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Abstract. Recently, ratio-dependent predator-prey systems have been regarded by some
researchers to be more appropriate for predator-prey interactions where predation involves
serious searching processes. However, such models have set up achallenging issueregarding
their dynamics near the origin since these models are not well-defined there. In this paper,
the qualitative behavior of a class of ratio-dependent predator-prey system at the origin in
theinterior of thefirst quadrant isstudied. It is shown that the originisindeed acritical point
of higher order. There can exist numerous kinds of topological structuresin aneighborhood
of the origin including the parabolic orbits, the elliptic orbits, the hyperbolic orbits, and any
combination of them. These structures have important implications for the global behavior
of themodel. Global qualitative analysis of the model depending on all parametersiscarried
out, and conditions of existence and non-existence of limit cycles for the model are given.
Computer simulations are presented to illustrate the conclusions.

1. Introduction

In population dynamics, a functional response of the predator to the prey density
refers to the change in the density of prey per unit time per predator as a func-
tion of the prey density. The most important and useful functional response is the
Michaelis-Menten or Holling type Il function of the form

cxX

px) = — e
where ¢ > 0 isthe maxima growth rate of the predator, and m > 0 is the half-
saturation constant. Because the function p(x) depends solely on prey density, it
is usualy called a prey-dependent response function. Predator-prey systems with
prey-dependent response have been studied extensively and the dynamics of such
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systems are now very well understood (for example, see Freedman [7] and the
references cited therein).

Recently, the traditional prey-dependent predator-prey models have been chal-
lenged by several biologists (Arditi and Ginzburg [3], Arditi, Ginzburg and Ak-
cakaya [4], Akcakaya [1], Gutierrez [9], etc.) based on the fact that functional
and numerical responses over typical ecological timescal es ought to depend on the
densities of both prey and predators, especially when predators have to search for
food (and therefore have to share or compete for food). Such afunctional response
is called a ratio-dependent response function. Based on the Michaelis-Menten or
Holling type Il function, Arditi and Ginzburg [3] proposed aratio-dependent func-
tion of the form

ply= T oo
y m—i—);‘ my + x

and the following ratio-dependent predator-prey model

X =x(a—bx)— Ay ,
my + x
. X (1.2)
§=yed+ ),
my +x

Here, x(¢) and y(z) represent population densities of prey and predator at time
t, respectively; 7 > 0 is the carrying capacity of the prey, d > 0 is the death
rate of the predator, and a, ¢, m, and f are positive constants that stand for prey
intrinsic growth rate, capturing rate, half saturation constant and conversion rate,
respectively.

The merits of ratio-dependent versus prey-dependent models have been con-
tested, see, for example, Berryman [5], Lundberg and Fryxell [14], and the refer-
ences cited therein. Differing from the prey-dependent predator-prey models, the
ratio-dependent predator-prey systems have two principal predictions: (a) equilib-
rium abundancesare positively correlated along agradient of enrichment (see Arditi
and Ginzburg [3]) and (b) the “paradox of enrichment” (see Rosenzweig [16]) ei-
ther completely disappears or enrichment is linked to stability in a more complex
way. We will study some particular mathematical features rather than discuss the
general ecological significance of this class of models.

The ratio-dependent predator-prey model (1.1) has been studied by several
researchers recently and very rich dynamics have been observed. Freedman and
Mathsen [8] restricted their analysisto parameter valuesthat ensure the equilibrium
(0, 0) behaves like a saddle point and established conditions for persistence of the
model. Jost, Arino and Arditi [11] studied the anaytical behavior at (0, 0) for a
general ratio-dependent predator-prey model and showed that this equilibrium can
be either a saddle point or an attractor for certain trajectories. Thus, the equilibrium
(0, 0) has its own basin of attraction in the phase space even if there exists an
interior stable or unstable equilibrium. Kuang and Beretta [13] investigated the
global behavior of solutions of system (1.1). They observed very rich boundary
dynamics and showed that if the positive equilibrium of system (1.1) is localy
asymptotically stable, then the system does not have any nontrivial positiveperiodic
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solutions. They al'so studied the global stability of thethreeequilibria (0, 0), (3, 0),
and (x*, y*). Kuang and Berettamentioned that there are still many interesting and
challenging questionsregarding the dynamics of system (1.1), such asthe existence
and uniqueness of apositivelimit cyclewhen (x*, y*) existsandisunstable, etc. We
alsorefer to Kuang [12] for aGause-type predator-prey model with ratio-dependent
response.

As observed by Freedman and Mathsen [8], Jost, Arino and Arditi [11], and
Kuang and Beretta [13], system (1.1) is not well-defined at the origin (0, 0) and
thus cannot be linearized at (0, 0). This is the main reason for system (1.1) to
have very rich and complicated dynamics. In this paper, by redefining the system
at (0, 0) and making a transformation in the time variable, we transform system
(1.2) into apolynomial system. The new system iswell defined at (0, 0) and can be
linearized at (0, 0). However, the Jacobian matrix at (0, 0) is azero matrix. Using
the terminology of Andronov et al. [2] and Zhang et al. [18], we know that (0, 0) is
acritical point of higher order of system (1.1) (it is called anonhyperbolic critical
point in Perko [15]). By using the results in Zhang et a. [18], we will study the
topological structuresof system (1.1) around thecritical point of high order (0, 0) in
theinterior of thefirst quadrant and their implications on the global behavior of the
solutions. Wewill aso perform aglobal qualitative study on system (1.1) inthefirst
quadrant and show that very interesting dynamic behaviors such as deterministic
extinction, existence of multiple attractors and limit cycles can occur.

