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Abstract

This paper deals with entire solutions for a general nonlocal dispersal monostable equation with spatio-
temporal delay, i.e., solutions that are defined in the whole space and for all time t ∈ R. We first derive a 
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of the equation under consideration with quasi-monotone and non-quasi-monotone nonlinearities. Various 
qualitative properties of the entire solutions are also investigated. In particular, the relationship between the 
entire solutions and the traveling wave fronts which they originated is considered. Our main arguments are 
based on the comparison principle, the method of super- and sub-solutions, and the construction of auxiliary 
control systems.
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1. Introduction

In recent years, many reaction–diffusion equations with spatio-temporal delay or nonlocal de-
lay have been proposed and studied to model the interactions of time lag of feedback and spatial 
diffusion of biological species. See the survey papers of Gourley and Wu [13] and Ruan [32]. Two 
typical and important examples which have been extensively studied are the diffusive Nicholson’s 
blowflies equation with spatio-temporal delay [10,11,20]:

∂u

∂t
= D

∂2u

∂x2
− δu(x, t) + p(G ∗ u)(x, t) exp

{−a(G ∗ u)(x, t)
}
, (1.1)

and the following equation describing the evolution of matured population of a single species [1,
12,33]:

∂u

∂t
= D

∂2u

∂x2
− du(x, t) +

∞∫
0

+∞∫
−∞

G(x − y, s)b
(
u(y, t − s)

)
dyds, (1.2)

where u(x, t) denotes the density of the population at location x ∈ R and time t ≥ 0, 
D, δ, p, a, d > 0 are constants, G(·, ·) is the kernel function, and

(G ∗ u)(x, t) =
∞∫

0

+∞∫
−∞

G(x − y, s)u(y, t − s)dyds. (1.3)

Note that a basic assumption behind (1.1) and (1.2) is that the internal interaction of species 
is random and local, i.e. individuals move randomly between the adjacent spatial locations. In 
reality, the movements and interactions of many species in ecology and biology can occur be-
tween non-adjacent spatial locations, see e.g. Lee et al. [18] and Murray [29]. Taking this fact 
into account, (1.1) and (1.2) can be extended to the following nonlocal dispersal equations with 
spatio-temporal delay:

∂u

∂t
= D(J ∗ u − u)(x, t) − δu + p(G ∗ u)(x, t) exp

{−a(G ∗ u)(x, t)
}
, (1.4)

and

∂u

∂t
= D(J ∗ u − u)(x, t) − du +

∞∫
0

+∞∫
−∞

G(x − y, s)b
(
u(y, t − s)

)
dyds, (1.5)

respectively, where (G ∗ u)(x, t) is defined in (1.3), J ∗ u − u is a nonlocal dispersal operator 
and J ∗ u is a spatial convolution defined by

(J ∗ u)(x, t) =
+∞∫

J (x − y)u(y, t)dy. (1.6)
−∞
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In the next section, we shall derive model (1.5) and show how such systems arise from population 
biology. To the best of our knowledge, it is the first work to derive the nonlocal dispersal model 
with spatio-temporal delay.

Due to their significant applications, front propagation dynamics are one of the most im-
portant dynamical issues about biological and epidemiological models. In particular, there have 
been many results on the traveling wave solutions for nonlocal dispersal equations, see [2,3,5,6,
30,31,45]. For example, Coville [6] studied the existence and uniqueness of traveling waves of 
a nonlocal dispersal diffusion equation with bistable and ignition nonlinearity. Pan [30] and Pan 
et al. [31] considered the existence of traveling waves for monostable nonlocal dispersal systems 
with delayed reaction terms satisfying quasi-monotonicity and exponential quasi-monotonicity, 
respectively. Results in [30,31] were well applied to the Nicholson’s blowflies equation with 
nonlocal diffusion (1.4). Yu and Yuan [45] studied the existence, asymptotic behavior and 
uniqueness of traveling wave fronts for a general monostable nonlocal dispersal equation with 
delay.

Although the traveling wave solution is a key concept characterizing the dynamics of reaction–
diffusion equations, the dynamics of reaction–diffusion equations are so rich that there might be 
other interesting patterns, see [7,8,17]. More recently, front-like entire solutions that are defined 
for all space and time and behave like a combination of traveling fronts as t → −∞ have been 
observed in various diffusion problems. These solutions can not only describe the interaction of 
traveling waves but also characterize new dynamics of diffusion equations. For the study of such 
entire solutions, we refer to [4,14–16,19,23,27] for reaction–diffusion equations without delay, 
[22,35,37,42] for reaction–diffusion equations with nonlocal delay, [38,39] for delayed lattice 
differential equations with nonlocal interaction, [21,34] for nonlocal dispersal equations with-
out delay ((1.9) below), [28,40,44] for reaction–diffusion systems, and [43] for periodic lattice 
dynamical systems. However, to the best of our knowledge, the issues on entire solutions for 
nonlocal dispersal equations with spatio-temporal delay have not been addressed, especially for 
infinite delay equations. This is the motivation of the current study.

