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Abstract. In this paper, we consider a predator-prey system with con-
stant rate predator harvesting. The system has a cusp of codimension 2
and exhibits the Bogdanov-Takens bifurcation. By choosing the death
rate and the harvesting rate of the predator as the bifurcation param-
eters, we show that the system undergoes a sequence of bifurcations
including the Hopf bifurcation, saddle-node bifurcations, and the homo-
clinic bifurcation. Global bifurcation diagrams and phase portraits in a
small neighborhood of the cusp are sketched. Numerical simulations are
given to illustrate the results.

1 Introduction

The study of population dynamics with harvesting is a very interesting sub-
ject in mathematical bioeconomics. It is related to the optimal management of
renewable resources (see [9]). The exploitation of biological resources and the har-
vest of population species are commonly practiced in fishery, forestry, and wildlife
management. The basic model, usually in the form of differential equations, is the
generalized Gause-type model for two species,

& = zg(z) — p(2)y — h1,

v = q(z)y — oy — ha. (L)
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Here z and y, are functions of time, representing population densities of prey and
predator respectively, and hq, ho, and § are positive constants. The biological set-
ting requires that all functions be continuous. ¢(0) is positive and g(z) is decreasing
in z. Both p(z) and ¢(z) are positive for z > 0 and vanish at 0.

System (1.1) is interesting for the biological implications as well as mathemati-
cally. In a sequence of papers by Brauer and Soudack [4, 5, 6], and the recent work
by Dai and Tang in [10] and Dai and Xu in [11], the global behavior of system (1.1)
for some special functions g(z), p(xz) and ¢(x) was analyzed by using qualitative
theory and numerical techniques.

Brauer and Soudack in [4] discussed the following model

. AT L

x—r:z;(l k) a4+’

o i " , (1.2)
y_y a+217 3

where k is the carrying capacity of the prey population, d is the death rate of
the predator, r is the intrinsic growth rate of the prey population, and h is the
harvesting rate. The function £ is often called the functional response of Holling
type IL. k, d, r, a and h are positive constants. Numerical studies in [4] indicated
the existence of a homoclinic loop and a periodic orbit for some parameter values
in (1.2).

In this paper, we do a bifurcation analysis of model (1.2). In particular we are
interested in codimension 2 bifurcations that occur in a two-dimensional parameter
region. Under some conditions we prove that system (1.2) undergoes the Bogdanov-
Takens bifurcation, i.e., the bifurcation of a cusp of codimension 2 (see [8] and [12]).
An example is given to show the existence of the Bogdanov-Takens bifurcation. In
this framework, we demonstrate that system (1.2) can exhibit qualitatively different
dynamical behavior, including Hopf bifurcations, saddle-node bifurcations as well as
homoclinic bifurcations. In particular, for certain parameter values, the system can
have a unique limit cycle or even a homoclinic loop. The corresponding bifurcation
diagrams and phase portraits are sketched. Our analysis supports the numerical
simulation in [4].

The paper is organized as follows. The general analysis and conditions appear
in the next section. In Section 3 we reduce system (1.2) to the canonical family
and obtain the main theorem. Finally, we choose two parameters, d and h, as
the bifurcation parameters for system (1.2) and show that system (1.2) exhibits
the Bogdanov-Takens bifurcation. The global bifurcation diagram and all possi-
ble phase portraits are sketched when the bifurcation parameters vary in a small
neighborhood of the origin in the two dimensional parameter plane. Numerical
simulations are given to illustrate the obtained results.

2 Preliminaries

From system (1.2), we can see that the y-axis is invariant under the flow.
However, this is not the case on the z-axis. All solutions touching the z-axis cross
out of the first quadrant. Thus, the first quadrant is no longer positively invariant
under the flow generated by the harvested system. From the standpoint of biology,
we are only interested in the dynamics of system (1.2) in the first quadrant.
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First, we consider the existence of equilibria of system (1.2). The prey isocline
of system (1.2) is

y=r(l=Da+a).