We would like to mention that some of our results coincide with that of Kuang
and Beretta'sin [13], and some of our results include theirs. Also, compared with
Kuang and Beretta's paper, our analysis and results are more detailed and global
in the sense that we classify and determine al possible topological structures near
(0, 0) andtheglobal behaviorsnear (3, 0) and (x*, y*) depending onall parameters.
Moreover, inspired by the numerical simulations of Jost, Arino and Arditi [11],
we carry out some computer simulations (using XPP) which not only support and
illustrate our resultsvery well but al so provide moreinteresting cases and scenarios
than that in [11]. Thus, our paper can be regarded as a complement of the papers
of Kuang and Beretta[13] and Jost, Arino and Arditi [11].

This paper is organized as follows: in section 2, we study the singularity (0, 0)
of system (1.1) and give all possibilities for the orbits of system (1.1) to approach
(0,0) ast — +oo or t — —oo depending on al parameters in the interior of
the first quadrant. In section 3, existence and stability of equilibria of system (1.1)
except (0, 0) are discussed. Global qualitative analysis of system (1.1) is carried
out in section 4, which contains some results on the global stability of the positive
steady state and existence of multiple attractorsand alimit cycle of system (1.1). In
section 5, we summarize and classify the global dynamics of the system into three
tables by considering all possible cases of the parameters.

2. Asymptotic behavior of the System (1.1) at (0, 0)

Asitistypical for the predator-prey systems, the x-axis, y-axis and the interior of
the first quadrant are all invariant under system (1.1), and solutions with positive
initial values are positive and bounded. Since system (1.1) is not well-defined at
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(0, 0), weredefine system (1.1) as

. cxy
x = x(a — bx) — ,
my + x
. X
= yed+ 15, 21
my + x

%=y =0when (x,y) = (0,0).

It is easy to prove that system (2.1) is continuous and satisfies the Lipschitz con-
dition in the closed first quadrant in the (x, y)-plane, denoted by 7. Hence, system
(2.1) has two equilibria, one is the origin and the other is (K, 0) in the x-axis for
al permissible parameters. However, system (2.1) cannot be linearized at (0, 0).
So local stahility of (0, 0) cannot be studied. Note that we are only interested in
the dynamics of system (2.1) in the interior of the first quadrant, denoted by 7.
Thus, we can make atime scale change dt = (mmy + x)dt such that system (2.1)
is equivalent to the following system in the interior of the first quadrant

% =ax®+ (am — c)xy — bx3 — bmxzy = Xo(x,y) + P(x, y),

V= (f — d)xy — dmy? = Ya(x, y), (22

where X, and Y> are homogeneous polynomias in x and y of degree 2 and
®(x,y) = —bx3 — bmx?y. The equilibrium (0, 0) of system (2.2) is an isolated
critical point of higher order.

Obvioudly, system (2.2) isanalyticin aneighborhood of the origin. By Theorem
3.100n page 79 of [18], any orhit of (2.2) tending to theoriginmust tendtoit spirally
or along afixed direction, which depends on the characteristic equation of system
(2.2).

In this section, we will show that if a solution orbit of (2.2) tends to the origin
then it must tend to it along afixed direction. We will also determine the number of
solution orbits of system (2.2) that tend to (0, 0) along afixed directionast — +o0
ort — —oointheinterior of thefirst quadrant by using theresultsin[18]. Hereafter,
we refer to [18] for results and explanations of several notations involved.

First of al, we introduce the polar coordinates x = r cosf, y = rsing and
define

G(0) = cosfYo(cosh, sinf) — sinf X»(coso, sinb).

Then the characteristic equation of system (2.2) takes the form
G(0) = sin@ cosd[(c —am —dm)sSing + (f —d — a) cosf] = 0. (2.3

Clearly, either G(9) = 0 has a finite number of real roots 6y (k = 1,2, ...,n) or
G(0) = 0. By theresultsin section 11.2 in [18], we know that no orbit of system
(2.2) can tend to the critical point (0, O) spirally. Itisasingular caseif G(9) = 0;
andif G(0) isnotidentically zero, thenthere are at most 2(2+ 1) directions6 = 6;
along which an orbit of system (2.2) may approach the origin. These directions
0 = 6; aregiven by solutions of the equation (2.3). If the orbits of system (2.2) tend
totheoriginasasequencet, of ¢ tendsto +oo or —oo along adirectiond = 6;, then
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the direction is called a characteristic direction. The orbits of system (2.2) which
approach the origin along characteristic directions divide a neighborhood of the
origin into afinite number of open regions, called sectors. For an analytic system
these sectors can be classified into three types called hyperbolic sectors, parabolic
sectors, and dlliptic sectors, respectively. They are described in thefollowing figure
andtheir definitionsaregivenin[2] and [18], seealso[15]. Notethat thetopological
equivalence of a sector to one of the sectors in Figure 2.1 need not preserve the
directions of the flow.

In the following, we will discuss three cases according to the number of real
roots to the characteristic equation (2.3) in0 < 6 < 7.

21 f—d—a=0andc—am —dm =0

Inthiscase, G(0) = 0, whichisasingular case.
Performing the Briot-Bouquet transformation y = ux, system (2.2) in I is
transformed into

% =ax®+ (am — c)xzu — bx3 - bmx3u,

(2.4
= —bxz(u + muz).
On the (u, x)-plane system (2.4) can be written as
dx a+(am—cu—b(l+ mu)x. 25)

du —b(u + mu?)
Equation (2.5) has ageneral solution as follows

u
1+ mu’

a

b

X =

cu
k —1In
+ ku + b

where k is an arbitrary constant. So the general solution of system (2.2) in I T is

asf—d—a=0andc—am— dm = 0. The topological structure of the orbits
of system (2.1) in theinterior of thefirst quadrant is sketched in Figure 2.2, which
consists of an elliptic sector and a parabolic sector.

z

(a) (b) ()
Fig. 2.1. (a) A hyperbolic sector; (b) a parabolic sector; (c) an elliptic sector.
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Fig. 2.2. Topologica structure of system (2.1) at (0,0) when ¢ — am — dm = 0 and
f —d —a = 0. Thisfigure was created by XPP (see[6]) witha =1, b =1,c =2, m =
l,d=1and f =2

22. (f —d —a)(c — am — dm) = 0 but one of themis not zero

In this case equation (2.3) hastwo rootsin0 < 6 < 5,01 =0and 6, = 7.