More precisely, in this paper, we consider the entire solutions of the following general nonlo-
cal dispersal equation with spatio-temporal delay:

ut = D(J ∗ u − u)(x, t) + f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)
, (1.7)

where (J ∗ u)(x, t) is defined in (1.6), and

(
G ∗ S(u)

)
(x, t) =

∞∫
0

+∞∫
−∞

G(x − y, s)S
(
u(y, t − s)

)
dyds. (1.8)

It is clear that (1.7) is a generalized version of the models (1.4) and (1.5). In particular, if 
G(x, t) = δ(x)δ(t), then (1.7) reduces to the nonlocal dispersal equation without delay:

ut = D(J ∗ u − u)(x, t) + f
(
u(x, t)

)
, (1.9)

which has been studied by many researchers, see e.g. [5,6,21,34].
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For the kernel functions J and G, we impose the following conditions:

(G1) J (−x) = J (x) ≥ 0, G(x, t) = G(−x, t) ≥ 0,

+∞∫
−∞

J (y)dy = 1,

∞∫
0

+∞∫
−∞

G(y, s)dyds = 1 (normalized),

and for any c, λ ≥ 0,

+∞∫
−∞

e−λyJ (y)dy < +∞ and

∞∫
0

+∞∫
−∞

e−λ(y+cs)G(y, s)dyds < +∞.

We also make the following basic conditions for the reaction functions f and S:

(C1) f ∈ C2(Ī , R), S ∈ C2([0, K], R), f (K, S(K)) = 0, f (u, S(u)) > 0 for u ∈ (0, K), 
f (u, v) ≤ ∂1f (0, 0)u + ∂2f (0, 0)v for (u, v) ∈ Ī and 0 ≤ S(u) ≤ S′(0)u for u ∈ [0, K], 
where K > 0 is a constant and Ī = [0, K] × [0, S(K)].

Note that (C1) implies that f (0, 0) = S(0) = 0 and that the nonlinearity of (1.7) is monostable. 
As usual, if the following condition holds:

(C2) S′(u) ≥ 0 for u ∈ [0, K] and ∂2f (u, v) ≥ 0 for (u, v) ∈ Ī ,

then (1.7) is called a quasi-monotone system; otherwise, it is called a non-quasi-monotone sys-
tem. In the monostable case, the existence of traveling waves of (1.7) can be obtained by the 
methods used in [24,25,31,41].

The aim of this paper is to construct some new types of entire solutions for (1.7) with quasi-
monotone or non-quasi-monotone nonlinearity. In the quasi-monotone case (i.e. (C2) holds), 
we first establish a series of comparison principles for (1.7) and a related linear equation (see 
Lemmas 3.6–3.8). Then, we prove the existence and qualitative features of entire solutions by 
using these comparison principles. The relationship between the entire solutions and the trav-
eling fronts which they originated is also considered. In particular, we find some interesting 
phenomenon for the nonlocal dispersal equation, which is similar to those obtained in [16] for 
the Fisher–KPP equation. The method used for the quasi-monotone case is inspired by the works 
of Hamel and Nadirashvili [15,16].

More precisely, the idea is to study the solutions uk(x, t) of a sequence of Cauchy problems 
for (1.7) starting at times −k (k ∈ N), where the combinations of any finite traveling fronts with 
speeds c ≥ c∗ (c∗ is the minimal wave speed) and a spatially independent solution (SIS for short) 
of (1.7) are taken as the initial values. In this case, the sequence of functions {uk(x, t)}k∈N is 
monotone with respect to k. Then, by constructing subsolutions and appropriate upper estimates 
and using the comparison principles, some desired entire solutions are obtained by passing the 
limit k → ∞. We mention that when c > c∗, the upper estimates are constructed via the expo-
nential decay of the traveling wave fronts and SISs at −∞. However, the decay of the traveling 
fronts with c = c∗ at −∞ is not exponential (see Lemma 3.4). To overcome this deficiency, we 
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propose a new concavity assumption on the functions S and f (see the assumption (C3)) and 
then obtain an appropriate upper estimate by establishing a corresponding comparison principle.

