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Abstract

We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions
to a class of periodic advection—reaction—diffusion systems. Under certain conditions, we prove that there
exists a maximal wave speed ¢* such that for each wave speed ¢ < ¢*, there is a time periodic traveling wave
connecting two periodic solutions of the corresponding kinetic system. It is shown that such a traveling
wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We
also show that the traveling wave solutions with wave speed ¢ < ¢* are asymptotically stable in certain
sense. In addition, we establish the nonexistence of time periodic traveling waves with speed ¢ > ¢*.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Traveling wave solutions of reaction—diffusion systems have been studied intensively over
the last four decades since wave phenomena are observed in many time dependent processes
described by evolution equations (see Conley and Gardner [8], Dunbar [9], Gardner [12], Gour-
ley and Ruan [15], Hosono [19], Kan-On [20], Lewis et al. [21], Li et al. [22], Sandstede and
Scheel [31], Volpert et al. [32], Weinberger [34] and references therein). Moreover, the study
of traveling wave solutions has been such an essential part of mathematical analysis of evolv-
ing spatial patterns generated by nonlinear parabolic equations because of their importance in
governing the long time behavior and stability.

Although the study of traveling wave solutions has a longstanding history, most of the exist-
ing studies are devoted to autonomous equations. Recently, an interest in both space and time
periodic traveling wave solutions has been stimulated by a vast number of examples of biolog-
ical and physical systems where relevant parameters are either space periodic (Berestycki and
Hamel [4], Berestycki et al. [5-7]) or time periodic (Alikakos et al. [1], Liang et al. [24], Liang
and Zhao [25], Nolen and Xin [30], Xin [35], Zhao [36]). For pulsating fronts, Hamel [16] and
Hamel and Roques [17] presented a systematic analysis of the qualitative behavior, uniqueness,
and stability of monostable pulsating fronts for reaction—diffusion equations in periodic media
with KPP nonlinearities. The established results provide a complete classification of all KPP
pulsating fronts. Most recently, Zhao and Ruan [37] investigated time periodic traveling wave
solutions of a diffusive Lotka—Volterra competition with periodic forcing. The basic existence
and uniqueness results for traveling waves connecting two semi-trivial periodic solutions of the
corresponding kinetic system were obtained. The asymptotic stability of traveling wave solutions
was also established.

On the other hand, advection—reaction—diffusion equations have been used extensively to
model some reaction—diffusion processes taking place in moving media such as fluids, for exam-
ple, combustion, atmospheric chemistry, and plankton distributions in the sea, etc. Berestycki [2],
Gilding and Kersner [14], Malaguti and Marcelli [28], and Malaguti et al. [29] investigated the
influence of advection on the propagation of traveling wave fronts in some reaction—diffusion
systems. See also Liang and Wu [23] and Wang et al. [33].

In this paper, we are interested in studying the existence and other qualitative behaviors of
time periodic traveling wave solutions of a periodic advection—reaction—diffusion system of the
following form:

{ut:dl(I)Au+k(t)~Vu—|—f(t,u,v), (1)
v =do(t)Av +1(t) - Vv + g(t, u, v), '
where u = u(t,x), v=v(t,x), ({,x) ER* xR (n > 1), A=Y, 83—;2 Vi= (o g,

k() = (ki (2), -, kn (), 1) = (L1 (2), - -+, [n(¥)), di (i =1,2) and k; and [; (( =1,---,n) are
T -periodic and Holder continuous functions of ¢, d; is strictly positive in [0, T'], while k; and /;
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may change sign, and both f and g are T -periodic in . Nonlinear periodic advection—reaction—
diffusion systems like (1.1) arise in many areas of biology, chemistry and physics and may be
utilized to model a vast variety of phenomena. In such a system, diffusion and advection play a
crucial role in determining its spatio-temporal patterns and dynamics.

Time periodic traveling waves to (1.1) are solutions of the form

Lt(t,x) . X(Z,X'V—Cl) X(I+T,Z) _ X(I,Z) B t D
v(it,x)) \Y@,x-v—ct))’ YE+T.2)) \Y(@,2 ) z=x-v—ct (1.2)

satisfying
X (t, £00) . X(t,2) ut(r)
= lim = 4 ,
Y (t, +00) =00 \ Y (1, 2) v=(1)
where the given vector v = (vg, - - -, v,) € R" with |v| = 1 denotes the direction of motion of the

v () v ()
equations

wave. <”+(I)> and <”_(I)) are the periodic solutions of the corresponding ordinary differential

d
d_l;[ = f(ts l/[, v)3

Jv (1.3)
a7 =g(t,u,v).

Notice that time periodic traveling waves of the form (1.2) enjoy the property

(u(t,x), v(t, x)) = (u(t +T,x+cTv),vt+T,x + ch)).

In the present work, define

T
- 1
J=—= | J@®)dt
T / (1)
0
as the average of a function J that is integrable in [0, 7']. We make the following assumptions:

(H1) ft+T,-,)=f(t,-),gt+T,-,-)=g(t, - ) forallt €R, f and g € CF2(R x R?, R)
for some B € 10, 1[, f(¢,0,0) = g(¢,0,0) = f(¢t,1,1) = g(¢t,1,1) =0 for all t € R, and
f(t,u,v) =uh(t,u,v).

(H2) fo(t,u,v) >0 forall (t,u,v) € R x Rt x R, g,(t,u,v) >0 forall (t,u,v) € R x R x
(—o0, 1].

(H3) h(¢,0,0) > 0 and hy(¢,u,v) >0 forall (¢r,u,v) e R x RT x RT.

(H4) g,(t,0,0) <0,01g(z,0,0) <Oforany 0 <6 < 1.

HS) f(t,u,v) > f,(t,0,00u + f,(1,0,0)v — @ (lu] + [v)'*” and g(r,u, v) > g,(t,0,0)u +
gv(,0,0)v — @ (lu| + D!V for all (¢,u,v) € R x R x R, where & and y are certain
positive constants.

(H6) f*(t,s) := f(t,s,5), g*(t,s) 1= g(t,s,s). Assume that f*(¢,0) > g¥(z,0), £ (,0)s >
f*(t,s),and g¥(t,0)s > g*(z,5) forall (r,5) e R x RT.
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(H7) Let

qi(-+T) qi ()
d <Pi) _ (f(l,Pi,qz'))}
dt \ qi g, pi.qi) ) )’
where i =1, ---, m. Assume that m is finite. Let ITT = {(p(?), q(?)) € 1o | pt)g(t) >0

for all t € [0, T']}. Assume that ITT = {(1, 1)}.
(H8) Let ™ be a characteristic exponent of the linear periodic system

W A yw=0
- w=20,
dr

where A(t) = (gg”; Qgi};) Let (5;8;) be the eigensolution associated with ™.

Assume that u* < 0, and both /| and v, are strictly positive in [0, T].

The paper is organized as follows. In Section 2, under certain conditions we establish the
existence of ¢* such that there exists, for any ¢ < ¢*, a time periodic traveling wave solution
to (1.1) which is monotone in z. In Section 3, we study the uniqueness of time periodic traveling
wave solutions of (1.1) for ¢ < ¢*. Our approach is to obtain the exact exponential decay rate of a
traveling wave solution as it tends towards its unstable limiting state. We would like to point out
that unlike the diffusive Lotka—Volterra competition system studied in Zhao and Ruan [37] where
the diffusion coefficients are independent of time and advection is absent, the time dependence
of both diffusion and advection coefficients in system (1.1) cause substantial technical difficul-
ties, and one cannot use the Laplace transform method and spectral theory employed in [37] to
obtain the exponential decay rate of a traveling wave solution of (1.1). To obtain a good under-
standing of the asymptotic properties of travel wave solutions, different techniques have to be
utilized to address this issue. We also show that the components of such a solution are monotone
with respect to the variable z. With these asymptotic properties, we employ the sliding method
(Berestycki and Nirenberg [3]) to establish the uniqueness of the aforementioned solution. We
also show that the wave speed c¢* obtained in Section 2 is the maximal speed such that (1.1)
has no solutions with wave speed ¢ > ¢*. In Section 4, under the same conditions presented in
Section 3, we utilize similar methods as in Hamel and Roques [17] and Zhao and Ruan [37] to
study the asymptotic stability of the time periodic traveling wave solution of (1.1).

We would like to mention that the techniques and results in this paper can be used to study
some biological and epidemiological models described by advection—reaction—diffusion systems
with periodic coefficients. In particular, by applying the results in this paper we can obtain the
existence, uniqueness, and stability of time periodic traveling wave solutions for the two species
time-periodic Lotka—Volterra advection—reaction—diffusion systems that will generalize the cor-
responding results in Zhao and Ruan [37].

For future reference, we denote a vector by printing a letter in boldface u = (uy, ---, u;,
-+, Uy), where u; stands for the i-th component of u. The following notation shall be adopted.
Let I, I" C R be two (possibly unbounded) intervals and M € R". Denote by BUC(I x I', M)
the space of uniformly continuous and bounded functions u: 7 x I' — M and Cp,(I x I', M)
the space of continuous and bounded functions u € C(I x I', M). Given « € ]0, 1[, we let
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Co%%(] x ', M), C'H/224e (] x I, M) be the space of functions defined in Lunardi [27]
(see page 177 of [27]). Set [a, b]2 :=|a, b] x [a, b], where —o0 < a < b < oo. In what follows,
la, b[ with a < b stands for an open interval with end points a and b.

2. Existence of time periodic traveling wave solutions

This section is devoted to the existence of periodic traveling wave solutions to system (1.1).

Definition 2.1. (See Fife and Tang [10].) Let D be an open and connected domain of R x R”.
A vector valued function w € C12(D, R™) is called a regular super-solution of

in D provided that

n
ak (¢, x)
i,j=1

9
—I—Zbk(tx , -wm)—%<0 for (. x) € D,

for each k € {1, - m} It is called a regular sub-solution of (2.1) if the above inequal-
ity is reversed. Here al It bf‘ € CQ/2 O(D), 6 € ]0, 1[. Moreover, there exists w > 0 such that
ai’j(t, x)§i&;j > “’Zi:l fg‘lz for any n-tripe of real numbers (&1, - - -, &,) and for any (¢, x) € D. In
addition, #; € C%1(I x R™, R).

Remark 2.2. Let / x I' C R x R be an open connected domain, where / C R and I" C R are
both open intervals (possibly unbounded). If w(¢, z) = (w1 (¢, 2), wa(¢, 7)) € Cl2(I xIN)isa
regular super-solution (sub-solution) of

up =di(Duzz + [c + k@) Juz + f(t,u,v), 22

v = do (v + [ +1@0)]v, + gt u, ) '
in (¢t,z) € I x I', where

k@)=Y viki),  10)=)_ vili(@0), (2.3)

then W(t, x) := (wi(t,x - v — ct), wa(t, x - v — ct)) € CH2(D) with z =x - v — ct is a regular
super-solution (sub-solution) of (1.1), where D ={(t,x) e RxR" |t el, x -v—ct e I'}.

Definition 2.3. A vector function w(z,x) = (u(t,x -v —ct),v(t,x - v —ct)) € C;’Z(R x R™)
is said to be a nonnegative time periodic traveling wave of (1.1) connecting (0,0) and (1, 1) if
(u(t, z), v(t,2)) € Cp > (R x R) and ¢ solve
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up =dy(Ouz; + [c+ k@) uz + f(t,u,v),

v =da(t)vzr + [c+ 1) v, + g(t, u, v),

4 (u(t,2),v(t,2)) = (u(t+T,2), vt +T,2)), (u(t,2),v(t,2)=>(0,0),
Z_l)ir_noo(u(t, 2),v(t,2)) =(0,0), lim (u(t,2), v(r,2)) = (1, 1).

(2.4)

Here z =x - v — ct, and k(¢) and [(¢) are given by (2.3).

Remark 2.4. Suppose that {k; ()} and {/;(z)} are both linearly dependent, i.e., A := {w € R" |
Z?:l wiki(t) =0, l_[?=1 w; Z0} #Jand B :={w e R" | Z?:l wili(t) =0, l_[?=1 w; # 0} # O,
where w = (w1, -+, wy). In particular, if A NB # &, then it is easy to see that (U(t,x -V —
ct), W(t,x -V — ct)) is also a time periodic traveling wave of (1.1) with speed ¢ provided that
(U, x-v—ct), W(t,x-v—ct)) and c solve (1.1) and (1.2) and (A N B) \ span{v} # &, and
VY —v e (ANB)\ span{v}.

Definition 2.5. (See Fife and Tang [10].) If u € R” and v € R", the relation u < v (u < v respec-
tively) is to be understood componentwise: u; < v; (u; < v;) for each i. The other relations, such

RN 13 b S 19

as “max”, “min”, “sup”, and “inf”, are similarly to be understood componentwise.

Definition 2.6. (See Fife and Tang [10].) A vector valued function w is said to be an irregular

super-solution of (2.1) if there exist regular super-solutions wl, ... wKof (2.1) such that v =
min{w!, - .., w¥}. It is called an irregular sub-solution of (2.1) if there exist regular sub-solutions
vl, ..., vk of (2.1) with v = max{v', - - -, v¥}.

Lemma 2.7. Suppose that there exist w(t, z) € Cz (R x R) and w(t,z) € Cg (R x R) such that
w(t, z) and W(t, z) are the irregular super- and sub-solutions of (2.2) in R x (—o0, zg) and R x R,
respectively. Here 0 € 10, 1[, zo € R. Assume further that w < W for all (t,z) € R x (—00, 7]
and 0 <w < (1,1), W(0,z) = W(T, z), w(T,z) > w(0, z), and w(t,z°) <0 for all t € R. Then
there exists a positive solution w* € C;’Z(R x R) to (2.2) such that w*(- + T,z) = w*(-, 2),
w* <wforall (t,7) €[0,T] x R, and w* > w for all (t,z) € [0, T] x (—o0, z°1. In addition, if
W is nondecreasing with respect to z, then either (w}), > 0 or (w}), = 0.

Proof. The proof is essentially the same as that of Lemma 2.4 in [37]. We give a sketch for the

sake of clarity. Let the operator F : Cg/z’e([O, T]x R, R?) — CZ/z’G([O, T1 x R, R?) be defined

by
t
(}"w)(t):G(t,O)w(T)—|—/G(t,r)[Kw(r)—I—H(t, w(t))]dr, 1€(0,Tl.
0

Here 6 € ]0, 1],

| [t wy, wy) _(w
H(I’W)_(g(t,wl,wz)) W_<w2>’
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K > supRX[_z’z]z[lf(t, wi, w2)| +1g(t, wy, wa)|], and G(¢, 5)s<, 1s the evolution operator asso-
ciated with the family A(¢) : D(A(t)) C Xo — Xo, D(A(t)) = X1, defined by

A(t)(u>_<d1(t) 4+ [c+k(®]F — Ku 0 )
v) 0 B(OLY + e +1012L — Kv)

loc

of Corollary 6.1.8 of Lunardi [27], Fw € Cc?2:9(10, T] x R) provided w € Cc?2:9(10, T] x R)
for some 6 € 0, 1[. Note that Fw is the mild solution of

where Xo = BUC(R,R?) and X = {(%) e MNy=1 WP (R, R2), (V). A®) (%) € Xo}. In terms

9%u ou
u =di (1) =— + [k(t) + ¢] — — Ku+ Kwi + f(t, w, wo),
072 0z

9%y ov
v =da(t)—5 + [1(t) + ] = — Kv+ Kwy + g(t, wi, w2),
0z 0z

(#(0), v(0)) = (w1 (T), wa(T)).

Now set w’ = W and w"*! = Fw", n =0, 1, ---. Using the techniques given in [37] (see the
proof of Lemma 2.4 [37] for details), we can show that w < w" in [0, T'] x (—o0, z¢] and (0, 0) <
w" <w forall (7, z) € [0, T] x R. This implies that |W"||c6/20(;0, 7xR) are uniformly bounded.
Moreover, there exists B € ]0, 1[ for which ||w" (T) || c2+8 (r) are uniformly bounded for all n > 1.
Thus, for n > 2, Corollary 6.1.8 of Lunardi [27] implies that ||Wn||Cl+a/2,2+a([0’T]X]R) < C for
some « € 0, 1[ and a positive constant C depending only upon d;, k, [, ¢, and ||w|| C9/2.0([0.T]xR)-
Notice that w"*! is in fact a strict solution with w**1(0) = w*(T) if n > 1 (see page 123 of
Lunardi [27] for the definition of a strict solution). In particular, we have w't! < w" . Therefore,
the sequence {w"} converges in CloC ([0, T] x R) to a function w*, which solves (2.2). With the
same arguments as those of Lemma 2.4 of [37], we can finally show that w*(0) = w*(T') and
either (w}), > 0 or (w}), = 0 provided that W is nondecreasing with respect to z. The proof is
completed. O

In the following, we set

AW =d1OM +c+ kDA + f21,0,0), ceR, AeR,

and

cpx(,):exp</ [d1(s)A% + (¢ + k() A + fu(s,0,0) — AC(A)]ds),
0

that is,

AP (1)
or

AP (1) = | £u(2,0,0) + [c + kO]r + di (1)A* )2 (1) — (2.5)
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We also let
—c— kD) — (¢ + kD) — 4 _
k =d(t) fu(t,0,0), Ae = — ifc <c*=: -2k —k(t).
2d, (1)
(2.6)
Clearly, A(A) has positive zeros if and only if ¢ < ¢* since f, (¢, 0, 0) > 0.
In case that ¢ < ¢*, we write, for convenience, that
t
p1(1) = eXp(/[éh(f)k? + che + k(D) Ae + fu(T,0, 0)]dt), c<c". (2.7
0
Let ® : R — R™ be defined by
s ifs>0
O(s) = ’ 2.8
() {0 if s <0. (28)
Throughout the paper, we will assume that
O(dy(t) — dy(t
k() —1(t) > VKO 2(_) 1) forall t € [0, T]. (2.9)
di (1)
If (2.9) holds, then we set
02 (1) = 2(0) exp(/ (s)ds) +/exp(/ (t)dr)gu(s,O, 0)p1(s)ds, ¢ <c*,
0 ! 2.10
4 T 1 T T (2.10)
2(0) = [1 - eXP(/ Q(S)dS)} /GXP(/Q(T)dT>gu(s, 0,0)¢1(s)ds,
0 0 s

where o(t) = d> (t))»% + (c+1(t))rc+ gy (2, 0,0). Note that ¢, (¢) is well defined and is the unique
positive periodic solution of

dv
8u(t,0,0)¢1 + [d2 ()22 + (c +1(1)) e + gu(t,0,0) v — 5 =0 = c*

since

o(t) =da (A2 + (c +1(1)) e + g0(1,0,0) < di ()22 + (¢ + k(1)) Ae + g0(2,0,0)
=gv(t,0,0) — f,(2,0,0) <O.

In case that ¢ < ¢*, we fix
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2.11)

E(O mm{)/)\c \/(C+Im)2_4’< d](t)[fu(t’o’())_gU(t’O’O)]}]
’ 2’ 2d, (1) ’ 2/kld (1) + da(1)]

and let

AS=Ac(he + €)= (he +€)2d1 (1) + (he + €)(c + k(1)) + fu(2,0,0), (2.12)

t

$1(1) = exp( f [d1 (D) (e + )2+ (e + ) (e + k(D)) + fu(2,0,0) - Af]dr). (2.13)

0

Clearly, A€ <0 and ¢ (¢) is T-periodic and satisfies

[di(t)(he + )% + (he + €)(c + k(1)) + fult,0,0) — A%p1(2) — ﬂ =0.
We also set
¢2(t) = 2 (0) exp(/gé(s)ds> +/exp(/g€(r)dt>gu(s,0, 0)¢1(s)ds, c¢<c*,
0 N
] . g . (2.14)
$2(0) = [1 - exp(fQE(S)dSH /exp<f Qe(f)df>gu (s,0,0)¢1(s)ds,
0 0 s
where o (1) =da(t)(Ac + 2+ [c+1)](he +€) — A€ + gv(t,0,0). Since
0e(t) =do(t)(he + €)%+ (¢ +1(1)) (Ae + €) — A€ + g4(2,0,0)
= Ae[l(t) = k(1) + Ae(do (1) — dy (1)) ] + €[1(t) — k(1) + €(da(1) — d1(1))]
+ 2eAe[da(t) — di (1)) — fu(,0,0) + g4(2,0,0) <0,
it is easy to see that ¢ (¢) is the unique positive periodic solution to
u(t,0,0)¢1 + [do () (A + €)% + (c +1(1)) (he + €) — A+ gu(2,0,0)Jv — % =0, c<c*

We now construct a regular sub-solution for system (2.2).

Proposition 2.8. Suppose that (HI)—(H5) are satisfied. Let v € R" with |v| = 1. Let k(t) and [(t)
be given by (2.3). Assume that k(t) — 1(t) > VKO () —di (1)) for any t € [0, T). For each ¢ <

d (1)
c* = —2\/611 (1) fu(t,0,0) — k(1), set

)
(Ut,2), W(t,2)) = <3W]em[1 nog1 ez] 5 mem[l _ MeezD’
@1 S22

V(t,z) e R x (—o0, z0].
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Here M. is specified by (2.6), € is given by (2.11), and

¢1 ¢
7 Cy[2 4 | g P Y | ]
—1 Y min{min; ¢—1,min, ¢—2} min{min; ¢—1,min, ¢—2}
70 = Zx 1= In o1 £ ¢1 o
- k o . . . b
(YAc—€) | A€| min{min, ¢, min; ¢}
(2.15)
e €20 . ' e he20 220 1
no= ————— 0 <82 <481 < min{min , ,ng ¢, (2.16)
min{min; (p—}, min, <p_§} max; ¢1 max; @2

where C,, > 0 is the least constant such that |a + b|'*7 < C), (la|'*" + |b|'17), a,b € R. Then
(U, W) is a regular sub-solution of (2.2) for (t,z) € R x |—00, z¢[.