This curve is convex and passes through the points (0, ar) and (k,0). The predator
isocline is

_ hla+uz)
- d(a+x)’
which passes through the point (k, %) and if d < 1 then y — o0 as x

approaches the straight line x = 1%dd from the right. We sketch the predator
isocline curve and prey isocline curve in the first quadrant (see Figure 2.1).

y

(0, a)

X

0 & o) (k, 0)

Figure 2.1 The predator and prey isoclines

We assume throughout that 0 < d < 1. Then it follows from the equations that
the = component of any equilibrium is less than k. If we fixed the parameters r,
k, a, and d, then we can easily see that the number of equilibria of system (1.2)
depends on the harvesting rate h. When h is sufficiently large, system (1.2) has no
equilibrium, and the species will be driven to extinction. From the point of view
of the optimal management of renewable resources, we would like to determine the
maximum sustainable yield (abbreviated as MSY) of the harvesting rates to ensure
that the predator population can sustain itself. Straightforward calculations show
that system (1.2) has a unique positive equilibrium if and only if the parameters
(r,k,d,a, h) satisfy

ad\®> (1 —d)(adr + h) ad
d—1+—) —4— 27 77 _ d k . 2.1
( + k) kr 0 and k>3 2.1)

The unique positive equilibrium is given by
k(1—d)—ad Zo
= — 1—— .
(0, Y0) ( 20 —d) r( A )(a + z0)

Mathematically, the surface, represented by the equation in (2.1), is called the
saddle-node bifurcation surface. System (1.2) undergoes a saddle-node bifurcation
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when the parameters (r, k, d, a, h) vary from one side to the other side of the surface.
When the parameters (r, k, d, a, h) satisfy the following inequality

ad\” (1 —d)(adr + h) ad
d—1+—) —4——"7F"—"F——"-—= nd —
< k) r >0 (or <0) a k>1 d

system (1.2) has two positive equilibria (or no equilibrium respectively).

In the following we will concentrate on the case when there exist parameter
values (7o, ko, do, ag, ho), denoted by \g, such that the unique equilibrium (g, yo)
of system (1.2) is degenerate, and the variational matrix of system (1.2) at (xq, yo)

2rx ay T
r— 22 _
k (a+x)? a+x
_aw g4 T
(a + :L') atz (z0,y0)

has two zero eigenvalues. This is equivalent to the following conditions:

27“1‘(] ayo ZTo
_ 2T —d —0
" k (a+z0)? ta + g ’

2rdxg adyo rTo 27“:1:(2]
—rd + + + - =0
k (a4+20)?2 a+z0 kla+ z0)

According to bifurcation theory ([8] and [12]), we know that under certain nonde-
generacy conditions, the equilibrium (zg, yo) is a cusp of codimension 2. If we choose
suitable bifurcation parameters, then the system undergoes the Bogdanov-Takens
bifurcation. In the next section we will introduce the nondegeneracy conditions
and show how to choose the bifurcation parameters so that the system exhibits the
Bogdanov-Takens bifurcation.

3 Reduction to canonical Bogdanov-Takens family

We consider system (1.2) as the parameters take value \g and rewrite the
system in the generic form

T = f('rayaAO)a

7= g(z,y, ). 3.1

According to the assumptions in Section 2, we know that system (3.1) has an
isolated degenerate singular point (zg,¥yo), o > 0, yo > 0, the trace and the
determinant of the variational matrix of system (3.1) at (zg,yo) are zero but the
variational matrix is not a zero matrix. System (3.1) is C* smooth with respect
to the variables x,y and X in a small neighborhood of (zg, yo, Ao). Next, we reduce
system (3.1) to canonical form by using normal form theory.

Let 1 = 2 — 9, 2 = y — Yo. Then system (3.1) can be transformed into

< 2 > =Lz + ( égiii ) +0(|z]*), (3.2)

where (-, -) is a Cartesian product in R?, the term O(|x|3) is C°° in all variables, at
least to the third order with respect to @ = col(x1, z3), and the matrices L, P and
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Q@ are defined as follows

of of

. dxr Oy afa b
39 9 (c d)’
dr 0Oy (£0,Y0,X0)
25 o

. 0x2  OxzOy é(pn P12 ),
2f 2 e
0x0y 8—y2 (z0,Y0:A0)
9?9  d%g
2 9rdy A a1 @2
Oxdy 8—212 (20,90, 0)

By the above assumptions, the matrix L is similar to the Jordan block form

( 8 (1) ) Hence b2 4 ¢ # 0. Assume that b # 0. Making the linear change

1 0

of variables y = Max, where M = ( a b ) (if b = 0 and ¢ # 0, then set

c —d

()= armar (0 )ear ({00 ) <00,

M = ( 0 1 )), system (3.2) becomes

or in an abstract form

§= Ay +h*(y) + O(lyl*), (3-3)

