∗tk

))
.

Hence, it follows from (4.29) that∣∣u∞(τ∞, y∞)−U
(
τ∞, y∞ · ν − c∗τ∞

)∣∣+ ∣∣v∞(τ∞, y∞)−W
(
τ∞, y∞ · ν − c∗τ∞

)∣∣≥ ε,

which contradicts (4.30). Hence {zk} has to be unbounded. Recall zk = xk · ν − c∗tk . If
limk→∞ zk = −∞, then it follows from Lemma 4.7 that

lim
k→∞

(
u(tk, xk, u0), v(tk, xk, v0)

)= lim
k→∞

(
U
(
tk, xk · ν − c∗tk

)
,W

(
t, xk · ν − c∗tk

))= (0,0),

while, if limk→∞ zk = ∞, then Lemma 4.7 yields that

lim
k→∞

(
u(tk, xk, u0), v(tk, xk, v0)

)= lim
k→∞

(
U
(
tk, xk · ν − c∗tk

)
,W

(
t, xk · ν − c∗tk

))= (1,1).

Both of them contradict (4.29). Therefore (4.28) follows. The proof is completed. �
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Appendix A

In this appendix we first present a few lemmas and propositions used in Section 3.

Lemma A.1. Assume that (H1) and (H2) are satisfied. Let (u, v) ∈ C
1,2
b (R×R) be a regular sub-

solution of (2.2) such that (0,0) ≤ (u, v) < (1,1). Assume that (u(·, z), v(·, z)) is T -periodic.
Let (u, v) ∈ Cθ(R × R) (θ ∈ ]0,1[) be an irregular super-solution of (2.2) such that (u, v) =
min{(w1,w2), (1,1)}, where (w1,w2) is a regular super-solution of (2.2) in R × ]−∞, ẑ [
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with ẑ ≤ ∞; (w1(·, z),w2(·, z)) is T -periodic, and (w1(t, ·),w2(t, ·)) is nondecreasing. In ad-
dition there exists σ < ẑ such that (u(t, z), v(t, z)) = (1,1) for any (t, z) ∈ R × [σ ,+∞).
Here (u(t, z), v(t, z)) := (1,1) for all (t, z) ∈ R × [ ẑ,∞) provided that ẑ < ∞. If there exists
σ < σ such that (u(t, σ ), v(t, σ )) < (u(t, σ ), v(t, σ )) for any t ∈ R, then (u, v) < (u, v) for any
(t, z) ∈ R × [σ,+∞).

Proof. The proof is very similar to that of Lemma 3.1 of [37], we thus omit it and refer the
readers to [37] for details. �
Lemma A.2. Assume that (H1) and (H2) are satisfied. Assume that (u, v) is a regular super-
solution of (2.2) in R × R and (u(·, z), v(·, z)) is T -periodic and satisfies that

lim inf
z→∞

{
inf
t∈R

u(t, z)
}

≥ 1 and lim inf
z→∞

{
inf
t∈R

v(t, z)
}

≥ 1.

Let (u(t, z), v(t, z)) ∈ C
1,2
b (R × (−∞, z0]) be a regular sub-solution of (2.2) in R × (−∞, z0).

Moreover, assume that sup(t,z)∈R×(−∞,z0](u, v) < (1,1). In particular, (u, v) is T -periodic in t

and (u(t, z0), v(t, z0)) ≤ (0,0) for all t ∈ R, and for each t ∈ R, u(t, z) > 0 for all z ∈
(−∞, z′) provided that u(t, z′) ≥ 0. If there exists σ ∈ ]−∞, z0[ such that (u(t, σ ), v(t, σ )) <
(u(t, σ ), v(t, σ )) for all t and (u(t, σ ), v(t, σ )) ≤ (u(t, z), v(t, z)) for all (t, z) ∈ R × [σ,∞),
then (u, v) < (u, v) for all (t, z) ∈ R × [σ, z0].

Proof. We argue by contradiction. Define

ϑ1 = inf
{
ϑ > 0

∣∣ u(t, z) ≤ u(t, z + ϑ) for all (t, z) ∈ R × [σ, z0]
}
.

ϑ2 = inf
{
ϑ > 0

∣∣ v(t, z) ≤ v(t, z + ϑ) for all (t, z) ∈ R × [σ, z0]
}
.