On the other hand, it is well known that the comparison principle is not applicable for non-
quasi-monotone systems. To overcome this difficulty, we make the following assumptions:

(C2)
′ There exist K± and K with 0 < K− ≤ K ≤ K+ and twice piecewise continuously differ-

entiable functions S± : [0, K+] → R and f ± : Ī+ → R such that
(i) f ∈ C2(Ī+, R) and S ∈ C2([0, K+], R), f (K, S(K)) = 0, f (u, S(u)) > 0 for u ∈

(0, K);
(ii) ∂1f

± ∈ C(Ī+, R), f ±(K±, S±(K±)) = 0, f ±(u, S±(u)) > 0 for u ∈ (0, K±), 
(S±)′(0) = S′(0) and ∂if

±(0, 0) = ∂if (0, 0), i = 1, 2;
(iii) S±(u) are non-decreasing on [0, K±] and f ±(u, v) are non-decreasing with respect 

to the second variable v on Ī+;
(iv) 0 ≤ S−(u) ≤ S(u) ≤ S+(u) ≤ S′(0)u for u ∈ [0, K+], and f −(u, v) ≤ f (u, v) ≤

f +(u, v) ≤ ∂1f (0, 0)u + ∂2f (0, 0)v for (u, v) ∈ Ī+;
(v) there exists positive constants Lf , LS > 0 such that

f ±(u, v1) − f ±(u, v2) ≤ Lf max{0, v1 − v2}, ∀(u, v1), (u, v2) ∈ Ī+,

S±(u1) − S±(u2) ≤ LS max{0, u1 − u2}, ∀u1, u2 ∈ [
0,K+]

.

Here and in the following, we denote Ī+ := [0, K+] × [0, S+(K+)]. It is clear that f ± = f , 
S± = S, and K± = K if ∂2f (u, v) ≥ 0 for (u, v) ∈ Ī and S′(u) ≥ 0 for u ∈ [0, K]. We shall give 
some examples on the constructions of f ± and S±, see Section 6 for applications.

Based on (C2)
′, we introduce two auxiliary quasi-monotone nonlocal dispersal equations with 

spatio-temporal delay to “trap” the original equation, and establish a comparison theorem for 
the Cauchy problems of the three systems (see Lemma 5.2). In this case, we consider the so-
lutions Uk(x, t) of a sequence of initial value problems of (1.7), where the combinations of 
traveling fronts and SISs of the lower system (i.e. the auxiliary system with smaller reaction 
term) are taken as the initial values. Due to the non-quasi-monotone nonlinearity, the sequence 
of functions {Uk(x, t)}k∈N may not be monotone. Thus, we cannot prove the convergence of 
{Uk(x, t)}k∈N as k → −∞. An alternative is to prove that there is a convergent subsequence of 
{Uk(x, t)}k∈N. Unfortunately, the solution functions {Uk(x, t)} of the nonlocal dispersal equa-
tion (1.7) are not smooth enough with respect to x. To obtain a convergent subsequence, we 
have to make {Uk(x, t)} possess a property which is similar to a global Lipschitz condition with 
respect to x (Lemma 5.3). For this, we impose the following assumption:

(G2) There exists L̄ > 0 such that for any η > 0,

+∞∫
−∞

∣∣J (y + η) − J (y)
∣∣dy ≤ L̄η and

∞∫
0

+∞∫
−∞

∣∣G(y + η, s) − G(y, s)
∣∣dyds ≤ L̄η.

It should be point out that in [21,34], the authors proved a similar property for solutions of (1.9)
by making the following assumption:

(G2)
∗ J (·) ∈ C1(R) and J (·) is compactly supported.
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Clearly, if J (·) satisfies (G2)
∗ and G(x, t) = δ(x)δ(t), then (G2) holds. Moreover, it is easy to 

verify that the functions J (x) = 1√
4π�

e
− x2

4� and G(x, t) = δ(x)δ(t) satisfy (G2), which implies 
that (G2) is weaker than (G2)

∗. Here � > 0 is the nonlocal dispersal constant.
The rest of the paper is organized as follows. In Section 2, we derive model (1.5) along with 

an explicit formula to calculate G(·, ·). In Section 3, we give some preliminaries. First, we state 
some results on traveling fronts and SISs of (1.7). Some existence and comparison theorems 
for solutions, supersolutions and subsolutions of (1.7) are then obtained. According to the pre-
liminaries established in Section 3, we prove the existence and qualitative properties of entire 
solutions of (1.7) with quasi-monotone and non-quasi-monotone nonlinearities in Sections 4
and 5, respectively. Finally, we apply our abstract results to models (1.4) and (1.5) in Section 6.

2. Important particular cases

In this section, we derive model (1.5) and give an explicit formula for the kernel function 
G(·, ·).

Consider a single species population with age structure distributed over Ω =R. Let v(x, t, a)

be the density of individuals at location x ∈ R, time t ≥ 0 and age a ≥ 0. Using D(a) and d(a)

to denote the diffusion and death rate of the population at age a, respectively.
In reality, individuals in a population do not necessarily always mature at the same age. There-

fore, in this paper, we assume that there is a probability density function p(a) specifying the 
probability of maturing at each age a. Motivated by ecological considerations, we assume that

p(a) ≥ 0 and

∞∫
0

p(a)da = 1.