0 1 0 1
A_(bc—ad a—|—d)_(0 0>’

the components of the vector function h?(y) € C*°(R?, R?) are the homogeneous
polynomials of degree 2 given by

where

2
, (P11 — 22p12 + Ep22)yi + (3p12 — 38p22)y1Y2 + 3202203
h(y) = ) :
diy? + diyryz + (p22 + $022)93

2 3 2 - 2
di = ap11 — %-pi2 + $zp22 + bqur — 2aq12 + %q22, and di = Fp1y — Fpoy +
2q12 — 2—;q22. By the theory of normal forms, there exists a C*° change of variables
of system (2.3) in a small neighborhood of (0, 0),

1,2 a 1 2 1
—=(z - = + = - =
2 e z(bp12 p2 P22 szz)Zh 5z P22Y1Y2
) -

Y2 2
(P11 — 27‘11712 + (;—Q)y% — (gpp22 + %Q22)y1y2
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ie.,
( Y1 > ( 21 ) 3(3p12 — 22 + §a22) 27 + o1z

Y2 22

2
—(p11 — 27111712 + %)z + (Fpa2 + %6122)212’2

such that system (3.3) can be written as

2.:1 _ z1 0 5
( 22 ) _A< zZ2 >+ ( d12%+d22122 >+O(|Z| )7 (34)

where d2 = 2q12 + 2p11 — (P12 +p22)27“. If dids # 0, then the singular point (xq, yo)
of system (3.1) is a cusp of codim 2 by the qualitative theory of ordinary differential
equations and the theory of differential manifolds. The condition dyds # 0 is called
the nondegeneracy condition of the cusp type of codimension 2 for the equilibrium
(20,y0) of system (3.1). Moreover, we might as well assume that d; > 0.

From the above analysis, we obtain the following lemma.

Lemma 3.1 If dids # 0, then in a small neighborhood of (zo, Yo, Xo), system
(1.2) is C* equivalent to
T1 = a2 + wl(:z;, )\),
) 9 (3.5)
o9 = dll'l + dgl’ll‘g + ’UJQ(IL', )\),

where X = (r,k,d,a,h), wy,wy € C"’O'(R2 x R° R?) and wi(z, \o), wa(x, \g) are
power series in (w1, x2) of powers xix} satisfying i + j > 3.

Lemma 3.2 In a small neighborhood of (0,0, \g), system (3.5) is C* equiva-
lent to

U1 =Y,

g2 = 01(N) + b2 (N1 + 47 + y2 (P () + B(y1, N) + 43V (y, A),
where ®, ¥ € C* and ®(y1, o) = Z=y1 # 0, U(y, X)) = 0, ¢1(Ao) = ¢2(Xo) =
¥(Ao) = 0.

Proof Consider the A-dependent change of coordinates

(3.6)

21 =121, 22 =22+ wi(z,A).
Then system (3.5) is transformed into
Z1 = 22,
2y = Pi(z1,A) + 22@1(21,A) + 25 W1 (2, ),
where Py, ®1,¥; € C*° and

P 2p
Pi(0, M) = %S;AU) —0, % —2d, £0,
1
0P1(0, \
@1(05/\0) =0, % =dy 7é 0.

Applying the Malgrange Preparation Theorem (see [7], pp. 43) to the function
Py(z1,\), we have

Pi(21,A) = (¢1(A) + 2 (N)z1 + 27) B(21, A),
where ¢1, ¢, B € C* and B(O,)\()) =d; 7é 0;¢i()\0) =0,1=1,2.
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Hence, system (3.7) becomes

21 = 22,
(I)l(zla)\) 2\111(27)\) (38)

Bz, V) | 2B(z, N

2y = <¢1(>\) + ¢a(N)z1 + 25 + 22 ) B(z1, \).

Since ®1(0,Ag) = 0 and %ﬁl”\”) = dg # 0, there exists a function ¥(A) such that
1(0,\) _
TN P(A). Set

t
%)
Y1 =21, Y2 = —F——s, T z/ vV B(z1(s), A)ds,
vV B(z1,A) 0 (
@1(21,)\) _
B(Zl, )\)
We can transform system (3.8) into system (3.6). This completes the proof. O

- \Ill(z,)\)

B(21, ) = YO, (oA = 5

In the following theorem we show how to choose the bifurcation parameters
such that the system exhibits the Bogdanov-Takens bifurcation.

