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Abstract. The so-called Butler-McGehee lemma was first stated and proposed by Freedman
and Waltman [11] to study persistence in three interacting predator-prey population models.
Roughly speaking, the lemma says that if a trajectory, not on the stable manifold of a given
isolated hyperbolic equilibrium P, has that equilibrium in its !-limit set, then its !-limit set also
contains points on the stable and unstable manifolds of the equilibrium di↵erent from P. The
lemma has been extended to di↵erent forms. The main purpose of this paper is to generalize
one of the various formats of the Butler-McGehee lemma (Butler and Waltman [4]) in such a
way as to encompass orbits from a set G rather than from a single point. An application to the
uniform persistence of a class of dynamical systems which are not necessarily point dissipative
is given.

1. Introduction. Recently, there have appeared in the literature several papers
dealing with persistence theory in dynamical systems; see Butler, Freedman and Walt-
man [3], Butler and Waltman [4], Freedman and Moson [7], Freedman, Ruan and
Tang [9], Garay [12], Hofbauer and So [18], Tang [23] and Teng and Duan [24]; in
semi-dynamical systems and related systems, see Dunbar, Rybakowski and Schmitt
[5], Fonda [6], Freedman and Ruan [8], Freedman and So [10], Hale and Waltman [16],
Hallam and Ma [17] and Thieme [25], and their applications to ecological models, see
Burton and Hutson [2], Freedman and Waltman [11], Gard [13], Gopalsamy [14] and
Kirlinger [20], Ruan [21, 22], etc. The connections of various types of persistence for
dynamical systems have been discussed by Freedman and Moson [7]. For more de-
tails and more references on persistence theory, we refer to the recent survey paper by
Hutson and Schmitt [19].

When applying persistence theory to the question of survival versus extinction in
models of interacting populations, a theorem known as the Butler-McGehee lemma is
usually required. This lemma may take on various formats, depending on the nature
of the dynamical or semi-dynamical systems.
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The original version of this lemma appeared in Freedman and Waltman [11], the
setting for which was a hyperbolic restpoint of an autonomous ordinary di↵erential
equation. Since then, it has been extended to a compact isolated invariant set, instead
of just a restpoint, to a continuous flow on a locally compact metric space by Butler
and Waltman [4] and to continuous semi-flows by Dunbar, Rybakowsky, and Schmitt
[5]. Later, Freedman and So [10] have developed this lemma to a form utilizable for
discrete semi-dynamical systems. The latest form for locally compact metric space
has been given a new proof by Hofbauer and So [18]. Hale and Waltman [16] also
have obtained results for a complete metric space, not necessarily locally compact.
Their results, which are in the setting of an asymptotically smooth C0-semigroup, are
useful in studying the persistence of population models whose dynamics involve such
concepts as delays or di↵usions in functional di↵erential equations or partial di↵erential
equations, respectively.

All the above theorems deal with a point x and its limit set !(x) or ↵(x) in phase
space. The object of this paper is to generalize the Butler-McGehee lemma in such a
way as to encompass orbits from a set G rather than from a single point and to consider
the !-limit (↵-limit) set of the set G. Obviously, if we take G = {x}, our result will
reduce to one of the various known forms of the Butler-McGehee lemma. With this
generalization, we can establish a uniform persistence theorem for certain dynamical
systems which are not necessarily point dissipative (point dissipativity is needed only
on a subset of the boundary). For similar results we refer to Freedman, Ruan and Tang
[9] and Thieme [25]. Thieme has established some very interesting persistence criteria
under relaxed point dissipativity and has applied the so-called persistence theorems for
lazy-bones to an endemic model.

This paper is organized as follows: in Section 2, basic notation and terminologies are
introduced. In Section 3, the main result is given together with a variation for discrete
dynamical systems; a corollary is also given. Section 4 considers some applications
to uniformly persistent systems. Finally, an example is given to illustrate the result
obtained.

2. Preliminary results. Let X be a locally compact metric space with metric d
and F = (X, R,⇡) be a continuous flow on X, where ⇡ : X ⇥ R ! X is a continuous
map such that ⇡(x, 0) = x for all x 2 X and ⇡(⇡(x, t), s) = ⇡(x, t + s) for all x 2 X,
t, s 2 R. For the basic definitions and results on dynamical systems, we refer to Bhatia
and Szegö [1] and Butler and Waltman [4].