To determine if there exists an orbit of system (2.2) which tends to the origin
along thedirection 6; (i = 1, 2) as¢ tendsto +oo or —oo, we have to compute the
derivatives of G(0) and the function H (9).

G'(0) = sinf cosh[(c —am — dm) cosh — (f —d — a) SinH]
+c0s20[(c —am — dm)sind + (f —d — a) cosd], (2.6)
H(0) = sinfY>(cosH, sinf) + cosh X»(cosh, Sind)
=acos’ — dmsin®0 + coso sinO[(f — d) Sinf + (am — ¢) cosb],
G"(0) = 2c0828[(c —am — dm) cosf — (f —d — a) siné]
—58inf cosf[(c —am — dm)sinf + (f —d — a) cosd].

221. f—d—a#0andc—am —dm =0

In this case, 61 isasimple root of (2.3) and 67 is a multiple root with multiplicity
2 of (2.3). We have

Theorem 2.1. Supposethat f —d —a #0andc — am — dm = 0. Then

(a) thereexist e1 > 0 and r1 > O such that
@i)if f —d —a > 0, al orbitsof system (2.2) in{(6,r): 0<0 <€, O0<
r < ri}tendto (0, 0) along 61 ast — —oo;
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(i) if f —d —a < 0, there exists a unique orbit of system (2.2) in {(0,r) :

0<6 <€, 0<r <ri}thattendsto (0, 0) along 61 ast — —oo; and

(b) there exist e > 0 and r, > 0 such that all orbits of system (2.2) in {(0,r) :
0<% -6<e, 0<r<rtendto(0,0)alongb,ast — +oo.

Proof. SinceG'(01) = f —d —aand H(#1) = a,if f —d —a < 0, by Theorem
3.4 on page 68 of [18] there exist €1 > 0 and r1 > 0 such that al orbits of system
(22)in{@,r): 0<0 <¢€1, O0<r <rp}tendto (0, 0) dongby ast — —oo. If
f —d —a < 0, the conclusion follows from Theorem 3.7 on page 70 of [18].
Onthe other hand, whenc —am —dm = 0, G'(62) = 0and G”(62) H (82) # 0.
Thus from Theorem 3.8 on page 75 of [18], thereexist 2 > 0and ro > 0 such that
al orbitsof system (2.2) in{(0,r): 0<% -6 <e2, 0<r <r2}tendto (0,0)
along 6 ast — +oo. |

222 f—d—a=0andc—am —dm #0

In this case, 62 isasimple root of (2.3) and 61 is a multiple root with multiplicity
2 of (2.3). Using asimilar analysis asin the proof of the above theorem, we have

Theorem 2.2. Supposethat f —d —a =0and ¢ — am — dm # 0. Then

(a) there exist €3 > 0 and r3 > 0 such that all orbits of system (2.2) in {(@, r) :
0<6 <e3, O0<r<rs}tendto(0,0) alongby ast - —oo; and
(b) there exist €4 > 0 and r4 > 0 such that
(i) ifc —am — dm > 0, al orbitsof system (2.2) in{(#,r) : 0<% -0 <
€4, 0<r <rq}tendto (0,0) along B2 ast — +oo;
(ii) if c —am — dm < 0, there exists a unique orhit of system (2.2) in {(0, r) :
0<% —6 <e, 0<r <rs}thattendsto (0,0) alongh, ast — +oo.

23. (f—d—a)(c—am —dm) #0

Inthis case, we discusstwo subcases because we only consider (2.3)in0 < 6 < 7.
(A)If (f —d —a)(c —am — dm) > 0, then equation (2.3) has two simple roots:
61 =0and b, = 5. B) If (f —d — a)(c —am — dm) < 0, then equation (2.3)
has three simple roots: 61, 6, and 63 = arctan cf:j:gm.

For the case (A), we have the following theorem according to Theorems 3.4
and 3.7 in [18].

Theorem 2.3. Assumethat (f —d — a)(c — am — dm) # 0. Then

(a) there exist e5 > 0 and r5 > 0 such that
@i)if f —d —a > 0, al orbitsof system (2.2) in{(6,r): 0<0 <e5, 0<
r < rs}tendto (0, 0) along 61 ast — —oo;
(i) if f —d —a < 0, there exists a unique orbit of system (2.2) in {0, r) :
0<6 <es, 0<r <rs}thattendsto (0, 0) along 61 ast — —oo; and
(b) there exist g > 0 and rg > 0 such that
(i) ifc —am — dm > 0, all orbitsof system (2.2) in{(#,7): 0<% -6 <
€6, 0<r <rg}tendto (0,0) along b, ast — +oo;
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(ii) if c —am — dm < 0, there exists a unique orhit of system (2.2) in {(0, r) :
0<% -6 <e, 0<r <re}thattendsto (0,0) along b, ast — +oo.

For the case (B), we have the sameresultsfor 61 and 6, asin the above Theorem
2.3. Thus, we only consider 6.

Theorem 2.4. Supposethat f —d —a > 0andc — am —dm < 0. Then

(a) there exist ¢7 > 0 and r7 > 0 such that there exists a unique orhit of system
(22)in{(®,r): 0<10—03 <e€7, 0<r < ry7}thattendsto (0, 0) along 63
ast — —oo when one of the following conditions holds

a+d < fandc < am, or
(iDa+d< f < C_sz andam < ¢ < am + dm; and

(b) there exist eg > 0 and rg > 0 such that all orbits of system (2.2) in {(0, r) :

0<10—63 <eg, 0<r <rg}tendto (0,0) along b3 ast — +oo when

cd
—— < fandam <c <am+dm.