Theorem 3.3 If the rank of the matriz

9(01(N) — 308(N)  Ae(N) — 383(N)
0)\1 8>\5
AW(N) = 5% d2(N)) AW(N) — 32-02(N))
oM o X5 o

is two, then we can choose two bifurcation parameters such that system (1.2) un-
dergoes the Bogdanov-Takens bifurcation.

Proof By using the C*° equivalences in Lemmas 3.1 and 3.2, we have trans-
formed system (3.1) into the parameter dependent system (3.6). Let z; = y; +
$02(X), 22 = ys. System (3.6) can be written as

ilzzx%

b2 = 13— 30300+ (000 -~ 5

2Vdy

@(A)) 22+ 2% + j—jl_lxlxg Q).
(3.9)

where Q(z,)\) is a power series in (z1,22) with powers lesz satisfying 1 +j > 3
and coefficients depending on (A1,... ,A5).
Without loss of generality, we assume that the determinant of the matrix

AN — 783N 961 (N) — 783(V)

8)\1 8/\2
AN — 5262 (\) D) — 52-0>(N)
6)\1 6)\2 Ao

is not zero. Denote

1 d
p1 = ¢1(A) — qu%(A), p2 = Y(A) — 72(1—1@()\)7 13 = A3, fa = Ay, fi5 = As.
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Obviously, the parameter transformation is nonsingular. System (3.9) can be
rewritten as
i?l = T2,
d> (3.10)
. 2
Ty = U1 + poxs + 2] + —(——=z122 + (2, ).
2 = M1 T H2®2 1\/I12 Q(z, p)
By the theorems in [2, 3] and [13], we know that system (3.10) is strongly
topologically equivalent to
J'Cl = T,

3.11
By = p1 + poze + 7 £ 1120, ( )

where £+ = sign(g—f). Therefore, we can choose p1 and po as the bifurcation pa-
rameters such that system (1.1) undergoes the Bogdanov-Takens bifurcation (i.e.,
bifurcation of cusp singularity of codim 2). O

4 An example

In this section, as an example we consider system (1.2) with fixed r, k and a,
that is, we consider the following model

f—x(l_f)_ Y
N 2 1+’
(4.1)
j=y(-d+——") h
i=v(ar )

where d and h are parameters. We will show that d and h in fact are the bifurcation
parameters and system (4.1) exhibits the Bogdanov-Takens bifurcation.

From the analysis in Section 2 and Section 3, we know that the positive equi-
librium (o, yo) = (1.12415,0.930219) is a cusp of codimension 2 when (dy, ho) =
(0.19891, 0.30726).

Now we study the dynamics of system (4.1) when the parameters d and h vary
in a small neighborhood of (do, hg). We use a series of changes of coordinates to
transform system (4.1) into the canonical family in Section 3. Consider

i=a(1-2)- 22

2 142’
j do+ M+ ——) — o+ A 42
y—y<—0—|— 1+1+x>_ 0 + A2,
where A1 and Ay are small parameters.
Let 1 = 2 — 9, 2 = y — Yo, then system (4.2) becomes
. Yo o 1 271‘0 2
— 1— _— _—_— _— -
“ ( o (1+x0)2>x1 1—|—x0x2+< 2+2(1+w0)2>ml
1
— ———= 1122 + Pi(21, 22),
1 2
(1+0) (4.3)
. Yo Zo
Ta=yoM + A+ ———z1+ ( —do+ 1 + T
2 = Yol 2 (1+m0)21 < 0 1 1+x0)2
Yo 2 1
— r] + 172 + Po (21, 22),
(T+zo)P ' (A+m)2 72 2(21,72)
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where P; and P, are power series in (71, 22) with powers x} xé satisfying ¢ +j > 3.
Denote

Yo Lo Yo Lo
=1-ag— ——, b=— = d=—do+ X ;
¢ "o (1+20)% T+ag © (1+m0)% ot 1+1+950’
- 1 + 2—([}0 _ 1 o Yo - 1
P11 = 2 2(1 +IIJO)2, P12 = 2(1 +[13[])2’ qi11 = (1 +5150)3, qd12 = 2(1 +{L‘0)2.

Making the affine transformation
Y1 =1, Y2 =axy + bxa,

we see that system (4.3) becomes

. 2ap12 2p12
Y1 =y2 + (pn - ) Y3+ 5 Y1y2 + Q1(y1,v2),

02p12
b

. 2
U2 = b(yo A1 + A2) + ahiyr + Mye + (apn - + bq11 — 211(112) yi o (4.4)

2a
+ ( bplz + 2%2) y1y2 + Q2(y1. y2).