Since (lim infz→∞{inft∈[0,T ] u}, lim infz→∞{inft∈[0,T ] v})≥ (1,1) and sup(t,z)∈R×(−∞,z0](u, v)<
1, both ϑ1 and ϑ2 are bounded. Let ϑ∗ = max{ϑ1, ϑ2}. Assume without loss of generality that
ϑ∗ = ϑ1. We next show that ϑ∗ = 0. Suppose that this is not true, then there exists a point
(t∗, z∗) ∈ R × [σ, z0) such that u(t∗, z∗) = u(t∗, z∗ + ϑ∗) and v(t∗, z∗) ≤ v(t∗, z∗ + ϑ∗). By
virtue of assumption, we see that

u(·, σ ) < u(·, σ ) ≤ u
(·, σ + ϑ∗). (A.1)

Hence, z∗ > σ . In addition, it follows from the assumption that u(t∗, z) > 0 for all z ∈ [σ, z∗].
Due to the continuity of u with respect to (t, z), there exists ε > 0 with ε ≤ z0 − z∗ such that
u(t, z) ≥ 0 for all (t, z) ∈ [t∗ − ε, t∗ + ε] × [σ, z∗ + ε]. Let w∗(t, z) = u(t, z + ϑ∗) − u(t, z).
Notice that w∗ ≥ 0 for all (t, z) ∈ R × [σ, z0] and fv(t, su+ (1 − s)u, sv + (1 − s)v) ≥ 0 for all
(s, t, z) ∈ [0,1] × [t∗ − ε, t∗ + ε] × [σ, z∗ + ε] in terms of (H4). Then

β(t, z)w∗ + [
c + k(t)

]
w∗

z + d1(t)w
∗
zz −w∗

t ≤ 0 for all (t, z) ∈ (
t∗ − ε, t∗ + ε

)× (
σ, z∗ + ε

)
,

where β(t, z) = [∫ 1
0 fu(t, su + (1 − s)u, sv + (1 − s)v)ds]. Therefore, the strong maximum

principle implies that u(t∗, z) = u(t∗, z+ ϑ∗) for any z ∈ [σ, z∗], which contradicts (A.1). Thus,
ϑ∗ = 0. The proof is completed. �
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Proposition A.3. Let D be an open connected domain of R+ ×Rn such that D ⊆ {(t, x) | t ≥ t∗,
x ∈ Rn}, where t∗ ≥ 0, and D ∩ {(t, x) | t = t∗, x ∈ Rn} �= ∅. D ∩ Hτ

s �= ∅ whenever s ≥ s∗
for certain s∗ > 0, where Hτ

s = {(t, x) | t ≥ t∗, |x| ≤ s}. Let (w1,w2) ∈ C1,2(D) ∩ Cb(D) and
(w1,w2) ∈ C1,2(D)∩Cb(D) be respectively the sub-solution and super-solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w1

∂t
=

n∑
i,j=1

a1
i,j (t, x)

∂2w1

∂xi∂xj
+

n∑
i=1

b1
i (t, x)

∂w1

∂xi
+ f (t,w1,w2),

∂w2

∂t
=

n∑
i,j=1

a2
i,j (t, x)

∂2w2

∂xi∂xj
+

n∑
i=1

b2
i (t, x)

∂w2

∂xi
+ g(t,w1,w2)

(A.2)

in D, where aki,j and bki ∈ Cb(D) (k = 1,2), and there is α0 > 0 such that aki,j (t, x)ξiξj ≥
α0

∑n
i=1 ξ

2
i for any n-tuples of real numbers (ξ1, ξ2, · · · , ξn). Moreover, for each closed and

bounded interval I ⊂ R, f,g ∈ C
0,1
b (R × I 2). In particular, fw2 ≥ 0 in R × [0,1] × R and

gw1 ≥ 0 in R × R × [0,1]. Suppose that (w1(t, x),w2(t, x)) ≤ (1,1) and (w1(t, x),w2(t, x)) ≥
(0,0) for all (t, x) ∈ D. Let (w1,w2) ∈ C1,2(D)∩Cb(D) be a solution of (A.2) such that (0,0) ≤
(w1(t, x),w2(t, x)) ≤ (1,1) for all (t, x) ∈ D. Assume that (w1,w2) ≤ (w1,w2) ≤ (w1,w2) for
all (t, x) ∈ ∂D. Then(

w1(t, x),w2(t, x)
)≤ (

w1(t, x),w2(t, x)
)≤ (

w1(t, x),w2(t, x)
)

for all (t, x) ∈ D. (A.3)