Proof. We apply the Briot-Bouquet transformation
x=x, y=ux, and dt = xdt

to transform (2.2) into

d
& ax + (am — c)ux + bx2(1+ mu),
dt
du 2.7
g7 (f—d—au+ (c—am— dm)u® — bxu(Ll+ mu).
T

The aim of the transformation is to decompose the relatively complex topological
structure near acomplex critical point (0, 0) of system (2.2) into simpler topological
structures of several simpler critical points of system (2.7). This transformation
maps the first, second, third and fourth quadrant in the (x, y)-plane respectively
into thefirst, third, second and fourth quadrant inthe (x, u)-plane. Itisatopological
transformation from R2(x, y) \ {x = 0} to R%(x, u) \ {x = 0}, while itsinverse
transformation maps the u-axis to the point O (0, 0). Note that by the time scale
dt = xdt, the inverse Briot-Bouquet transformation maps the orbits in the left of
theu-axisinthe (x, u)-planeto the orbitsin theleft of the y-axisinthe (x, y)-plane
with reversed directions. Roughly speaking, the inverse transformation keeps the
first and fourth quadrantsin the (x, u)-planefixed, reflects the second and the third
guadrants with respect to the negative x-axis, then condenses the u-axis into one
point. Therefore, we only consider the equilibria of system (2.7) in the u-axis.

In the u-axis system (2.7) has two equilibria (0, 0) and (0, aijrj;‘ic). Obvi-
ously} (9, (a)) is an unstable node. In the following we consider the equilibrium
(0, L5794,

> am~+dm—c

f—d—a

Letxy=x,x2=u— grgm—

. Then system (2.7) becomes

dxy amf —cf +cd n ) bimf —c) b2
_— X am — ¢)x1xg — —————x7 — bmx{xp,
dt am+dm — ¢ ! 142 am+dm —c t 1%2
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dx2  b(f —d—a)imf —c)
dr (am +dm — ¢)? n=(f—d-ax

b(2mf —ma —md — c)
+
am+dm —c

x1x2 + (¢ —am — dm)x% + bmx%xz. (2.8

Equilibrium (O, 0) of system (2.8) isasaddleif any one of the following conditions
holds(@ a+d < fandc <am,(b)a+d < f < Cd —andam < ¢ < am-+dm.

Therefore, the equilibrium (0, L ijac) of system (2 7) is a saddle, and there
exists a unique separatrix of this equilibrium in the interior of the first quadrant of
system (2.7), which tendsto (0, m{:;g’ﬂ;ic) ast — —oo.

By the inverse Briot-Bouquet transformation, there exist e7 > Oand r7 > 0
such that there exists a unique orbit of system (2.2) in {(8,7) : 0 < |0 — 03] <
€7, O0<r <ry} Which tendsto (0, 0) along 03 ast — —oc.

When f = = andam < ¢ < am + dm, the equilibrium (0, 0) of system
(2.8) isa degenerate equilibrium. We obtain, after some elementary but lengthy
computations, that the equ|l|br|um (0, 0) of system (2.8) isasaddle-node. Thus, in
this case the equilibrium (0, _ jrdr;“ -) of system (2.7) is a saddle-node, and the
stable node part isin the mterlor of the first quadrant of system (2.7). However,

when - < f andam < ¢ < am + dm, the equilibrium (0, 0) of system (2.8)
is a stable node. Hence, the equilibrium (O [od=a_y of system (2.7) isa stable

9 +d
node. For both cases, we use the inverse Briot- Bguc?uet transformation to obtain
the result: there exist eg > 0 and rg > 0 such that al orbits of system (2.2) in
{@,r): 0<10—03] <es, O<r <rg}tendto (0,0) along 3 ast — +oo.

This completes the proof of the theorem. |

Using asimilar method as in the proof of Theorem 2.4, we obtain

Theorem 2.5. Assumethat f —d —a < Qandc —am — dm > 0. Then

(a) there exist eg > 0 and rg > 0 such that there exists a unique orbit of system
(22)in{@,r): 0<10 —03] <e€9, 0<r < rg}whichtendsto (0, 0) along
03 ast — +oo if one of the following conditions holds:
(i) f <dandam +dm < c, or
(i) d < f < =* andam + dm < c; and

(b) there exist €10 > 0 and r19 > 0 such that there exists an infinite number of
orbitsof system(2.2) in{(0,r) : 0 < |9 03] < €10, 0 < r < rio} whichtend
to (0, 0) along 63 ast — —oo when <f<a+dandam +dm < c.

c—am

From the above arguments, we can see that the critical point (0, 0) of system
(2.1) isnot of center type. We have discussed the existence and the number of orbits
of system (2.1) which tend to the critical point (0, 0) aong fixed directions. How-
ever, such information does not provide enough knowledge about the topological
structure in a neighborhood in 7T of the origin, i.e., it does not tell us how many
sectors there are and what kinds of sectors they are in the neighborhood. For this
purpose, we have to study the behavior of orbits of system (2.1) inthewhole I+.
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3. Equilibria of System (2.1) except (0, 0)

In this section, we will discuss the existence and stability of equilibria of system
(2.1) except (0, 0). System (2.1) aways has a boundary equilibrium (%, 0) and at
most one interior equilibrium. As showed in [13], an unique interior equilibrium
of system (2.1) existsif and only if any one of the following conditions holds:

(i) d < fandc < ma;
(i) d < f < andam < c.

c—a

In both cases, system (2.1) has a unique interior equilibrium (x*, y*), where

ol ) fd,
b bmf dm =

Next we discuss the stability of the equilibria (%, 0) and (x*, y*).

Standard and simple arguments show that the equilibrium (3, 0) is a saddle
when f > d, and the positive x-axis is divided by the point (7, 0) into two parts.
They are two separatrices of the equilibrium and both of them asymptotically ap-
proach the equilibrium as ¢+ — +o0o. There aso exists a unique separatrix in I+
which tendsto (%, 0) ast — —oo. However, when f < d the equilibrium (3, 0)
is astable node. When f = d the equilibrium (3, 0) is a saddle-node. The phase
portraits are sketched in Figure 3.1.