Proof. We assume without loss of generality that ||¢;|| <1 and ||¢;|| <1 (i =1, 2). Itis easy to
see that (U (¢, z), W(t,z)) < (1, 1) forall (7, z) € R x (=00, zo] and (U (¢, z0), W(z, z0)) < (0,0)
for all € R. Moreover, when (7, z) € R x |]—00, zo[, we have

[, U W)+di()Uz + (c+ k@)U, — U,
> 81e*% f,(1,0,0)91 (1) — @ (UMY + |[W|'T7)

T8 [(d DA + (e +kD)re)er (1) = 61 ()]

— 81T [d () (e + €)% + (he +€)(c + k(D) + fult, 0,0)]p1 (1) — ¢} (1)}

1+y
o1
1 —ng—e**
®1

— eka {81710|A6 {(bleez _ (w_éi‘i‘?/gall‘ﬂ/e)/kcz)

H-)/}

I+y
> e’\cz{81no‘A€|¢1e€Z - cywsl”ygal”ye”ﬂ[l + (noﬂe“> ]
¥l

¢

max; —
! Y1
: )] D)
minymin, —, min; —
{ t 01 ) 1 (/72}

2
8 — §1ng—e*

1+yeyxcz)
%)

- (W‘Pz

1+y

8)’
> 51noe(kc+€)l{ ‘AG }(,bl _ Cyw__le(y)\c—e)z |:2 + ‘
no

o

max; %

: )| )
minymin, —, min,; ==
(min, &' min, 2}

d
and

gt U W)+ dr(OW .+ (c+11D)) W, — W,
> gu(t,0,0)[81916* — §1npp1e ] + g, (,0,0)[S2026™% — S1nodpe O]
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— @ (|UI"TY + W) + 826" [(da(DAZ + (c +1())Ae) 92 — 9]

— 81n0e* T [dr (1) (A + €2 + (he + €) (c +1(1)) ]2 (1) — $5(1))
> 82¢"%{gu(1,0,00¢1 + [da(DAZ + (¢ +1(1))Ae + g(2,0,0) g2 — 5}

—w (U + 1W]'F) = 81mpee T g, (2,0, 0)¢1

+ [da2(t) e + €)% + O + ) (c +1(1)) + gu(2,0,0) ]2 — 95}

1+y
b1
1-— I’l()—e€Z

> ekcz{51no|/1€}¢2e€z — (w8111 7 eV e?) p
1

]~|—)/}

8y — 81ng—e*

H‘Ve)/)ch)
©2

- (W‘Pz

> 0.

The proof is completed. O

We are in a position to state and prove the existence of time periodic traveling wave solutions
for system (1.1) when ¢ < c¢*.

Theorem 2.9. Suppose all the assumptions given in Proposition 2.8 are satisfied. In addition,
assume that (H6) and (H7) hold. Then, for any ¢ < c*, there exists w(t,x) = (u(t,x - v — ct),
v(t,x-v—ct)) € C;’Z(R x R™) such that w is a nonnegative time periodic traveling wave of (1.1)
connecting (0,0) and (1, 1). Moreover, (u,(t,z),v,(t,z)) > (0,0) for all (t,z) € R x R, where
Z=X-V—ct.

Proof. We utilize Lemma 2.7 and Proposition 2.8 to establish the existence of a periodic travel-
ing wave solution satisfying (1.1). We will first establish the existence of a periodic solution
to (2.2). To this end, a pair of ordered (irregular) super- and sub-solutions is needed. Let
w(t, z) = me(t)e*< and (U, W) = min{(w, w), (1, 1)}, where m > 0 is an arbitrary constant.
We now show that (U, W) is an irregular super-solution of (2.2). Since (1, 1) is a solution of (2.2),
it suffices to show that (w, w) is a super-solution of (2.2). Note that

d
[d1 (122 + (c + k(D) 2o + Fu(1,0,0)]p1 — % —0.

It follows from (H1) and (H2) that f*(¢,0) = h(#,0,0) = f,(¢,0,0) and f(z,s,s) < f;(t,0)
and g(t,s,s5) < g¥(t,0) for all (z,s) € R x R. In addition, f*(z,0) > g¥(z,0) for all r € R.
Hence, we have

di(Ow; + [c+ k@) ]w, + f(1, w, w) — w,
<di(Dwg; + [c+ k@) ]w; + £, 0w —w,

=me"*{[di(OA; + (c+ k() Ae + £u(2,0,0)]o1 — o} }
=0,
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dOwzz + (c+10))w; + g1, w, w) — w,
<d)(t)w,; + (c + l(t))wZ +gr(t, 0w — wy,
<di(Dwz; + (c+ k@) w; + 52, 0w — w; + [da(t) — di (1) Jwzz + [1(1) — k(@) ]w,
=me A< [1(t) — k(1) + e(da(t) — di (1)) ]
< moy et [l (1) — k(1) + i@ (d2(1) — di (t))]
dy (1)
<0.

Now in view of Lemma 2.7 and Proposition 2.8, we can conclude that for each ¢ < ¢*, there
exists w(t, z) € C;’Z(R x R) such that w and ¢ solve (2.2). Clearly, w(t + T, z) = w(t, z) for all
(t,z) € R x R. Moreover, by arguing with the same way as in the proof of Theorem 2.5 of [37],
we have lim,_, _~, w(?, z) = (0, 0) uniformly in # € R and lim,_, oo W(#, z) = (1, 1) uniformly in
t € R. The proof is completed. O

The following result is about the existence of time periodic traveling wave solutions for sys-
tem (1.1) when ¢ = ¢*.

Theorem 2.10. Suppose all the assumptions given in Theorem 2.9 are satisfied. Then, for ¢ = c*,
there exists W*(t,x) = w*(t,x - v — c*t),v*({t,x - v — c™1)) € Cg’z(R x R™) such that w* is
a nonnegative time periodic traveling wave of (1.1) connecting (0,0) and (1, 1). In addition,
(u3i(t,z),v}(t,2)) > (0,0) forall (t,z) € R x R, where z=x - v — ct.

Proof. Let we(z,x) = (u“(t,x -v —ct),v°(t,x - v —ct)) € C;’Z(R x R™) be nonnegative time
periodic traveling waves of (1.1) connecting (0,0) and (1,1) with ¢ € [¢* — 1, ¢*). Clearly,
(uc(t, z), v(t, z)) solves (2.2) with z = x - v — ct. Since |u€| and |v¢| are uniformly bounded, it
follows from parabolic estimates that

”uC”CI“‘%vz“‘“(RXR) + ”vC“CH%*Ha(RXR) <o

for some o € 0, I[. Let {c,} be a sequence with ¢, € [¢* — 1,c¢*) such that ¢, — ¢* as
n — oo. Note that (u¢(t,z + s), v°(t,z + s)) is still a solution of (2.4) for fixed s € R. Let
(pi(t),qi(t)) € 179, where IT° is specified by (H7). Now we fix n € ]0, 1[ such that n < p;(0),
i=1,---,m. Since (0,0) < (u“*,v") < (1,1) for all (¢,z) € R x R, by translation, we may
assume without loss of generality that u“*(0,0) = n for all n. By taking a subsequence of
{(u“r, v")} if necessary, we conclude that {(u“", v“")} converges in Cllo’c2 (R2,R) x Cllo’c2 (R%, R)
to a function denoted by (u*, v*). Since (0,0) < (u“*,v") < (1,1) and (us",vs") > (0,0),
we have (0,0) < (u*,v*) < (1,1) and (u},v}) > (0,0) for all (z,z) € R x R. In particular,
w*(t+T,),v*¢+T,-)) = w*{,-),v*{,-)) forall t € R, and u*(0, 0) = n since u“* (0, 0) = 7.
By taking the limits in (2.2), we find that («*, v*) solves (2.2) in (¢, z) € R x R with ¢ = ¢*. More-
over, it follows from the (strong) maximum principle that either 7} > 0 for all (z,z) € R x R or
u} = 0. Likewise, the same holds for v}. Next we show by contradiction that u} > 0 and v} > 0
forall (¢,z) e R x R.
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First, assume that u} =0 and v} =0, that is, (u*, v*) = (u*(¢), v*(¢)). Thus, (u*, v*) € .
However, this contradicts the fact that u*(0) = n # p; (0). Consequently, either u} > 0 or v} > 0.
Suppose that u} = 0 while v} > 0. Then, we have

dudt(m = F (0t (1), 052, 2) = w* (DR (. u* (1), v* (1, 2)).

By virtue of (H3), this is impossible. Hence we are led to consider the case that u} > 0 and

v} = 0. If this is true, then #* and ¢ = ¢* solve
du(t) 9%u(t,z) du(t,z)
= k(t t,2)h(t,u(t,z),v"(1)). 2.17
T 322 + [c+ k)] 3z +u(t,2)h(r, u(t,z), v* (1)) (2.17)

Recall that v*(¢) > 0. Due to (H2), v*(¢) > 0. Define ¢ =: —2\/ di(Hh(t,0,v*(1)) —k(t). In view
of (H1) and (H3), it is easy to see that

c<ct= —2\/011 ) fu(t,0,0) — k(t) = =24/d1(t)h(t,0,0) — k().

Meanwhile, from the same reasoning as that of Proposition 3.2, it follows that (2.17) has no
bounded positive solutions with u, # 0 provided that ¢ > ¢, and we reached a contradiction since
¢ < c*. This contradiction excludes the possibility that u} > 0 and v} = 0, and we readily con-
clude that u} > 0 and v} > O for all (¢, z) € R x R. Next we show that lim,_, o (u*, v*) = (0, 0)
and lim,_, o (u™, v*) = (1, 1). To this end, let (u™*(t, £00), v*(t, £00)) := lim,_ Lo (u™, v*).
Thanks to the periodicity of (u*, v*) with respect to ¢ and the regularity of (u*, v*) with re-
spect to (z,z), we see that (u*(¢, z), v*(t, z)) converges to (u*(t, £00), v*(t, £00)) uniformly
in t as z — F00, and both (u*(¢, +00), v*(¢, £00)) are the periodic solutions to (1.3). Clearly,
(u*(t, —00), v*(t, —00)) < (u™(t,2), v*(t, 2)) < (u*(t, +00), v*(t, +00)) for any finite (¢, z) €
R x R. In view of (H7), we readily infer that (u*(¢, +00), v*(¢, +00)) = (1, 1). In particular, as
u*(0,0) < p;(0), where p;(t) are given in (H7), it is easy to see that u* (¢, —oo) = 0. Thanks
to (H4), the kinetic system (1.3) has no semi-trivial periodic solutions of the form (0, g(¢)) with
0 < ¢g(t) < 1. Hence, it follows that v* (¢, —oo) = 0. The proof is completed. O

Remark 2.11. In the proof of Theorem 2.10, it is shown that (u,v‘") converges lo-
cally to (u*,v*). As a matter of fact, we can show that lim,_ o (|lu” — u*||lcrxRr) +
v — u*|lcrxr)) = 0. Indeed, let ¢ > 0 be given, since (u*(¢, —00), v*(t, —00)) = (0, 0)
and (u*(t, 00), v*(t,00)) = (1, 1), there exists M > 0 such that |u*(zt, z)| + |v*(z, 2)| < % for
all (t,z) € R x (=00, =M1, and |1 — u*(t,2)| + [1 — v*(¢,2)| < § forall (z,2) € R x [M, 00).
As {(u", v°")} converges in Cltcz(Rz, R) x Cllo’cz(Rz, R) to (u*, v*), there exists N > 0 such
that |u“(t, —M)| + |v(t, —M)| < % for all r € R whenevern > N and |1 — u“"(t, M)| + |1 —
v (t, M)| < % forall t e Rasn > N. As aresult, for any (¢, z) € R x (—o0, M], we find that

u (t,2) — u*(t, 2)| + [v"(t,2) —v*(t, 2)|

< (W @t,—M) +u*(@t,—M)) + (v (1, —M) + v*(r, - M)) < ¢

provided that n > N. While, for any (¢, z) € R x [M, oco), we have that
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un (t,2) —u*(t,2)| + [v (2, 2) — v* (1, 2)|
<([1=u@t, )|+ |1 —u*t, 2]) + (|1 —v" @, 2|+ |1 —v*1. 2)|)
<[(1—u @, M)+ (1 —u*t, )]+ [(1 — v, M)) + (1 — v*(t, M))]
&

[A

if n > N. Here we used the fact that both (", v“") and (u*, v*) are monotonically increasing
with respect to z.

3. Uniqueness of time periodic traveling wave solutions

In this section we study the uniqueness and asymptotic behavior of periodic traveling waves
of (1.1). We hereafter consider the following system

ur =dy(Ouz; + [c+ k@) uz + f(t,u,v),
v =da(Dvz; + [+ 1(1) v, + g (¢, u, v),
| (Gt +T,2), 00 +T,2) = (ut, 2),v(t,2)),  (,v) = (0,0),

lim (u,v)=(0,0), lim (u,v)=(1,1),
7z—>—00 7—>00

(3.1)

where f(t + T,u,v) = f(t,u,v), gt + T,u,v) = g(t,u,v) for any (¢t,u,v) € R x R2, and
f,geC 9’1(R x R2, R) for some 6 € ]0, 1[. Throughout this section, the notations specified in
Section 2 will be maintained. For the sake of convenience, a few technical lemmas and proposi-
tions used in this section are placed in Appendix A. The following result is Lemma 3.6 in Foldes
and Polacik [11].

: : o\ k 9* nogkd 3
Lemma 3.1. Let the differential operators Ly ==} i, a; ;(t,x) Txox; T Yo b T~

(k =1,2,---,1) be uniformly parabolic in an open domain 1t, M| x $2 of (t,x) € R x R";
that is, there is agy > 0 such that af"j(t, X)EEj =0 i 51-2 for any n-tuples of real numbers
&1,&,---,&,), where —0co <t < M <00 and 2 C R" is an open bounded region. Sup-
pose that al(‘,j,bk e C([t, M) x 2,R) and |b*(t,x)| + |al{"j(t,x)| < Bo for some By and all
(t,x) € [t, M) x 2. Assume that w = (w1, wa, - - -, wy) € C([t, M) x 2)NC2 (v, M[ x 2, R})
satisfies

l
D M ows + Liw <0, (x) et MIx 2, k=1,2,---,1 (3.2)

s=1

where &5 € C((t, M) x 2, R) and ¢** >0 ifk # s, and |c**| < Bo (k,s =1,2,---,1). Let D
and U be domains in 2 such that D CC U, dist(D, dU) > o, and |D| > € for some positive
constants o and €. Let 6 be a positive constant with t + 40 < M. Then there exist positive
constants p, w and w1, determined only by «y, Po, 0, €, n, diam £2 and 0, such that

w max sup w .

J’_
k20wl | Lot canoxpy — @1
(It+6,7+20[x D) J=Lok g (1. 440 x U)

inf
1t+30,t+40[x D
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Here w,j = max{wg, 0}, w, = max{—wg, 0}, and dp((r,7+40) x U) ={t} x UU[71, T +40] X
dU. Moreover, if all inequalities in (3.2) are replaced by equalities, then the conclusion holds
with p = 0o and w, w1 independent of e.

Proposition 3.2. Suppose that (HI)—(H3) are satisfied. Assume that (u,v) € C ;’Z(R x R) and
c € R solve (2.2) with (0,0) < (u,v) < (1,1), lim, o u(t,z) =lim,, 5 v(t,z) =0, and
uzv;, #0. Then

L, - . L,
0<A:= liminf{ inf M} <A:= hmsup{sup uz (1, 2) } < 00. (3.3)
z—>—o0 [1eR u(t, z) z——oo lrer U(t,2)
Here )\ and A satisfy the equation
di (DA +c+ k(DA + fu(2,0,0) =0. (3.4)

Moreover, (2.2) has no solutions satisfying (0,0) < (u,v) < (1, 1), lim,— _ 5 (u(t,2),v(t,2)) =
0, and u,v, # 0 provided that ¢ > ¢* := —2./k — k(t), where k = d (1) f,(t, 0, 0).

Proof. As (0, 0) is a solution of (2.2), it follows that

ot

4 1 (3.5)

1

Y (t)azv + +l(t)]8v + / (1 )ds |u+ / (t )d

— = — c — ,su,svyds (u ,su,svyds |v.
0 0

ou 0%u ou 1 :
- :a,’1(t)—2 + [c+k(t)]— + /fu(t,su,sv)ds u—+ /fv(t,su,sv)ds v
0z 0z
0 0

Let/ > O bea fixed constant. Let D =]z — §.z+ jL. U =1z — 5.2+ 5[ and 2 =1z — [, 2 +1[,
7 =0, and 6 = T. In light of the periodicity and positivity of ¥ and v, by applying Lemma 3.1
to (3.5), we obtain that

sup u(t’,s)le inf  u(t,s), sup v(t/,s)ﬁNl inf v(t,s), Vz.t,t' eR,
se€l4(z) s€lj/4(2) se€l4(z) s€li/4(2)

(3.6)

where 1;/4(z) =1z — é, z+ %[, N; > 0 is a constant independent of # and v. Note that

f(t,u, v):|
— " |u.

ur =dy(Ouzz + [c+ k@) ]uz + [ -

Due to (H1), w = h(t,u, v) is uniformly bounded for (¢, z) € R x R. From the (interior)
parabolic L? estimates, it follows that

2T 2+ L 2T 744 1
(f / |u,(r,s)\”+|us(r,s)}f’+\uss(r,s)\”dsdr> gc(/ / }u(r,s)|”>
l 0

T ,_

ool
N
|
A~
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for some positive constant C independent of ¢ and z. Thus

=

2T 3
(//|ut(t,s+z)|p+‘us(t,s—l—z)}p—i—‘uss(t,s+z)|pdsdr)
T 1

8
<C sup |u(r,s)|.
(t,s)E[O,ZT]X11/4(Z)

By Sobolev imbedding theorem and (3.6), we readily conclude that there exists a constant C7 > 0
such that

=6, _

<Cr forall (r,z) e R x R.
lu(t, 2)|

Consequently

t, o ‘.
—oo<A::liminf{inf e Z)} SA::llmsup{sup tal Z)} <0
z—>—o0 |teR u(t,z) e 00 | rer u(t,2)

Now we proceed to show (3.4). To this end, we adopt a technique presented in Nolen and
Xin [30] (see also Hamel [16]). Let A be defined by (3.4) and let {(#,, z,)} be the sequence such
that

lim 2Um )
n—00 U(ty, Zn) -
Since both u, and u are T-periodic in ¢, we may without loss of generality assume that ¢, €
J— ([7 + il)
[0, T']. Define u"(t, z) = % Then
f(t’ M(t,Z +Zn), U(t7Z +Zn))l/tn
I/t(t, Z+ Zn) .

uf =dy(Oul, +[c+k@)]ul +

Owing to Lemma 3.1, u” are locally uniformly bounded. In view of the parabolic estimates and
the fact that f(¢,u,v) = [fol Sfu(t,su,v)dslu, there exists a subsequence of {u"}, still labeled
by {u"}, such that {u#"*} converges in Cllo’c2 (R x R) to a function w which satisfies

w; =di(Dwz; + [c+ k@) Jw, + f,(2,0,0)w. (3.7)

Note that u” > 0. Assume that lim,,_, 5o t, = t*. Then w(¢*,0) = 1, and hence w > 0 in terms of

the strong maximal principle. In addition, observe that Zigg = ”;Z((tt”zzizzr:’)). Therefore % > A
w; (t%,0)

w(*.0) solves

wZ(tsZ)

and )

= A. A direct calculation shows that
0=d(1)¢ez +2[c + k()] =2, — ¢, forall (1,2) €R x R.
w

It then follows from the strong maximum principle that % = A. This further implies that

3, (w(t, z)e %) = 0. Thus, w(t, z) must be of the form w(t,z) = e2?¢(¢). Since w is strictly
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positive and is 7 -periodic in t, we have ¢ (¢) > 0 and ¢ (¢t + T) = ¢ (¢) for all ¢+ € R. Substituting
w(t, 7) = e (¢) into (3.7), we find that

0= [di (122 + [c +k@©)]2 + fu(1.0,0)]p () — d‘flf) ,

Hence A hiiS to be a real zero of A.(1) :=d;(H)A2 + ¢+ k(t)A + Sfu(t,0,0). Similarly, we can
show that A is also a real zero of A.(}).

Note that A.(1) has no real zeros if |c + k(7)| < 2\/d1 (t) x fu(2,0,0) :=2./k. This imme-
diately implies that (2.4) has no solutions when —2./k — k(t) < ¢ < 24/k — k(t). On the other
hand, A.(1) has two real zeros with the same sign provided |c + k(r)| > 2./« (counting the

multiplicity). In particular, it has two positive zeros if ¢ < —2./k — k() and two negative zeros
provided that ¢ > 2./k — k(z). Since u(z, z) > 0 for all (z,z) € R x R and limzﬁ_ooi(t, 2)=0,
we must have 0 < A < A. As a result, (2.4) has solutions only if ¢ < ¢* := -2k —k(t). O

Theorem 3.3. Suppose that (HI)—(H4) and (H8) are satisfied. Let (u, v) € C;’z(R X R) and ¢
solve (2.4) with ¢ < ¢* .= —2/k — k(t). Then (u;,v;) > (0,0) forall (t,z) € R x R.