Proof. We present a sketch as the proof is similar to that of Lemma 2.4 of [37]. This lemma will
be used in several places. We only prove the last inequality of (A.3) while the other case can be
proved similarly. Set

ι = max
k=1,2

(
n∑

i=1

∣∣bki ∣∣2∞
) 1

2

, m+ = ∣∣w∗
1 −w1

∣∣∞ + ∣∣w∗
2 −w2

∣∣∞,

M+ = ∣∣w∗
1

∣∣∞ + ∣∣w∗
2

∣∣∞ + |w1|∞ + |w2|∞,

ϑ = max
k=1,2

2
n∑

i,j=1

∣∣akij ∣∣∞, ω = max
(t,u,v)∈�

2
(
1 + |fu| + |fv| + |gu| + |gv|

)
,

ζ(t, x, s) = m+eωt

ι2 + s2

(|x|2 + ι2 + ϑt
)
,

where � = R × [−M+,M+] × [−M+,M+]. Let s ≥ s∗ and write

ws
1(t, x) = w∗

1(t, x)−w1(t, x)− ζ(t, x, s), ws
2(t, x) = w∗

2(t, x)−w2(t, x)− ζ(t, x, s).

A straightforward computation yields that

L1w
s
1 =

n∑
i,j=1

a1
i,j (t, x)

∂2ws
1

∂xi∂xj
+

n∑
i=1

b1
i (t, x)

∂ws
1

∂xi
− ∂ws

1

∂t
> −f1w

s
1 − f2w

s
2,
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where

f1 =
1∫

0

fu
(
t, τw1 + (1 − τ)w∗

1, τw2 + (1 − τ)w∗
2

)
dτ,

f2 =
1∫

0

fv
(
t, τw1 + (1 − τ)w∗

1, τw2 + (1 − τ)w∗
2

)
dτ.

Likewise, we have

L2w
s
2 =

n∑
i,j=1

a2
i,j (t, x)

∂2ws
2

∂xi∂xj
+

n∑
i=1

b2
i (t, x)

∂ws
2

∂xi
− ∂ws

2

∂t
> −g1w

s
1 − g2w

s
2.

Now by employing the argument similar to that of Lemma 2.1 of Lieberman [26], we can show
that (ws

1,w
s
2) < (0,0) for all (t, x) ∈ D ∩ {(t, x) | t ≥ t∗, |x| ≤ s}. Since (ws

1,w
s
2) converges

uniformly to (w∗
1 −w1,w

∗
2 −w2) in any compact sets of R+ × R contained in D as s → ∞, we

infer that (w∗
1,w

∗
2) ≤ (w1,w2) for all (t, x). The proof is completed. �

Next we prove a result that was used in the proof of Lemma 4.7.

Proposition A.4. Suppose that (H1)–(H8) are satisfied. Assume that

lim
x·ν→−∞

u0(x)

kϕ1(0)|x · ν|ιeλc(x·ν) = 1, lim
x·ν→−∞

v0(x)

kϕ2(0)|x · ν|ιeλc(x·ν) = 1

for some positive constant k. Here ι = 0 if c < c∗, and ι = 1 provided that c = c∗. Let
(u(t, x,u0), v(t, x, v0)) be the solution of (4.1) with (u(0, x,u0), v(0, x, v0)) = (u0, v0), which
satisfies (0,0) � (u0, v0) � (1,1). Let I ⊂ [0,+∞) be any compact subinterval. Then there ex-
ists z0 ∈ R such that

lim
x·ν→−∞

|u(t, x,u0)−U(t, x · ν − ct + z0)|
U(t, x · ν − ct + z0)

= 0,

lim
x·ν→−∞

|v(t, x, v0)−W(t, x · ν − ct + z0)|
W(t, x · ν − ct + z0)

= 0

uniformly in t ∈ I , where z0 ∈ R is the unique number such that

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)|x · ν|ιeλc(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)|x · ν|ιeλc(x·ν) = 1.