Consider the Jacobian matrix A of system (2.1) at the equilibrium (x*, y*),
which takes the form of

b cx*y* C(x*)Z
—bx —
A= (my* + x*)2 (my* + x*)2
fm(y*)? fmx*y*
(my* +x*)2 (my* +x*)2

It is easy to see that the determinant of A is always positive and itstraceis

N x*y*
trA = —bx + (C — fm)m
cf24+md%f —amf? —dmf? — cd?

- i’ . (3.1)

y () y (ii) y (iii)

)\ AV L

0 - Tx0 - T x 0 AN x
VV’V

Fig. 3.1. Thetopological structure of system (2.1) at (¢, 0) when (i) f > d (asaddle), (ii)
f =d (asaddle-node), and (iii) f < d (astable node).
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Theorem 3.1. Supposethat system(2.1) hasauniqueinterior equilibrium (x*, y*).
Then there are three possibilities:

(1) (x*, y*) islocally asymptotically stable if any one of the following conditions
holds
(i)d < fand ¢ < ma;

(iNd < f < C_CZm andam < ¢ < am + dm;
2
(id < f < ﬂ”j{—’% and0 < c—am —dm,where A = m?d*+4cd?(c —
am — dm).
(2) (x*, y*) isunstableif
(V) s LevA < f < and0 < ¢ —am — dm.

(3) (x*, y*) isnonhyperbolic if
) f md? VA a0 0 < ¢ — am — dm.

= 20c—am—dm)

Proof. Itisclearthat (x*, y*) islocally asymptotically stable (unstable) if thetrace
trA < O (trA > O, respectively) since detA > 0. Therefore, we only consider the
sign of the following function

F:cf2+md2f—amf2—dmf2—cd2=(c—am—dm)f2+md2f—cd2

following (3.1).
Obviously, when the condition (i) holds, we have

F < —cd? < 0.

Hence, (x*, y*) islocally asymptoticaly stable.
If the condition (ii) holds, then we consider three subcases: (8) d < f < ;-

andam < c < am+dm, (b) - < f < d_andam < ¢ < am + dm, (c)

c—am

d < f <=9 andc=am+ dm. Inthe subcase (a), we have

c—am

Ff(c—am—dm)f2<0,

which implies that (x*, y*) is locally asymptotically stable. In the subcase (b),
(x*, y*) islocally asymptotically stable by Theorem 3.2in[13]. In the subcase (¢),
we have

F=md?’f —cd’>=md*(f —a—d) <O.

Thus, (x*, y*) islocally asymptotically stable.
When ¢ —am — dm > 0, after some straightforward computations, we can see
that
—md? + VA cd

d < < .
2(c —am —dm) c¢c—am

Thus, system (2.1) has a unique equilibrium if the condition (iii) is true. We can
rewrite F asfollows

md? + VA —md? + A

F=(c—am—dm)[f+ 2(c —am _dm)][f_ 2(c —am — dm)

1. (32
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When the condition (iii) holds, itisclear that F < 0, which yieldsthat (x*, y*) is
locally asymptotically stable. Summarizing the above arguments, we obtain con-
clusion (1).

From the above expression (3.2) of F,itisclear that F > 0when the condition
(iv) holds. Thus, the equilibrium (x*, y*) is unstable.

However, when f = % andc —am — dm > 0, i.e. the condition (v)
istrue, then F = 0, which impliestrA = 0. Thus, the equilibrium (x*, y*) is not
hyperbolic. This proves the theorem. O

From the above theorem, we know that the unique interior equilibrium (x*, y*)

of system (2.1) is a center type nonhyperbolic equilibrium when f = 2(:’"‘;;*@)

andc—am—dm > 0.Hence, system (2.1) can have Hopf bifurcation. To determine
the stability of the equilibrium and direction of Hopf bifurcation in this case, we
have to compute the Liapunov coefficients of the equilibrium.

For convenience, we reconsider system (2.2). Notice that there are six parame-

tersin(2.2). When f = 2@”“2% and ¢ —am —dm > 0, wenondimensionalize

system (2.2) with the substitutions

bd f—d (f —d)?
X y —

t—> ——t, y-ar,
T G- YT b bd?m

then system (2.2) takes the following simpler form

dx 2
I = x(Ax — By — Cx“ — Dxy),
! (3.3)
Dy
dar y y

with four positive parameters

A:—’ B: 7C‘:
f—d dm

System (3.3) has a unique interior equilibrium (xg, xg) which is nonhyperbolic,
where xo = 475 Thus,

A —2Cxp— Dxo—1=0. (349

Tranglating the interior equilibrium (xg, xg) of system (3.3) to the origin, system
(3.3) can be written as

d
d_x = xox — (B 4+ Dxo)xgy + (1 — Cxo)x2 — (B 4+ 2Dxp)xy — Cx® - szy,
d’ (3.5)

d—f = xo(x — y) + y(x — y).
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Let X =x —y, Y = y. Then system (3.5) becomes

dXx

—— = (1= B = Dxoyxo¥ + (1 - Cx0)X?+ (1—2Cxg — B — 2Dxg) XY
+(1— Cxo— B — 2Dxp)Y? — CX® — (3C + D)X?Y .
—(3C +2D)XY?% — (C + D)Y3, '

Y oX + XY

dr 0 '

By the formula of the first Liapunov coefficient on page 344 in [15], we have the
first Liapunov coefficient o of the equilibrium (0, 0) of system (3.6) as follows

_ 37[(1— B — Dx)(2D + 3BC + 3DCxp) — (L — 2Cxo — B — 2Dx0)(D + BC + DCxp)]
2(1— B — Dxg)xo(B + Dxo— 1)? '

Noting equation (3.4), we further obtain that

12
o 37 D(C + D)(B — 1) o a7

" 2xC(1— B — Dxo)(B + Dxo— 1)3

Hence, the origin of system (3.6) isaweak focus of multiplicity oneand it isstable.