Proof. The proof will be divided into two steps.

Step 1. We first show that there exists s such that (u(z,z 4 s), v(t,z 4+ s)) > (u(t, z2), v(t, 2))
forall (¢,z,5) €e R x R x [5, 00), or equivalently, (u(t, z), v(t,z)) > (u(t,z —s),v(t,z —s)) for
all (r,z,5) e R xR x [§, 00).

To this end, we denote g, (¢, 0,0) by ;™ and set

oo RO LAt ) = it L DI+ 1A ) = fule 1 D)< TR ¥ €RX [T — 0 1 P

N1 ]l + |l
oo S0 18t — gt L DI+ g ) — gt 1 D < T4 VG, ) €Rx (1=, T 4P
= T ’
+ __ min{min; ¥;,min; ¥}
where 1 > 0 and 6™ = ==
Let
n® = min{n*, n*}min{mtinwl,mtimﬁz} (3-8)
and
t
o) = exp(/[gv(s, 0,0) — u_]dS), no =gy(,0,0). (3.9)
0
We also set

TIOISUP{n ER+ | |gv(t’ Ty ) _gv(t,o’ O)| 59_|I/L_|7 V(t’ y ) x R x [_77’ 77]2}, (310)

min; ¢
el -

where 6~ =
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In view of Proposition 3.2, we see that u; > 0 for all (7, z) € R x (—00, z] with some z € R. In
addition, as lim,_, o (#, v) = (0, 0) and lim,_, 5o (&, v) = (1, 1) uniformly in ¢ € R, there exists
M > 0 such that

—M <z, |u@t 2)|+]|v@ 2| <no forall (t,2) € R x (—oo, —M] (3.11)

and

u(t,z) — 1]+ [v(t,2) — 1| <n° forall (¢,2) € R x [M, 00). (3.12)

Since min{inf(; ;yerx[—m, My u(t, 2), Inf(; Herx[—m, MV (2, 2)} > 0, there exists § € R™ such
that

(u(t,2),v(t,2)) = (u(t,z — 5),v(t,z—s)) forall (,z,5) €Rx [-M, M] x [5,00). (3.13)

We now proceed to show that

(u(t,2),v(t,2)) = (u(t,z—5),v(t,z—s)) forall (f,z,5) eRx R x [§,00). (3.14)
To achieve this goal, we first show that for each s > s, (u(0,z2),v(0,2)) > 0,z — s),
v(0,z — s)) for all z € [M,00). Let s > 5 be fixed. Assume to the contrary that the above

statement is not true, then there exists 7/ > M such that either u(0,z") < u(0,7’ — s) or
v(0,7") < v(0, z/ — s). Assume without loss of generality that

u(O, Z) - u(O, 7 - s) = —¢ forsome e > 0. (3.15)

As (u(0,z—s),v(z—s)) < (1,1) forall z € R, in light of (3.12), there exists 0 < n < min{n™*, n,}
such that

(u(O, 2) +n¥1(0),v(0, z) + mﬁz(O)) > (u(O, z—15),v(0,z — S)) for all z € [M, 00).

Now write

+ +

(u"(1,2),0"(, 2)) = (ut, D) + ¥ (e T, v(t, 2) + nya(D)e T ), (t,2) € RT x [M, 00).
We then show that (1" (¢, z), v" (¢, z)) is a regular super-solution of (2.2) in ]0, co[ x |M, oo, the

argument employed here is similar to that given for Theorem 2.1 in Alikakos at el. [1]. In fact,
for any (¢, z) € ]0, oo[ x M, oo[, we have

f(t, ul, v”) +di(Hul, + [c + k(t)]ug —u;

pte +
= f(t,u",v") — f(t,u,v) —neT[fu(t, LDy + fult, 1, Dy + %W}
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+

1
MT {/ fultsu+Tnyi(e T v+ nya(ne’ T : )df—fu(t,l,l)]w
0

1
ute +
+/ foltou+ e’ ™ : v+rm//2(t)eT)dr—fv(t,1,1)]1//2-1-%wl}
0

and
g (14", 0") + do ()Y, + [+ 1o — o]

whe nt
:g(tauna vn) _g(t’u’v) —ne 2 gu(t, 1’ 1)1)01 +gv(t, 1’ 1)1”2‘*‘ 71)02
<0.

In terms of (3.13), (u"(¢t, M), v"(¢t, M)) > (u(t, M —s), v(t, M —s)) for all t > 0. Thus, Proposi-
tion A.3 (see Appendix A for its proof) implies that (u" (¢, z), v (¢, z)) > (u(t,z —s), v(t,z —5))
for all (r,z) € R* x [M, 00). Consequently, we have

+n’T £

M(O,Z’)_u(O,Z’_S):u(n/T,Z)—u(n T,z —s) > — ;71/f1(n T) 2 >_§,

where n’ e Nand n’ > 21In m//frﬂ ¢ is given by (3.15). This obviously contradicts (3.15).
The contradiction shows that (1(0, z), v(0,z)) > (4(0,z — s),v(0,z — s)) for all z € [M, c0),
and hence it follows from Proposition A.3 that (u(t, z), v(t,z)) > (u(t,z — s),v(t,z — s)) for
all (¢,z,5) € Rt x [M, 00) x [§, 00). Thanks to the periodicity of (u, v) with respect to ¢, we
have (u(t,z),v(t,z2)) > (u(t,z — s),v(t,z —s)) for all (r,z,5) €e R x [M,>0) x [5, 00). Fur-
thermore, note that u, > 0 for all (¢,z) € R x ]—oo0, —M][. This together with (3.13) shows
that u(t,z) > u(t,z — s) for all (¢,z,5) € R x R x [5,00). Thus, it remains to show that
v(t,z) > v(t,z —s) forall (¢,z,5) € R x (—00, —M] x [§, 00). Again, let s > 5 be fixed. Due
to (H2), we see that

32 ( 2) dv(t,z) dv(t,z)

<0.
0z Jar

gt u(t,z—s),v(, z))—l—dz(t) + [c+11)]

Now write w®(t,z) =v(t,z) —v(t,z —s). Then

1
|:fgv(t, u(t,z —s),u+ rws)dr:|ws +dr (w3, + [c—|—l(t)]w; —w; <0, (t,z)eRxR.
0

(3.16)

As w®(-,z) is T-periodic, we only need to show that w*(¢,z) > 0 for all (z,z) € [0,2T] x
(—oo, M]. First, in terms of (3.10) and (3.11), for any (¢,z) € R x (—o0, —M], we observe
that
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1
[/gv(r,u(r,z—s),u+rwS)dr}¢>+dz<t)¢zz+ [c+11)]¢: — &
0

1

= |:/g,,(t,u(t,z—s),u+tws)dr—gv(t,0,0)+/fi|g5§0.
0

Since w* is bounded in [0, 27| x (—oco, —M] and ¢ is strictly positive, there exists §; > 0 such
that w’ + 8;¢ > 0 for all (¢, z) € [0, 2T] x (—o0, —M]. Now define

§* =inf{s € R | w® + 8¢ > 0 for all (, z) € [0,2T] x (—o0, —M]}.

To complete Step 1, it suffices to prove that §* = 0. Assume that this is not true, that is, §* > 0.
Then, in view of (3.13), we see that w*(r, —M) + §*¢(¢) > 0 for all ¢ € [0, 2T]. In addition,
lim,_, _ oo {inf; e[ 277 w* + 8*@} > §* min; ¢ > 0, and for any (¢, z) € 10,27[ x (—oo, M], there
holds

1
[/ go(t u(t,z—s),u+ tws)dr:| (w* +8°¢) + da(n)[w® +87¢]
0

+ e +HIO][w' +8%¢], — [w® +8%¢], <0.

By continuity, we have inf(; ;)c[0,27]x(—00,—m] W* + 6*@ = 0. Thus, there exists (¢*,z*) €
10,2T[ x ]—00, —M| such that (w* + §*¢)(t*, z*) = 0. However, the (strong) maximum prin-
ciple implies that w® 4+ §*¢ = 0 for all (z,z) € [0, *] x (—o0, —M], which contradicts that
wi(t, —M) + §*¢(t) > 0 for all ¢t € [0, 2T]. Therefore, from this contradiction, we finally de-
duce that (3.14) holds.

Step 2. Now define

s*=inff{s e R | (u(t,2),v(t,2)) = (u(t,z —n),v(t,z —n)) forall (t,z,n) € R x R x [s, 00)}.

Clearly, (3.14) implies that s* is bounded from above. Furthermore, since u, > 0 for all
(t,z) € R x ]—o00, M[, where M > 0 is given in Step 1, it is easy to see that s* > 0. We next
argue by contradiction that s* = 0. Assume that this is not true, then we show that there ex-
ists (¢, 7)) € R x R such that either u(t',z") = u(t’, 7’ — s*), or v(t’, ") = v(¢’, 7/ — s*). If not,
namely, (u(t,z), v(t,z)) > (u(t,z — s*),v(t,z — s*)) for all (¢, z) € R x R. Then, by following
the same lines of Step 1 and using the definition of s*, we can infer that

(u(t,2),v(t,2) > (u(t,z—s*+8 —n),v(t,.z—s*+8 —n)), (t,z,n) eRxRxRF,

This however contradicts the definition of s*. Thus, there exists (¢',z’) € R x R such that
either u(t',7') = u(t’', 7/ — s*) or v(t’,z') = v(¢’, 7’ — s*). Therefore, the maximum principle
yields that v(z, z) = v(t, z —s*) and u(¢, z) = u(t, z —s*). This is clearly impossible since u, > 0
for all (¢,z) € R x (=00, z), where z is given in Step 1. Hence this contradiction confirms that
s* =0. As a consequence, we have (u(t, z), v(t,z)) > (u(t,z —n),v(t,z —n)) forall (t,z,7n) €
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R x R x R*. In particular, in light of the maximum principle, it is clear that (u(t, z), v(t, z)) >
(u(t,z—n),v(t,z—n)) forall (z,z) € R x R provided that n > 0. The proof is completed. O

Lemma 3.4. Suppose that (HI)—-(H3) are satisfied. Let (u,v) € C;’Z(R x R) and ¢ solve (2.4)

with ¢ < ¢* := =2/k — Im Then there exists a positive constant M. such that u(t,z) <
M.v(t,z) forall (t,z) e R x R.

Proof. Since lim,_, o (u(?,z), v(t,z)) = (1, 1) uniformly in ¢, there exist positive constants C
and M such that u(z, z) < Cv(t, z) whenever z > M. Since v(t,z) > O forall (r,z7) e Rx R, vis
bounded from below by certain positive constants on any compact subsets of R x R. In addition,
recall that # and v are both periodic in ¢. Thus, to complete the proof, it suffices to show that
u is bounded by a constant multiple of v whenever (z,z) € R x (—oo, —M'] for some positive
constant M’. Assume to the contrary that this is not true. Then there must be a sequence {(¢,, z,)}
such that

. . v(tl’H Zn)
lim z, — —o0, lim =
n— 00 n— 0o u(tn’Zn)
Now define
u(t, v(t,
Wt 7) = ( Z+Zn)’ V(1. 2) = (t,z2 4+ zn)
M(tna Zn) u(tna Zn)

Since both u and v are T-periodic in ¢, we once again assume that ¢, € [0, T']. Note that

Vit 7) = ”é’(’tj;i’;) %Z?:; Given M > 0, it follows from (3.6) that " and v" are uniformly

bounded for all (¢,z) € R x [-M, M]. In particular, lim,_,  v"(¢,z) = 0 uniformly for all
(t,z) e R x [-M, M]. We have

f@ u®,z+z,), v, 2+20) , B
aGz i u", (t,z2)eRx]-M,M][

uf =dy(Oul, +[c+k@)]ul +
and

v =da(OV], + [c + 1) o] + gu(t,0,0)u” + gy (2, 0,0)0"

|:g(t’ I/l(t, < + Zn)9 U(t, < +Zl’l))
+

u(tn, Zn)
(t,2) eR x |—M, M.

- gu (t7 07 O)Un - gv(t, 07 O)Mn]’

Note that |g (¢, u, v) — gu(t,0,0)u — gu(¢,0,0)v| < C(lu|® + |u||v| + |v|?) for some positive
constant C independent of # and z. As u” (-, z) and v" (-, z) are T -periodic functions, the parabolic
(interior) estimates imply that, up to an extraction of a subsequence of {(u",v")}, {(u", v")}

converges uniformly in C;’Z(R X [—%, %]) to a function denoted by (1™, v*) which solves
ou* ou*  ou*
t,0,0)u* k(t di(t — =0,
fu(t,0,0)u* + [c +k(1)] ay TAOZ— ==
(2,0, 0)u* + g, (£, 0, 0)v* + | +l(z)]8”*+d(t)82”* W
s Uy u s Uy v c - = V.
Su sv 0z 292 T o
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Note that u” > 0. Let t* = lim,,_,  #,. Then u*(¢*, 0) = 1, hence the (strong) maximum principle
implies that u* (¢, z) > O forall (¢,z) € R x ]—%, % [. On the other hand, as lim,,_, oo V" (t,2) =0
uniformly in R x [-M, M], v*(t,z) =0 for all (¢,z) € R x [-M, M]. Consequently, we find

that

M M
gu(,0,0)u™(t,z) =0, (t,z)eij|—— —|:

272
This is impossible since g, (¢, 0, 0) > 0. Therefore, the desired conclusion follows. O

To establish the uniqueness of time periodic traveling wave solutions we now consider two
cases, namely, ¢ < ¢* and ¢ = ¢*.

Case I: ¢ < c¢*.

Lemma 3.5. Suppose that (HI)-(HS8) are satisfied. Assume that k(t) — [(t) > ﬁ@(d;(—ét))_d‘ @)
- 1
Let (u,v) € C;’Z(R x R) and ¢ solve (2.4) with ¢ < ¢* = —2./k — k(t). Then

1,
<o, and timinflinf 2521 o, (3.17)
z—>—00 | 1eR @] (1)e*e?

{ u(t,z)

sup

lim sup —_—
reR P1(1)ee

7—>—
Here

t

o1 () = exp( f [dy (A2 + Che + k(D)Ae + ful(T, 0, (»]dr)

0

is defined by (2.7) and k = d(t) f,(¢,0,0).

Proof. The proof will be broken into several steps for the sake of clarity.
Step 1. We show in this step that

[
limsup{supu(—i)} < 00. (3.18)
z——00 lreR @1(1)e’*

Assume this is not true. Then there exists a sequence {(#,, z,)} such that

u(ty, zn)

Zn —> —00 asn— oo, and — =
n—00 @1 (t,)e’c<n

(3.19)

Let Zp € (—00, z4] be fixed, where z, is given by (2.15). Let 7 and 3 be fixed positive constants
such that

~ 1 —~ ) o~ 1 1 4
my=———————, § < min{ e 7% min , N
€20 min{min; (p—i, min; q)—i} max; ¢ max; ¢
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Now set

u(t, 2) =&ol<r>em(1 —ﬁod)l(t)e“)-
@1(1)

As lim,_, o u(t,z) = 0 uniformly in 7 and u(z, z) > O for all (¢,z) € R x (—o0, '] with some
7/ <70, there exist (11, z1) € R x (—o0, z/] and 51 < 0 such that u(ty, z1 +s1) < u(t1, z1). Without
loss of generality, we may assume that s; = 0. Now if (3.19) were true, then there would be an n*
such that

max; @1

t Y1

zn<z1 and u(t,,z,) > N;é (pl(tn)ekcz’l whenever n >n",

where N; is the positive constant specified by (3.6). It then follows from (3.6) that
u(t, 7o) > 891 (1)ern* > u(t, z+) forallt € R.

Let v(z, z) = ez;S\goz(t)ekCZ — opa(t)eP< T2 where ¢ € 10, 1] is a constant sufficiently small
such that =51 > ¢ max; ¢;. Then it follows from Lemma 3.4 that

M.

V(t, Zp) > > e8pn(1)e** > v(t, z,+) forall € R.

Note that (u,v) < (1,1) for all (¢,z) € R x (—00,Z] and (u(t,Z0), v(¢,Z0)) < (0,0) for all
t € R. Thanks to Proposition 2.8, (u, v) is a (regular) sub-solution in R x (—00,Zp]. On the other
hand, Theorem 3.3 shows that (u,, v,) > (0, 0), that is, (u(t,z), v(t,z)) > (u(t, zp*), v(t, Z4+))
for all (¢,z) € R x [z,*,00). Hence Lemma A.2 implies that u(t,z) > u(t, z) for all (¢,z) €
R x [z,#,Z0]. However, this contradicts the fact that u(z1, z1) < u(t1, z1). Therefore (3.18) fol-
lows.

Step 2. We show in this step that

u(t,z) < Kee's, u(t,z) < K.e™*,  (t,2) eRxR (3.20)

for some positive constant K.. Note that the first inequality is an immediate consequence
of (3.18). To show the second inequality, recall = = g,(¢,0,0), we let w = %, where ¢ is
given by (3.9). Then a direct computation yields that

[g(t,u,v) — g,(,0,0)u—gy(,0,0)v]
¢
+umw+ da(Owz; + [e+1(0) Jw, —w, =0.

u
+gu(t’ O’ O)T
%

Since u — 0 and v — O uniformly in ¢ as z — —oo, for each ¢ € (0, W—Z_'], there exists M, > 0
such that |g (7, u, v) — g, (¢, 0,0)u — g, (¢,0,0)v| < e(u+v) whenever z < —M,. Let ¢ € (0, |M_;|]

be fixed, then, when (¢, 7) € R x |]—00, —M,[, it is easy to see that w = % satisfies

[8 +gu(t’0’ 0)]% + %w +d2(t)wZZ + [C+l(t)]w2 — Wy = Oa (t’ Z) € R X ]—OO, M8[
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Now let ¢, (¢) be the unique positive periodic solution to

[8+gu(t909 0)] 2 IU“_ dé}-
dr(t)A [())he+— |E——=0.
50 + | da@A; + (¢ +1(1))Ae + ol AT
Note that ¢, exists and is unique and positive since
) M D) wo n
(A2 + [c+1(D)]|re + o = dy(OAZ + [c + k@) ]Ae + 5= fu(2,0,0) <O.

We next let w(t, 7) = Co@q (t)e*<?, where C, > K. It is straightforward to verify that

[¢ + gu(t,0, 0)]% + %w + do (D)W, + [c +1(D)]w, — W,

4
_¢ e + gAu(t, 0,0)]

(Kc - Cs) =< 0.

Since v is bounded, we may choose C such that w(¢, —M,) > v(t, —M,.) for all t € R. In
addition, we have

%(w — D)+ d(O) W — D)z + [e 1] (W — B); — (w— D), =0,

(t,2) e R x |—o00, M,[.

Since lim,, _(w — w) =0, w(t, —M,) — w(,—M,) <0, and % < 0, it follows from the
maximum principle that w — w < 0 for all (¢, z) € R x (—o0, M,]. As v is bounded, there exists
C. > 0 for which v(t,z) <C éekez for all (7, z) € R x R. Without loss of generality, we assume
that C, < K. This confirms the existence of K.

Step 3. We now proceed to prove by contradiction that

t,
liminf|] inf <221 g (3.21)
z—>—00 | teR @1 (1)e*e?

Assume that (3.21) is not true, then there exists a sequence {(#,, z,)} such that

tl’l’ n
lim z, = —00, fim e Zn) (3.22)

n— 00 n—00 @1 (t,)e*cin

Once again, we assume without loss of generality that 7, € [0, T'] because of the periodicity of u

with respect to . We next show that lim,,_, o (pl”((f”)—ei”c)m = 0 provided that (3.22) is true.
Let

u(t,z+ z,) v(t,z2+ zn)

u,(t,z2) = —m, vyit,2)) =————7——.
n( ) q)l(t)e)hc(Z'f‘Zn) n( ) §01(t)€)‘C(Z+Z”)
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Write
n . f(t,u(t,Z+Zn), v(t,z+ z,))
[, 2= Y ,
g'(t ) = lg(t,u(t,z+z0), v(t, 2+ 21)) — gu(t,0,0)u(t, z + z,) — gu(£,0,0)v(t, 2 + z,)]

v(t, 2+ zn)
w(t) = gu(1,0,0) — fu(£,0,0) + Ac[Ac(da(t) — di (1)) +1(t) — k(1)].

Note that w(r) < 0. As shown in (3.20), u, and v, are uniformly bounded. Furthermore,
a straightforward calculation gives that

0%u, ou,  Juy
"(t,z7) — f,(t,0,0) |u, +d;(t 2A.d; (¢ k(t - =0,
[172) = fult. 0,0 ]un + di1 ()= + [2hedi (D) + e +h(O] 7= = —
92" 9 9
[¢"(t,2) + & (t) |vn + gu(t, 0, 0)uy + da (1) 82”2 + [2heda(t) + ¢ +1(1)] avzn B avtn —0.
(3.23)

From the parabolic estimates, it follows that there exists a subsequence of {(u,,v;,)}
(which we continue to denote by {(u,, v,)} for convenience) such that {(u«,, v,)} converges in
CIL’CZ(R x R) to a function denoted by (u®, v°) € C;’Z(R x R).