Proof. In light of Theorems 3.6 and 3.10, we can fix z0 ∈ R such that

lim
x·ν→−∞

U(0, x · ν + z0)

kϕ1(0)|x · ν|ιeλc(x·ν) = 1, lim
x·ν→−∞

W(0, x · ν + z0)

kϕ2(0)|x · ν|ιeλc(x·ν) = 1.

It is easy to see that z0 is uniquely determined by k. Once again, we will assume without loss
of generality that z0 = 0 throughout the proof. Let ρ(r) ∈ C3(R) be a real positive function with
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the following properties: (i) |ρ(r)| + |ρ′(r)| ≤ C1e
−δ|r| for certain positive constants C1 and δ;

(ii) |ρ′′′(r)
ρ(r)

| + |ρ′′(r)
ρ(r)

| + |ρ′(r)
ρ(r)

| ≤ C2 for some positive constant C2. By rescaling, we may assume

that ρ(0) = 1 and δ > 2λ∗. Such a function can be easily constructed, for instance, ρ(r) = 1
cosh(δr)

has the desired properties.
Now we write ρx(y) = ρ(y · ν − x · ν) and set

û(t, y) = ρx(y)
[
u(t, y,u0)−U(t, y · ν − ct)

]
,

v̂(t, y) = ρx(y)
[
v(t, y, v0)−W(t, y · ν − ct)

]
.

Then

∂t û− d1(t)�yû− k(t) · ∇yû

= ρx(y)
{
∂t [u−U ] − d1(t)�y[u−U ] − k(t) · ∇y[u−U ]}− d1(t)�yρ

x(y)[u−U ]
− 2d1(t)∇yρ

x(y) · ∇y[u−U ] − k(t) · ∇yρ
x(y)[u−U ]

= ρx(y)
[
f (t, u, v)− f (t,U,W)

]− d1(t)�yρ
x(y)

ρx(y)
û− 2d1(t)

ρx(y)
∇yρ

x(y) · ∇y

[
ρx(y)(u−U)

]
+ 2d1(t)∇yρ

x(y) · ∇yρ
x(y)

ρx(y)

[
ρx(y)(u−U)

]− k(t) · ∇yρ
x(y)

ρx(y)

[
ρx(y)(u−U)

]
,

where �y :=∑n
i=1

∂2

∂y2
i

, and ∇y := ( ∂
∂yi

, · · · , ∂
∂yn

). Define

(L1w)(t, y) := ∂tw − d1(t)�yw −
[

k(t)− 2d1(t)

ρx(y)
∇yρ

x(y)

]
· ∇yw

−
[

2d1(t)∇yρ
x(y) · ∇yρ

x(y)− k(t) · ∇yρ
x(y)− d1(t)�yρ

x(y)

ρx(y)

]
w.

Then, we find that

L1û =
{ 1∫

0

fu
(
t, su+ (1 − s)U, sv + (1 − s)W

)
ds

}
û

+
{ 1∫

0

fv
(
t, su+ (1 − s)U, sv + (1 − s)W

)
ds

}
v̂.

Likewise, we have

L2v̂ =
{ 1∫

0

gu
(
t, su+ (1 − s)U, sv + (1 − s)W

)
ds

}
û

+
{ 1∫

0

gv
(
t, su+ (1 − s)U, sv + (1 − s)W

)
ds

}
v̂,
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where

(L2w)(t, y) := ∂tw − d2(t)�yw −
[

l(t)− 2d2(t)

ρx(y)
∇yρ

x(y)

]
· ∇yw

−
[

2d2(t)∇yρ
x(y) · ∇yρ

x(y)− l(t) · ∇yρ
x(y)− d2(t)�yρ

x(y)

ρx(y)

]
w.