Here Q1 and @, are power series in (y1,s) with powers yiy} satisfying i + j > 3.
Consider the C*° change of coordinates in a small neighborhood of (0, 0)

P12 2api2
21 :yl_Ty%a Z2 =Y2 + (pu— b )yf

Then system (4.4) is transformed into

21 = 2o+ Ri(21, 22),

2a
29 = b(yor1 + A2) + ari1z1 + Aiza + (21911 - % + QQ12> Z1%2

(4.5)
2a2 a 2a
+ (apn - bp12 + bg11 — 2aq12 + 17172)\1 — Ai(pn — 11:12 )) 22

+ Ra(z1, 22).

Here R; and R, are power series in (21, z2) with powers 2 2] satisfying i + j > 3.
We choose the C*° change of coordinates in a small neighborhood of (0, 0)

Ty =21, T2 =2+ Ryi(21,22),

so that system (4.5) becomes

Q'U]_ = T2,
. 2ap12
Ty = b(yoA1 + A2) + adixy + Aiwa + | 2p11 — +2q12 | 21702 + Fi(21)
4.6)
2a2p p12a 2ap (
+ (apn i 2 4 bgu1 — 2aq12 + %)\1 = A1(p11 — blz) af
+ SCQFQ(Il) + I%Fg(Il, ZEQ).
Here Fy, Fy and Fj are power series in z7 and (z1,z2) with powers x]fl, J;’f2 and

:U’lzz;é satisfy k1 > 3, ko > 2 and i + j > 1, respectively.
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We substitute values of a, b, ¢, d, p11,p12,q11 and g1 for the above system and
obtain the following equations

j:l = T2,
Fo = 0.52922(0.93022)\1 + o) — 0.33032\121 4+ A\12a — 0.4459211 29 (4.7)
+ Fi(z1) + (0.211978 — 0.19545) )23 + 2o Fy (1) + 23 Fa (21, 22).
Applying the Malgrange Preparation Theorem, we have
0.52922(0.93022X1 + A2) — 0.33032)\;2; + (0.211978 — 0.19545\)23 + Fy (1)
0.33032\; 0.52922(0.93022X1 + \2)
= (22— Bi(z1,A

<I1 0211978 —0.195050 " T 0211978 — 019515, ) D1 ELA):

where B1(0,\) = 0.211978 — 0.19545X\; and B; is a power series in 27 whose coef-
ficients depend on parameters A = (A1, Az2).

Let y1 = 21, 1o = ——=2—, T = fg /Bi(z1(s),\)ds. Then system (4.7)

Bi(z1,)\)’
becomes
U1 = Y2,
_ 0.52922(0.93022XA1 + X2) - 0.33032\1
92 = 0.211978 — 0.19545)\1 0.211978 — 0.19545)\4 s (4.8)
9 A1 0.44592
+yi +

Y2 — y1y2 + G(y1,y2, A),
Bi(y1,A) VBi1(y1, )
dy2

where ¢ = %, U2 = 2, G(y1,42,0) is a power series in (y1,y2) with power yiy)
satisfying i +j > 3 and j > 2.
Making the parameter dependent affine transformation in (4.8)
0.33032X;

TV 50211978 — 0.19545N,)° 2 U
we have
j:l = T2,
L 0:52922(0.930220 + Ay) 0.33032) T
27 T0.211978 — 0.19545), 2(0.211978 — 0.19545)\;) L

0.65257\ A (4.9)
+ 1t (0.96853 + as (V)
B ( 0.33032)\1 )\)
\/ 112(0.211978—0.19545X;) ’

+ R(CE]_,.Z'Q, )\)7

where a3 (0,A2) = 0, W

(w1, 22) with powers %7, satisfying i + j > 3 and j > 2.
For the sake of convenience, we assume that

=0, a2(0) =0, and R(x1,x9,0) is a power series in

O hg) = 0.52922(0.93022\1 + Aa) 0.33032); ?

FA A2 = T 911978 — 0.195450, 2(0.211978 — 0.19545X1) )
0.65257A; + o1 (A

p2(A1; A2) = 1+ ()

)
0.33032),
\/Bl( 2(0.211978—0.19545X, )’ A)

which is a nonsingular parameter transformation. System (4.9) can be rewritten as
jjl = T2,

4.10
do = p1 (A1, A2) + p2(A1, A2)z2 + 23 — 0.968537125 + S(21, 72, 1), (4.10)
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where S(z1, 22, p) is a power series in (1,22, pi1, p2) with powers xﬁxéu’fué satis-
fyingi+j+k+1>4andi+j> 3.