Assume that the spatial dispersal of individuals is isotropic and can occur between non-
adjacent spatial locations. See Lee et al. [18] and Murray [29]. Let J (x − y) be the probability 
distribution of individuals moving from location x to location y. Then, we have

J (−x) = J (x) ≥ 0 and

+∞∫
−∞

J (y)dy = 1.

Since only the matured population can reproduce, we obtain

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
v + ∂

∂a
v = D(a)

+∞∫
−∞

J (x − y)
[
v(y, t, a) − v(x, t, a)

]
dy − d(a)v(x, t, a),

v(x, t,0) = b
(
u(x, t)

)
,

(2.1)

where b(·) is the birth function.
Note that the probability of maturing before the age a is F(a) = ∫ a

0 p(s)ds. Thus, the total 
number of matured population u(x, t) is
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u(x, t) =
∞∫

0

F(a)v(x, t, a)da. (2.2)

Now, we aim to find a differential equation satisfied by u(x, t). Differentiating (2.2) with respect 
to t and using (2.1) yields

∂u

∂t
=

∞∫
0

F(a)

(
− ∂

∂a
v + D(a)

+∞∫
−∞

J (x − y)
[
v(y, t, a) − v(x, t, a)

]
dy − d(a)v

)
da. (2.3)

As the cost of assuming that individuals may mature at different ages, we need to require that 
the diffusion and death rates of the population are age independent, i.e. D(a) = D and d(a) = d

for a ≥ 0, where D and d are positive constants. Then, using F(0) = 0 and the ecologically 
reasonable assumption v(x, t, ∞) = 0, it follows from (2.3) that

∂u

∂t
= D

+∞∫
−∞

J (x − y)
[
u(y, t) − u(x, t)

]
dy − du +

∞∫
0

p(a)v(x, t, a)da. (2.4)

In order to obtain a closed system for u(x, t), we need to evaluate v(x, t, a). For fixed s ≥ 0, 
let

V s(x, t) = v(x, t, t − s) for s ≤ t ≤ s + a.

Then, V s(x, s) = v(x, s, 0) = b(u(x, s)). Moreover, by (2.1), we have

∂

∂t
V s(x, t) = ∂

∂t
v(x, t, a)

∣∣∣∣
a=t−s

+ ∂

∂a
v(x, t, a)

∣∣∣∣
a=t−s

= D

+∞∫
−∞

J (x − y)
[
V s(y, t) − V s(x, t)

]
dy − dV s(x, t). (2.5)

Note that the function V s(x, t) can be viewed as the continuous spectral of a function vs(t, λ) by 
Fourier transform:

vs(t, λ) =
+∞∫

−∞
e−iλxV s(x, t)dx, (2.6)

V s(x, t) = 1

2π

+∞∫
−∞

eiλxvs(t, λ)dλ, (2.7)

where i is the imaginary unit. Applying the Fourier transform (2.6) to (2.5), we obtain
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∂

∂t
vs(t, λ) =

[
−2D

+∞∫
−∞

J (y) sin2 λy

2
dy − d

]
vs(t, λ).

Solving the linear equation, we get

vs(t, λ) = exp

{
−2D(t − s)

+∞∫
−∞

J (y) sin2 λy

2
dy − d(t − s)

}
vs(s, λ).

Using the inverse Fourier transform (2.7), we obtain

V s(x, t) = 1

2π
e−d(t−s)

+∞∫
−∞

eiλx exp

{
−2D(t − s)

+∞∫
−∞

J (z) sin2 λz

2
dz

}
vs(s, λ)dλ.

Since V s(x, s) = b(u(x, s)), we have

vs(s, λ) =
+∞∫

−∞
e−iλyb

(
u(y, s)

)
dy.

Thus,

V s(x, t) = 1

2π
e−d(t−s)

+∞∫
−∞

b
(
u(y, s)

)

×
+∞∫

−∞
eiλ(x−y) exp

{
−2D(t − s)

+∞∫
−∞

J (z) sin2 λz

2
dz

}
dλdy.

Letting t = s + a, we get

v(x, t, a) = V t−a(x, t) = 1

2π
e−da

+∞∫
−∞

b
(
u(y, t − a)

)

×
+∞∫

−∞
eiλ(x−y) exp

{
−2Da

+∞∫
−∞

J (z) sin2 λz

2
dz

}
dλdy.

Therefore, the model for the matured population finally becomes

ut = D(J ∗ u − u)(x, t) − du +
∞∫ +∞∫

e−dsp(s)G0(x − y, s)b
(
u(y, t − s)

)
dyds, (2.8)
0 −∞
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where

G0(x, s) = 1

2π

+∞∫
−∞

eiλx exp

{
−2Ds

+∞∫
−∞

J (z) sin2 λz

2
dz

}
dλ

= 1

2π
e−Ds

+∞∫
−∞

cosλx exp

{
Ds

+∞∫
−∞

J (z) cosλzdz

}
dλ.

