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A delayed predator–prey system with nonmonotonic functional response is
studied by using the normal form theory of retarded functional differential equa-
tions developed by Faria and Magalhães. The bifurcation analysis of the model
indicates that there is a Bogdanov–Takens singularity for any time delay value. A
versal unfolding of the model at the Bogdanov–Takens singularity is obtained. On
the other hand, it is shown that small delay changes the stability of the equilibrium
of the model for some parameters and the system can exhibit Hopf bifurcation as
the time delay passes through some critical values. © 2001 Academic Press

1. INTRODUCTION

In microbial dynamics or chemical kinetics, the functional response
describes the uptake of substrate by the microorganisms. In general the
response function p(x) is monotone. However, there are experiments that
indicate that nonmonotonic responses occur at the microbial level: when
the nutrient concentration reaches a high level an inhibitory effect on the
specific growth rate may occur. This is often seen when micro-organisms
are used for waste decomposition or for water purification (cf. Bush and
Cook [2]). The so-called Monod–Haldane function

p(x)=
mx

a+bx+x2



has been proposed and used to model the inhibitory effect at high concen-
trations (Andrews [1]). In experiments on the uptake of phenol by pure
culture of Pseudomonas putida growing on phenol in continuous culture,
Sokol and Howell [11] proposed a simplified Monod–Haldane function of
the form

p(x)=
mx

a+x2

and found that it fits their experimental data significantly better than the
Monod–Haldane function and is simpler since it involves only two param-
eters. Let x(t) and y(t) denote the population densities of the prey and
predator, respectively. Recently, we (see [14]) have studied a predator–prey
system with nonmonotonic functional response

ẋ(t)=rx(t) 11−
x(t)
K
2−x(t) y(t)

a+x2(t)
,

ẏ(t)=y(t) 5 mx(t)
a+x2(t)

−D6
(1.1)

and found that the model undergoes a series of bifurcations including
saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation.

Based on some experimental data, Caperon [3] observed that there is a
time delay between the changes in substrate concentration and the corre-
sponding changes in the bacterial growth rate. Following Caperon’s
observation, Bush and Cook [2] modified system (1.1) to allow the growth
rate of microorganism to depend on the substrate concentrations y units of
time earlier. Their model is a system of two delay differential equations of
the form

ẋ(t)=rx(t) 11−
x(t)
K
2−x(t) y(t)

a+x2(t)
,

ẏ(t)=y(t) 5 mx(t−y)
a+x2(t− y)

−D6 ,
(1.2)

where r, K, a, m, D, and y are positive constants.
In this paper, we consider system (1.2) in the closed first quadrant of the

(x, y) plane. We will investigate the effect of the time delay on bifurcations
of the system. It is well known that the time delay cannot change the
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number and location of equilibria of system (1.2). When y=0, there are
some parameter values of r, K, a, m, and D such that system (1.2) exhibits
Bogdanov–Takens bifurcation (see [14]). We will show that the delayed
system (1.2) still has a Bogdanov–Takens singularity for any y > 0. There-
fore, the time delay does not affect the occurrence of Bogdanov–Takens
bifurcation. On the other hand, it is known that a small time delay usually
does not change the stability of the equilibria. We will see that for system
(1.2), when y=0 there exist some parameter values such that system (1.2)
has a positive equilibrium which is a stable multiple focus in the interior of
the first quadrant. When y > 0 this equilibrium becomes unstable and Hopf
bifurcation always occurs for some yk > 0.

We would like to mention that though Faria and Magalhães [5] gave an
example on Bogdanov–Takens bifurcation in a scalar delay differential
equation, to the best of our knowledge, this paper is the first dealing with
Bogdanov–Takens bifurcation in a predator-prey system with delay. The
Hopf bifurcation analysis of a planar system with delay involves studying
the distribution of the roots to a second degree transcendental equation.
Such transcendental equations have been investigated by many researchers,
see, for example, Freedman and Rao [7], Kuang [10], Táboas [15],
Ruan [12], Ruan and Wei [13], Zhao et al. [16], etc. However, the direc-
tion and stability of the non-trivial periodic orbits bifurcated from the
equilibrium have rarely studied. Especially, for the case when y=0 the
equilibrium is a multiple focus of multiplicity one and is stable for some
parameter values. We shall use the normal form theory for Hopf bifurca-
tions in RFDE due to Faria and Magalhães [4] and [6] to analyze the
direction and stability of the non-trivial periodic orbits of system (1.2) in
this case.