A
o |

Lo | L
@0 [ &

@<

Figure 4.1 The bifurcation set and the corresponding phase portraits for
system (4.2)

By Theorem 3.3, we know that system (4.10) undergoes the Bogdanov-Takens
bifurcation when the parameters vary in a small neighborhood of the origin. The
local representations of the bifurcation curves in the small neighborhood of the
origin are as follows:

(a) The saddle-node bifurcation curve
SN = {(A1,A2) : p1(A1, A2) = 0}

From the expression for 111 (A1, A2), we can see that SN is approximately a straight
line when A; is small. On the curve SN, system (4.10) has only a unique equilibrium
which is a saddle-node. Some solutions of system (4.10) tend to the saddle-node and
others either leave the first quadrant or increase without bound depending on the
initial conditions (see Figure 4.1). If the parameter \; and Ay satisfy p3 (A1, A2) > 0,
then system (4.10) has no equilibrium. Hence all predator will tend to extinction.
From this we can see that the harvesting rate must be limited, since otherwise the
population cannot sustain itself. If the parameter A\; and Aq satisfy p1(A1, A2) <0,
then system (4.10) has two positive equilibria. One is a hyperbolic saddle and the
other is a focus. The trajectories of system (4.10) can either tend to an equilibrium
or oscillate depending on the parameters.

(b) The Hopf bifurcation curve
H = {(A1,A2) : pa(A1; A2) = —0.96853/—pi1 (A1, A2), 1 (A1, A2) < 0}

When the parameters lie between the curve SN and the curve H, system (4.10)
has a hyperbolic saddle and a stable hyperbolic focus and no periodic orbit. On
the curve H system (4.10) has a hyperbolic saddle and a weak focus of degree one.
The focus is stable and there are no periodic orbits.

(¢) The homoclinic bifurcation curve

HL = {(A\1, A2) 1 p2(A1, A2) = —0.6918+/—p1 (A1, A2), 1 (A1, Az) < 0.
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When the parameters lie between the curve H and the curve HL, system (4.10)
has a unique stable limit cycle. However, system (4.10) has a hyperbolic saddle, an
unstable focus, and no periodic orbits when the parameters lie between the curve
HL and the curve SN (see Figure 4.1). On the HL curve, system (4.10) has an
unstable focus and a stable homoclinic loop.

1.8

16

14

1.2

Figure 4.2 When (A1, A2) = (0, 0), the unique positive equilibrium is a cusp
of codimension 2.

wy-nullcline

x;

Figure 4.3 When (A1, \2) = (—0.20109, 0.24726) lies in the region II, there
are two positive equilibria, a saddle and a stable focus.

Numerical simulations (using XPP) of system (4.2) are depicted in Figures 4.2
- 4.6. When (A1, A2) = (0,0), that is, when (do, hg) = (0.19891, 0.30726), there
is a unique positive equilibrium (xq,y0) = (1.12415,0.930219), which is a cusp of
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Figure 4.4 When (A1, A2) = (—0.07442,0.11323) lies in the region III, the

stable focus becomes unstable and there is a stable periodic orbit.
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Figure 4.5 When (A1, A2) = (—0.06224, 0.10088) lies on the HL curve, there

is a homoclinic loop.
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codimension 2 (Figure 4.2). When (A1, A2) varies, there is a saddle-node bifur-
cation. When (A1, A2) = (—0.20109,0.24726) lies in the region II, two positive
equilibria bifurcate from the saddle-node, one is a saddle and the other is a stable
focus (Figure 4.3). As (A1, \2) keeps varying, there is a Hopf bifurcation. When
(A1, A2) = (—0.07442,0.11323) lies in the region III, the stable focus becomes un-
stable and a stable periodic orbit bifurcates from the focus (Figure 4.4). When
(A1, A2) changes to (—0.06224,0.10088), the periodic orbit expands and reaches the
stable and unstable manifolds of the saddle to create a homoclinic loop (Figure 4.5).
When (A1, A2) = (—0.04224,0.07668) lies in the region IV, the homoclinic loop is

broken, there are an unstable focus and a saddle (Figure 4.6).
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Figure 4.6 When (A1, A2) = (—0.04224, 0.07668) lies in the region IV, there
is an unstable focus and a saddle.
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