By the variation of constants formula and Gronwall’s inequality, we obtain that∣∣̂u(t, y)∣∣
L∞(Rn)

≤ CeKt
[∣∣̂u(0, y)∣∣

L∞(Rn)
+ ∣∣̂v(0, y)∣∣

L∞(Rn)

]
, t ∈ I

for certain positive constants C and K , which depend only upon di(t) (i = 1,2), k(t); l(t), C1,
C2, and n (see Theorem 3.5 of Garroni and Menaldi [13] and Lunardi [27]). Without loss of
generality, we may assume that I ⊆ [0, T ]. Thus,∣∣u(t, x,u0)−U(t, x · ν − ct)

∣∣
≤ CeKT sup

|(y−x)·ν|≤ |x·ν|
2

{∣∣ρx(y)
[
u0(y)−U(0, y · ν)]∣∣+ ∣∣ρx(y)

[
v0(y)−W(0, y · ν)]∣∣}

+CeKT sup
|(y−x)·ν|≥ |x·ν|

2

{∣∣ρx(y)
[
u0(y)−U(0, y · ν)]∣∣+ ∣∣ρx(y)

[
v0(y)−W(0, y · ν)]∣∣}.

Notice that∣∣ρx(y)
[
u0(y)−U(0, y · ν)]∣∣+ ∣∣ρx(y)

[
v0(y)−W(0, y · ν)]∣∣≤ 4C1e

− δ|x·ν|
2 whenever∣∣(y − x) · ν∣∣≥ |x · ν|

2
.

Moreover, if y ∈ {s ∈ Rn : |(s − x) · ν| ≤ |x·ν|
2 }, then

∣∣ρx(y)
[
u0(y)−U(0, y · ν)]∣∣≤ C1e

−δ|(y−x)·ν|
∣∣∣∣U(0, y · ν)

(
1 − u0(y)

U(0, y · ν)
)∣∣∣∣

≤ C1C
′e−δ|(y−x)·ν||y · ν|ιeλc(y·ν)

∣∣∣∣1 − u0(y)

U(0, y · ν)
∣∣∣∣

≤ 3

2
C1C

′e−δ|(y−x)·ν|eλc|(y−x)·ν||x · ν|ιeλc(x·ν)
∣∣∣∣1 − u0(y)

U(0, y · ν)
∣∣∣∣

≤ 3

2
C1C

′|x · ν|ιeλc(x·ν)
∣∣∣∣1 − u0(y)

U(0, y · ν)
∣∣∣∣.

Here C′ > 0 is a constant and we used the fact that U(0, x · ν) ∼ ϕ1(0)|x · ν|ιeλc(x·ν) as
x · ν → −∞.

Similarly, we have

∣∣ρx(y)
[
v0(y)−W(0, y · ν)]∣∣≤ 3

2
C1C

′|x · ν|ιeλc(x·ν)
∣∣∣∣1 − v0(y)

W(0, y · ν)
∣∣∣∣.
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Consequently, for each t ∈ I , if x · ν < 0 and |x · ν| is sufficiently large, it follows that∣∣u(t, x,u0)−U(t, x · ν − ct)
∣∣

≤ Ĉ|x · ν|ιeλc(x·ν) sup
|(y−x)·ν|≤ |x·ν|

2

{∣∣∣∣1 − u0(y)

U(0, y · ν)
∣∣∣∣+ ∣∣∣∣1 − v0(y)

W(0, y · ν)
∣∣∣∣}+ Ĉe− δ|x·ν|

2 ,

where Ĉ is a positive constant that depends on C, C1, K , and T . As y · ν ≤ |x·ν|
2 + x · ν ≤ x·ν

2

lim
y·ν→−∞

{∣∣∣∣1 − u0(y)

U(0, y · ν)
∣∣∣∣+ ∣∣∣∣1 − v0(y)

W(0, y · ν)
∣∣∣∣}= 0,

we readily infer that

lim
x·ν→−∞

|u(t, x,u0)−U(t, x · ν − ct)|
U(t, x · ν − ct)

= 0 uniformly in t ∈ I.

Likewise, we have

lim
x·ν→−∞

|v(t, x, v0)−W(t, x · ν − ct)|
W(t, x · ν − ct)

= 0 uniformly in t ∈ I.

The proof is completed. �
Finally we prove a result that was used in the proof of Lemma 4.9.