Since |g(t,u,v) — g,(t,0,0)u — g,(¢,0,0)v| < C(|lul®+ |u||v| + |v|?) for some positive con-
stant C and lim,,_, o u(t,z + z,) = 0 and lim,, o, v(¢, 2 + z,) = 0 uniformly in any compact
subset of R x R, by taking the limit in (3.23), we find that

0%u® u®  ou®
di(t 2Acdy (t k(t — =0,
1()822+[ (@) +c+ ()]aZ >
2p° v®  9v°
8u(.0,0)0u° + @ (W° + dy(t) —— + [2heda(t) + ¢ +1(1) | — — — =0.
0z 0z ot

Observe that u,, > 0 and v,, > 0, and hence u° > 0 and v°® > 0. Moreover, let t* = lim,,— o0 t,,
then we have u®(t*,0) = lim,,_, oo u, (¢,,0) = 0. It follows from the maximum principle that
u®(t,z) =0 forall (¢,z) € R x R. Thus, v° is a bounded periodic solution to

& =dy()éz; + [2heda(t) + c+1(D)]E + 0 (1), z€R. (3.24)

Let G°(t,s);>s be the family of evolution operators associated with (3.24) on BUC(R).

As o™ (= w(t) <0, it is easy to see £K T elolo®)=07lds are the sub- and super-solutions
of (3.24), respectively, where K > 0O is arbitrary. Thus, the comparison principle implies that

w (t—

IGC(t,s)|| <Ce 2 = , t > s, for some positive constant C. Namely G°(¢, s) enjoys a (trivial)
exponential dichotomy, in view of Exercise 4* in Henry [18], we must have v°(¢, z) = 0. Thus,
(3.22) implies that

. U(tn’ Zn)
lim — =
n=>00 @) (1) e*een
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For the sake of contradiction, we let

w(t.z) = %wl (e, (it 2), (1, 2)) = min{ (w(t, 2), w(t, ), (1, H},
1

where [ > 0 is a fixed constant and N; is given by (3.6). In view of the proof of Theorem 2.9,
(w(t, z), w(t, 7)) is a regular super-solution of (2.2). Thus (u, v) is an irregular super-solution
of (2.2) in R x R. In particular, it is nondecreasing in z. Obviously, there exists ¢ such that
(u(t,z),v(t,z))=(1,1) forall (¢+,z) e R x [0, 00). As (u(t, z), v(t, z)) — (0, 0) uniformly in ¢
as z — —oo and (u(t,z),v(t,z)) — (1, 1) uniformly in ¢ as z — oo, there exist (¢/,z’) and
s’ > 0 such that (u(t',z), v(t',2)) < (@', 7' + '), v,z + ")) < (1,1). Clearly, 7 < 7. As-
sume without loss of generality that s = 0 (otherwise we may consider (us/ (t, 2), vs/(t, 7)) =
(u(t,z+s"),v(,z+s")), which is also a solution of (2.4)).
Now if (3.22) is true, we then have

u(tn’Zn) -0 € — U(tnazn) 50 asn — 0o
(pl([n)e)\czn k) n «-— n .

1 (ty)etetn

Ep =

Furthermore, it follows from (3.6) that

max; @1 (1)

[en + €xl@1 (1) (e, **)  forall t € R.
vty ( )

(l/l(t, Zl’l)7 U(t, Zl’l)) S

Let n’ be sufficiently large such that z,» < z’ and

ma t ma t 1
DA Q1) e o (e < Ny IO e < L pranr e
min; ¢ (¢) min; ¢1(7) 2
Namely

11
(I/l(t, Zl’l/)’ v(t’ Zl’l/)) < (I’_t(t’ Zl’l,)’ l_)(t9 Zl’l,)) = <§9 5) for all ¢ € R.
Therefore, Lemma A.l implies that

(u(t,2), v(t,2)) < (ii(t, 2), (t, 2))

forall (¢, z) € R x [z,, 00). However this contradicts the fact that (u (¢, 7'), v(t’, 7)) > (u(’, 7)),
v(t’,7')). Hence, we deduce from this contradiction that (3.21) is true. The proof is com-
pleted. O

We now state and prove a result on the exponential decay rate of the time periodic traveling
wave solutions when ¢ < c¢*.

Theorem 3.6. Suppose all the assumptlons given in Lemma 3.5 are satisfied. Let (u,v) €
cl 2(R x R) and ¢ solve (2.4) with ¢ < ¢* = =2/k — k(t). Then

u(t,z) ) v(t, z)

=1, im ———— =1, uniformlyint e R
e—>—00 peteiy(t) formly

m ————
00 peripy (1)
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for some positive constant p. Here @1 and ¢ are given by (2.7) and (2.10), respectively, and

o = —c—y/c? -4k
c— A -

2

Proof. By virtue of Lemma 3.5, we have

< limsup
—>—

sup

t,
0<py:= liminf{ inf M} —
teR €*C@1(t)

z——00 | 1eR e*ei@ (1)

{ M(I’Z) }:IO*<OO

We next show that

oy = lim {inf ult, 2) } (3.25)

z——00 | 1eR e*eig (1)

This idea is motivated by Hamel [16]. Given ¢ > 0, we claim that there exists z. € R such that

! inf 4D

< 1+2¢) whenever < Ze.
te]Re}“CZ(pl(t)} pi(1+2¢) L=z

Assume to the contrary that this is not true, then there exists a sequence {z,} such that

2= —oo, infd E) Lo o

! T teR| @1 (t)eren | T Px '

Let Zo < z.« be chosen so that
. _)\. = . 1 1 N%
ps(1 +2¢) < min{ e ***min , NI
max; ¢1 max; ¢p
- 1
no=—— ,
€€20 min{min; %, miny %}

where z, is specified by (2.15), ¢1 and ¢, are given by (2.13) and (2.14), respectively.
Now define

~ .
(u(t, 2), v(t, 7)) = & (5T¢1 [1 — no—(pleéz}, 53@2[1 — #me“]),
Y1 82‘/’1

(ta Z) € R X (—OO,’Z()],

where 87 = p4(1 + %8) and 85 = min{1, M.p(1 + %8)}, and M, is specified by Lemma 3.4.
Therefore, we have

. u(ta Zn) . U(ta Zn)
lim > 1, lim
n—>00 u(t, z,) n—00 v(t, zn)

>1 forallr eR. (3.26)

On the other hand, by the definition of p,, there exists a sequence {(z,, s, )},eN such that

u(Ty, Sp)
=pyx aSn — 00.

§p —> —00, ————— =
! et ()
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Therefore, there exists n* such that s,+ < Zp and

€
I/t(‘l,'n* R Sn*) < o (1 + §>g01 (Tn*)e)\csn* < Z(Tn*’ Sn*)- (327)
In view of (3.26), there exists n’ such that z,; < s,,+ and

(%(l, ), V(t, Zn/)) < (u(t, ), v(t, znr)) for all r € R.

Observe that (u, v) is a (regular) sub-solution of (2.2) in R x (—o0, Zo[ with (u(z, Zp), v(¢,Z0)) <

(0,0) for all 7 € R and sup ;)erx (-0, ) < (1,1), hence Lemma A.2 implies that

(u(t,z),v(t,2) < u(t,z), vt z)) forall (¢,z) € R x [z, Z0]. However, this contradicts (3.27)

since (T,*, Sp*) € R X [z,/,Z0]. As & > 0 is arbitrary, we readily conclude that (3.25) is true.
Now let {(z;, z,)} € R x R be the sequence such that

n

u(t), z,) .

! p*, asn— —oo.

Z, — —00, lim —— =
2= —00 e*tn gy (1))

Since both u and ¢ are T -periodic in ¢, we may assume that ¢, € [0, T'] for all n. Set

u(t,z+2z))
Mn(l,Z):W.
e’ i) gy (1)

Clearly, {¢#""} is uniformly bounded for all (¢, z) € R x R. In particular, u" satisfies

t’ 9
JUMV) n e 0,00 + dy (O, + [20e + ¢ + k()] — u =0.

With the same reasoning as that presented in the proof of Lemma 3.5, we may assume, by taking

1’Z(R x R) to a function u* > 0 that solves

a subsequence if necessary, that {u"} converges in C,:

di(Oul, 4 [2he + ¢ + k@) ]ul —uy =0. (3.28)

Thanks to the compactness of [0, T], t,/, — t* for some t* € [0, T']. Clearly, u*(t*, 0) = p*. More-
over, owing to the definition of p*, it is easy to see that u* < p*. Note that u*(-, z) is also
T -periodic. Therefore, the strong maximum principle implies that u* = p*. Consequently,

u(t,z),) .

lim =" uniformlyin¢ € [0, T].

=00 ereing (1)

/
As u is periodic in 1, it is readily seen that lim, _, _.{inf;cr %Z”z)} = p*. It then follows
n e’cin o (t

from (3.25) that p, = p*. More precisely, we have

u(t,z)

. _)1r_noo m =1 uniformlyinfteR (3.29)

for some positive constant p.
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We now proceed to prove the claimed asymptotic behavior for v. Set

AeZ

s(t,2) =u(t,z) — ppi(t)e™*,  r(t,z) =v(t,z) — ppa(t)e

Then it is easy to see that r and ¢ are both T'-periodic in ¢ and satisfy

R(1,2) + 8u(t,0,0)5 + gu(t,0,00r +do(t)rz +[c +1(O)]rz = r; =0, (t,2) eRxR

where R(t,z) = g(t,u(t,z),v(t,z2)) — g.(t,0,0)u(t,z) — g,(¢,0,0)v(¢,z). As shown in
Lemma 3.5 (see Step 2), there exists some positive constant C’ such that |¢| < C’e*<% and
|r| < C'e*<* forall (t,7) € R x R.

Now let

o). r(@,2) .1 r(t,z)
my = liminf| inf ————1, m” =limsup{sup ————1.
200 | 1eR s (1) e oo | el @2(1)e

To complete the proof, it suffices to show that m, = m* = 0. We only show that m, = 0 since the
arguments for the other are similar. Let {(#,, z,)} be the sequence such that z,, - —oo asn — o0
and lim,,_, oo (/;((t’n”)—eﬁ"c)n = m,. Once again, we assume without loss of generality that #, € [0, T']
and lim,,_, 0 t,, = t* for some ¢* € [0, T']. Set

1,2+ zZp rt,z+zn

1 (t)eretm)’ (et Etm)’

Note that {¢"} and {r"} are uniformly bounded. In particular, (3.29) implies that
lim;,— ~ ¢"(t, z) = 0 uniformly in any compact subsets of R x R. Moreover, the same calcu-
lation as that given for Lemma 3.5 yields that

R(t9 Z + Zl’l)

oD T8 0.0 + OO +dr Oz, + [2hedat) + e+ D] —rf = 0.

By following the same reasoning as the above, we see that {r”"} converges uniformly to zero in
any compact subset of R x R. Thus,

ty, r*
0= lim r"(t,,0) = lim —mn) _, ¢27)
n— 00 n—00 (tn)ekcz,1 @1 (l*)

As zf E;I; > (0, we must have m, = 0. Likewise, we can deduce that m* = 0. Therefore, it follows
that

z, . .
& =1 uniformlyint e R.
z—>—00 p@y(t)eret

This completes the proof. O

Case II: ¢ = ¢*.

We now turn to the case ¢ = c¢*. In this case, note that A« = VK

di ()
by (2.6). Here and subsequently, we will write A, = A.«. In order to derive an a priori estimate

similar to (3.17), with slightly abuse of symbols, we introduce the following notations:

, where A, (¢ <c*) is given
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t

Q1(t) = exp( f [d1 (DA + chs + k(DA + fulz,0, 0)]dr)

0
and
1 1 1
2(t) = 2(0) eXP(fQ*(S)dS> +/eXp(fQ*(r)df>gu(s,0, 0)p1(s)ds,
0 0 K
‘ T T T
¢ (0) = |:1 —exp(/g*(s)ds>:| /exp(/g*(r)dr)gu(s,(), 0)p1(s)ds,
0 0 K

where 0. (1) = da(1)A5 4 (¢* + 1(1)) A + £0(2, 0, 0).
Let €* > 0 be fixed such that

I/lt3030 - t,0,0d t
O<e*§min{yk*,f( ) — & ) 1()}

2Jkldi (1) +di ()]

and set

A = A (s +€) =d1 (1) (0 + €) + [¢* + k(@) | (7 + €*) + £ (2, 0,0).

Clearly, A€ > 0. Accordingly, we set

t

$1(t) = GXP(/[dl (DA + A + k(DA + fu(1,0,0) — Ae*]dr)

0
and
t t t
¢2(t)=¢2(0)e><p</Qe*(S)dS> +/6XP(er*(T)df)gu(S,0, 0)¢1(s)ds,
0 0 s

T T T

-1
$2(0) = [1 —CXP(/Qe*(S)dSﬂ /exp(fee*(f)df)gu(s,(), 0)¢1(s)ds,
0 0

N

where 0¢x (t) = do (1) Ay + €)% + [c + 1) (s + €%) — A€+ gv(t,0,0). Note that

0 (1) = do () (M + €*)° + [¢* + 1] (hs + €%) — A€ 4 2,(2,0,0)

= M l(t) — k(@) + Ai(da(t) — di1 (1)) ] + €*[1(1) — k(1) + €*(da(t) — di (1))]

+ 2e*Ay[da(t) — di ()] — fu(2,0,0) + gu(,0,0) <O.

1107

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Thus, ¢ (¢) 1s well defined. It is easy to see that ¢;(¢) is positive and periodic and solves

. d
gu(1,0,0)¢2 + {£,(2,0,0) + da (1) (A« +e*)2 + [c+1DO)]( +€) — A€ }E - d_f =0.

Observe that A« (Ay) = d;/llk* [x=1, = 0. Set wl (1) = — a(p (’) |r=2x,. By differentiating both
sides of (2.5) with respect to A at A,, we find that

[¢* +k(®) + 20sdi (1) ]@1 (1) = { fu (2, 0,0) + [¢* + k() ]re + di (AT} ¥} (0)

dyry(t
_ M (3.36)
dt
Let ¥5(¢) be the periodic solution of
gu(t, 0,000 — [¢* +1(t) + 2042 (1) | 2
d
+[80(1.0.0) + (¢ +10) s + 2022 = == =0. (337)

As shown before, g,(t,0,0) + (c* +1(1)As + da(t)A2 < 0, thus, Y5 exists and is unique. We
also let 7 > 0 be the least number such that

forall z >2z. (3.38)

nz<(+y)"" ln(AG* min{min,cR ¢1, min;cr ¢>2}) N (Yhs — €%)z

w?2-6lty 1+y
Set
1 t t
7 =min{ %, —1, ——, —max 410 %() (3.39)
Ae 1R | @1(t) | TR @2(1)
e—e*Zo
max;cR| 1(,) | + max;cR| wi(r) |
—Ax20 1
0<dr <6 Smin{ ,ny}. (3.41)
6lz0l[sup;cr (@1 + ¢2)1" 0

Proposition 3.7. Suppose that (HI )—(H5) are satisfied. Assume that k(t) —1(t) > */—O(dj (3) 4®)
Let

(Ut 2), W(z,2))

* n eE*Z 5 M 8 - ee*z
= (516)\*Z(P1|:|Z|'|'ﬁ —M0+&i|,3zex*z(p2|:|z|+ﬁ _aro LA 092 ])
¢1 %1 ¥2 L)) S22

provided that ¢ = c*. Then (U, W) is a regular sub-solution of (2.2) in R x (—00, zg[, where z,
no, Mo, 61, and 67 are given in (3.40) and (3.41), respectively.
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Proof. First observe that ¢*+?|z| is nondecreasing in (—o0, zg] if zg < z*. Thus, in view of (3.40)
and (3.41), we see that (U, W) < (1, 1) forall (z,z) € R x (—o0, zo]. In particular, it is easy to
see that (U (¢, zo), W(t, z0)) < (0,0) for all t+ € R. Moreover, for any (¢,z) € R x ]—00, z¢0][,
a direct computation shows that

f@. U W) +[*+k®]U. +di (1)U, — U,

> 81™ £,(1,0,0)[—z1 + Y| — Mo |
+81eM [ + k(D)][—@1 — 2hs@1 + AW — Moy ]
+dy (1)816 [~ 2kt — AMizp1 + 130T — Moier] — 81e™F[—z9] + ¥ — Mogy]
+ 81m0e [ £u2,0,0) + (¢ 4 k(®) (s + €*) + di (1) (hs + €*) b1 — 9]}
— o (U + W7

> —(Mo + 281 {[ fu(£,0,0) + (c* + k() As + di (A3 |01 — 9]}
+ 81 = [c* + k(0) 4+ 2d1 ()1 + [ fu @, 0,0) + (c* + k) A + di OI W} — ¥}

+ e/\*z{ee B1ng A€ ¢ — wg%ﬂ/em*z@] (6|Z|)1+y _ w8;+y€”*zg02 (65_1|Z|) }
2
x ‘ 87 \
> 51noe(k*+e )Z{AG b1 — o-L2. 6(1+J/)|Z|1+ye(yk*—e )z} >0
no
and

gt U W)+ [c*+IO]|W. +dr(OW .. — W,

> 87" g, (1, 0,0)[—z¢1 + ¥ ] + gu(t. 0, 0)[—z902 + ¥5 ]}
+ 81n0e T 0, (2,0, 001 + [g0(1,0,0) + ¢ +1(1) + da(DOA2] 2 — B5 )
— Mod1e*{gu(1,0,0)¢1 + [gu(t,0,0) + c* +1(t) + da ()17 ]2 — 95}
+ 8™ [¢* + 1D ][—92 — A2 + AsF ] + 826" da (1) [ 2hi2 — ZAT02 + A2V ]
— 8™ [—z0h +v3 ] —w (U + | W|1TY)

> —(Mod1 + 282)e™{gu(t,0,0)p1 + [gu(1,0,0) + c* +1(t) + do (DA} |2 — ¢}
+ 82e™gu(t, 0, 0)Y} — [¢* +1(t) + 2hsda (D) ]2
+ [80(2,0,0) + (¢* + 1)) A + do(OA2] Y5 — v3'}

* * 6 1+y
4+ ek*z{eé Z(S]l’lOAE ¢2 _ w_811+ye]/)u*2g01 (6|Z|)1+)’ _ ZD_S;—H/eV}L*ZgDZ (6é|Z|) }

4
> 81noe(k*+€*)Z{Ae*¢2 - 5_12 .6(1+7) |Z|1+ye(yk*—e*)z} >0
= e >

Thus, (U, W) is a regular sub-solution of (2.2) in R x ]—o00, zo[. The proof is completed. O
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Proposition 3.8. Suppose that (HI)—(H4) and (H6) are satisfied. Assume that k(t) — [(t) >
SO O-di(0) |,
di ()

LR TR o 0 WO

provided that ¢ = c*, where m,n € R™. Then (U, W) is a regular super-solution of (2.2) in

2

R x ]—00, Z°[, where 7° <n — ol maxteRl | and { is given by (3.36).

Proof. For the sake of simplicity, we write w(t, z) = me**%@(t)[n + Z]T((;)) — z]. Notice that

w >0, w, >0, and w,; > 0in (—o0, z°]. Moreover, when (¢, z) € R x ]—o00, z°[, we have

f@, U W) +[c+k®]U, +di(0)U - U,
= f(t,w,w)+ [c + k(t)]wZ +di(H)w;; — wy

*

<mek*z{fu(t 0, 0)|:n+l/f——zi| +§01[C +k(t)]|:)»*n—1—z)»*+)»*tili|
01 1

k/
raionl st oni] oo )
@1 ¢

=me*(n — D) {[ fu(t,0,0) + (c* + k(D) Ai + dy ()22 ] 01 — ¢} )
+me —[c* + k(1) + 2hi]@r + [ fult, 0,0) + (¢* + k(D) As + A OAZ]YT — v}
=0

and

g, U W)+ [c+IO]|W. +dr ()W . — W,
<gH1,0,00w + [c + 1) |w; + do(DHwzz — wy
< fu(@,0,00w + [c + k() Jw; + di(DYwz; — w, + [[(t) — k(1) Jw, + [da (1) — di (1) Jw;;

< mAse*g) [n }% —z+ %] [[(t) — k(@) + Ai(da(t) — d1 (1))]

<0.
Hence, (U, W) is a regular super-solution of (2.2) in R x ]—o0, Z°[. The proof is completed. O

Lemma 3.9. Suppose that (HI)—(HS) are satisfied. Let (u,v) € C;’Z(R x R) and c¢ solve (2.4)
with ¢ = ¢* = —2/k — k(t). Then

t,
oo and timinflinf —“E2 1 g (3.42)
z——00 | 1eR @1 (1)|z]e*+?

{ u(t,z)

sup

lim sup _—
reR 91(0)|z]e*+?

7—>—00
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Proof. Thanks to Proposition 3.7, by following the same reasoning as that in Lemma 3.5 (see
Step 1 of the proof for Lemma 3.5), we can infer that

. u(t,z)
limsup{sup ————— ¢ < 00. (3.43)
z—>—oo LreR @1(0)|z]e*+?

We next show that there exist positive constants K* and M* for which
u(t, z) < K*|z]e™=, u(t,2) < K*|zle™?,  forall (t,2) e R x (—oo, —M*].  (3.44)

Notice that the first inequality is an immediate consequence of (3.43). To show the second in-
equality, we let = = g,(¢,0,0) and w = % again, where ¢ is given by (3.9). Then by following
the same lines, we arrive

[e + 2u(,0, 0)]% + %w +dr(Owz, + [c+ 1) |w, —w =0, V(r,2) R x |—00, —M™T|

for some positive constant M+. We will assume without loss of generality that M > M*. Let
[c*+1L(O)+22sd ()02 ()P (1)
[e-+8u(1,0,0)]1 (1)

m* > max;e[0, 7] , and let ¢, () be the periodic solution to

1
[& + u(2,0,0)]p1 — — [¢* +1(1) + 2hida (1) |92

- . d§
+ [7 + hx (" 1(D)) -H»ﬁdz(t)]é — 5, =0

Since 4= + hu(c* +1(1)) + A2da(1) < 0 and G20y — L [c* 4+ 1(1) + 2huda(1)]g2 = 0,
@ (¢) 1s unique and nonnegative.