Theorem 3.2. If f = % and 0 < ¢ — am — dm, then system (2.1) has
auniqueinterior equilibrium (x*, y*), which is a weak stable focus of multiplicity

one.

From Theorems 3.1 and 3.2, we know that system (2.1) undergoesaHopf bifur-
cation for some parameter values. The limit cycle created by the Hopf bifurcation
will be discussed in the next section.

4. Global dynamics of System (2.1)

In this section, we summarize the resultsin sections 2 and 3, and classify the global
dynamics of system (2.1) depending on all parameters.

Theorem 4.1. System (2.1) has no interior equilibrium and (0, 0) is a global at-
tractor of system (2.1) in I if any one of the following conditions holds

() f—d—a>0andc—ma—dm > 0;
(i) f—d—a=0andc —am —dm > 0;
(i) f > “d_andam +dm > ¢ > am;

c—am

(iVya+d> f>-4 andc—am —dm > 0.

c—am

Moreover, the topological structure of the originin I consists of an elliptic sector
and a parabolic sector. The phase portrait of system (2.1) in one of these casesis
sketched in Figure 4.1.
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X

Fig.4.1. Thephaseportrait of system (2.1) created by XPP. (0, 0) isaglobal attractor, (%, 0)
isasaddle, wherea = 0.5,b =05,c=1,m=1,d =04,and f = 1.

Indeed, by the sufficient and necessary conditions of the existence of aninterior
equilibrium of system (2.1) in section 3, we can seethat system (2.1) hasnointerior
equilibrium for al casesin Theorem 4.1. Clearly, any casein Theorem 4.1 implies
f > d. Thus equilibrium (3, 0) is a saddle. Note that by theorems in section 2,
there exist eg and ro such that al orbits of system (2.1) in{(6,r) : 0<% -6 <
€0, 0 <r < rp}tendto (0,0) along 62 ast — +oo if one of conditions (i), (ii)
and (iv) holds. However, if condition (iii) holds, then there exist € and 7 such that
al orbitsof system (2.1) in{(0,r): 0<|0 — 03] <€, O<r <r}tendto (0, 0)
along 3 ast — +oo.

Notice that the conclusion in Theorem 4.1 coincide with the conclusion in
Theorem 2.6 in [13].

Theorem 4.2. If f < d andc — am — dm < 0, then system (2.1) has no interior
equilibriumand the equilibrium (¢, 0) isa global attractor in /. The topological
structure of the originin I consists of a hyperbolic sector (see Figure 4.2).

Proof. Clearly, system (2.1) has no interior eguilibrium when ¢ —am —dm < 0
and f < d. By Theorem 2.3, there exists a unique orbit of system (2.1) tending to
(0, 0) along 61 (62) ast — —oo (t — +o0, respectively), i.e. the positive x-axis
(y-axis). Moreover, no other orbitstend to (0, 0).

On the other hand, (7, 0) is astable node. Thus the conclusion of the theorem
holds. ]

In Theorem 2.5 of [13], Kuang and Beretta proved that if f < d and ¢ < am,
then (3, 0) is globally asymptotically stable. Clearly, their conclusion is included
in Theorem 4.2.
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Fig. 4.2. The phase portrait of system (2.1) created by XPP. (0, 0) has a hyperbolic sector
and a parabolic sector, (3, 0) isaglobal attractor, wherea = 0.5,h = 0.5,¢ = 0.8,m =
1,d =04,and f =0.3.

1 f

0.2 0.4 . . 1.2

Fig. 4.3. The phase portrait of system (2.1) created by XPP. Both (0,0) and (¢, 0) are
attractors, wherea = 05, =05,c=1,m=1,d =04, and f = 0.3.

Theorem 4.3. System (2.1) has no interior equilibrium, (0, 0) and (3, 0) are at-
tractorsof system(2.1) in I T if f < d andam+dm < c. Moreover, thetopol ogical
structure of the originin I+ consists of a hyperbolic sector and a parabolic sector
(see Figure 4.3).
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Proof. Itisclear that (4, 0) isastablenodein /™ and system (2.1) has no interior
equilibrium if f <d andam 4+ dm < c.

On the other hand, when f < d and ¢ — am — dm = 0, there exists an infinite
number of orbits (a unique orbit ) of system (2.1) tending to (0, 0) along 62 (61,
respectively) ast — +oo (t — —oo, respectively), and no other orbit tendsto (0, 0)
ast — +ooort — —oo by Theorem 2.1. When f < d andam + dm < c, there
exists an infinite number of orbits (aunique orbit) of system (2.1) tending to (0, 0)
along 6> (61, 63, respectively) ast — +oo (t — —o0,t — +00, respectively), and
no other orbit tends to (0, 0) by Theorems 2.3 and 2.5. This completes the proof.

O

In Theorem 3.1 of [13], Kuang and Berettahave shown that if system (2.1) hasa
uniqueinterior equilibriumwhichislocally asymptotically stable, then system (2.1)
has no nontrivial positive periodic solution. In the following wewill repeatedly use
this conclusion.

Theorem4.4.1fd < f <a+dandc —am —dm < 0, then system (2.1) hasa
unique interior equilibrium, which is a global attractor. The topological structure
of the originin I consists of a hyperbolic sector (see Figure 4.4).

Proof. By Theorem 3.1, system (2.1) has a unique interior equilibrium (x*, y*),
whichislocally asymptotically stable. Sinced < f, (%, 0) isasaddle. In 7 only the
positive x-axis and y-axistend to (0, 0) ast — —oc and r — +o0, respectively,
no other orbits approach (0, 0) according to Theorem 2.3. Thus, the conclusion of
this theorem is true by Theorem 3.1in [13]. O

0.8 |

0.6

04

0 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 4.4. The phase portrait of system (2.1) created by XPP. (0, 0) has a hyperbolic sector,
(3,0) isasaddle and (x*, y*) isaglobal attractor, wherea = 0.5,0 = 0.5,¢ =04, m =
1,d =04, and f =0.6.