Proposition A.5. Suppose that (H1), (H2) and (H8) are satisfied. Let (u, v) and (u, v) ∈
C

1,2
b (R × R) be respectively the regular super-solution and sub-solution of (2.2). In par-

ticular, both (u, v) and (u, v) are T -periodic in t , and lim infz→∞{inft∈[0,T ](u − u)} ≥ 0,
lim infz→∞{inft∈[0,T ](v − v)} ≥ 0. Let

ω∗ := sup

{
ω

∣∣∣ ∣∣fu(t, ·, ·)− fu(t,1,1)
∣∣+ ∣∣fv(t, ·, ·)− fv(t,1,1)

∣∣≤ θ+|μ+|
2

,

∀(t, ·, ·) ∈ R × [1 −ω,1 +ω]2
}

ω∗ := sup

{
ω

∣∣∣ ∣∣gu(t, ·, ·)− gu(t,1,1)
∣∣+ ∣∣gv(t, ·, ·)− gv(t,1,1)

∣∣≤ θ+|μ+|
2

,

∀(t, ·, ·) ∈ R × [1 −ω,1 +ω]2
}
,

where ω ≥ 0 and θ+ = min{mint ψ1,mint ψ1}‖ψ1‖+‖ψ2‖ . If there exists z′ ∈ R such that

(
u(t, z), v(t, z)

) ∈ [
1 −ω0,1

]2
and

(
u(t, z), v(t, z)

) ∈ [
1 −ω0,1

]2

for all (t, z) ∈ R × [z′,∞), and (u(t, z′), v(t, z′)) ≥ (u(t, z′), v(t, z′)) for all t ∈ R, where ω0 =
min{ω∗,ω∗}, then (u(t, z), v(t, z)) ≥ (u(t, z), v(t, z)) for all (t, z) ∈ R × [z′,+∞).
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Proof. The proof is similar to that of Proposition 3.9 of [37]. Since it was used in several places,
we give a detailed proof. As both (u, v) and (u, v) are T -periodic in t , it suffices to prove that

inf
(t,z)∈[0,2T ]×[z′,+∞)

{u− u} ≥ 0 and inf
(t,z)∈[0,2T ]×[z′,+∞)

{v − v} ≥ 0. (A.4)

Let

uτ (t, z) = u(t, z)− u(t, z)+ τψ1(t), vτ (t, z) = v(t, z)− v(t, z)+ τψ2(t).

Since both u−u and v− v are bounded, there exists M > 0 such that (uτ (t, z), vτ (t, z)) ≥ (0,0)
for all (t, z) ∈ [0,2T ] × [z′,+∞) as long as τ ≥ M . Now define

τ ∗ = inf
{
τ ∈ [0,∞)

∣∣ (uτ (t, z), vτ (t, z))≥ (0,0) for all (t, z) ∈ [0,2T ] × [
z′,+∞)}

.

Notice that τ ∗ is bounded. To complete the proof, it suffices to show that τ ∗ = 0.
Assume to the contrary that this is not true. Then it is easy to see that

either inf
(t,z)∈[0,2T ]×[z′,+∞)

uτ
∗
(t, z) = 0 or inf

(t,z)∈[0,2T ]×[z′,+∞)
vτ

∗
(t, z) = 0.

Assume without loss of generality that inf(t,z)∈[0,2T ]×[z′,+∞) v
τ∗ = 0. Due to that fact that

lim infz→∞{inft∈[0,2T ] vτ
∗} ≥ τ ∗ mint ϕ2 > 0, there exists (t∗, z∗) ∈ (0,2T ) × (z′,∞) such that

vτ
∗
(t∗, z∗) = 0. On the other hand, since

τ ∗
{[

l(t)+ c
]
(ψ2)z + d2(t)(ψ2)zz − (ψ2)t +

[ 1∫
0

gu
(
t, su+ (1 − s)u, sv + (1 − s)v

)
ds

]
ψ1

+
[ 1∫

0

gv
(
t, su+ (1 − s)u, sv + (1 − s)v

)
ds

]
ψ2

}

= τ ∗
{
μ+ψ2 +

[ 1∫
0

gu
(
t, su+ (1 − s)u, sv + (1 − s)v

)− gu(t,1,1)ds

]
ψ1

+
[ 1∫

0

gv
(
t, su+ (1 − s)u, sv + (1 − s)v

)− gv(t,1,1)ds

]
ψ2

}
≤ 0

for all (t, z) ∈ R × [z′,∞), we have[ 1∫
0

gv
(
t, su+ (1 − s)u, sv + (1 − s)v

)
ds

]
vτ

∗ + [
k(t)+ c

]
vτ

∗
z + d2(t)v

τ∗
zz − vτ

∗
t

≤ −
[ 1∫

0

gu
(
t, su+ (1 − s)u, sv + (1 − s)v

)
ds

]
uτ

∗ ≤ 0
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for all (t, z) ∈ R × [z′,∞). Therefore, the strong maximum principle implies that vτ
∗
(t, z) ≡ 0

for all (t, z) ∈ [0, t∗] × [z′,∞). This is impossible since vτ
∗
(t, z′) > 0. Hence we must have