Let �(x), �+(x), and ��(x) be the orbit, positive semi-orbit, and negative semi-orbit
of F through x 2 X, respectively. The !-limit set is defined as

!(x) =
\
⌧�0

[
t�⌧

{⇡(x, t)}.

This is equivalent to saying that y 2 !(x) if and only if there is a sequence tn !1 as
n !1 such that ⇡(x, tn) ! y as n !1. If M is a subset of X, we define the !-limit
set of M as

!(M) =
\
⌧�0

[
t�⌧

{⇡(M, t)},
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where ⇡(M, t) = [x2M{⇡(x, t)}. The ↵-limit sets ↵(x) and ↵(M) can be defined simi-
larly. Usually the set

L+(M) =
[

x2M

!(x)

is considered as a candidate for the limiting behavior of the set M since it contains the
!-limit set of each point. Generally L+(M) is smaller than !(M). In fact, !-limit sets
of points in M could be disconnected even when !(M) is connected. By Lemma 3.1.1 of
Hale [15], if !(M) is compact and attracts M (i.e., d(⇡(M, t),!(M)) ! 0 as t ! 1),
then !(M) is invariant. In addition, if M is connected, then !(M) is connected.
As pointed out by Hale and Waltman [16], from the point of view of the qualitative
behavior of the dynamics generated by a semigroup, it is necessary to consider the set
!(M).

Let M ⇢ X be any set. Then M and
�

M will denote the closure and the interior,
respectively, of M. Finally, let W+(M) = {x 2 X : !(x) 6= ;, !(x) ⇢ M} be the
stable set of M,W�(M) = {x 2 X : ↵(x) 6= ;, ↵(x) ⇢ M} be the unstable set
of M, W+

w (M) = {x 2 X : !(x) \ M 6= ;} be the weakly stable set of M and
W�

w (M) = {x 2 X : ↵(x) \M 6= ;} be the weakly unstable set of M. Note that if
M is compact, x 2 W+(M) is equivalent to limt!1 d(⇡(x, t),M) = 0 and a similar
statement holds for W�(M).

3. Main results. First we give a lemma which is useful to the proof of the main
theorem.

Definition 3.1. A nonempty subset M of X, invariant for F , is called an isolated
invariant set if it is the maximal invariant set in some neighborhood of itself. The
neighborhood is called an isolating neighborhood.

Lemma 3.2. Let M ⇢ X be a compact isolated invariant set for F . For any set
G ⇢ X\W+(M), if !(G) \M 6= ;, then there exist a compact isolating neighborhood

V of M and a sequence {yn} ⇢
�
V satisfying the following:

(i) yn !M as n !1;

(ii) there exists {tn} ⇢ R+ such that for all n,⇡(yn, � tn) 2 @V and ⇡(yn,�t) 2
�
V

if t 2 [0, tn);
(iii) {⇡(yn, � tn)} converges to a point p 2 !(G).

Proof. With the assumption of !(G) \ M 6= ;, we may pick a compact isolating

neighborhood V1 of M and a sequence {zn} ⇢ !(G) \
�
V 1 so that zn ! M as n !1.

If ��(zn)\
�
V 1 6= ; for all n, then define yn = zn and V = V1. It is easy to see that

{yn} and V satisfy (i) and (ii). In the other case, if ��(zn) ⇢
�
V 1 for some n, then

↵(zn) 6= ; and ↵(zn) ⇢ M. It follows that there exists x 2 G ⇢ X\W+(M) such that
!(x) \ M 6= ; since zn 2 !(G). A compact isolating neighborhood V of M can be
found so that x /2 V. Since x 2 W+

w (M)\W+(M), there exists a sequence {sn} ⇢ R+

satisfying: (a) sn !1 as n !1 while sn < sn+1; (b) ⇡(x, [sn, sn+1])\V 6= ;; and (c)
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⇡(x, sn) !M as n !1 while ⇡(x, sn) 2
�
V for all n. Now, we define yn = ⇡(x, sn). By

property (b), there exists {tn} ⇢ R+ such that ⇡(x, sn�tn) 2 @V while ⇡(x, sn�t) 2
�
V

for all t 2 (0, tn). The V and {yn} thus defined also satisfy (i) and (ii).
Since @V is compact, there exists a convergent subsequence {⇡(yn,�tn)}. Corre-

sponding to this subsequence, we obtain subsequences of {yn} and {tn}, denoted by
{yn} and {tn} again. Since x 2 G, ⇡(yn,�tn) = ⇡(⇡(x, sn),�tn) = ⇡(x, sn � tn) and
!(G) is invariant, there is a point p 2 !(G), such that ⇡(yn,�tn) ! p as n !1.