This paper is organized as follows. In Section 2, following the technique
of Faria and Magalhães [5] we compute the normal form of system (1.2)
at the degenerate equilibrium and show this equilibrium is in fact a
Bogdanov–Takens singularity. We also discuss the versal unfolding of
system (1.2) at this Bogdanov–Takens singularity depending on the original
parameters. In section 3, for a set of parameter values of r, K, a, m, and D,
we study the effect of the time delay y on the stability of the equilibrium.
By choosing y as a bifurcation parameter and following the procedure of
Faria and Magalhães [6] we compute the normal form for the Hopf
bifurcation of system (1.2).

2. BOGDANOV–TAKENS BIFURCATION

As it is typical for predator-prey systems, the x-axis, y-axis and the
interior of the first quadrant are all invariant under system (1.2). Also,
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there are a hyperbolic saddle point at the origin and an equilibrium (K, 0)
for all permissible parameters. It is easy to check that system (1.1) has
a unique interior equilibrium (x0, y0) if and only if m2−4aD2=0 and
m < 2KD. Furthermore, when m=KD the equilibrium (x0, y0) is a cusp of
codimension 2 (i.e., a Bogdanov–Takens singularity) as shown in [14],
where x0=m/2D, y0=ra. Since time delay does not affect the number and
location of equilibria, (x0, y0) is still a unique interior equilibrium for the
delayed system (1.2) when m2−4aD2=0 and m=KD. We will discuss if
the interior equilibrium (x0, y0) is also a Bogdanov–Takens singularity for
system (1.2). Denote by m0, a0, D0, and K0 if they satisfy m2−4aD2=0 and
m=KD.

Consider the following retarded functional differential equations
(RFDE)

ẋ(t)=rx(t) 11−
x(t)
K0
2− x(t) y(t)

a0+x2(t)
,

ẏ(t)=y(t) 1 m0x(t−y)
a0+x2(t−y)

−D0 2
(2.1)

in the phase space C :=C([−y, 0]; R2), here y > 0 is a constant. It is
convenient to reparametrize system (2.1) so that it becomes

ẋ(t)=y 5rx(t) 11−
x(t)
K0
2− x(t) y(t)

a0+x2(t)
6 ,

ẏ(t)=y 5y(t) 1 m0x(t−1)
a0+x2(t−1)

−D0 26 .
(2.2)

The advantage is that we can work in a fixed phase space C1 :=
C([−1, 0]; R2) when y varies.

First of all, we translate the equilibrium (x0, y0) of system (2.2) to the
origin. Let x1=x−x0, x2=y−y0. Then system (2.2) becomes

ẋ1(t)=y 5−
x0

a0+x20
x2(t)+ C

i+j \ 2

1
i! j !

f (1)ij x i1(t) x j2(t)6 ,

ẋ2(t)=y 5 C
i+j \ 2

1
i! j !

f (2)ij x i1(t−1) x j2(t)6 ,
(2.3)

where i, j \ 0,
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f (1)ij =
“
i+jf (1)

“
ix “ jy
:
(x0 , y0)

, f (2)ij =
“
i+jf (2)

“
ix “ jy
:
(x0 , y0)

,

f (1)=rx 11−
x
K0
2− xy

a0+x2
, f (2)=y 1 m0x

a0+x2
−D0 2 .

Linearization at the zero equilibrium yields

ẋ1(t)=−
yx0

a0+x20
x2(t),

ẋ2(t)=0.

(2.4)

The linear system (2.4) has l=0 as a double characteristic value and no
other characteristic values.

Now we consider the normal form of system (2.3) at the singularity
(0, 0). For simplicity, we rewrite system (2.4) as

Ẋ(t)=L(Xt),

here X(t)=(x1(t), x2(t)), L(f)=L(f1(−1)f2(0) ) , and f=(f1, f2). According to
the normal form theory developed by Faria and Magalhães [5] we know
that the center manifold of system (2.4) at the origin is two dimensional
and system (2.3) can be reduced to an ODE in the plane.