Now set w(t, z) = Ce(—ze**2@y + m*e***g,), where C, >
the equation

K*

TR Observe that w satisfies

&+ t,0,0 -
[ gu(; ) [Ce(—ze*2@1 +m*e™2g1)] + %w + [¢* + 10w, + da(t)w,; — w, =0.

As a consequence, there holds

[¢ + gu (2,0, 0)]% + %w + o)Wy + [c+I()]|w, —w, <0, V(t,z) €R x |—o00, M*[.

* . . .
K s arbitrary, by the same arguments as those given for Lemma 3.5, we can
min; ¢

deduce that there exists K* > 0 for which v(z, z) < K*|z|e** for all (¢, z) € R x (—o0, M*].

The proof for the second inequality of (3.42) is analogous to that presented in the proof of
Lemma 3.5, we choose to skip it and leave the detailed calculations to interested readers. The
proof is completed. O

Since C, >

The exponential decay rate of the time periodic traveling wave solutions when ¢ = ¢* is given
in the following result.



1112 G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078—1147

Theorem 3.10. Suppose that (H1)—(HS) are satisfied. Let (u, v) € C;’Z(R x R) and ¢ solve (2.4)
with ¢ = ¢* = —=2/k — k(t). Then

ut,z) i v(t, z)

m —— =1, =1 uniformlyint e R
=50 per (1) [2le Jormly

o200 ppa(D)]zles

for some positive constant p, where @1 and ¢ are given by (3.30) and (3.31), respectively.

Proof. In light of Lemma 3.9, there exist positive constants p, and p* such that

l, . f,
0<p*zliminf{inf&}<hmsup{sup utt,2)

z——00 | 1eR @1 ()|z]e*2 | T ;500 |1er ©1(2)]z]eM*?

We next show that for a given ¢ € (0, 1], there exists z; € R such that

u(t,z)

nf ———— < 1+2 henever < Ze. 3.45
tleRgal(t)|z|e)‘*Z_p*(+8) whenever  z <z, (3.45)

Assume to the contrary that this is not true. Then, for given ¢ € (0, 1], there exists a sequence {z,}
such that

u(t,z,)

teR W > px(1 4 2¢). (3.46)

In —> — 00,

Pick § > 0 sufficiently small such that % > § max; ¢, where M.« is the positive number

C

specified in Lemma 3.4 with ¢ = ¢*. Let zg9 € (—00, z*] be chosen so that

(1 + 3e> o { e A2 e=€ 0 }
,O = min 9
2 6lzol[sup,ecr (@1 + ¥2)] max,cg| %I + max;cR| %l

where z* is given by (3.39) and €* is given by (3.32). Define
(u(t, 2), v(t, 2))

3¢ iy nogye€ ¥ Moy nogoet ?
:p*<1+—>€k*z<(pl|:|Z|+ﬁ—MO+&],(S@2|:|Z|+&__O+ 0¢2 i|>,
2 %1 ®1 2 ) EY0S

where ng and M are specified by (3.40). In view of (3.46) and Lemma 3.4, we have

. M(l, Zn) . U(t, Zl’l)
lim >1 and lim
n—00 u(t, z,) n—>00 v(t, Zp)

> 1 uniformly in ¢.

Hence, there exists n* such that (u(z, z,), v(t, z,)) > (u(t, z,), v(t, z,)) forall t € R and z,, < 29
provided that n > n*.
On the other hand, by the definition of p,, there exists a sequence {(t,,s,)} such that
3 u([nasn) —
lim,,, o ol s lemn = P Note that
. u(tn, Sn)
lim - > 1
n=00 py (1 4 5)@1(tn)[sn|e”*5n
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Thus, there exists n, such that
€
u(ty, sp) < ;0*<1 + 5)‘P1 (tn)|sn|e)\*sn <u(ty,sy) and s, <zo Whenever n > n,.

Without loss of generality, we assume that z,+1 < s,,41. By virtue of Proposition 3.7, (u, v) is
a sub-solution of (2.2) for (z,z) € R x ]—o00, zo[, and (u(¢, zp), v(t, z0)) < (0,0) for all r € R.
It then follows from Lemma A.1 in Appendix A that (u(¢, z), v(t, z)) > (u(t, z), v(t, z)) for all
(t,z) € R X [zy#+1, z0]. Consequently,

Ut 41, Sny+1) < Uny+15 Snp+1) < U(Tny41, Sny+1)-

This is a contradiction and it shows that (3.45) holds. As € > 0 is arbitrary, we readily conclude
that

t,
fim Ling @9 1_ (3.47)
z——00 | 1eR @1 (1)|z]e*+*

Again by following the same lines as those given in Theorem 3.6, we deduce that p, = p*.
Namely,

t, . .
im LZ)X =1 uniformlyinseR
z=>—00 p@1(t)|z]e***

for some positive constant p.
Now let

V5(t)
@2(1)

Then by using the same arguments as those given in the proof of Theorem 3.6, we infer that

. r(t,2) : r(t,z)
liminf{ inf — = lim sup sup ————— =0.
z—>—00 [1eR @o(1)[z|e*** z—>—o0 l1eR @2(1)|z]e***

]’ g(taZ):l/l(t,Z)—pgpl(t)e)\*l|:|z|+wl (t)]
@1(1)

r(t,z) =v(t,z) — pwz(t)e**z[lzl +

Therefore, it follows that

, : :
im U(—Z)A =1 uniformlyint e R.
2= =00 p@(1)|z]er*

The proof is completed. O

Corollary 3.11. Suppose that (HI )—(H8) are satisfied. Assume that k(t) —1(t) > ‘/E@(dj(—ét))_d] @)
1

Let (u,v) € C;’Z(]R x R) and c solve (2.4) with ¢ < ¢* := —2./k — k(t). Then there exists some
positive constant p such that

t, . v (1, . . .
im _uz(1,2) = Ac, lim UAUTI =Ac uniformlyint €R, ifc <c*, (3.48)
t~>—00 p@y (t)ehe? t—>—00 p@y(t)ehe?
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where @1 and @) are given by (2.7) and (2.10), respectively, and

. u,(t,z) _
z—>—00 p(1)|z]er*

; v, (2, 2)
e—>—00 py(t)|z]et

ko
= Ay uniformlyint € R, ifc=c* (3.49)

where @1 and @ are given by (3.30) and (3.31), respectively.

Proof. We will only give a proof for (3.49) since (3.48) can be proved similarly. Using (3.5) and
parabolic estimates, we see that

1

2T 3
|: /(!ur(r,s —|—z){p + |us(t,s —|—z)|p + }uss(r,s —|—z)|p)dsd7:i|

T
<C  sup (lul+l),
[0.2T]x[z—§.z+5]
27 § >
|:/f(|vr(r,s+z)|p+ ‘vAg(r,s—l—z)!p—i— |vss(t,s—|—z)|p)dsdri|
T _1L
8
=C sup (Il +1v1)

[0.2T1x[z—§.245]

for some positive constant C, where / > 0 is some constant and p > 3.
Therefore, Sobolev embedding theorem implies that

vz (7, 2) — (7, 2)
it —|*

|uZ(t’ Z) — MZ(‘L" Z)|
|t — |

<C'lv(t,2)], Vi,T,z€R, t#71

< C'|u(t, 2)|,

for some positive constant C’. This yields that, whenever z < —M*, there holds

|MZ(I’Z)_MZ(T’Z)| |UZ(I’Z)_UZ(T’Z)|

<K forallt,r e Rwithr#r. 3.50
T T ez 530

On the other hand, for each fixed ¢ € R, ’'Hopital’s rule gives that

L wtD R N s
z=>=00 A p@i (D]z]erE T 2> —00 Ay p@a (1) |z]et2 '

Since both u; and v, are periodic with ¢ and [0, T'] is compact, (3.49) follows from (3.50)
and (3.51). The proof is completed. O

Summarizing the above results on the exponential decay rate, we finally can state and prove
the uniqueness of the time periodic traveling wave solutions for system (1.1).
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Theorem 3.12. Assume that (HI)—(HS8) are sansﬁed Suppose that w;(t, x) = (u;(t,x - v — ct),
vi(t,x -v—ct)) € Cb1 2(]R x R™) with ¢ < ¢* :== =2/« — k(t) are two time periodic traveling
waves of (1.1) (i =1, 2). Then there exists sy € R such that (uy(t, z), va(t,z)) = (u1(t, z + so),
v1(t,z+80)) forall (t,z) € R x R, where z =x -v — ct.

Proof. The proof is similar to that of Theorem 3.11 in [37], we will give a sketch. Thanks to
Theorems 3.6 and 3.10, there exist two positive constants p; and p; such that

wi(t,z) i Y2

im —— 0 ], c<ct(i=1,2)
2>—00 ;1 (1)ere? i~ =00 P; @y (t)ere?
and

ui(t,z) . vi (1, 2)

m ————— =1, 1m —Azl, c=c"(i=1,2)
z—>—00 ;i1 (t)|z]et+* z—>—00 iy (t)|z]et<

From the same reasoning as shown in Theorem 3.11 of [37], it follows that there exists s such
that (u1(¢t,z+5), v1(¢t, 2+ 5)) > (ux(t, z), v2(t, z)) for all (¢,z) € R x R whenever s > 5. Now
define

= inf{s eR ! (ul(t, z+9), v,z +s)) > (uz(t,z), va(t, z)), V(t,z) eR x R}.

Clearly, s* is bounded. In addition, with the same arguments as that given for Theorem 3.11

in [37] together with Proposition A.5 in Appendix A, we can show that pj ers” = py.
Next define

Sy = sup{s eR } (ul(t, z4+s),vi(t,z+ s)) < (uz(t, 7), va(t, z)), V(t,z) e R x R}.
Clearly, s, is bounded. Indeed, note that
—s, =inf{—s € R | (u2(t, 2 — ), v2(t,2 —8)) = (u1(t,2), v1 (£, 2)), ¥(t,2) €R x R}

By following the same lines, we can conclude that poe "< = p;. It immediately follows that
s* = s4. Therefore, by the definitions of s* and s,, we have

(u1(t, 24 5%), vi(r, 2+ 5%)) = (u2(t, 2), v2(1, 7))
for all (¢, z) € R x R. This completes the proof. O
4. Asymptotic stability of time periodic traveling wave solutions

In this section, we concentrate on the asymptotic stability of time periodic traveling wave
solutions discussed in the previous sections. We thereafter consider

ur=di(t)Au+k(@)-Vu+ f(t,u,v),
vy =dr(t)Av+1(¢) - Vv + g(t,u,v), 4.1)
(u(0, x, up), v(0, x, v9)) = (uo(x), vo(x))
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where (uo(x), vo(x)) € C/(R",R?),0 <6 <1, and (0, 0) < (uo, vo) < (1, 1). Throughout this
section, the assumptions (H1)—(H8) given in Section 2 will remain true. We often denote by
(u(t,x,up), v(t, x,vg)) the solution of (4.1) with positive initial data (uo(x), vo(x)). Assume
that (0, 0) < (ug, vo) < (1, 1). Since (1, 1) is a solution of (4.1), it is easy to show that (0, 0) <
(u(t, x,up), v(t,x,v9)) < (1, 1) for all (¢, x) € RT x R". In what follows, given v € R" with
|[v] =1, a time periodic traveling wave solution to (4.1) will be always denoted by (U (¢, x - v —
ct), W(t,x-v—ct))or (U, W) in short. We shall always assume that (2.9) holds. We will use the
same type of methods as those given in Zhao and Ruan [37] to establish the asymptotic stability
of (U, W) (see also Hamel and Roques [17]).

As before, our main results will be completed through a series of lemmas and propositions.
We will divide our discussion into two cases.

Case I: ¢ < ¢*.

In this case, we let x (s) be a smooth function such that x(s) =1 fors <s; x(s) =0 fors > s,
and 0 < x'(s) and | x| + |x”| < 1, where s and § are fixed constants with s < §.

Fix

k(1))? — 4 —
e (O, - { Ve \/ (c+ kD)) € diDOLfu0.0.0) ~ §,(.0.0)] H @2
2 2d, (1) 2kldi(t) + da(1)]
such that
2 +
B (Ae +€)7d1 (1) + (Ac +€)(c + k(1)) + fu(2,0,0) < ™| . 4.3)
2 2
Set
{ Ec(t,s) = x()e* TN (1) + (1 — x())¥1(0) @
Ge(t,s) = x(9)e*+ B o (1) + (1 — x(5)) 92 (), '
where ¢; (i =1, 2) are given by (2.13) and (2.14), respectively.
We also set
L { S T }
{7 :=min{ min , min . 4.5)
tel0,T]1 Y1 (t) t€[0,T] Yra(t)

Proposition 4.1. Assume that (HI)—(HS) are satisfied. Let (U(t,x -v —ct), W(t,x - v —ct)) be
a traveling wave of (4.1) with ¢ < ¢* such that (U (t, z), W(t, z)) and c solve (2.4). Then

Ult,z) —b&:(t,z2+5) -1

lim sup sup <-1,
500 (1,7)eRXR, £e(0,(+] L1 (2)

0 Wi(t,z) —lsc(t,z+s) — 1

im sup sup 7 < -1
s—00 (1,7)eRxR, £€(0,07] Yo (1)

Proof. The proof is similar to that of Proposition 4.2 in [37] and is omitted here. O
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In the following, we fix so € R such that

U(t,s) — LE(t, -1 _ ¢
sup (t,s) Ec(t,s +50) <—— forallte (Q, ["] (4.6)
(t,5)€ERxR Y1 (1) 2
and
W(t,s) — Lee(t, -1 _ ¢
sup STt =L L e (0,6, (4.7)
(t,5)eERxR ¥a(t) 2

Lemma 4.2. Suppose that (HI)—(HS8) are satisfied. Let (U(t,x -v —ct), W(t,x - v — ct)) be
a traveling wave of (4.1) with ¢ < ¢* such that (U(t,z), W(t,z)) and c solve (2.4). Let €, B,
0T, and so be given by (4.2), (4.3), (4.5), and (4.6), respectively. Then there exists 8. € (0, £™]
such that for each zp € R and each o > 1/8, (u*(t,x), vE(, x)) are respectively the super- and
sub-solutions of (4.1) in RT x R" whenever § € (0, §.]. Here

ui(t,x) = U(t,x -V —ct —|—sz:0(1 —e_ﬁt))
+8&(t,x-v—ct+zo+soEto(l— e_ﬁ’))e_ﬂt,
vE(t, x) = W(t,x R ia(l — e_ﬂ’))

+8¢e(t,x-v—ct+zo+soto(l —e_ﬂ’))e_'g’.

Proof. We will only show that u™ is a super-solution of (4.1), the other cases can be proved
similarly. Throughout the proof, we always let 7/ =x - v —ct +z9 + 5o + o (1 — e Pt and
z=x-v—ct+zo+o(l—e B A straightforward calculation shows that

ftu™ v+ k@) - Vut +di(0)Au™ —uf
=f(t, Ut 2) +e P1og.(t,2), W(t,2) + e P18 (t,7)))
— f(t, U, 2), W(t, 2)) +8e P! B&c(1, 7))

o+ e—ﬂf(s{%‘ﬁuz + xe* O [(d (1) (e + €)% + (c + k(D)) e + €)1 — ¢]]

— (=¥ +r1(r, z/)}
— e P f1(1, DE1, ) + ot Dt + BE, 2)]

+ e_ﬂt8{%"BUZ — xe® O £,(1,0,0001 + £,(1,0,0)¢2 + 281 ]

U=y ) z’)}
= e‘ﬂfa{ %"gUz +e® ety [(fi = ful1,0,0))¢1 + (f2 — fo(2,0,0))p2 — 1]

+r1(,2) + (= 0[(fi = fult, LD)Y1 + (f2 = fot, 1, D)2 4 Ty +ﬁ1ﬁ1]},
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where

ri(t.2) =" Ok x + i O[x" +2x' Qe+ )] + X [c — oBe P']}

+ Y1 O[x (0B =) —k(t)x' —di(0)x"] — eV h1 (1) (ke + €) xoBe ",
1

fi=fi(t,z.2) :/[fu(f U(t,2) +t86c(1,2)e P, W(t,2) + tése(1.2')e ™) ]dr,

1
fr=fltz,7) f folt, U, 2) +T8E.(t,2)e P, W(t,2) + t85c(t, 7 )e F")]dx.
0

Likewise, we have

g(r,ut, v +10) - Vot + o) Av — o
=g(t,Ut,2) +e P18E.(1,2)), W(t, 2) + e P8gc(t, 7))

— (1. U(t,2). W(t,2)) +8e P Boc(1.2) +e_ﬁt5{%‘ﬁWZ

+xe®H (a0 e + €)% + (¢ + 1)) e + €)) 2 — B3] — (1 = OV} + 11, Z’)}

= e P8[g1(t, &1, ) + &2, Dse (1,7) + Boe(t, )] + e-m(;{%‘ﬁwz

— xe* T, (t,0,0)1 + gu(1,0,00¢2 +2B¢2] — (1 — )¥| +ra(t. z/)}

= e_ﬁta{%"BWz + e(kc"'e)z/)( [(g1 — gu(t,0, O))¢1 + (gz — gv(1,0, 0))‘152 — ,3¢2]

+r2(r,2) + (1= 0[(g1 — gu(t. 1, D) Y1 + (g2 — &t 1, D)V + Ty +ﬁlﬂ2]},
where

ra(t.2) = e T g1 ' + ) [x" +2x O + O] + x'[c —ope ']}

+ )X (6Be™ =) — 1) x' — da(t)x"] = e*FO7 o (1) (Ao + €) x o Be™ P,
1

gr=g1(t.z.7) :/[gu(f Ut,2) +88c(1, )™, Wt 2) + wée (1, 2')e ™) Jdr,

1
=g 27) f gu(t, U(t, 2) + t88.(t,2)e™ ", W(r,z,)+r3gc(r,z/)e—5’)]dr.
0
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Now denote

AL = |f1 - fu(t’0’0)| + }f2 - fv(t’o’o)‘ + ‘gl _gu(t’o’o)‘ + ‘gZ _gv(t’o’o) )
Ar=|fi— fut. L,D|+|fo— fuolt, 1, D|+ |g1 — gu(t, L, D] + g2 — g2, 1, D).

Notice that

im A; =0 uniformly int, AR <K[(U =D+ W =D +8(lyll + lIy2l)],

where K > 0 depends only upon 4max(r,u,v)e]R><[-2,2]2{|fuu|’ | fouls | fuvls 18uuls 18vol, 18uvl}-

Consequently, there exists M > 0 sufficiently large and 8° > 0 such that —M < s and M > 5,
80 <¢*, and

AL (g1l + gal) < & min{mingy, ming, | forall (1, 2) € R x (—00, —M],

ARl + l1y2ll) <

R ™

min{mtin v, mtin zﬂg} forall (r,z) e R x [M, —00).

As a result, with 0 < § < 8% and o > 0, we have

U :
f(t,u™ v+ k@) - Vut +di()Aut —uf < e_ﬂtcSa,B{—?Z — P ITp (0 + e)x} <0,

w. :
g(t,ut o) +10) - Vot +da() AvT — v} < e—ﬂf(sms{—TZ — %I p (Ao + e)x} <0

forall (7,z) € R x (—o0, M]. We have

fltout vt + k@) - Vut +di()AuT —ut < —ePopU, <0,
gt u™ ) +10) - VT + o) Avt —vf < —e PlopW, <0

for all (z,z) e R x [M, 00).
Let

1 /
Ac = E{e“ﬁf)z [AL(lgill+ Ig20) + Ar (Il + w2 l)] + [r1 (2. 2) | + |22, 2) [}

Choose o > %, then it is easy to see that

Ac = e*FI AL (1911 + 1d2l) + AR (1Yl + I1W21)] + (I + N2 [(1KI -+ 120 x|
+ (ldall + lldall) (|| + X[ @R +2€ + ¢ + 1) + x| (e + €)]
+ (Il + w2 [ [+ D+ (KT 120 x|+ (i + a2 1) [ x]]}-

Then, for all (¢, z) € R x [-M, M], it follows that
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+ ot + v+ < Bt U,
f(t,u , U )—l—k(t).Vu +di(t)Au" —u; <e " dof —?+AC
+ + +_ o+ Bt W,
g(t,u , U )—H(t)-Vv +do(t)AvT — v <e " S0P _T—i_AC .

Since (U;, W;) > (0,0), there exists y > 0 for which y < min{infy; ;erx[—m, Uz,
inf(; ;)erx[—m,m) W;}. Notice that 7’ = z + 50 and it is easy to see that sup, ,)crsx[—p.p] Ac 18
finite. Now set §,. = min{SO, s }. Then, as long as § € (0, §.], we have

> SUPy yeRx[—M,M] AC

f(e,u® o) + k@) - Vut +di(0) dut —uf <0,
gt,u™ v +1(0) - Vot +dh () AvT — v <0

for all (¢, z) € R x [-M, M]. This completes the proof. O
In what follows, if ¢ < ¢*, we set
uf(t,x,z()) = U(t,x -v—ct+2z0+ :|:G(1 —e_ﬁ’))
+ SCSC(t,x v —ct+2z0+ 50 :I:a(l — e_ﬂt))e_ﬁt,
vE(t, x,20) = W(t,x-v—ct+zoto(l- e_ﬂt))
+8cse(t,x-v—ct+zo+soEto(l— e_ﬂt))e_ﬂ’.