Theorem 3.3. Let M ⇢ X be a compact isolated set for F . For any G ⇢ X\W+(M),
if !(G) \M 6= ;, then !(G) \ (W+(M)\M) 6= ; and !(G) \ (W�(M)\M) 6= ;. (A
similar result holds for ↵(G), and for G ⇢ X\W�(M).)

Proof. By the above lemma, to show Theorem 3.3, it su�ces to show that tn ! 1
as n !1 in Lemma 3.2. In fact, if it is true, then for any t > 0, there exists N such
that tn > t for all n � N. It follows that for all t > 0,

⇡(p, t) = lim
n!1

⇡
�
⇡(yn, � tn), t

�
= lim

n!1
⇡
�
yn, � (tn � t)

�
2 V, (3.1)

since ⇡
�
yn,�(tn � t)

�
2

�
V for large n. (3.1) shows that �+(p) ⇢ V and hence that

!(p) 6= ; and !(p) ⇢ M since V is a compact isolated neighborhood of M. It follows
that p 2 !(G) \ (W+(M)\M), and so !(G) \ (W+(M)\M) 6= ;.

However, the boundedness of any subsequence of {tn} violates the continuous de-
pendence of orbits on initial points since M is compact and invariant. It follows that
tn !1 as n !1. This completes the proof of the theorem. ⇤

The following corollary is one of the various forms of the Butler-McGehee lemma
(Theorem 4.1 in Butler and Waltman [4]).

Corollary 3.4. Let M be a compact isolated invariant set for F . Then for any x 2
W+

w (M)\W+(M), it follows that !(x) \ (W+(M)\M) 6= ;, !(x) \ (W�(M)\M) 6= ;.
(A similar result holds for ↵(x).)

Proof. The corollary follows by applying Theorem 3.3 to G = {x}. In this case,
!(G) = !(x). ⇤

We now give a variant of Theorem 3.3 which is valid for discrete dynamical systems.
All notation is adopted from Freedman and So [10] except that f : X ! X is a bijection
which defines a discrete dynamical system on X. Further, !(G) is defined similarly as
in Section 2 except in the sense of discrete systems (see, cf. Hale [15]).

Theorem 3.5. Let M be a compact isolated invariant set in X. For any G⇢X\W+(M),
if !(G) \M 6= ;, then !(G) \ (W+(M)\M) 6= ; and !(G) \ (W�(M)\M) 6= ;.

Proof. The proof follows analogously to the proof of Theorem 3.3, noting that f maps
a compact set into a compact set.
Remark 3.6. Here, we can demonstrate by an example that Theorem 3.3 is not a
trivial extension of the Butler-McGehee lemma (i.e., the conditions in Theorem 3.3
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imply those in the Butler-McGehee lemma). This example is given by the Lotka-
Volterra equations

⇢
ẋ = x(↵� �y),
ẏ = y(�� + �x), x(0), y(0) � 0, ↵,�, �, � > 0.

(3.2)

Consider X = R2
+, M = {(0, 0)}. Then W+(M) = {(0, y) : y � 0}. Let G =

�
R2

+. Then
!(G) = X while W+

w (M) = W+(M).

4. Applications to uniform persistence. In this section, we consider only
continuous flows. Let E ⇢ X be a positively invariant set for F and let D be a closed
subset in E.

Definition 4.1. F will be called uniformly persistent in E relative to D if there exists
⌘ > 0 such that for all x 2 E\D,

lim inf
t!1

d
�
⇡(x, t),D

�
� ⌘.

Suppose B is a maximal invariant set in D for F such that D \ !(D) ⇢ B. Denote
by FB the flow F restricted to B.

Definition 4.2. Let M = {Mi}k
i=1 = {M1,M2, . . . ,Mk} be a class of finite pairwise

disjoint nonempty sets. M is called a covering of !(FB) if for each i, Mi ⇢ D,

Mi \ !(FB) 6= ; and !(FB) ⇢
Sk

i=1 Mi.