Let A0 be the infinitesimal generator of system (2.4). Consider L={0}
and denote by P the invariant space of A0 associated with the eigenvalue
l=0. Using the formal adjoint theory of RFDE in [5], we know that the
phase space C1 can be decomposed by L as C1=P À Q. Let F and Y be
the bases for P and P*, the space associated with the eigenvalue l=0 of
the adjoint equation, respectively, and be normalized so that (F, Y)=I,
where ( · , · ) is the bilinear form defined in section 2 of [5]. We refer to [5]
for the unexplained notations and definitions. F and Y are 2×2 matrices
of the form

F(h)=R
1 h

0 −
a0+x20
yx0

S=R
1 h

0 −
m0

yD0

S , −1 [ h [ 0,

Y(s)=R1
yD0
m0

s

0 −
yD0
m0

S , 0 [ s [ 1.
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The matrix B satisfying Ḟ=FB is given by

B=R0 1
0 0
S .

Enlarging the phase space C1 by considering the space BC={f : [−1, 0]
Q R2; f is continuous on [−1, 0) with a jump discontinuity at 0}, we can
see that the projection of C1 upon P, associated with the decomposition
C1=P À Q, is now replaced by p: BC Q P, which leads to the decompo-
sition

BC=P À Ker p

following [5]. Now decompose x in system (2.3) according to the preceding
decomposition of BC, in the form x=Fz+y, with z ¥ R2 and y ¥ Ker p 5
D(A0)=QŒ. Hence, system (2.3) in the center manifold is equivalent to the
system

ż=Bz+Y(0) F(Fz),(2.5)

where

F(f)=R y C
i+j \ 2

1
i! j !

f (1)ij [f1(0)] i [f2(0)] j

y C
i+j \ 2

1
i! j !

f (2)ij [f1(−1)] i [f2(0)] j
S ,

where f=(f1, f2). Writing F in its Taylor expansion up to the second
order terms in the form F(z)= 1

2! F2(z)+O(|z|3), we have

ż1=z2+
1
2!
yf (1)20 z21+yP1(z1, z2),

ż2=−
1
2!
y2D0
m0

f (2)20 (z1−z2)2+yP2(z1, z2),

(2.6)

where f (1)20 =−rD0/m0, f (2)20 =−rD0, P1 and P2 are C. functions in (z1, z2)
at least of the third order.

In the neighborhood of the origin, we make the inverse transformation

z̄1=z1, z̄2=z2+
y

2
f (1)20 z21+yP1(z1, z2).

BIFURCATIONS IN A PREDATOR–PREY SYSTEM 499



After dropping the bars, system (2.6) becomes

ż1=z2,

ż2=az
2
1+bz1z2+cz

2
2+P3(z1, z2),

(2.7)

here

a=
ry2D2

0

2m0
, b=−

ryD0+ry2D2
0

m0
, c=

ry2D2
0

2m0
,

and P3 is a C. function in (z1, z2) at least of the third order whose
coefficients are functions of y, r, D0, m0, a0, and K0. By the nonresonance
conditions among the set L, we can eliminate the z22 term in the second
equation of system (2.7) and obtain

ż1=z2,

ż2=az
2
1+bz1z2+P4(z1, z2),

(2.8)

where P4 is a C. function in (z1, z2) at least of the third order. The above
arguments imply that

Theorem 2.1. For any y > 0, the equilibrium (x0, y0) of system (2.1) is
a Bogdanov–Takens singularity, the dynamics in a neighborhood of (x0, y0) is
generically determined by the quadratic terms of system (2.1).

It is more interesting to determine a versal unfolding for the original
system (2.1) or system (2.2) with a Bogdanov–Takens singularity, i.e., to
determine which of the parameters r, K, D, a, m, and y can be chosen as
bifurcation parameters such that system (2.1) exhibits Bogdanov–Takens
bifurcation. We cannot get any versal unfoldings of this Bogdanov–Takens
singularity if we require that system (2.2) always has an equilibrium
(x0, y0), as stated in [5], for all bifurcation parameters. However, if we
give up this restraint and assume the following condition instead