Let G(x, s) = e−dsp(s)G0(x, s). Then (2.8) reduces to model (1.5).
If p(s) = δ(s − r0) for some positive constant r0, that is, all individuals mature at the same 

age r0, then (2.8) becomes

ut = D(J ∗ u − u)(x, t) − du + e−dr0

+∞∫
−∞

G0(x − y, r0)b
(
u(y, t − r0)

)
dy. (2.9)

Furthermore, if r0 = 0, then G0(x, 0) = δ(x), hence we obtain the nonlocal dispersal equation 
without delay

ut = D(J ∗ u − u)(x, t) − du + b
(
u(x, t)

)
. (2.10)

We note that it is easy to prove that G0(x, t) = G0(−x, t) and 
∫ ∞

0

∫ +∞
−∞ G0(y, s)dyds = 1. 

It seems difficult to prove G0(x, t) ≥ 0 for general kernel J (·). Nevertheless, in the rest of this 
paper, we consider (1.7) for a general kernel functions J (·) and G(·, ·) satisfying the assumption 
(G1) in Section 1.

Remark 2.1. Thanks to the referee, we would like to make some remarks.
(1) In the present paper, we do not assume that all individuals become mature at the same age. 

As a consequence, we need to require that the diffusion and death rates of the population are age 
independent. This is a strong assumption which makes such models only appropriate for certain 
kinds of species, perhaps some mammals, where juveniles stay with their parents and are subject 
to the same per-capita death rates.

(2) If individuals mature at the same age, say r0 > 0, then we only need to assume that the 
diffusion and death rates for the mature population are age independent. In fact, by applying the 
method used in So et al. [33], we can derive a nonlocal dispersal equation with a discrete delay 
which is similar to (2.9).

3. Preliminaries

In this section, we first state some results on traveling wave fronts and spatially independent 
solutions of (1.7). Then we discuss the well-posedness of the initial value problem of (1.7), and 
establish a series of comparison theorems for supersolutions and subsolutions of (1.7) and a 
related linear problem, which will play an important role in constructing entire solutions.
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3.1. Traveling fronts and spatially independent solutions

A traveling wave of (1.7) connecting 0 and K is a solution of the special form u(x, t) =
φc(ξ), ξ = x + ct , where the velocity c and the wave profile φ satisfy the following functional 
differential equation

cφ′
c(ξ) = D

[
(J ∗ φc)(ξ) − φc(ξ)

] + f
(
φc(ξ),

(
G ∗ S(φc)

)
(ξ)

)
(3.1)

with asymptotic boundary conditions

φc(−∞) = 0 and φc(+∞) = K, (3.2)

where (J ∗ φc)(ξ) = ∫ +∞
−∞ J (y)φc(ξ − y)dy and

(
G ∗ S(φc)

)
(ξ) =

∞∫
0

+∞∫
−∞

G(y, s)S
(
φc(ξ − y − cs)

)
dyds.

We say φc is a traveling (wave) front if φc(·) is monotone.
It is clear that the characteristic function for (3.1) with respect to the trivial equilibrium 0 can 

be represented by

�(c, λ) := cλ − D

[ +∞∫
−∞

e−λyJ (y)dy − 1

]
− ∂1f (0,0)

− ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

e−λ(y+cs)G(y, s)dyds = 0. (3.3)

From (C1), we see that ∂1f (0, 0) + ∂2f (0, 0)S′(0) ≥ 2
K

f (K
2 , S(K

2 )) > 0. Thus, one can easily 
show that the following result holds, see also [45].

Proposition 3.1. Let (G1) and (C1) hold. There exist λ∗ > 0 and c∗ > 0 such that

�(c∗, λ∗) = 0 and
∂

∂λ
�(c∗, λ)

∣∣∣∣
λ=λ∗

= 0.

Furthermore, if c > c∗, then the equation �(c, λ) = 0 has two positive real roots λ1(c) and λ2(c)

with λ1(c) < λ∗ < λ2(c), ∂
∂c

λ1(c) < 0, and ∂
∂c

[cλ1(c)] < 0.

Now, we consider the traveling fronts and SISs of (1.7) with quasi-monotone assumption. 
Here, the SIS of (1.7) means the solution of the following delayed problem:

Γ ′(t) = f

(
Γ (t),

∞∫
S
(
Γ (t − s)

) +∞∫
G(y, s)dyds

)
, t ∈ R. (3.4)
0 −∞
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Using similar methods as in [24,41,45], we can obtain the following existence result on the 
traveling fronts and SISs.

Proposition 3.2. Assume (G1), (C1) and (C2).