It should be pointed out that generally the covering M = {Mi}k
i=1 and the union

set
Sk

i=1 Mi are di↵erent. However, if M1,M2, . . . ,Mk are isolated, then they are the
same as stated in the current literature (see Butler and Waltman [4] and Hale and
Waltman [16]).
Definition 4.3. FB is isolated if there exists a covering M = {Mi}k

i=1 of !(FB) by
pairwise disjoint, compact, isolated invariant sets M1, . . . ,Mk for FB such that for each
i, Mi is also isolated invariant for F . M is called an isolated covering.
Definition 4.4. Let M,N be isolated invariant sets. We shall say that M is chained to
N, written M ! N, if there exists x /2M[N such that x 2W�(M)\W+(N). A finite
sequence M1, . . . ,Mk of isolated invariant sets will be called a chain if M1 ! · · ·!Mk.
The chain will be called a cycle if Mk = M1.

Definition 4.5. FB will be called acyclic if there exists an isolated covering M =
{Mi}k

i=1 of FB such that no subset of M forms a cycle. The covering will also be
called acyclic. (Otherwise, FB will be called cyclic.)
Definition 4.6. The flow F is said to be point dissipative over a nonempty set M ⇢ X
if there exists a compact set N ⇢ X such that for any x 2M there exists t(x) > 0 such

that ⇡(x, t) 2
�
N for all t � t(x).

Now we are in the position to state and prove the main theorem of this section.
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Theorem 4.7. Let E,D and B 6= ; be defined as above. Further assume that E\D is
positively invariant and FB is point dissipative, isolated and acyclic with acyclic cov-
ering M = {Mi}k

i=1. Denote M =
S

Mi2MMi. If there exists a compact neighborhood
N of M in D and ↵0 > 0 such that for all x 2 E\D,

lim inf
t!1

d
�
⇡(x, t),D\N

�
� ↵0, (4.1)

then F is uniformly persistent relative to D if and only if
(H) for each Mi 2M, W+(Mi) \ (E\D) = ;.

Proof. We prove the theorem by following the arguments of Butler and Waltman [4].
The necessity of (H) for the uniform persistence of F is obvious. Now suppose (H)
holds. We divide E\D into two sets:

G =
�
x 2 E\D | !(x) 6= ;

 
, Q =

�
x 2 E\D | !(x) = ;

 
= (E\D)\G.

Since X is locally compact, there exists a compact neighborhood N1 of N with
d(N, @N1) = ↵1 > 0. If Q 6= ;, then we claim that lim inf

t!1
d(⇡(x, t), N) � ↵1 for

any x 2 Q. In fact, lim inf
t!1

d(⇡(x, t), N) < ↵1 implies that !(x) 6= ;, since N1 is
compact, which contradicts the definition of Q. Therefore, it follows from (4.1) that
lim inf
t!1

d(⇡(x, t),D) � min{↵0,↵1} > 0 for each x 2 Q.

With the above conclusion on Q, if G = ;, we are done. Otherwise, if G 6= ;, then
!(G) 6= ; and !(G) ⇢ E by the positive invariance of E\D. Moreover, by (4.1), we
have

d
�
!(G),D\N

�
� ↵0 > 0. (4.2)

It follows that to complete the proof, it su�ces to show that d(!(G), N) > 0. Suppose
that d(!(G), N) = 0. Then there exists y 2 N \ !(G) since N is compact. The
invariance of !(G) implies that �(y) ⇢ !(G). Since E\D is positively invariant, we have
��(y) ⇢ N ⇢ D. Hence, ↵(y) is a nonempty, compact and connected set contained in
N. Since B is maximal in D, ↵(y) ⇢ B. It follows from the invariance of ↵(y) that
↵(y)\Mi 6= ; for some Mi 2M. We relabel {Mi}k

i=1 so that Mi becomes M1. We have
that ↵(y) ⇢ !(G) and hence !(G)\M1 6= ;. By Theorem 3.3, !(G)\(W+(M1)\M1) 6=
;. Since M is pairwise disjoint, we may choose y1 2 !(G) \ (W+(M1)\M), where M
is defined in the theorem. Since all arguments utilized to y are applicable to y1, we
conclude that ↵(y1)\Mj 6= ; for some Mj 2M. There are two cases: (i) ↵(y1)\M` 6= ;
for each M` 2M; or (ii) ↵(y1) ⇢ M` for some M` 2M. Actually, in case (ii), ` = j
since M is pairwise disjoint.