τ ∗ = 0. The proof is completed. �
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[11] J. Földes, P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete
Contin. Dyn. Syst. 25 (2009) 133–157.

[12] R. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach,
J. Differential Equations 44 (1982) 343–364.

[13] M.G. Garroni, J.L. Menaldi, Green Functions for Second Order Parabolic Integro-Differential Problems, Pitman
Res. Notes Math. Ser., vol. 275, Longman Scientific & Technical, Harlow, Essex, 1992.

[14] B.H. Gilding, R. Kersner, Travelling Waves in Nonlinear Diffusion–Convection Reaction, Birkhäuser, Boston, 2004.
[15] S. Gourley, S. Ruan, Convergence and travelling fronts in functional differential equations with nonlocal terms:

a competition model, SIAM J. Math. Anal. 35 (2003) 806–822.
[16] F. Hamel, Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math. Pures

Appl. 89 (2008) 355–399.
[17] F. Hamel, L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Eur. Math. Soc. (JEMS)

13 (2011) 345–390.
[18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag,

Berlin, 1981.
[19] Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model, Bull. Math.

Biol. 60 (1998) 435–448.
[20] Y. Kan-On, Fisher wave fronts for the Lotka–Volterra competition model with diffusion, Nonlinear Anal. 28 (1997)

145–164.
[21] M.A. Lewis, B. Li, H.F. Weinberger, Spreading speed and linear determinacy for two-species competition models,

J. Math. Biol. 45 (2002) 219–233.
[22] W.-T. Li, G. Lin, S. Ruan, Existence of travelling wave solutions in delayed reaction–diffusion systems with appli-

cations to diffusion–competition systems, Nonlinearity 19 (2006) 1253–1273.
[23] D. Liang, J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with

nonlocal delayed effects, J. Nonlinear Sci. 13 (2003) 289–310.
[24] X. Liang, Y. Yi, X. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential

Equations 231 (2006) 57–77.
[25] X. Liang, X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,

Comm. Pure Appl. Math. 60 (2007) 1–40.



Author's personal copy

G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078–1147 1147

[26] G.M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ, 1998.
[27] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Boston, 1995.
[28] L. Malaguti, C. Marcelli, Travelling wavefronts in reaction–diffusion equations with convection effects and non-

regular terms, Math. Nachr. 242 (2002) 148–164.
[29] L. Malaguti, C. Marcelli, S. Matucci, Front propagation in bistable reaction–diffusion–advection equations, Adv.

Differential Equations 9 (2004) 1143–1166.
[30] J. Nolen, J. Xin, Existence of KKP type fronts in space–time periodic shear flows and a study of minimal speeds

based on variational principle, Discrete Contin. Dyn. Syst. 13 (2005) 1217–1234.
[31] B. Sandstede, A. Scheel, On the structure of spectra of modulated travelling waves, Math. Nachr. 232 (2001) 39–93.
[32] A.I. Volpert, Vi.A. Volpert, Vl.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. Math. Monogr.,

vol. 140, Amer. Math. Soc., Providence, 1994, translated by J.F. Heyda.
[33] Z.-C. Wang, W.-T. Li, S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion

equations with nonlocal delay, J. Differential Equations 238 (2007) 153–200.
[34] H.F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal. 13 (1982) 353–396.
[35] J. Xin, Front propagation in heterogeneous media, SIAM Rev. 42 (2000) 161–230.
[36] G. Zhao, Multidimensional periodic traveling waves in infinite cylinders, Discrete Contin. Dyn. Syst. 24 (2009)

1025–1045.
[37] G. Zhao, S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling solutions for a periodic

Lotka–Volterra competition system with diffusion, J. Math. Pures Appl. 95 (2011) 627–671.