Lemma 4.3. Suppose that (HI)—(HS8) are satisfied. Assume that

uog(x) ) vo(x)
1 —_—— =1, 1 —_— =
xw==00 kepy (0)ehe(x+V) xu==00 kg (0)ehe(x+V)

for some positive constant k. Furthermore, assume that
liminf(u(x) — 1) = —go,  liminf(vo(x) — 1) = —&9
for some ¢ € [0, 2‘%). Then there exist zo € R, o, > 1, and t. > 0 such that
(uy (t,x,20), v (t,x,20)) < (u(t, x, u0), v(t, x,v0)) < (u (r,x,20), v (t, x, 20))
forall (t,x) € [t.,o0) x R" and o > o,.

Proof. The proof is the same as that of Lemma 4.7 given below. We omit it and refer to
Lemma 4.7 for details. O

Lemma 4.4. Suppose that all the assumptions given in Lemma 4.3 are satisfied. Let (U, W) €

C;’Z(R x R) and ¢ solve (2.4) with ¢ < c*. Let € be given by (4.2). Let zy be the number for
which

U, x -v+2z0) . WO, x-v+z0)
m =1, lim =
xv=>=00 ke (0)ets () xv=>—00 kg (0)er+ ()
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Then for each n > 0, there exist 0, € R and D,, > 0 such that

U(t,x -v—ct —n) — Dyp1(t)ePTOCV=D <yt x up),

W(t, x-v—ct —n) = Dyga(t)e* =N < (1, x, 1),

and

u(t,x,u0) <U(t,x - v—ct +n)+ Dy (t)ereFTOEV=ch,

v(t,x,v9) <W(t,x-v—ct+n)+ Dngoz(t)e()‘”+€)(x'”_Ct)
forall (t,x) € {(t,x) eERT x R" | x - v —ct <6}
Proof. The proof is similar to that of Lemma 4.8 given later and is omitted here. O

Case II: ¢ = c*.

Fix
€' e (0, min{k—*, ful@,0, O)Ma’l ® }] (4.8)
4 2kldi (t) + dy (1)]
such that
_l’_
im e (ot €) =di0) i+ &)+ [ + KO €7) 4 200,00 = HL 49)

where A« (Ay + €*) > 0 is given by (3.33). Let

| : 2 N %)
§ = — In{ min{ min —, min — ¢ |,
€* tpr ot

where ¢; (i = 1,2) are given by (3.30) and (3.31), and ¢; (i = 1,2) are given by (3.34)
and (3.35). Clearly,

1 — @ef*s >0, 1— @ee*s >0 forall (¢,5) € R x (—00, §].
?1 ©2

Now let x (s) be a smooth function such that x(s) =1 for s <s; x(s) =0 for s > 5, and
0<yx'(s)and |x'| + |x”| <1, where s is a fixed constant with s < 5. Set

G1(1) g
—e
@1(1)

| G2(1) xg
———e
@2(1)

Ec(t, s) =x(s>ek*sgol<t)[1 - ]+ (1= x®))¥1 (),

(4.10)

Si(t,8) = X(S)ek*sfpz(t)[ } + (1= x ()2 (0).
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Proposition 4.5. Assume that (HI)—(HS8) are satisfied. Let (U(t,x -v —ct), W(t,x -v —ct)) be
a traveling wave of (4.1) with ¢ = ¢* such that (U (t, z), W(t, 2)) and c solve (2.4). Then

U(t,z) — L& (t,z+s5)—1 -

lim sup sup <-1, (4.11)
500 (1,7)eRxR, £e(0,6+] Ly (1)
W(t,z2) — ekt —1
lim sup sup ¢.2) = Lotz +5) <-1. (4.12)
500 (1,7)eRxR, £e(0,+] Eya (1)

Proof. Notice that both &, and ¢, are nonnegative. Hence by arguing in a manner similar to that
of Proposition 4.1 or Proposition 4.2 in [37], we obtained the estimates. O

In what follows, we fix 5o € R such that

U(t,s) — L&, -1 _ ¢
sup ( S) S*( s+ SO) <= forall £ (0, g‘*‘] (413)
(t,5)eRxR Wl ) 2
and
W t, - g ta - 1 E
sup (7, 5) — £« (t, s + 50) <—- forallte(0,€%]. (4.14)
(t.9)eRxR Ya(t) 2

Lemma 4.6. Suppose that (HI)—(HS8) are satisfied. Let (U(t,x -v —ct), W(t,x -v —ct)) be a
traveling wave of (4.1) with ¢ = ¢* such that (U(t,z), W(t,z)) and c* solve (2.4). Let €*, B,
0%, and sg be given by (4.8), (4.9), (4.5), and (4.13), respectively. Then there exists §* € (0, £71]
such that for each zo € R and each o > 1/B, (u™(t, x), vE(t, x)) are respectively the super- and
sub-solutions of (4.1) in Rt x R" whenever § € (0, §*]. Here
ut(t,x) = U(t,x-v—c't+zoto(l - e_ﬁ’))
+ 85*(I,x v—c*t+z0+s0E 0(1 — e_ﬁt))e_ﬁt,
vE(t, x) = W(t, x-v—ct+zoto(l- e_ﬂt))
+ Sg*(t,x v—c*t+z0+50E 0(1 — e_ﬁt))e_ﬁt.
Proof. The proof is similar to the proof of Lemma 4.2. We will give a sketch. Once again we
only show that ™ is a super-solution of (4.1), the other case can be proved similarly. Set 7/ =
x-v—c*t4+z0+s0o+0(l—ePyand z=x-v—c*t +z0 + o (1 — e P"). A straightforward
calculation yields that
ftu™ o)+ k@) - Vut +di@)Aut —uf
= f(t. U@t ) +e P"8E(1.2), W(t, 2) + e P'86.(t.2)) = f(1.U(t,2), W(t,2))
—0 /
+8e P BEL(1, ) + e_ﬁté{T'BUz + x e [(diOA + (¢ + k@) M) o1 — ¢f ]

— x et [(dy (1) (he + E*)z + (¢*+ k(D) (A + €)1 — 1] — A= 091 + 11 (2, Z/)}
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=e P18 fi(t. DEt, D) + ot 2)6u(1.7) + BE(2, 2)]

—0 /
+ e_ﬂta{TlBUz + XeA*Z [_fu(t, Oa O)gol - fv(t, Oa 0)()02]

— xePHOT [ £(2,0,00¢1 — £o(,0,0)¢2 + Bep1] — (1 — )| +r(t, z’)}

:e—ﬂfa{%‘ﬂUz + e X [(fi = £u(,0,00)01 + (f2 = fu(2,0,0))02 + Boi]

— WA (fi = fu(1,0,00)¢1 + (f2 — fo(2,0,0))p2 +2861] +r1(1,2)
+ (1= 0[(fi = fult, LD)Y1 + (o = Folt, 1, D)2+ oy +ﬁ¢1]},

where

r(t,2) = ok x' +di @[ x" +2x' 0] + 1 [¢* — ape ]}
- e(k*ﬂ*)zlfbl(t){k(f)x/ +diO[x" +2x M+ )]+ x'[¢" - a,Be‘ﬂf]}
+ 10X (0Be™P = c*) —k@)x' — di(®)x"]
— xoBe P [y (t)hs — €7 1 (1) (M + €7)].

fr= A7) = [ Lt U2 + 108 (0. 2)e ™ W, 2) + 786, (1,2 )e ™),

S—__

fo= ol ) = [LAlr. U2+ 086, (1.2)e ™, Wi, + 86, (1. 2)e ) .

S _

Likewise, we have

g(t, ut, v+) +1(2) - Vot +da(t) AvT — v;r
=g(t, Ut ) +e P8E(t,2), W(t,2) + e P'86,(t,2)) — g(t, Ut 2), W(t,2))

+8e 7P Bo.(1.2) + e { _gﬁ‘ We+ x ™ [(da023 + (€ +10)) ) 02 — 03]

— xe* T (o (1) (s + € 4 (¢ +1®)) (hs +€%)) 2 — 93] — (1 — )¥] + (1, Z/)}
= e P'8[g1(t, &1, 2) + g2(t, D) (1. 2') + Bsu(t,2)]

—0 ’
+ e_ﬂta { TﬁWZ + )(e)bkZ [_gu (t7 07 O)(pl - gU (t’ 0’ O)@Z]

— 2O [—gu(t, 0,061 — gu(1, 0,002 + Ba] = (1 = )V} + 2, z/)}
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— e_'BtcS{T'BW +eM x[ (g1 — gu(1,0,0))01 + (g2 — fu(1,0,0))92 + B2 ]

— Ty (g1 — gu(2,0,0))¢1 + (g2 — u (1, 0,0))p2 +28¢2] + 12 (1. 2)

+ (1= 0[(g1 — gu @, L D)Y1 + (g2 — 8o, 1, D)Y2 + 2 + ﬂwz]},
where

ra(t,2) = o[l )+ da[x” + 2% 4] + 1 [¢* — ape™P]}
— e F O L X + drO[x” 42X (e + )]+ 1 [¢F — ope 1]}
+ 920 [x (oBe™ P = c*) —1(t) X — da(t) x"]
— xoBe P [pa(D)h — € (1) (e + €],

sr=81(t.2.7') = [ [gu(t. Ut 2) + 788 (1.2)e ™ W2, 2) + 7864 (1. ')e ™) Jdr.

SY— _

=2(t2.) = [ [0 U0+ 006, (1. )e P Wit 2) + 15,1, )e )

SY— _

In terms of Corollary 3.11, if z < 0 and |z]| is sufficiently large, then U, > )‘*Tp |z|le*% and W, >

}‘*Tp |z|e*** for some p > 0. Recall z’ = z + s9. The rest of the proof follows by using the same
arguments as that in the proof of Lemma 4.2. The proof is completed. O

In what follows, we set

u(t,x,20) =U(t,x-v—c*t+zo£o(l —e?))
1-

(
)

+ 8 cu(t,x v —ct+z0+sota(l—eP))eP

+4 S*(t x-v—c't4+zo+soLo

et

vE(t, x,20) = W(t,x v—ct+zoto(l—e” pt

Lemma 4.7. Suppose that (HI)—(HS8) are satisfied. Assume that

uog(x) _ ) vo(x) _
xv=>—00 kg (0)|x - v]er=Crv) xv—>=00 kgpp(0)]x - v|erxV)

for some positive constant k. Furthermore, assume that

liminf(ug(x) — 1) > —go,  liminf(vo(x) — 1) > —go
X-V

X-V—=>00 — 00

for some gq € [0, 2‘%). Then there exist zo € R, o™ > 1, and t, > 0 such that
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(g (2, x,20), vy (2, x,20)) < (u(t, x, u0), v(t, x,v0)) < (u (r,x,20), v (r,x,20))
for all (t,x) € [ty,0) Xx R" and o > o*.

Proof. Let the operator A(z) : D(A(t)) C Xo — Xo with D(A(¢)) = X be defined by

di(t) Au +K(1) - Vu 0
A(t)() ( 0 dz(t)Av—H(t)-Vv)’

where Xo = BUC(R",R?) and X1 = {(}) € )= WIOP(R” R?), (4),A®) () € Xo}. Let
G(t, s)s<; be the evolution operator for the family .A(z), then we have

t
v(t, x, vo) vo g(s u, v)
0

As (u(t, x,uq), v(t, x, vg)) is bounded, it follows that

. u(t,-,upg) —u
lim ( 0) ~uo 0.
—0|| \ v(t, -, vg) — Vo Xo
In view of assumption, there exists & > 0 for which agg < 2 3¢T - Since

llmmf(u(t X,up) — 1) > hmlnf(u(t X,up) — uo(x)) + hmmf(uo(x) — 1)

X-V—>00

and

hmmf(v(t X,v0) — 1) > 11m1nf(v(t X, v0) — vo(x)) + hmmf(vo(x) — 1)

X V—>00

there exists .. such that

t P} 9 - 1 _
liminf inf 40X 40) > —ttasge P,
X-v—>00 | teR lﬂl(t)

fox.v0) — 1
liminf] jnf 2 0)

x-v—)oo{te]R Yo (t)
Consequently, (4.13) and (4.14) imply that

} > —0tagge P,

U(t,s) — 8*&.(t, —Bt _ 1 fe, X, up) — 1
sup 8 Z 85+ so)e <liminf{inf Ut X, 4o) } (4.15)
(t,5)eRxR Y1() xv—>00 | reR Y1(2)
and
W(t,s) —8*ci(t, —Bt _ 1 fe, x,v0) — 1
sup Y (E8) =760, s + So)e <liminf{inf vt X, Vo) } (4.16)
(t,5)eRxR Yo (1) xv—>00 | reR Y2 (1)
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Now in view of Theorem 3.10, we can fix zg € R such that

U, x-v+z0) . WO, x - v+ z0)

1m =
xv==00 kg (0)]x - v]ehr()

b

. i)nl . Ae(xov)
xv—>—00 kg (0)|x - v]e

Notice that such a zq is uniquely determined by k. We next show that there exists o* > 1 for
which

u, (ts, x,20) <u(ty,x,up) whenever o >o".

Assume to the contrary that this is not true, then there exist two sequences {x,} and {o,} such
that

o, —> 00 asm— 00, and u;”(t*,xn,z())>u(t*,xn,u0). 4.17)

Let 2, = Xxp - v — ¢*tx + 20 — 0, (1 — e P%). Note that u ™ (tx, Xn, 20) = U (t, 2n) — 8 Ex(ts, 7 +
so)e P Up to extraction of a subsequence of {z,}, two cases may occur: either lim,_, o 2, =
—o0 or {z,} is bounded from below. If {z,,} is bounded from below, then x,, - v — o0 as n — oo.
In case that lim,,_, o, 7z, = —00, we need to consider two possibilities: either {x, - v} is bounded
or {x, - v} is unbounded. We shall focus on the possibility that {x, - v} is bounded since by
utilizing (4.15) and (4.16) we can follow the same lines as those of Lemma 4.4 of [37] to reach
a contradiction provided that {x,, - v} is unbounded.

Suppose that {x, - v} is bounded, then either {x,} is unbounded or bounded. If {x,} is un-
bounded, let y, = (x, - v)v and s, = =2, Note that s, T - v = 0. Now set (u, (1, x), v, (, x)) =
(u(t,x +s,T,up),v(t,x +s,T,vg)). Clearly, for each n, (u,(t,x), v,(t, x)) is also a solution
of (4.1) with (u,(0, x), v,(0,x)) = (uo(x +s,T), vo(x +5,7T)).

Recall y, is bounded, there exists R > 0 sufficiently large so that |y, | < % In particular, by

virtue of assumption, we may choose R > 0 such that (ug(x’ +s,7T), vo(x' +5,T)) > 1_280 (1,1)
for some x’ € {x e R" : |x| < g}. Due to the regularity of (u,(t, x), v, (¢, x)), up to extraction
of a subsequence, (u,(t, x), v, (¢, x)) converges uniformly on [0, z,, + 1] x Bg(x) to a function
(Uoo(t, X), Voo (2, X)), Where Br(x) = {x € R"” : |x| < R}. By passing the limits in (4.1), we find
that (ueo (7, X), Voo (2, X)) satisfies (4.1)in 10, , + 1[ X Bg(x). Here Bg(x) = {|x| < £}. More-
over, it is easy to see that (Uso (£, X), Voo (f, X)) > (0,0) forall (r,x) € [0, ¢, + 1] x {|x| = R and
(Uo0(0,X), V50 (0, x)) > (0,0) forx € B R (x). Hence, the comparison principle implies that

(o0 (t4, X), Voo (4, X)) > (0,0)  for all x € B (x).
On the other hand, if (4.17) is true, then

0= lim Ug (ts, Xp, 20) = 1im u(ty, Xy, uo) = Im uy, (ty, yn) = oo (t, Yoo) > 0,
n—oo " n—o00 n—o0

where y~o = lim,,_, » y,. This forces that us(t«, yoo) = 0, which is a contradiction since

Yoo € B & (x) and u (4, Yoo) > 0. If {x,} is bounded, the continuity of u(¢, x, ug) yields

0= lim u;n (ts, Xn, 20) = im u(ty, Xp, uo) = u(ts, X0, o) >0,
n—>00 n—00
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where xoo = lim;,_, 5 X;,. Thus, u(t,, xo0, ug) = 0, which contradicts the fact that u (7., x, ug) > 0.
Therefore, we readily conclude that u (2., x, z0) < u(tx, x, ug) if o > o for some o1 > 1. Like-
wise, we can show that v (t, x, z0) < v(#«, x, ug) if 0 > o2 for some o, > 1. Furthermore, by
using the same arguments as those given in the proof of Lemma 4.4 of [37], we can show that
there exist o3 > 1 and o4 > 1 such that

ul (te, x,20) > u(ty, x,up) if o > o3, vl (te, X, 20) = v(ty, x,v0) provided o > oy.

Now choose 0* = max|<;<4{0;}. Clearly

(g (s, X, 20), vy (1, X, 20)) < (U, X, 10), V(ty, x, u0)) < (uf (4, x, 20), v (14, x, 20))

for all o > o* Notice that (u_ (4, x,z20),v, (tx,x,20)) < (1,1) and (u;;(t*, X,20),
vt (., x,20)) > (0,0). The conclusion follows from Proposition A.3 in Appendix A. The proof
is completed. O

Lemma 4.8. Suppose that all the assumptions of Lemma 4.7 are satisfied. Let (U, W) €
C;’Z(R x R) and c solve (2.4) with ¢ = c*. Let €* be given by (4.8). Let zo be the number
for which

. UQO,x-v+2z9) . W@, x-v+2z9)
lim =1, lim =1.
xv—=00 kg1 (0)|z]eh ) xv=>=00 kgy (0)|z] e X v)

Then for each 1 > 0, there exist 6, < ei* In(min{min, %, min; %}) and D,, > 0 such that

¢1(7) ee*(x~v—c*t)

U(t,x - v—c*t—n)—D e)‘*(x'”_c*t)gol(t)(l —
( )= Dn ¢1(1)

) <u(t,x,ugy), (4.18)

£ t * *
W(t,x v — ¥t — 77) — D,,e)‘*(x"’_C t)goz(t)(l — ¢2—8e6 (x-v—c I)) <v(t,x,vg), (4.19)
©2

and

k t * k
u(t, x,u0) SU(t,x-v—c*t4n) + Dyt %l(r)(l - zi—ﬁt;eé v ”), (4.20)

* t * *
v(t, x,00) < W(t,x - v —c*t +n) 4 Dyel+ ¢ ”m(r)(l - ¢2—8e6 (e ”) 421
%)

forall (t,x) € {(t,x) e RT x R" | x - v — c*r <0,}.
Proof. We first chose z,. < 0 such that

G1(1) o,
e

1 — max ——

1
> — ] —max ——¢° * >
toi(t) 2

for all z € (—o0, z4].

Again assume without loss of generality that zo = 0. It follows from the monotonicity of
(U, -), W(, -)) and the assumptions that



1128 G. Zhao, S. Ruan / J. Differential Equations 257 (2014) 1078—1147

) U@, x-v—n) . W(@O,x-v—n)
lim <1, lim < 1.
Xv—>—00 up(x) X-v—>—00 vo(x)

Thus, (U0, x - v —mn), W(0,x - v —1n)) < (uo(x), vo(x)) for x - v < —M, where M > 0 is suf-
ficiently large. Since min{infy.,>_ps uo(x), inf,.,>_p vo(x)} > 0, there exists Do(n) > 1 such
that

U@O,x-v—1n)— ﬁo(n)ek*“'%l(())(l - Meé*‘@"’)) < up(x),
01(0)

WO, x-v— 1) — ﬁo(n)ek*(x'”)tpz(())(l - ‘”—Qef*(“)) < wo(x)
©2(0)

as long as x - v < z,. By virtue of Theorem 3.10, there exist p > 0 and z < z, for which

U(t,2)| < |z|ek*%ol<t), (W(t,2)| < IZlek*Zm(t)-

~  min{min; ¢, min; ¢}
Set m = max; (¢1+¢2)
10, 1[ such that

and m, = min{min; ¢1, min; ¢}. As f, g € CY2 there exists ¢ €

Tb

| fu(t,u,0) = fu(2,0,0)] + | fu(t, u,v) — f,(2,0,0)| <

Tb

| u(t, 1, v) — g4 (2,0,0)| + | gu(t, u, v) — gu(t,0,0)| <

whenever |u| + |v| < &, and there exists K > 0 such that
| fult,u,0) = fu(2,0,0)| + | fut, u,v) = f,(2,0,0)] < K |u| + [v],
|gu(t7us v) _gu(tsoa O)| + |gv(t»1/h U) _gv(t, 0’ 0)| S K|l/l| + |U|

whenever |u| + |v| < 1. Let m* = max,(¢1 + ¢2), and chose z,, < z with |z,| sufficiently large
such that |z,| > Do (1), and

3 3
2|z|m*<7p +2( 2’) n 1))&*Z <e,
3 3 *
2K|z|(m*)2(7p —|—2<7'0 + 1))6()‘*_6 )7 < mT*ﬁ for all z < z,.