Consider case (i) first. Since y1 2 W�
w (Mj)\W�(Mj), applying Theorem 3.3 to

{y1}, we can find z 2 ↵(y1) \ (W�(Mj)\Mj), where z can also be chosen so that
z /2 M. As we mentioned above, all results we obtained for y are true for y1 too. It
follows that z 2 ↵(y1) ⇢ B \N and hence there exists Mp 2M such that !(z) ⇢Mp,
which implies that Mj !Mp. If Mj = Mp, we obtain a cycle in M, a contradiction of
the fact that M is acyclic. Therefore Mj 6= Mp. Then we have ↵(y1) \Mp 6= ; since
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z 2 ↵(y1) implies that !(z) ⇢ ↵(y). By the assumption of this case, ↵(y1)\Mp 6= ;,
which implies y1 2 W+

w (Mp)\W+(Mp). Applying the above argument to Mp, we can
find an Mq 2M such that Mp !Mq. Repeating this procedure, we shall end up with
a cycle in M since M is finite, which contradicts the assumption on M, completing
the proof in this case.

In case (ii), Mj ! M1 in B. If Mj = M1, we are done. Otherwise, we relabel Mj

as M2. Since !(G) is invariant, !(G) \M2 6= ;. Repeating the above argument from
the very beginning on M1, we shall end up with a cycle in M by the same reason as
in case (i), completing the proof.

Remark 4.8. The above theorem assumes that B is nonempty. In the case that B = ;,
if condition (4.1) is changed to that there exists a nonempty compact neighborhood N
in D such that (4.1) holds for all x 2 E\D, then F is uniformly persistent. In fact, Q =
!(E\D) \D ⇢ N by (4.1). If there exists a point q 2 Q, then the positive invariance
of E\D and the compactness of N imply that ��(q) \ (E\D) = ; and ��(q)\N 6= ;.
It follows that !(E\D) \ [(E\D) [ (D\N)] 6= ;. This is a contradiction either to the
positive invariance of E or to (4.1). Therefore we must have d(N,!(E\D)) > 0 which
combined with (4.1) implies the proof of our assertion.

Remark 4.9. If B = D, condition (4.1) is automatically satisfied; then Theorem 4.7
reduces to Theorem 3.1 of Butler and Waltman [4].

Theorem 4.7 can be applied to systems which are not point dissipative (the point
dissipativity is needed only on a subset of the “boundary” D) while most of these kinds
of theorems in current papers deal with point dissipative systems only. The following
example fits Theorem 4.7 but not any other theorems which have appeared to the best
of our knowledge.

Example 4.10. Consider the following di↵erential equations in R2 :

(
ẋ = f(x, y)
ẏ = g(x, y),

(4.3)

where the functions f and g are defined as

f(x, y) =

8>>>><
>>>>:

0, if x = �1 or x � 1
� (1+x)(2+x)y

ln(�1�x) , if x < �1 and x 6= �2

�y, if x = �2

� y(1�x2)
(1+y2)(1�p(x)q(y)) , if |x| < 1

(4.4)

and

g(x, y) =

8><
>:

1, if x � 1
�(2 + x), if x  �1
x, if |x| < 1,

(4.5)
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where p(x) and q(y) are any continuous di↵erentiable functions satisfying

p(x) = 0, if x  0

0 < p(x) <
1
2
, if 0 < x < 1

p(x) =
1
2
, if x � 1

and

0 < q(y) <
1
2
, if y < 0

q(y) = 0, if y � 0.

It is easy to verify that such a system describes a dynamical system as shown in the
following figure.

Figure. Example 4.10
We take

E = {(x, y) : �2  x < �1, y  ln(�1� x)} [ {(x, y) : x � �1},
D = {(x, y) : y = ln(�1� x),�2  x < �1} [ {(x, y) : x = �2, y  0}.

Then we have B = {(x, ln(�1 � x)) : �2  x < �1} and M = {(�2, 0)}. The linear
variational matrix of (4.3) at M has the form✓

0 �1
�1 0

◆
.

It follows that M is a saddle point. From (4.5), we can see that in the area between
D and x = �1, ẏ is always negative. It follows that all the orbits are apart from M
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with a certain distance as t !1. And the stable set W+(M) of M in E is the curve
y = ln(�1 � x) with �2  x < �1, a part of D. By Theorem 4.7, the flow defined
by (4.3) is uniformly persistent in E relative to D. On the other hand, since it is not
a point dissipative system as we can see, the result cannot be obtained by any other
theorems requiring point dissipativeness.

As pointed out by the referee, for uniform persistence we only need to consider the
behavior of system (4.3) on (�1,�1]. Finally, for other examples of ecological and
epidemiological models which exhibit uniform persistence under relaxed point dissipa-
tivity, we refer to Freedman, Ruan and Tang [9], Teng and Duan [24], and Thieme
[25].
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