(H) System (2.2) has a Bogdanov–Takens singularity (x0, y0) when
all bifurcation parameters equal to zero,

then we can obtain a versal unfolding of this Bogdanov–Takens singularity
depending on all parameters of the original system. For this, choose K and
D in system (2.2) as the bifurcation parameters, i.e. consider 1/K0+l1 and
D0+l2, where l1 and l2 vary in a small neighborhood of (0, 0). Adding
these perturbations to system (2.2), we obtain
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ẋ(t)=y 5rx(t) 11−
x(t)
K0
2− x(t) y(t)

a0+x2(t)
−rl1x2(t)6 ,

ẏ(t)=yy(t) 1 m0x(t−1)
a0+x2(t−1)

−D0−l2 2 .
(2.9)

When l1=l2=0, system (2.9) has a Bogdanov–Takens singularity (x0, y0)
and there exists a two-dimensional center manifold.

Let y1=x−x0, y2=y−y0. Then system (2.9) becomes

ẏ1(t)=−ryx20 l1−2ryx0 l1y1(t)−
yx0

a0+x20
y2(t)+ C

i+j \ 2

1
i! j !
yg (1)ij y i1(t) y j2(t),

ẏ2(t)=−yy0 l2−yl2y2(t)+ C
i+j \ 2

1
i! j !
yg (2)ij y i1(t−1) y j2(t),

(2.10)

where i, j \ 0,

g (1)ij =
“
i+jg (1)

“
ix “ jy
:
(x0 , y0 , l1)

, g (2)ij =
“
i+jg (2)

“
ix “ jy
:
(x0 , y0 , l2)

,

g (1)=rx 11−
x
K0
2− xy

a0+x2
−rl1x2, g (2)=y 1 m0x

a0+x2
−D0−l2 2 .

We decompose the enlarged phase space BC of system (2.10) as BC=
P À Ker p. Then y in system (2.10) can be decomposed as y=Fz+u with
z ¥ R2 and u ¥ QŒ. Hence, system (2.10) is decomposed as

ż=B1+B2z+Y(0) G(Fz+u),

u̇=AQŒu+(I−p) X0[B0+B2(F(0) z+u(0))+G(Fz+u)],
(2.11)

where

X0(h)=˛
I, h=0

0, −1 [ h < 0,

B0=R
−rx20 yl1
−yy0l2
S , B1=Y(0) B0, B2=R

−2ryx0l1 1
0 − yl2

S ,
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and

G(f)=R C
i+j \ 2

1
i! j !
yg (1)ij [f1(0)] i [f2(0)] j

C
i+j \ 2

1
i! j !
yg (2)ij [f1(−1)] i [f2(0)] j

S ,
here f=(f1, f2).

To compute the normal form of system (2.10) at (x0, y0), consider

ż=B1+B2z+Y(0) G(Fz),

that is,

ż1=−rya0l1−2ryx0l1z1+z2−1 ryl1+
ryD0
2m0
2 z21+yR1(z1, z2),

ż2=
1
2

ry2x0l2−yl2z2+
1
2

ry2D2
0

m0
(z1−z2)2+yR2(z1, z2),

(2.12)

where R1 and R2 are C. functions in (z1, z2) at least of the third order.
Following the procedure of deriving normal form in Kuznetsov [10],
system (2.12) can be reduced to

ż1=z2,

ż2=c1+c2z2+az
2
1+bz1z2+R(z1, z2, c1, c2),

(2.13)

here c1=(1/2) ry2x0l2, c2=−yl2+(ryx0/2)(ry2D0−4) l1, and R=O(|c|2)
+O(|cz|3).

Hence, when y2rD0 ] 4, system (2.9) exhibits Bogdanov–Takens bifur-
cation.

Theorem 2.2. When y2rD0 ] 4, there exists a unique smooth curve HL
corresponding to homoclinic bifurcation and a unique smooth curve H corre-
sponding to Hopf bifurcation, such that system (2.9) has a unique and
hyperbolic stable cycle for parameter values inside the region bounded by H
and HL in the lower half plane l2 < 0 and no cycles outside this region. The
local representations of these bifurcations curves are given by

HL=3(l1, l2); c2−
5
7
b=− c1

a
=0, c1 < 04
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and

H=3(l1, l2); c2−b=−
c1

a
=0, c1 < 04 .