Let l§,, =2(35 + 1)z, and define

Y * t * *
uy(t,x) = U(t, X-v—c't— 77) — Dne’\*(x'”_c t)wl(t)(l — —¢1Et; g€ (xv—c t)),
®1

¢2(t) ee*(x-v—c*z))
@2(1)

It is clear that (u,(f,x), v,(t,x)) < (0,0) for all (¢,x) € {x - v — c*t =z}, and (u, (¢, x),
vp(t,x)) < (1,1) for all (#,x) € {x - v —c*t < z,}. As (u(t, x, up), v(t, x,vp)) > (0, 0) for all

vy (1, x) = W(t, x-v—c*t— r)) — ﬁnex*(x'”_"*’)wz(t)o —
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(t,x) e RT x R", and D, > Do (), it follows that (i, (7, x), v, (t, x)) < (u(t, x, ug), v(z, x, vo))
forall (f,x)e{t=0, x-v=<z,}U{t >0, x-v—c*t =z,}. In addition, whenever (z, x) €
{x - v—c*t <zp}, we find

S uy,vy) +K@) - Vu, + d () Auy — (uy);
1

= lA)ne)‘*Z{/[fu(t,O, 0) — fult, suy + (1 — U, svy+ (1 —s)W)ds]e1
0
1
+/[fv(t,0, 0) — fu(t, suy+ (1 —s)U, svy + (1 —s)W)ds]gaz}
0

1
+z§,,e<k*+f*>Z{/[fu(r,su,, + (1 =5)U, svy+ (1 — )W) — £, (¢,0,0)ds ¢y
0

_|_

S—__

[fo(t, suy + (1 —)U, svy+ (1 — )W) — fo(£,0,0)ds]¢r + ,3¢1}

2 2

~ " 3 3 i}
= Dyele e [m—;ﬁ - 2Klzl(m*)2<7p + 2(7’) + 1)>e@*—6 >Z]

A 3 3 '
> Dn[—zmzl(m*)z(?p + 2(—” + 1))2**Z + eheter) —m*ﬂ]

> 0.

Similarly, we have

guy, vy) +1(t) - Vv, +da (1) Avy — (vy);

1
= ﬁnek*z{f[gu(t, 0,0) — gu(t, suy+ (1 =s)U, sv, + (1 — s)W)ds]gol
0
1
+ /[gu(t, 0,0) — gv(t, sup+ (1 —=s)U,sv, + (1 — s)W)ds]gog}
0
1
+ bneu*+e*>z{/[gu (t,sup + (1 —5)U, sv; + (1 — )W) — g,(2,0,0)ds ] ¢
0

1
+ /[gv(t, sup+ (1 —s)U, svy + (1 —s)W) — g,(¢,0,0)ds][¢2 + ﬁ@]}
0

> 0.
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Now let I' = {(t,x) |t > 0, x - v — ¢*t < z,}. Obviously I" is an open connected subset of
Rt x R", and I ={(t,x) |t =0, x v <z, U{(t,x) |t >0, x - v — ¢*t = z,}. Thus, it
follows from Proposition A.3 that

(y (2, ), vy (2, X)) < (ult, x,u0), v(t,x,v0)) forall (r,x) € {(t,x)|t=0, x-v—c*t <z,}.

Nogv what is left is to establish (4.20) and (4.21). Analogously, it can be shown that there
exist D, > 0 and z" € R for which (u(t, x, ug), v(t, x, vo)) < (u"(z, x), v"(¢, x)) for all (¢, x) €
{(t,x) |t >0, x-v—c*t <z7"}. Here

v * t * *
un(t, X) — U(t, X-v— C*l, + 77) + Dne)\.*(x-v—c t)(Pl(f)(l _ ¢1_Et;e€ (x-v—c t)>’
@1

N * t * ES
v(t, x) = W(t,x v —c*t+ n) + Dne)“*(x"’—c 0(02(1)(1 _ ¢2§t; &€ (x-v—c t)).
¥2

Set D, = max{ﬁ,,, lv),,} and 0, = min{z,, z"}. Then (4.18), (4.19); (4.20), and (4.21) hold for all
(t,x)ef{(t,x)|t>0, x-v—c*t <6,}. The proof is completed. O

Lemma 4.9. Suppose that (Hl)—-(HS) are satisfied. Assume that (U, W) € C g’z(R x R) and ¢
solve (2.4) with ¢ < c*. Assume that (u(t,x), v(t, x)) € C}l’z(]R x R™) solves the first and second

equations of (4.1) for all (¢, x) € R x R" and satisfies that
(U(t,z-l—Zo + o), W(t,z+zo+cg))
<(u@t,x),vt,x)) < (Ut,z+z20+ ), W(t,z+ 20+ d))

for certain constants o, ® and zo with o <0 < and zp € R, where z =x - v — ct. In addition,
assume that for each n > 0, there exist 6, € R and D), € R such that
U(t,x - v —ct +2z0 —n) — Dygetetelev=c)
<u(t,x) <U(t,x -v—ct+2z0+n) + DygreetOEv=c)
W(t,x - v —ct+z0— 1) — DygpeteTOCv=c)

<v(t,x) S W(t,x v —ct +20+ 1) + DygpetetIEv=ed

forall (t,x) e {(t,x) | x-v—ct <0y} provided that c < c*. In case that c = c*, suppose that

¥1

<u(t,x)<Ut,z+z0+n) + D,,(plex*z<1 - ﬂef*z)
?1

W(t,z4+2z0—1n) — Dn§02€)h*z<1 — @ee*z)
¥2

<v(t,x) <W(t,z+z0+n) + anzek*z(l — @ee*z>
¥2
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forall (t,x) e {(t,x)|x-v—c*t <6,} provided that c = c*, where z =x - v — c*t. Then

(u(t,x), v(t,x)) = (U(t,x -v—ct+2z9), W(t,x-v—ct —I—z()))

forall (t,x) e R x R"™.

Proof. We only give a proof for the case of ¢ = ¢* since the other can be proved similarly. The
proof will be divided into a few steps. Once again we assume without loss of generality that
70 =0.

Step 1. Define

_ u(t,x) U(t,x-v—c*t+n) n
n._mf{ne[O,oo) | (v(t’x)> < <W(I’x.v_c*t+n)), V(t,x) eR x R }

Clearly, 1 1s bounded and satisfies 0 < < w since (U (¢, -), W (¢, -)) is monotonically increasing.
To complete the proof, we need to show that 7 = 0. Assume to the contrary that 7 > 0. Then, we
first claim that there exists 8 € (—oo, 6] such that

2

(u(t, x), v(t, x)) < (U(r,x v—c*t+ g) W(;,x v —c*t 4 g)) (4.22)

for all (z,x) € {x - v — ¢*t < 0}. Assume this is not true, then there exist two sequences such
that

lim x;-v—c*ty =—00 and
k— 00
« ] . n
(i, xi), v(t, x0)) > | U te, xic - v — ¢ tk+§ , W tk,xk'V—ka‘i‘a .

On the other hand, Theorem 3.10 shows that

Ut 2+ )+ Dygr ()3 [1 — St etete]

lim — <1
k=00 Utk, 2+ 3)
and
Wt 2+ 3) + Diga ()4 [1 — g5 eltenn]
lim 4 _ <1,
k=00 W(tr, 2k + 3)

where z; = xi - v — ¢*t¢. It then follows from the assumption that

(utr, xk), v, xx)) < (U(tk,xzc V=Tt + g) W<tk,Xk V=t + g))

whenever x; - v — ¢*;, < 6’ for some 6’ < 6. This is a contradiction. Thus, (4.22) holds.
4
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Step 2. In this step, we show that

inf U(t,x-v—c*t—|—ﬁ)—u(t,x)>0,

f<x-v—c*t<0

inf ~ W(t,x-v—c*t+7)—v(t,x)>0 (4.23)

f<x-v—c*t<0

for any 6 > 6. We only prove the first inequality of (4.23) since the second can be proved in ex-
actly the same way. Assume to the contrary that infg<y.,_c+ < U(t, x - v —c*t+17) —u(t,x) =0.
Then there exist two sequences {f;} and {x;} such that

0<xp-v—c'u <0 and lim [U(t,xk-v—c*tk—l-ﬁ) —u(tk,xk)] =0.

k— 00

To reach a contradiction, we need to consider several scenarios, i.e., (a) {f;} is unbounded;
(b) {tx} is bounded while {x;} is unbounded, (c) both {#;} and {x;} are bounded. We only deal
with the case (a), the others can be treated similarly. If {#;} is unbounded, upon an extraction of a
subsequence, we may assume that f; — oo as k — oo. Hence, there exists a sequence { ji} with
jk € NT such that limg o jx = 00 and #; € [k T, (jx + 1)T]. Now let 1y =ty — jix T . Clearly,
7 € [0, T]. We also write zx = x; - v —c* jx T — c*tx. Since z; and 1 are bounded, x; - v —c* i T
must be bounded. We then set
Xk — Yk

ykz(xk-v—c*jkT)v, Sk = T

Notice that

Tsk.v:(xk_yk).v:xk-v—(xk~v—c*jkT)v-Uzc*jkT.
Thus,

zk:xk-v—c*tkzyk-v—c*tk+T(sk-v—c*jk)zyk-v—c*tk.

Note that § < zx <6, and both y; € R" and t; € [0, T'] are bounded. Thus, up to an extraction of
subsequence, we may assume that there exist constants zoo € [0, 0], Yoo € R", and 7, € [0, T]
for which

im z; = Zeo, lim y; = yoo, lim 7 = 7.
k—00 k—00 k— 00

Now we set

(ur(t,x), ve(t, x)) = (u@ + jiT,x +sT), vt + jx T, x + ¢ T)).

Since both f and g are periodic in ¢ with the period T, (ux(t,x), vi(¢, x)) are the solutions
of (4.1) as well. Thanks to the regularities of {(uy, vr)} with respect to ¢ and x, up to an extraction
of a subsequence, {(ug, vx)} converges uniformly in any compact subset of R x R” to a solution
of (4.1), denoted by (1o (t, X), Voo (f, x)). Note that (0,0) < (uxo(t, X), Voo (t, x)) < (1, 1) for all
(t,x) € R x R". Moreover, it is easy to see that
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(uk(t,x), vk(t,x))
= (u@+ jxT,x +sT), vt + jx T, x +s¢T))
< (U(t,x-v—c*t—l—T(sk'v—c*jk)—l—ﬁ),W(t,x~v—c*t—|—T(sk-v—c*jk)+ﬁ))
= (U(t,x-v—c*t—i—ﬁ), W(t,x-v—c*t—i—ﬁ)).

By passing the limits in the above inequality, we find
(uoo(t, X), Vo2, x)) < (U(t,x v—=c*t+ ﬁ), W(t,x v —ct+ ﬁ)), V(t,x) e R x R",

In particular, we have

U(Too, Yoo+ V— " Too + ﬁ) — Uoo(Toos Yoo)

B kin;o[U(fk, Yk v = e+ T (s - v — i) + 1) — ur (e, yi) |

= lim [U(‘L’k, X v—ctty + r_]) —u(ty + jx T, yr + SkT)]
k— 00

= lim [U(‘L'k + i T,y xp-v— ¥t + ﬁ) —u(te + jx T, yx + SkT)]
k— 00

= lim [U(tk, Xp-v—c'ty + ﬁ) — u(tk,xk)] =0.

In other words, U (Too, Yoo * V — € Too + 1) = Uoo (Too, Yoo)- Set

(Uﬁ(t,x v —c*r), W’_’(t,x v —c*r)) = (U(t,x Y —c*t—l-ﬁ), W(t,x v —c*r+1)).

Since

1
[ff”(”“’ﬁ*“‘”“OO’SW”“‘S)voo)ds}(m—uoo)+k<t>-V(U’7—uoo)
0

+di (AU — uso) — (U — o), <0,

t

it follows from the maximum principle that U7(t,x - v — ¢*t) = uno(t, x) for all (¢,x) €
(—00, Too] X R”. On the other hand, by (4.22), we have

(uk(t,X),Uk(t,X)) =< (U(t,.x 'V_C*t+ g),W([’x 'U—C*l'-i- g))

as long as x - v — ¢*t < 6. By taking the limit, we find that

(MOO(I’X)’UOO(t’x)) = <U<t,x -V —C*t+ g), W(t,x Y —C*t—+— g))
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for all (z,x) € {(t,x) | x - v — ¢*t < @}. This is a contradiction because
U(t,x-v—c*t—l—g) < U(t,x-v—c*t—l—ﬁ)

for all (¢, x) € R x R”. The contradiction shows that (4.23) is true if 7 > O.
Step 3. In terms of the assumptions, we have

lim  sup ‘u(t,x)—l‘:O, lim  sup ‘v(t,x)—1|:0.

T xy—ctr>z T ¥z

Thus, there exists 6 > 0 such that

(u(t, x), v(t, %)) € [1 =, 1),

U, x-v—c*1), W(t,x-v—c*)) e[l -’ 1) (4.24)
whenever x - v — ¢t > 6, where »° is specified by Proposition A.5 in Appendix A. Since

(U(t,-), W(z,-)) is uniformly continuous and (U (-, z), W(-, z)) is periodic, in view of (4.23),
there exists 7) € [Z, 77) for which

inf [U(t,x-v—c*t—l—ﬁ)—u(t,x)]2(),

Qfx-v—c*tfé

inf  [W(t,x-v—c*t+7)—v(t,x)] > 0. (4.25)

O<x-v—c*r<0

We next show that

inf [U(t,x Y —c*t—i—ﬁ) —u(t,x)] > (),

x-v—c*tzé

inf [W(t,x v —c*t+ ﬁ) — v(t,x)] > 0. (4.26)

xXv—c*t>0
To this end, set
ul(t, x) = Ut,x-v—c't+10)+8%1() — u(t, x);
VOt x) = W(t,x - v —c*t+17) +8ya(t) —v(t, x),
where ¥; (i =1, 2) are specified by (H8). We now define
§:=1{8€[0,00) | (u’(t, x),v°(t,x)) = (0,0), ¥(t,x) € {x -v—c*t>0}}.

To prove (4.26), it is sufficient to show that § = 0. Assume to the contrary that 8 > 0. Then we
must have either inf, ) . 55 u? =0 or inf(; etrvcrr=4) v® = 0. To see this, recall that
(u®,v?) > (0,0) for any 8 € [0, 5] as long as x - v — ¢*t < . In addition, for any 8 € (0, 5], we
have
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lim inf %@, x) > 8miny(r) > 0,
>0 x-v—c*t>7 teR

lim inf %, x) > Smiﬂg Ya(t) > 0. (4.27)
te

>0 x-v—c*t>z

Thus, if both inf(t,x)e{x~v—c*12§} ud and inf(t,x)e{x'v—c*tzé} 8 are strictly positive, then there is
0 <8’ < & for which (1%, v%) > (0, 0), which apparently contradicts the definition of 5. There-
fore, we must have that (inf ) u®)(inf ) v?) =0.

v® = 0. Then there exist two se-

(t,x)e{x-v—c*t=>0 (t,x)e{x-v—c*t>0

Assume without loss of generality that inf, ) ., -4

quences {t¢} and {xx} such that x; - v — c*t; > 0 and limy_, o vg(tk, xx) = 0. Notice that (4.27)
implies that {x; - v — c*#;} is bounded. We again reencounter three scenarios as shown in Step 2,
we retain the same notations used in Step 2 and consider only the case that {#x} is unbounded.
Set
u,‘i(r, x) = ug(t + T, x +sT)= U(t, x-v—c't+ ﬁ) + 8y (t) —ut + jxT,x +s;7T),
v, x) =V (t + i T x +8T) = W(t,x - v — "t + ) + 892(t) — vt + jx T, x +T).
Note that (ui, v,‘g) are uniformly bounded and nonnegative in R x R". Thanks to the regularities of

(ui, v,‘z) with respect to # and x, without loss of generality, we may assume that {u,‘i, v,‘z} converges

uniformly in any compact subset of R x R" to a function denoted by (¢, v*°). With a slightly
abuse of notation, we still denote by (o0, Voo) the limit function of {(u(t + jxT,x + s T),
v(t + jxT,x +s;T))}. Therefore,

u®t,x)=U(t,x - v—c*t+0)+8Y1(1) — uso(t, x)
V>, x) = W(t,x v — *t + 1) 4+ 8Y2(1) — voo (7, X).

Note that (ul (1, x), v2 (¢, x)) > (§ min, ¥1(£), § min, ¥2(¢)) if x - v — ¢*¢ < 6. This implies that
W™ (t, x), v>X¥(t, x)) > (0, 0) for all (¢, x) € {x - v — c*t <6}. Since

Zoo= lim xp-v—c*fpr= lim yg-v — "1 = yoo - V — ¢ T,
k—o00 k—00

it is easy to see that 7o, > 0 and V™ (Tso, Yoo) = 0. Furthermore, by virtue of (4.24), we have

(oo (t, X), Voo (2, X)) € [1 —°, 1],

(U(t,x-v—c*t—l—ﬁ),W(t,x-v—c*t-l—ﬁ))E [l—wo, 1]2

whenever x - v — ¢*t > 0. Let (U, W) = (U(t,x - v —c*t + 1), W(t,x -v—c*t +1)). In view
of the proof of Proposition A.5 in Appendix A, we find that

|
|:/gv(t, sUT 4+ (1 = $)ttoo, sSW + (1 — S)voo)ds:|1ﬂ2 + 1O VY2 + da()AYr — Y, <0
0
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provided that x - v — c*t > 6. It then follows that

1
[/ (1, sU 4+ (1 — $)ttoo, sWT + (1 — s)voo)dsi| v® +1(t) Vo™ + da (1) Av™® — v° <0

0
for all (¢, x) € {x - v —c*t > 0}. Since yso - V — ¢*Too > 6 and v (Tso, Yoo) = 0, the maximum
principle implies that v*°(z, x) = 0 for all (z,x) € {f < o0, x - v — ¢*t > 6}. This however
contradicts the fact that v>°(#, x) > 0 for any (¢, x) € {x - v — ¢*t = 6}. The contradiction shows

that § = 0. Namely, (4.26) is true. As (U(-,-+ 1), W(, -+ 1) < (UG, -+ 1), W(, -+ 1)),
from (4.22), (4.25), and (4.26), it follows that

(u(t,x), v(t,x)) < (U(t,x v —c*t+ ﬁ), W(t,x v —c*t+ ﬁ)) for all (z,x) € R x R".
It obviously contradicts the definition of 7. Therefore, we must have 7 = 0. Consequently,
(u(t, x), v(t, x)) < (U(l, X-v— c*t), W(t, X-v— c*t)) forall (£, x) € R x R".

Step 4. Define

. u(t, x) U({t,x-v—c*t—mn)
Q._mf{ne[o,oo) ’ (v(t,x)) = (W(t,x-v—c*t—n)

) , V(t,x) GRXR"}.
Clearly, 0 < n<-w. Moreover, arguing in a similar manner, it can be shown that n= 0, that is,
(u(t, x), v(t, x)) > (U(t, X-v— c*t), W(t, X v — c*t)) forall (r,x) € R x R".
Therefore, (u(t,x), v(t,x)) = U (t,x -v—c*t), W(t,x -v—c*t)) forall (t,x) e RxR". O

We now state our main result in this section.
Theorem 4.10. Suppose that (HI)-(HS8) are satisfied. Let (u(t, x, ug), v(t, x,vg)) be a solu-
tion of (4.1) with initial data (ug, vo) such that (0,0) < (uo(x),vo(x)) < (1,1). Let (U, W) €

CZ’Z(R x R) and ¢ solve (2.4) with ¢ < c*. If ¢ < c*, assume further that all the assumptions of

Lemma 4.3 are satisfied. If ¢ = c*, assume that all the assumptions of Lemma 4.7 are satisfied.
Then

Jim [u(e,x,u0) = U, x v —ct +20)| + |v(t. X, 00) = W(t, x v —ct +20)| =0 (4.28)
— 00

for some zo € R. In particular, 7 is the unique number such that

. U(0,x-v+zo) W0, x v+ z0) . .
lim =1, im =1, ifc<c,
v=oo ke (0)er ) v=moo kgpa(0)ere )
and
U, x -v+2z0) . W(O0,x-v+z0)

1, ifc=c"

9

xv00 kgpp (0)x - v]er ) xv=00 kg (0)]x - V]G
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Proof. We will give a proof for the case that ¢ = ¢*. We again assume that zop = 0. Assume to
the contrary that (4.28) is not true. Then there exist ¢ > 0 and a sequence {(fx, xx)} such that
limy s o0 1x = 00, and

klim ‘u(tk,xk, up) — U(tk,xk Y — c*tk)| + |v(tk,xk, Vo) — W(t,xk SV — c*tk)‘ >e. (4.29)
—> 00

If zx = x; - v — c*t; are bounded, then we revisit the scenario (a) presented in the proof of
Lemma 4.9. To derive a contradiction, we proceed with the same notations used before and set

(ur(t, %), ve(t, 0)) = (u(t + jx T, x + T, uo), v(t + ji T, x + s T, vo)).