(i) For each c ≥ c∗, (1.7) has a traveling wave front φc(x + ct) which satisfies φ′
c(·) > 0, 

φc(−∞) = 0, and φc(+∞) = K . Furthermore, for c > c∗,

lim
ξ→−∞φc(ξ)e−λ1(c)ξ = 1 and φc(ξ) ≤ eλ1(c)ξ , ξ ∈R. (3.5)

(ii) There exists a solution Γ (t) : R → [0, K] of (3.4) which satisfies Γ (−∞) = 0 and 
Γ (+∞) = K . Furthermore,

Γ ′(t) > 0, lim
t→−∞Γ (t)e−λ∗t = 1 and Γ (t) ≤ eλ∗t for all t ∈R,

where λ∗ is the unique positive root of the equation

λ − ∂1f (0,0) − ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

e−λsG(y, s)dyds = 0.

We can further obtain the asymptotic behavior for any traveling wave fronts of (1.7) by ap-
plying the following version of Ikehara’s theorem, see e.g. Carr and Chmaj [2].

Lemma 3.3. Let u(ξ) be a positive decreasing function and J1(Λ) := ∫ +∞
0 e−Λξu(ξ)dξ . If J1

can be written as J1(Λ) = J (Λ)(Λ + Λ0)
−(k+1), where k > −1, Λ0 > 0 are two constants and 

J is analytic in the strip −Λ0 ≤ ReΛ < 0, then

lim
ξ→+∞

u(ξ)

ξke−Λ0ξ
= J (−Λ0)

Γ (Λ0 + 1)
.

Lemma 3.4. Assume (G1), (C1) and (C2). Let φc(ξ) be any traveling wave front of (1.7) with 
speed c ≥ c∗.

(i) For c > c∗,

lim
ξ→−∞φc(ξ)e−λ1(c)ξ = a(c) and lim

ξ→−∞φ′
c(ξ)e−λ1(c)ξ = a(c)λ1(c); (3.6)

(ii) for c = c∗,

lim
ξ→−∞φc(ξ)ξ−1e−λ1(c)ξ = −a(c) and lim

ξ→−∞φ′
c(ξ)ξ−1e−λ1(c)ξ = −a(c)λ1(c), (3.7)

where a(c) is a positive constant.
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Proof. The proof is similar to that of [36, Theorem 4.8] and [2, Theorem 1]. Here, we only 
sketch the outline. The proof is divided into three steps.

Step 1. We show that φc(ξ) is integrable on (−∞, ξ ′] for some ξ ′ ∈R.
Step 2. We prove that φc(ξ) = O(eγ ξ ) as ξ → −∞ for some γ > 0. To get the assertion, we 

first show that W(ξ) = O(eγ ξ ) as ξ → −∞, where W(ξ) := ∫ ξ

−∞ φc(s)ds.

Step 3. For 0 < Reλ < γ , define a two-sided Laplace transform of φ by L(λ) = ∫ +∞
−∞ φc(ξ) ×

e−λξ dξ. Using Lemma 3.3 and a property of Laplace transforms, one can show that for c > c∗, 
limξ→−∞ φc(ξ)e−λ1(c)ξ = a(c) and for c = c∗, limξ→−∞ φc(ξ)ξ−1e−λ1(c)ξ = −a(c).

Furthermore, using (3.1), we can verify that for c > c∗, limξ→−∞ φ′
c(ξ)e−λ1(c)ξ = a(c)λ1(c)

and for c = c∗, limξ→−∞ φ′
c(ξ)ξ−1e−λ1(c)ξ = −a(c)λ1(c). This completes the proof. �

3.2. Initial value problem

In this subsection, we consider the initial value problem of (1.7) with the following initial 
data:

u(x, s) = ϕ(x, s), x ∈R, s ∈ (−∞,0]. (3.8)

We shall study the well-posedness of the IVP (1.7) and (3.8), and establish a series of comparison 
theorems for supersolutions and subsolutions of (1.7) and a related linear problem.

Let X = BUC(R, R) be the Banach space of all bounded and uniformly continuous functions 
from R into R with the supremum norm ‖ · ‖X . Let

X[0,K] := {
ϕ ∈ X: ϕ(x) ∈ [0,K], ∀x ∈R

}
, (3.9)

C[0,K] := C
(
(−∞,0],X[0,K]

)
. (3.10)

For any ϕ ∈ C[0,K], define ‖ϕ‖C = supθ∈(−∞,0] ‖ϕ(θ)‖X .
As usual, we identify an element ϕ ∈ C as a function from R × (−∞, 0] into R defined by 

ϕ(x, s) = ϕ(s)(x). For any continuous function u : (−∞, b) → X, b > 0, we define ut ∈ C, 
t ∈ [0, b) by ut (s) = u(t + s), s ∈ (−∞, 0]. Define F : C[0,K] → X by

F(ϕ)(x) = (J ∗ ϕ)(x,0) + L̄1ϕ(x,0) + f
(
ϕ(x,0),

(
G ∗ S(ϕ)

)
(x,0)

)
,

where L̄1 := max(u,v)∈Ī |∂1f (u, v)|. It is easy to see that F : C[0,K] → X is globally Lipschitz 
continuous.