3. HOPF BIFURCATION

It has been shown in [14] that for the ODE model (1.1), when m2 > 4aD2

and K > (m+`m2−4aD2)/2D, there are two positive equilibria: a focus
(x1, y1) and a hyperbolic saddle (x2, y2). Moreover, when K=(2m−
`m2−4aD2)/2D the focus (x1, y1) is a multiple focus. The third focal
value (i.e. the Liapunov number) at (x1, y1) is a3=0 when m=
[(18+2`6)/3] aD2. This means that (x1, y1) could be a multiple focus of
multiplicity at least two for some parameter values, but when 4aD2 <
m < [(18+2`6)/3] aD2 and K=(2m−`m2−4aD2)/2D, (x1, y1) is a
multiple focus of multiplicity one, which is stable. In this section, we are
interested in studying the effect of the delay on the stability of (x1, y1)
when (x1, y1) is a stable multiple focus of multiplicity one.

It is well-known that a small delay does not change the stability of the
equilibrium in many biological systems, i.e., if the system has a stable equi-
librium when the time delay y=0, then this equilibrium is still stable when
y varies in a small neighborhood of zero. We will show that for system (1.2)
a small delay can change the stability of the equilibrium. By choosing y as
the bifurcation parameter, we will discuss the Hopf bifurcation of system
(1.2) for a class of parameters a, m, K, and D by using the normal form
theory developed by Faria and Magalhães [4] and [6].

We first need conditions to ensure that (x1, y1) is a stable focus of
multiplicity one and no any nontrival closed orbits (periodic orbits or
homoclinic orbits) for the ODE system (1.1), which can be stated as in the
following lemma. For more details we refer to [14].

Lemma 3.1. If 4aD2 < m2 [ 16
3 aD2 and K=(2m−`m2−4aD2)/2D, then

system (1.1) has an interior equilibrium (x1, y1), which is stable, and there is
no nontrival closed orbit (neither periodic orbit nor homoclinic orbit) in the
interior of the first quadrant, where

x1=
m−`m2−4aD2

2D
, y1=r 11−

x1
K
2 (a+x21).
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In fact, the equilibrium (x1, y1) is a multiple focus of multiplicity one,
which is stable.

Theorem 3.2. Suppose that 4aD2 < m2 [ (16/3) aD2 and K=(2m−
`m2−4aD2)/2D. Then system (1.2) has an interior equilibrium (x1, y1),
which is unstable for 0 < y° 1.

Proof. Let X1=x−x1, X2=y−y1. Then system (1.2) becomes

Ẋ1(t)=−
x1

a+x21
X2(t)+ C

i+j \ 2

1
i! j !

h (1)ij X i
1(t) X j

2(t),

Ẋ2(t)=
my1(a−x21)
(a+x21)

2 X1(t−y)+ C
i+j \ 2

1
i! j !

h (2)ij X i
1(t−y) X j

2(t),

(3.1)

where i, j \ 0,

h (1)ij =
“
i+jh (1)

“
ix “ jy
:
(x1 , y1)

, h (2)ij =
“
i+jh (2)

“
ix “ jy
:
(x1 , y1)

,

h (1)=rx 11−
x
K
2− xy

a+x2
, h (2)=y 1 mx

a+x2
−D2 .

To study the stability of the origin, consider the linearized system at (0, 0)

Ẋ1(t)=−
x1

a+x21
X2(t),

Ẋ2(t)=
my1(a−x21)
(a+x21)

2 X1(t− y).

(3.2)

System (3.2) has the characteristic equation

D(l, y)=l2+qe−ly=0,(3.3)

where

q=
mx1y1(a−x21)

(a+x21)
3 > 0.

It is clear that the characteristic equation (3.3) has no real roots and
D(l, 0)=0 has only a pair of conjugate purely imaginary roots ±i`q.
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Assume that l=u+iv is a root of (3.3) for y > 0. Then we have

H1(u, v, y)=u2−v2+qe−uy cos vy=0,

H2(u, v, y)=2uv−qe−uy sin vy=0.

Using the Implicit Function Theorem, we can see that (H1(u, v, y),
H2(u, v, y))=(0, 0) defines u, v as functions of y, i.e., u=u(y) and v=v(y)
in a neighborhood of y=0 such that

u(0)=0, v(0)=`q,
d
dy

u(y):
y=0

> 0.