284 D. Xiao, S. Ruan

0.6

04 r

O 1 1
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Fig. 4.5. The phase portrait of system (2.1) created by XPP. (0, 0) has a hyperbolic sector
and aparabolic sector, (£, 0) isasaddleand (x*, y*) isaglobal attractor, wherea =1, b =
lLce=12m=1d=1and f =3

Theorem 4.5. System (2.1) has a unique interior equilibrium, which is a global
attractor in I if any one of the following conditions holds

() f—d—a=0andam +dm > c;
(i) f—d—a>0andam > c;
(i) =L > f >a+dandam +dm > ¢ > am.

c—am

Moreover, thetopological structureof theoriginin I consists of a parabolic sector
and a hyperbolic sector (see Figure 4.5).

Proof. In any one of the cases (i), (ii) and (iii), system (2.1) has a unique inte-
rior equilibrium (x*, y*) and it is locally asymptotically stable by Theorem 3.1.
Moreover, (7, 0) isasaddle.

On the other hand, in case (i) there exists an infinite number of orbits of system
(2.1) tending to (0, 0) along 61 ast — —oo and a unique orbit of system (2.1)
tending to (0, 0) along 62 ast — +oo (i.e. the positive y-axis) by Theorem 2.1.
Hence, (x*, y*) isaglobal attractor in I+ by Theorem 3.1in [13].

In cases (ii) and (iii), from Theorem 2.3 the same statements hold for char-
acterigtic directions 6, and 6. Furthermore, there exists a unique orbit of system
(2.1) tending to (0, 0) along 63 ast — —oo by Theorem 2.4. Therefore, (x*, y*)
is aglobal attractor in I™ by Theorem 3.1 in [13]. The proof of the theorem is
compl eted. |

Theorem 4.6. Suppose that one of the following conditions holds:

a+d> f>dandc —am —dm =0,
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0 0.2 0.4 0.6 0.8 1 1.2

Fig. 4.6. The phase portrait of system (2.1) created by XPP. Both (0, 0) and (x*, y*) are
attractors, aglobal attractor, and (¢, 0) isasaddle, wherea =1, b=1,c=2,m=1,d =
0.5, and f = 0.7.

(i) g2 HvA > f > dandc > am +dm.

Then system(2.1) hasauniqueinterior equilibrium (x*, y*) and nolimit cycle, both
(0,0) and (x*, y*) are attractors of system (2.1) in 1. Moreover, the topological
structure of the originin I+ consists of a hyperbolic sector and a parabolic sector
(see Figure 4.6).

Proof. I1n both cases system (2.1) hasauniqueinterior equilibrium (x*, y*), which
islocally asymptotically stable by Theorem 3.1 and Theorem 3.2. Hence, system
(2.1) has no limit cycle according to Theorem 3.1in[13].

On the other hand, in case (i) there exists an infinite number of orbits (aunique
orbit) of system (2.1) tending to (0, 0) along 6, (61, respectively) ast — +oo
(t - —oo, respectively), and no other orbit approaches (0,0) ast — +oo or
t — —oo by Theorem 2.1. In case (ii) from Theorem 2.3 there exists a unique
orbit (an infinite number of orbits) of system (2.1) tending to (0, 0) along 61 (62,
respectively) ast — —oo (t — —o00, respectively), and there exists a unique
orbit of system (2.1) tending to (0, 0) along 63 ast — oo by Theorem 2.5. This
completes the proof of the theorem. |

Theorem 4.7. Suppose that <4 > f > % and ¢ > am + dm. Then
system(2.1) hasa unique unstableinterior equilibriumand can have a unique limit
cyclein It, whichisstableif it exists. More precisely, for some parameters system
(2.1) has a unique stable limit cyclein I and there is a parabolic sector in which
all orbits of system (2.1) approach (0, 0) ast — +oo (see Figure 4.7), and for

some other parameters system (2.1) has no limit cycle (see Figure 4.8).
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Fig. 4.7. The phase portrait of system (2.1) created by XPP. (0, 0) isan attractor, (7, 0) isa
saddle, (x*, y*) isan unstable focus, and there is a stable limit cycle surrounding (x*, y*),
wherea =1,b=1,c=2,m=1d=0.5,and f = 0.782.
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Fig. 4.8. The phase portrait of system (2.1) created by XPP. (0, 0) isan attractor, (£, 0) isa
saddle, (x*, y*) isan unstable focus, and the limit cycle is broken when f increases, where
a=1b=1c=2m=1d=05and f =0.8.

Proof. When -4 = f > —md*+VA_ ang ¢ o g 4 dm, system (2.1) has a

c—am 2(c—am—dm)

unique interior equilibrium (x*, y*) which is unstable by Theorem 3.1. However,
ifd < f < B N ) +dm, thenthe equilibrium (x*, y*) becomes

2(c—am—dm)

stable by Theorems 3.1 and 3.2. Therefore, a Hopf bifurcation occurs. From (3.7)
the first Liapunov number o < 0, it follows from Theorem 1 in [15] that the Hopf



Global dynamics of aratio-dependent predator-prey system 287

bifurcation is supercritical and there is a stable limit cycle. The following surface

—md? 244 + 4cd?(c —am — d
f= md? & /m?d* + (c —am = dm) and ¢c—am—dm >0
2(c —am — dm)

is called the Hopf bifurcation surface.
Hence, there existsasmall positive number ¢ such that system (2.1) hasastable

Iimit cyclewhen €+ % > f > % andc > am +dm. Denote_zd
this parameter region by D. Notice that system (2.1) has at most one limit cyclein
I by the Theorem 2.7 of [10]. Thus, system (2.1) has a unique limit cycle which

isstable as all parametersarein D.
On the other hand, when —<4 = f > —m+VA ang ¢ o g 4 dm, the

c—am 2(c—am—dm)
equilibrium (5, 0) isasaddle and there exists aunique orbit yp of system (2.1) that
tends to the equilibrium (0, 0) along the direction 63 ast — +oo by Theorem 2.5.
Let y be an unstable separatrix of theequilibrium (7, 0) in I7. Thentherearethree

possible relative positions between y and yg in I asfollows

(i) yoisabovey;
(i) yo coincideswith y;
(iii) yoisbelow y.