Let T (t) = e−(D+L̄1)t . Clearly, T (t) is a linear semigroup on X. The definitions of supersolu-
tion and subsolution are given as follows.

Definition 3.5. A continuous function u : (−∞, b) → X[0,K], b > 0, is called a supersolution (or 
a subsolution) of (1.7) on [0, b) if

u(t) ≥ (or ≤) T (t − s)
[
u(s)

] +
t∫

s

T (t − r)
[
F(ur)

]
dr

for any 0 ≤ s < t < b. If u is both a supersolution and a subsolution on [0, b), then it is said to 
be a mild solution of (1.7).
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According to Definition 3.5, we have the following result.

Lemma 3.6. Assume (G1), (C1) and (C2).

(i) For any ϕ ∈ C[0,K], (1.7) has a unique mild solution u(x, t; ϕ) on [0, ∞) with 0 ≤
u(x, t; ϕ) ≤ K for x ∈ R, t ≥ 0. Moreover, u(x, t; ϕ) is a classical solution of (1.7) for 
(x, t) ∈ R × (0, ∞).

(ii) For any pair of supersolution u+ and subsolution u− of (1.7) on [0, ∞) with u+(x, s) ≥
u−(x, s) for x ∈ R and s ∈ (−∞, 0], one has 0 ≤ u−(x, t) ≤ u+(x, t) ≤ K for (x, t) ∈
R × [0, ∞).

Proof. (i) The first part of this assertion can be proved by using the contracting mapping theo-
rem, see e.g. Fang et al. [9, Lemma 2.8]. It can also be proved by applying the theory of abstract 
functional differential equations (Martin and Smith [26, Corollary 5]). Since the process is stan-
dard, we omit the details here. Suppose that u(x, t; ϕ) is the unique solution of (1.7) with initial 
value ϕ ∈ C[0,K]. For simplicity, we denote u(x, t; ϕ) by u(x, t). From Definition 3.5, u(x, t)
satisfies

u(t)(x) = T (t)[ϕ](x) +
t∫

0

T (t − r)
[
F(ur)

]
(x)dr.

Differentiating both sides of the above equation, we obtain

∂tu(x, t) = −(D + L̄1)e
−(D+L̄1)tϕ(x) + F(ut )(x)

− (D + L̄1)

t∫
0

T (t − r)
[
F(ur)

]
(x)dr

= −(D + L̄1)e
−(D+L̄1)tϕ(x) + F(ut )(x)

− (D + L̄1)u(x, t) + (D + L̄1)T (t)[ϕ](x)

= D(J ∗ u − u)(x, t) + f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)
.

Therefore, u(x, t; ϕ) is a classical solution of (1.7) for (x, t) ∈ R × (0, ∞).
The assertion (ii) follows from [26, Corollary 5]. This completes the proof. �
The following comparison theorem plays an important role in constructing upper estimates 

for solutions of (1.7).

Lemma 3.7. Let (G1) and (C1) hold. Assume further that ∂2f (0, 0)S′(0) ≥ 0. Let u+ ∈
C(R2, [0, +∞)) and u− ∈ C(R2, (−∞, K]) be such that u+(x, s) ≥ u−(x, s) for x ∈ R, s ∈
(−∞, 0]. If

u+
t ≥ D

[(
J ∗ u+)

(x, t) − u+(x, t)
]

+ ∂1f (0,0)u+(x, t) + ∂2f (0,0)S′(0)
(
G ∗ u+)

(x, t), (3.11)
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u−
t ≤ D

[(
J ∗ u−)

(x, t) − u−(x, t)
]

+ ∂1f (0,0)u−(x, t) + ∂2f (0,0)S′(0)
(
G ∗ u−)

(x, t) (3.12)

for x ∈ R and t > 0, then u+(x, t) ≥ u−(x, t) for x ∈ R and t ≥ 0.

Proof. Set w(x, t) = u−(x, t) − u+(x, t) for (x, t) ∈ R
2. Then w(x, t) ≤ K for (x, t) ∈ R

2. 
From (3.11) and (3.12), we have

wt ≤ D(J ∗ w)(x, t) + (
∂1f (0,0) − D

)
w(x, t) + ∂2f (0,0)S′(0)(G ∗ w)(x, t) (3.13)

for x ∈ R and t > 0. Note that w(x, s) ≤ 0 for x ∈ R and s ∈ (−∞, 0]. Take μ = ∂1f (0, 0) − D. 
Since ∂2f (0, 0)S′(0) ≥ 0, it follows from (3.13) that

w(x, t) ≤ w(x,0)eμt +
t∫

0

eμ(t−s)
[
D(J ∗ w)(x, s) + ∂2f (0,0)S′(0)(G ∗ w)(x, s)