Therefore, u(y) > 0 as y > 0. This completes the proof of the theorem. L

It follows from the above discussion that there exist

yk=
2kp

`q
, k=0, 1, 2, ...

such that the characteristic equation (3.3) has two simple complex roots
u(y)± iv(y) that cross the imaginary axis transversely at y=yk:

u(yk)=0, v(yk)=`q > 0, uŒ(yk) > 0.

And (3.3) has no other roots when y=yk in the imaginary axis which are
multiples of i`q. Hence, Hopf bifurcation may occur at y=yk.

Next, choosing y as a bifurcation parameter and following the normal
form theory developed by Faria and Magalhães [6], we discuss the explicit
expressions of the normal form of system (3.1) in terms of the original
parameters in the small neighborhood of yk. For y > 0, rewrite system (3.1)
as

Ẋ1(t)=y 5−
x1

a+x21
X2(t)+ C

i+j \ 2

1
i! j !

h (1)ij X i
1(t) X j

2(t)6 ,

Ẋ2(t)=y 5
my1(a−x21)
(a+x21)

2 X1(t−1)+ C
i+j \ 2

1
i! j !

h (2)ij X i
1(t−1) X j

2(t)6 ,
(3.4)

and the linearized system is

Ẋ1(t)=−
yx1

a+x21
X2(t),

Ẋ2(t)=
ymy1(a−x21)

(a+x21)
2 X1(t−1).

(3.5)
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Let A be the generator of the linear semigroup corresponding to (3.5).
When y=yk, A has a pair of purely imaginary characteristic roots ±i2kp,
which are simple, and no other characteristic roots with zero real part.
Introduce a new parameter n=y−yk, system (3.4) can be written as

Ẋ1(t)=−
ykx1

a+x21
X2(t)−

nx1
a+x21

X2(t)+(yk+n) C
i+j \ 2

1
i! j !

h (1)ij X i
1(t) X j

2(t),

(3.6)

Ẋ2(t)=
ykmy1(a−x21)

(a+x21)
2 X1(t−1)+

nmy1(a−x21)
(a+x21)

2 X1(t−1)

+(yk+n) C
i+j \ 2

1
i! j !

h (2)ij X i
1(t−1) X j

2(t).

We simply denote it by

Ẋ(t)=R 0 −
ykx1

a+x21
ykmy1(a−x21)

(a+x21)
2 0

S RX1(t−1)
X2(t)
S+H0(Xt, n).

For any n, system (3.6) has an equilibrium at (0, 0). The phase space is
C1=C([−1, 0]; R2). Fix a k ¥ N={1, 2, ...}, define L={−i2kp, i2kp}.
We will apply the normal form theory in [6] to system (3.6).

Let the phase space C1 be decomposed by L as C1=P À Q, where P is
the generalized eigenspace associated with L. Consider the bilinear form
( · , · ) associated with the linear system

Ẋ1(t)=−
ykx1

a+x21
X2(t),

Ẋ2(t)=
ykmy1(a−x21)

(a+x21)
2 X1(t−1).

(3.7)

Let F and Y be bases for P and P* associated with the eigenvalues ±i2kp
of the adjoint equations, respectively, and let them be normalized so that
(F, Y)=I. Here, it is convenient to combine one complex coordinate and
two complex conjugate basis vectors to describe a two-dimensional real
subspace P. Consider system (3.6) in C([−1, 0]; C), still denoted by C1.
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Note that Ḟ=FB, where B is a diagonal matrix of the form B=
diag(i2kp, −i2kp). Therefore, F and Y are 2×2 matrices of the form

F(h)=[f1(h), f2(h)], f1(h)=e i2kphv, f2(h)=f1(h), −1 [ h [ 0,

Y(s)=Rk1(s)
k2(s)
S , k1(s)=e−i2kpsuT, k2(s)=k1(s), 0 [ s [ 1,

where the bar means complex conjugation, uT is the transpose of u, and
u, v are vectors in C2,

u=Ru1
u2
S=R

1
2+i2kp

ix1
`q (a+x21)(2+i2kp)

S ,

v=Rv1
v2
S=R

1

−i`q (a+x21)

x1

S .