Clearly, for each k, (uy(z,x), vg(t,x)) is a solution of (4.1) in |—ji T, 0o[ x R" satisfying
(ur(—jx T, x), v (—ji T, x)) = (uo(x +sxT), vo(x +s¢T)). Denote again by (1o (t, X), Voo (f, X))
the solution of (4.1) to which {(ug, vr)} converges uniformly in any compact set of R x R". Due
to Lemma 4.7, we have

U(t,x v —c*t —o*) =8 Ae PUTID) <y (1,x) <U(t,x - v — c*t + %) + 8* A PUHID)
W(t, x-v—c*t— 0*) — §* Ae PUHITD) <y (1, x) < W(t, x-v—ct+ 0*) + 8% Ae PUHIT)
for all [t, — jx T, 00) x R", where A = max{sup(,’s)eRz Ex, SUP(; 5)eR2 G«}. It then follows that
U(t,x~v—c*t—o*) <Uxo(t,x) < U(t,x~v—c*t—|—o*),
W(t,x v =¥t — O’*) < vaolt,x) < W(l,x v —c*t —|—(7*)
forall (7, x) €e R x R".
Moreover, Lemma 4.8 shows that for each n > 0, there exist D, > 0 and 6, € R such that
U(t,x v — ff — 77) _ Dngale)»*(x.v—c*t) (1 _ ﬁee*(x.v—c*t)> < uk(l, .X),
1

W(t,.x Cp— C*t . 77) _ Dn(pze)»*(x.v—c*t) (1 _ @ee*(x.v—c*t)> < Uk(t,X)
$2

forall (t,x) e {t > —jiT, x -v—c*t <6,},and
U(t,x v — ¥t + 77) + Dngale)»*(x.v—c*t) (1 _ ﬁee*(x.v—c*t)> > uk(l, .X),
¥1

W(t,.x Y= C*t + 77) + Dn(pze)»*(x.v—c*t) (1 _ %ee*(x.v—c*t)> > Uk(t,X)
2

for all (t,x) € {t > —jxT, x - v — c*t < 6,}. By taking the limits in the above inequalities, we
obtain that

(U= (t,z=m), W (t, 2= 1) < (too(t, x), v (t, X)) < (UT(t, 24+ 1), W (1, 2+ 1))

forall z=x-v —c*t <6,, where
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(UF @ 2+, WEE, 2 £ )

— (U(t, zxn) D,7gole)"“Z (1 - ﬂee*z>, W(t,z+tn) £ Dngoze}"“Z (1 — @ee*z))
@1 (%)

and z = x - v — ¢*t. Consequently, it follows from Lemma 4.9 that
(Uoo(t,X), Voo (8, x)) = (U(t,x - v —c*1), W(t,x -v—c*r)) forall (r,x) e R xR". (4.30)
On the other hand, we have
(uoo(fom Yoo)s Voo (Toos yoo)) = lim (u(tka Xk, U0), V(Tk, Xk, UO))
k— 00
and

(U(Toos Yoo v = €*Toc)s W (ks Yoo - V — ¢*Too)) = lim (U (tk, xx — c* 1), W (1, xi — c*1x)).

k— o0
Hence, it follows from (4.29) that
|MOO(TOO’ yOO) - U(TOCM Voo 'V — C*Too)‘ + ‘voo(foo, yoo) - W(Too, Voo * V — C*TOO)| > g,

which contradicts (4.30). Hence {z;} has to be unbounded. Recall z; = x; - v — ¢*t;. If
limy s o0 2k = —00, then it follows from Lemma 4.7 that

li e, Xk, o), V(tk, Xk, = lim (U(tx, xx - v —c™tg), W(t, xx - v —c*t)) = (0, 0),
kgglo(u(k Xk, 1), V(tk, Xk, v0)) kingo( (t, xk - v — 1), W(t, xx - v — c*1i)) = (0, 0)
while, if limg_, 5 zx = 00, then Lemma 4.7 yields that

kl_i)n’olo(u(tk, Xk, ug), v(ty, Xk, v())) = kl—i>n<}o(U(tk’Xk -V — C*tk), W(t,xk -V — C*tk)) =(1,1).

Both of them contradict (4.29). Therefore (4.28) follows. The proof is completed. O
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Appendix A

In this appendix we first present a few lemmas and propositions used in Section 3.

Lemma A.1. Assume that (HI) and (H2) are satisfied. Let (u, v) € C;’Z(R x R) be a regular sub-
solution of (2.2) such that (0,0) < (u,v) < (1, 1). Assume that (u(-,z),v(-,z)) is T-periodic.
Let (i1,0) € CP(R x R) (8 €10, 1) be an irregular super-solution of (2.2) such that (u, v) =
min{(wy, w2), (1, 1)}, where (wy, w2) is a regular super-solution of (2.2) in R x 1—00,Z[
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with 7 < 0o; (w1(-, 2), wa(-, z)) is T-periodic, and (w1 (t,-), wa(t, -)) is nondecreasing. In ad-
dition there exists ¢ < 7z such that (u(t,z),v(t,z)) = (1,1) for any (t,z) € R x [7, +00).
Here (u(t,z),v(t,z)) :== (1, 1) for all (t,z) € R x [Z, 00) provided that 7 < oo. If there exists
0 < 0 such that (u(t,o),v(t,o0)) < (u(t,o),v(t,o)) foranyt € R, then (u,v) < (u, v) for any
(t,z) e R x [0, +00).

Proof. The proof is very similar to that of Lemma 3.1 of [37], we thus omit it and refer the
readers to [37] for details. O

Lemma A.2. Assume that (HI1) and (H2) are satisfied. Assume that (u, v) is a regular super-
solution of (2.2) in R x R and (u(-, z), v(-, 2)) is T-periodic and satisfies that

liminf[ inf i, z)} >1 and liminf{ inf oz, z)} >1.

z—> o0 lreR z—00 lreR

Let (u(t,z),v(t,z2)) € Cg’z(R X (—00, z0]) be a regular sub-solution of (2.2) in R x (—00, z0).
Moreover, assume that sUp; ;yeRx (—co.zo] (> ¥) < (1, 1). In particular, (u, v) is T-periodic in t
and (u(t, zp), v(t,z0)) < (0,0) for all t € R, and for each t € R, u(t,z) > 0 for all 7 €
(—00, 7') provided that u(t,z') > 0. If there exists o € 1—00, zo[ such that (u(t,0),v(t,0)) <
(i(t,0),0(t,0)) forall t and (u(t,o),v(t,0)) < (u(t,z), v(t,z)) for all (t,z) € R x [0, 00),
then (u, v) < (u, v) forall (t,z) € R x [0, z0].

Proof. We argue by contradiction. Define

91 =inf{® > 0 |u(t,z) <i(t,z+0) forall (¢,2) € R x [0, zol}.
9> =inf{® > 0 | v(t,z) <o(r,z+ ¥) forall (t,z) € R x [0, 201}

Since (liminf,_, oo {inf;cjo, 7y}, liminf,_, oo {inf;c0, 77 v}) > (1, 1) and SuP(z,z)eRx(—oo,zO](’iv V)<
1, both ¥ and %, are bounded. Let ¥* = max{#};, ©»}. Assume without loss of generality that
U* = 191. We next show that ¥* = 0. Suppose that this is not true, then there exists a point
(t*,z*) € R x [0, z9) such that u(¢t*, z*) = u(t*, z* + 9*) and v(t*, z*) < v(t*,z* + 9*). By
virtue of assumption, we see that

u(-,0) <i(, o) <i(,o+9%), (A.1)

Hence, z* > o. In addition, it follows from the assumption that u(¢*, z) > 0 for all z € [0, z*].
Due to the continuity of u with respect to (¢, z), there exists ¢ > 0 with ¢ < zg — z* such that
u(t,z) >0 forall (¢,z) € [t* —¢e,t" +¢] x [0,2" + ¢€]. Let w*(¢,z) = u(t,z + %) — u(t, 2).
Notice that w* > 0 for all (¢, z) € R x [0, zo] and f, (¢, su + (1 — s)u, sv + (1 —s)v) > 0 for all
(s,1,2) €[0,1] x [t* —e,t* + €] x [0, z* + €] in terms of (H4). Then

B(t, Dw* + [c+ k() ]w +di(OHwi, —w; <0 forall (r,2) € (t* —e,t* +¢) x (0,2" +¢),
where B(t,z) = [fo1 Jut,su + (1 — s)u,sv + (1 — s)v)ds]. Therefore, the strong maximum

principle implies that u(t*, z) = u(t*, z + ©*) for any z € [0, z*], which contradicts (A.1). Thus,
v* = 0. The proof is completed. O
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Proposition A.3. Let D be an open connected domain of Rt x R" such that D C {(t, x) | t > t*,
x € R"}, where t* > 0, and DN {(t,x) |t =1 x e R"} # 2. DN H{ # & whenever s > s,
for certain s, > 0, where Hf = {(t,x) |t >1t*, |x| <s}. Let (w1, w2) € C2(D)N Cyp(D) and
(W1, Wy) € C12(D)N Cp(D) be respectively the sub-solution and super-solution of

%—Zau(t x)

1 —
« b= ’ (A.2)

=2 a x)ax,ax, +X}jb @ x>—+g(r wy, w)

ij=1

in D, where a and bk € Cp(D) (k = 1,2), and there is ag > 0 such that a (t x)§i§; >
DI 5,'2 for any n-tuples of real numbers (&1,&2, -+, &,). Moreover, for each closed and
bounded interval I C R, f,g € Cg’l(]R x 1%). In particular, fy, >0 in R x [0,1] x R and
8w, = 0in R x R x [0, 1]. Suppose that (w;(t, x), wa(t,x)) < (1,1) and (w, (¢, x), wa(t, x)) >
(0,0) forall (t,x) € D. Let (w1, wa) € CH2(D)NCy(D) be a solution of (A.2) such that (0, 0) <
(wi(t, x), wa(t, x)) < (1, 1) for all (t,x) € D. Assume that (w1, w>) < (w1, wa) < (W1, W) for
all (t,x) € dD. Then

(wl(t,x), wz(t,x)) < (wl(t,x), wz(t,x)) < (wl(t,x), wz(t,x)) forall (t,x)e D. (A.3)

Proof. We present a sketch as the proof is similar to that of Lemma 2.4 of [37]. This lemma will
be used in several places. We only prove the last inequality of (A.3) while the other case can be
proved similarly. Set

L—IIlB.X(Z‘bk ), m+:‘w]"—w1|oo+‘w§—wzoo,
M* =|wi| + w3 + 1 Wileo + W20,

n

¥ = max 2 k , = ma 2(1 ’

max 'Zl}a,joo o= max 21+[ful +1fol +1gul +18])
1,]j=

m—}—ewt

t,x,5)=
(xs) = s

(Ix1* + & + 1),
where A=R x [-MT, MT] x [-M™T, M*]. Let s > s, and write

wy(t, x) =wi(t,x) —wi(t,x) —{(t,x,8), wy(t, x) = w5 (t, x) — Wwa(t, x) — (1, x,8).

A straightforward computation yields that

n s

ow
Liwi= Y al x) +Zb (t, x)—— 8t1

> — fiw] — fow;,
i,j=1
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where
1
f1=/fu(t,rw1+(1—r)wi‘,rwz+(1—t)w§)dr,

0
1

fa= / fo(t,twi + (1 = Dwf, tws + (1 — D)w})dr.
0

Likewise, we have

wy  dw;
Low) = Z ai%](t x) —I-sz(t x) P 2 > —glw] — gaw;.

i

Now by employing the argument similar to that of Lemma 2.1 of Lieberman [26], we can show
that (w], w3) < (0,0) for all (r,x) € DN{(t,x)|t>1r* |x| <s}. Since (w}, w3) converges
uniformly to (w} — w1, w — w7) in any compact sets of R* x R contained in D as s — 00, we
infer that (w}, w3) < (w1, wy) for all (¢, x). The proof is completed. O

Next we prove a result that was used in the proof of Lemma 4.7.

Proposition A.4. Suppose that (HI)—(HS8) are satisfied. Assume that

i uo(x) 1 i vo(x) .
xv=>=00 kepy (0)|x - v]teretev) xv=>=00 kg (0)|x - v et V)

for some positive constant k. Here « = 0 if ¢ < ¢*, and « = 1 provided that ¢ = c*. Let
(u(t,x,up), v(t, x,vg)) be the solution of (4.1) with (u(0, x, ug), v(0, x, vg)) = (ug, vo), which
satisfies (0,0) < (ug, vo) < (1, 1). Let I C [0, +00) be any compact subinterval. Then there ex-
ists zo € R such that

lu(t, x,up) —U(,x-v—ct+2z0)]

lim =0,
X-V—>—00 U(t,x-v—ct+zp)
: lu(, x,v0) — W(t,x - v —ct+20)|
lim =0
X V—>—00 W(t,x-v—ct+z9)
uniformly in t € I, where zo € R is the unique number such that
UQ©,x v+ 2z0) . WO, x - v+ z0)
=1, lim =1.

im
rv==00 gy ()| - v ekt rv==00 Ky (O)x - v ereCe)
Proof. In light of Theorems 3.6 and 3.10, we can fix zg € R such that

U@©,x-v+z0) . WO, x - v+ z0)
1m =1, lim =
xv=>=00 kepy (0)[x - v|terel¥ V) xv==00 kp (0)]x - v|terex V)

It is easy to see that zg is uniquely determined by k. Once again, we will assume without loss
of generality that zg = 0 throughout the proof. Let p(r) € C(R) be a real positive function with
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the following properties: (i) [po(r)| + |0’ (r)| < C 1e73!" for certain positive constants Cp and §;

(ii) |P/;’;£r)) |+ |;;)”((r”)) | + |/;;((r’)) | < C, for some positive constant C». By rescaling, we may assume

that p(0) = 1 and § > 2. Such a function can be easily constructed, for instance, p(r) = Wl(ar)
has the desired properties.
Now we write p*(y) = p(y - v —x - v) and set

ﬁ(t’ y) :PX(Y)[”(t, y’u()) - U(tvy -V _Ct)],
(t,y) = p (W)[vt, y, v0) = W(t,y-v—cp)].

Then

qu —di (A —K(t) - Vyu
=p " W{u — Ul —di(@®)Ay[u — Ul = Kk() - Vy[u — U} = di () Ay p* (y)[u — U]
—2d1(1)Vyp* (y) - Vylu — Ul = K(t) - Vyp* () [u — U]

d A 0¥ 2
B 1(tl)0x (y},]O) 2P pxl((yt)) Vyo () - Vy[ 0" () (u — U)]

. k(?) - Vyp* (y)
— | =
[* (@ —U)] =6

= p W[t u,v) — f(t, U, W)]

2d, (t)vypx(Y) -Vyo*(y)
P (y)

[0* ) —U)],

N o (9 L D
where Ay :=)"" et and V, := (ay,-’ , ay,,)' Define

2d1 (1) .
o Y )} Vo

B [2011 (OVyp* () - Vyp* (y) — K@) - Vyp* (y) —di() Ay p* (y)]w

(Liw)(, y) = 0w —di () Ayw — [k(t) -

p*(y)
Then, we find that

1
Liu= {/fu(t,su—l—(l —s)U, sv+ (1 —s)W)ds}i[
0
1

+ {f fv(t,su + (1 —=s)U,sv+ (1 —S)W)ds}’ﬁ,

0

Likewise, we have

1
Lryv= {/gu(t,su + {1 —-s5U,sv+( —s)W)ds}ﬁ
0

1
+ {/gv(t,su-i— (1-=s)U,sv+ (1 —s)W)ds}i)‘,
0
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where

2d, (1)

=Vt |-V

7 00] Y
__[ZdbU)Vypx(y)-Vypx(y)—-Kt)-Vypx(y)—-dzU)Aypx(y)]u

P*(y)

(Law)(1,y) := 0w — da() Ayw — [l(t) -

By the variation of constants formula and Gronwall’s inequality, we obtain that

@ | @ < cet![[a. D@ O], @] 1€l

for certain positive constants C and K, which depend only upon d;(¢) (i =1, 2), k(¢); 1(¢), Cyq,
C,, and n (see Theorem 3.5 of Garroni and Menaldi [13] and Lunardi [27]). Without loss of
generality, we may assume that / C [0, T']. Thus,

|u(t,x, ug) —U(t,x-v— ct)!

<cekT sup  {|p*M[uo(») = U, y-v)]| + 0" 0M[vo(y) — W(O0, y- ]|}

|(y—x)-v]< 2

+CekT sup {0 Mo = UO, y-0]|+ |0* 0M[vo(y) = WO, y-»]|}.

|(y—x)-v|> 1

]
2

Notice that

8lx-v|

0" [0 — U O, y - 0]+ o [vo(») — WO,y - v)]| <4Cie™ = whenever

|x - v

|(y—x)-v| =

Moreover,if y e {s e R" : |(s — x) - v| < |xév| }, then

U(O,y-v)(l—L@)'

0" ) [uo(y) — U, y - 0)]| < Cred10=0

U(Oa y * V)
S Clc/e_(S'(y_X)v'ly . vl[e)\,c(y.y) 1 _ LQ))
U(O’ y ° V)
< %ClC/e—8|(y_x).v|e)\c|(y—x).v| |x ) v|le)hc(x'\1) [ uo—(y)
2 U(()’y'v)
SEC]C,|x.v|Lekc(x-v) l_uo—(y) .
s U0,y v)

Here C’ > 0 is a constant and we used the fact that U(0,x - v) ~ @1 (0)|x - v|'e*™™) as
XV —> —00.
Similarly, we have

vo(y)
WO,y v)

0" [ro) — WO,y v)]| < %me [t
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Consequently, foreach r € I, if x - v < 0 and |x - v| is sufficiently large, it follows that

|u(t,x, ug) —U({t,x-v— ct)‘

8lx-v|

}—i—@e_ 2,

< Clx - v|tert™ sup

(=) vl =B

Hl _uo(y)
U(O,J’V)

‘1 v
W,y -v)

where C is a positive constant that dependson C, C;, K,and T. As y - v < % +x-v< %

lim Hl—”o—(y) }=0,
yv—>—00 U@©,y-v)

'1 k)
W,y -v)

we readily infer that

t’ b - U t? . - t . .
lim lult, x, o) t.x-v=ch) =0 uniformlyint e [.
X-V——00 Ui, x-v—ct)

Likewise, we have

ta ) - W ta : —ct . .
lim [vir. x. vo) (t.x-v=ch) =0 uniformlyint e l.
X-V——00 W(t,x-v—ct)

The proof is completed. O
Finally we prove a result that was used in the proof of Lemma 4.9.

Proposition A.5. Suppose that (HI), (H2) and (HS8) are satisfied. Let (u,v) and (u,v) €
C;’Z(R x R) be respectively the regular super-solution and sub-solution of (2.2). In par-
ticular, both (u,v) and (u,v) are T-periodic in t, and liminf,_, o {inf;cj0,71(4 — u)} > 0,
liminf,_, o {inf;c(0,77(0 — v)} > 0. Let

* 0" |u"|
w :sup{w)|fu(ta’)_fu(t’l’l)}_‘_}fv(t’9)_fv(t9191)|§ ) ’

Y(t, -, ) eR x [1 —w,1+a)]2}

0T |t
Wy ::Sup w“gu(ta,)_gu(t,1’1)|+|gv(t»’)_gv(t,1,1)|§ 2 )

Y(, ) eR x [l—a),1+a)]2},

min{min; v, min; v}

+
where @ > 0 and 6™ = —— ey

. If there exists 7' € R such that

(ii(t,2), 5, 2)) € [1 =, 1" and (ut,2),v(t,2)) € [1 =, 1]’

forall (t,z) € R x [7/,00), and (ii(t, 7)), v(t,2))) > (u(t,z), v(t, 7)) forall t € R, where o° =
min{o*, w), then (i(t, 2), 5(t, 2)) > w(t, 2), v(t, 2)) for all (t, 2) € R x [2/, +00).
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Proof. The proof is similar to that of Proposition 3.9 of [37]. Since it was used in several places,
we give a detailed proof. As both (u, v) and (u, v) are T -periodic in ¢, it suffices to prove that

inf {u —u}>0 and inf {v —v}>0. (A4)
(t,2)€[0,2T]x [/, +00) (t,2)€[0,2T1x [z ,+00)

Let
u'(t,z) =u(t,z) —u(t,z) + v (1), vi(t,2) =0(t,2) — v, 2) + TYa(2).

Since both # — u and v — v are bounded, there exists M > 0 such that (u* (¢, z), v* (¢, z)) > (0, 0)
for all (z,z) €[0,2T] x [/, +00) as long as T > M. Now define

t* =inf{r €[0,00) | (u”(t,2),v"(t,2)) > (0,0) forall (t, ) € [0,2T] x [z, +00)}.

Notice that 7* is bounded. To complete the proof, it suffices to show that 7* = 0.
Assume to the contrary that this is not true. Then it is easy to see that

either inf ut(t,7)=0 or inf 0T (t,z) =0.
(t,2)€[0,2T ] x [/, +00) (t,2)€[0,2T]x [z’ ,4-00)

Assume without loss of generality that inf; ;)c[0,271x [z, +00) v™" = 0. Due to that fact that

liminf,_, oo {inf; [0 27] 0™} > t*min; ¢ > 0, there exists (+*, z*) € (0, 2T) x (z/, 00) such that
v? (t*, z*) = 0. On the other hand, since

1
r*{[l(x) + ] (W) + da () (W2)ze — (P2 + [ / 2u (1, sit + (1= s)u, s7+ (1 - s)y)ds}m
0
1
+ |:/gv(t, su+ (1 —s)u,sv+ (1— s)y)dsi|w2}
0

1
= T*{M+1ﬁ2 + [fgu(t,sﬁ + (1 —9)u, sv+ (1 —s)v) — g, 1, l)ds}m
0

1

+ |:/gv(t,sﬁ + A =s)u,sv+ (1 —s)y) —gv(t, 1, l)ds:|w2} <0

0

for all (r,z) € R x [Z/, 00), we have

|

S—__

go(t, s+ (1 —s)u, s7+ (1 — s)y)ds:| V" 4 [k() + ol + da ()], — o]

1
< —|:/gu(t,sﬁ—|— (1 —s)u,sv+ (1 — s)y)ds:|uf* <0
0
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for all (7, z) € R x [7/, 00). Therefore, the strong maximum principle implies that VT (t,2) =0
for all (¢, z) € [0, t*] x [Z/, 00). This is impossible since v7 (t,7) > 0. Hence we must have
7% = 0. The proof is completed. O
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