If all parametersarein D, then either case (i) or case (ii) occurs. Otherwise, system
(2.1) hasat least two limit cyclesby Poincare-Bendixson theorem, which contradicts
Theorem 2.7 in [10]. If case (i) occurs, then there is a parabolic sector composed
of the positive y-axis and yg in which al orbits of system (2.1) approach (0, 0)
ast — oo by Theorem 2.5. Therefore, system (2.1) has a unique stable limit
cycle for al parameters in D and there is a parabolic sector in which all orbits
of system (2.1) approach (0, 0) ast — +oo (see Figure 4.7). If case (ii) occurs,
then system (2.1) has a heteroclinic cycle composed of an interval of the positive
x-axisand aheteroclinic orbit connecting (0, 0) and (3, 0), and thereisaparabolic
sector composed of the positive y-axis and the heteroclinic orbit connecting (0, 0)
and (3, 0) in which al orbits of system (2.1) approach (0,0) ast — +oo by
Theorem 2.5.

If case (iii) occurs, then the parameters of system (2.1) must not bein theregion
D. Inthiscase, system (2.1) hasno limit cycle. Computer simulation showsthe case
indeed occurs (see Figure 4.8). This completes the proof of the theorem. ]

5. Discussion

In contrast with the traditional prey-dependent predator-prey models, a ratio-
dependent model is not well defined at the origin (0, 0) and thus the local stability
of (0, 0) cannot be analyzed directly.

In this paper we have considered a class of ratio-dependent models proposed
by Arditi and Ginzburg [3]. It has been observed by Jost, Arino and Arditi [11],
and Kuang and Beretta [13] that this ratio-dependent model exhibits very rich and
complicated dynamics. By redefining the system at the origin (0, 0) and making
a transformation in the time variable, we transformed the given model into an
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Tablel. Global dynamicsof (2.1) in I when (f —d — a)(c —am — dm) > 0.

Parameters 0,0 7,0 (x*, y%) Phase portrait

f—d—a>0 Globa attractor ~ Saddle DNE Fig. 4.1
c—am—dm >0

f<d Hyperbolic sector Global attractor DNE Fig. 4.2
c—am—dm <0

d < f <d+a Hyperbolicsector Saddle Global attractor Fig. 4.4
c—am—dm <0

Table2. Globa dynamicsof (2.1) in I when (f —d — a)(c —am — dm) = 0.

Parameters (0,0 (4.0 (x*, y*) Phase portrait

f—d—a=0 Globa attractor Saddle DNE Fig. 4.1

c—am—dm =0

f—d—a=0  Global attractor Saddle DNE Fig. 4.1
c—am—dm >0

f—d—a=0  Hyperbolic sector and Saddle Global attractor  Fig. 4.5
¢c—am—dm <0  parabolic sector

f—d—a=>0  Global attractor Saddle DNE Fig. 4.1
c—am—dm =0

f=<d Attractor Attractor DNE Fig. 4.3
c—am—dm =0

d< f<d+a Attractor Saddle Attractor Fig. 4.6
c—am—dm =0

equivalent polynomial system. Theorigin (0, 0) isacritical point of high order. We
have classified and determined all possible topological structures near the origin
(0, 0) and two other equilibria (%, 0) and (x*, y*) depending on al parameters.
I nteresting dynamic behavior such as deterministic extinction, existence of multiple
attractors, and existence of alimit cycle has been observed.

Theglobal dynamics of the system can been summarized and classified into the
following tables by considering three cases. (i) (f —d — a)(c — am — dm) > 0;
@ity (f —d —a)(c —am — dm) = 0; and (iii) (f —d — a)(c —am — dm) < O.

Remark. After submitting this paper, two preprints, Hsu, Hwang and Kuang [10] and Yang
and Ma[17], came to our attention. All the open questions proposed in Kuang and Berreta
[13] have been answered positively in these two papers, especially the uniqueness of the
limit cycle. The main technique in Hsu, Hwang and Kuang [10] is to transform system
(2.1) into a Gause-type predator-prey system by a transformation u = x/y which in turn
can be transformed to a Liénard system. Thus, the well-established results on existence and
uniqueness of limit cycles for Liénard systems can be applied. It isinteresting to notice that
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Table3. Globa dynamicsof (2.1) in I when (f —d — a)(c —am — dm) < 0.

Parameters 0,0 7.0 (x*, y%) Phase portrait

f—d—a>0 Hyperbolic sector and Saddle  Global attractor Fig. 4.5
c<am parabolic sector

a+d< f< -« Hyperbolic sector and Saddle  Global attractor Fig. 4.5

c—am

am < c <am+dm parabolic sector

< f Global attractor Saddle DNE Fig. 4.1

am < c <am+dm
f<d Attractor Attractor DNE Fig. 4.3

c—am—dm >0
d<f< % Attractor Saddle  Attractor Fig. 4.6

c—am—dm >0
% < f < “L Attractor Saddle  Unstablefocus Fig. 4.8
c—am—dm >0 Limit cycle Fig. 4.7
<L < f<a+d  Globa attractor Saddle DNE Fig. 4.1

c—am—dm >0

the transformation u = x/y issimilar to the Briot-Bouquet transformation y = ux we used
in section 2. Some of the techniques and resultsin Yang and Ma[17] are similar to ours. In
comparison, we have provided more detailed information about the topological structures
near the equilibria, especially near the origin, and based on that, we are able to determinethe
global dynamics of the model. We would like to thank Professor Yang Kuang and Professor
Zhien Mafor sending us the preprints.

Acknowledgements. We are grateful to the two referees and Professor Odo Diekmann for
their careful reading and constructive comments.
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