Enlarging the phase space C1 by considering the space BC and using the
decomposition Xt=Fz(t)+yt, z ¥ C2, yt ¥ QŒ, we decompose system (3.6)
as

ż=Bz+Y(0) H0(Fz+y, n),

ẏ=AQŒy+(I−p) X0H0(Fz+y, n).
(3.8)

Following the procedure of reducing normal form in [6], we consider

Y(0) H0(Fz+y, n)=
1
2

h2(z, y, n)+
1
3!

h3(z, y, n)+h.o.t.,

where hj(z, y, n)(j=1, 2) are homogeneous polynomials in (z, y, n) of
degree j with coefficients in C2 and h.o.t. stands for higher order terms.
Thus, in a finite dimensional locally invariant manifold tangent to the
invariant subspace P of (3.7) at x=0, n=0, the normal form of (3.8) is
given by

ż=Bz+
1
2

h̄2(z, 0, n)+
1
3!

h̄3(z, 0, n)+h.o.t.,(3.9)
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where h̄2, h̄3 are the second and third order terms in (z, n), respectively.
Using the notations in [6], we have

h̄2(z, 0, n)=ProjKer(M2Œ) h2(z, 0, n),

where

Ker(M −

2)=span 3Rz1n
0
S , R 0

z2n
S4,

h2(z, 0, n)=R 2i`q uTvz1n+a20z
2
1+a11z1z2+a02z

2
2

−2i`q ūTv̄z2n+ā20z
2
1+ā11z1z2+ā02z

2
2

S ,

in which

a20=yk(h
(1)
20 u1+h(1)11 v2u1+h (2)20 e−4ikpu2+h(2)11 e−2ikpv2u2),

a11=yk(2h(1)20 u1+2h(2)20 u2+h(2)11 (e−2ikpv̄2+e2ikpv2) u2),

a02=yk(h
(1)
20 u1+h(1)11 v̄2u1+h (2)20 e4ikpu2+h (2)11 e2ikpv̄2u2).

Therefore,

1
2

h̄2(z, 0, n)=R i`q uTvz1n

−i`q ūTv̄z2n
S .

To eliminate these nonresonant terms in the quadratic terms h2(z, 0, n), we
have to make a series of transformations of variables, which can change the
coefficients of the cubic terms of h3(z, 0, n). Notice that

Ker(M −

3)=span 3Rz
2
1z2
0
S , Rz1n

0
S , R 0

z1z
2
2

S , R 0
z2n2
S4 .

However, the terms O(|z| n2) are irrelevant to determine the generic Hopf
bifurcation. Hence, we only need to compute the coefficient of z21z2. After
some computations we find that the coefficient of z21z2 is

c=
i

4kp
1a20a11−2 |a11 |2−

1
3

|a02 |22+
1
2

a21,

where

a21=yk[3h(1)30 u1+h(1)21 v2u1+3h(2)30 e−2ikpu2+h (2)21 (e−4ikpv̄2+2v2) u2].

Thus,

1
3!

h̄3(z, 0, n)=Rcz
2
1z2

c̄z1z
2
2

S+O(|z| n2).

508 XIAO AND RUAN



The normal form (3.9) relative to P can be written in real coordinates
(x, y), through the change of variables z1=x−iy, z2=x+iy. Followed by
the use of polar coordinates (r, h), x=r cos h, y=r sin h, this normal
form becomes

ṙ=c1nr+c2r3+O(n2r+|(r, n)|4),

ḣ=−2kp+O(|(r, n)|),
(3.10)

where c1=kp`q/(1+k2p2), c2=Re c.
We have the following theorem.

Theorem 3.3. If c2 ] 0 and yk > 0, then system (3.6) exhibits a generic
Hopf bifurcation. The periodic orbits of system (3.6) bifurcating from the
origin and n=0 satisfy

r(t, n)==−
c1n
c2

+O(n), h(t, n)=−2kpt+O(|n|1/2)

so that

(i) if c1c2 < 0 (c1c2 > 0 respectively), there exists a unique nontrivial
periodic orbit in the neighborhood of r=0 for n > 0 (n < 0 respectively) and
no nontrivial periodic orbit for n < 0 (n > 0 respectively);

(ii) the nontrivial periodic solutions in the center manifold are stable if
c2 < 0 and unstable if c2 > 0. They are always unstable in the whole phase
space C1 since on the center manifold they are unstable for yk > 0.
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