]
ds

≤
t∫

0

eμ(t−s)

[
D

+∞∫
−∞

J (y)max
{
w(x − y, s),0

}
dy

+ ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

G(y, r)max
{
w(x − y, s − r),0

}
dydr

]
ds. (3.14)

Denote [B]+ := max{B, 0} for any B ∈R. Then, from (3.14), we have

[
w(x, t)

]
+ ≤

t∫
0

eμ(t−s)

[
D

+∞∫
−∞

J (y)
[
w(x − y, s)

]
+dy

+ ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

G(y, r)
[
w(x − y, s − r)

]
+dydr

]
ds

for x ∈R and t ∈ [0, +∞). Moreover, set

wλ(t) := sup
x∈R

[
w(x, t)

]
+e−λt and wλ := sup

t∈R
wλ(t) for λ > max{μ,0}.

Then, we have

wλ(t) ≤
t∫

0

e−(λ−μ)(t−s)

[
Dwλ(s) + ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

G(y, r)e−λrwλ(s − r)dydr

]
ds,

which yields that
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wλ ≤ wλ

t∫
0

e−(λ−μ)(t−s)

[
D + ∂2f (0,0)S′(0)

∞∫
0

+∞∫
−∞

G(y, r)e−λrdydr

]
ds

≤ wλ

t∫
0

e−(λ−μ)(t−s)
[
D + ∂2f (0,0)S′(0)

]
ds

≤ wλ

[
D + ∂2f (0,0)S′(0)

]
/(λ − μ).

Hence, wλ ≤ 0 for sufficiently large λ. Therefore, u−(x, t) ≤ u+(x, t) for (x, t) ∈ R × [0, +∞). 
This completes the proof. �

To obtain another comparison theorem which will be used to construct upper estimates, we 
need the concavity assumption of the functions S and f :

(C3) S(u) is concave on [0, K] and for any m ∈ Z
+, ai ∈ [0, K], bi ∈ [0, S(K)], i = 1, . . . , m,

L̄1 min

{
K,

m∑
i=1

ai

}
+ f

(
min

{
K,

m∑
i=1

ai

}
,min

{
S(K),

m∑
i=1

bi

})

≤
m∑

i=1

[
L̄1ai + f (ai, bi)

]
.

We would like to point out that assumption (C3) is not a more restrictive condition. Indeed, 
in general monostable nonlinearities satisfy such a concave condition, see Section 6 for applica-
tions.

Lemma 3.8. Assume (G1) and (C1)–(C3). Let m ∈ Z
+ and u0

i , u
0 ∈ C[0,K], i = 1, . . . , m, be 

m + 1 given functions with

u0(x, s) ≤ min

{
K,

m∑
i=1

u0
i (x, s)

}
for x ∈ R, s ∈ (−∞,0].

Let ui and u be the solutions of the Cauchy problems of (1.7) with the initial values:

ui(x, s) = u0
i (x, s) and u(x, s) = u0(x, s), x ∈R, s ∈ (−∞,0], (3.15)

respectively. Then

0 ≤ u(x, t) ≤ min

{
K,

m∑
i=1

ui(x, t)

}
for all x ∈R and t ≥ 0.

Proof. Set Z(x, t) := min{K, 
∑m

i=1 ui(x, t)}, then u(x, s) ≤ Z(x, s) for x ∈ R and s ∈
(−∞, 0]. By the second part of Lemma 3.6, it suffices to show that Z(t)(·) = Z(·, t) ∈
C((−∞, +∞), X[0,K]) is a supersolution of (1.7), i.e.
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T (t − s)
[
Z(s)

]
(x) +

t∫
s

T (t − r)
[
F(Zr)

]
(x)dr ≤ Z(t)(x) for 0 ≤ s < t < +∞. (3.16)

Since S′(u) ≥ 0 for u ∈ [0, K] and ∂2f (u, v) ≥ 0 for (u, v) ∈ [0, K] × [0, S(K)], we have

T (t − s)
[
Z(s)

]
(x) +

t∫
s

T (t − r)
[
F(Zr)

]
(x)dr

≤ e−(D+L̄1)(t−s)K + (D + L̄1)K

t∫
s

e−(D+L̄1)(t−r)dr = K (3.17)

for 0 ≤ s < t < +∞. Using the concave condition of S(u) on [0, K] and mathematical induction, 
we can show that for any di ∈ (0, K], i = 1, . . . , m,

S
(
min{K,d1 + · · · + dm}) ≤ S(d1) + · · · + S(dm).

Using the assumption S′(u) ≥ 0 for u ∈ [0, K] again, we have

S
(
min{K,d1 + · · · + dm}) ≤ min

{
S(K),S(d1) + · · · + S(dm)

}
. (3.18)

Then, by (3.18) and (C3), we have

F(Zr)(x) = (J ∗ Z)(x, r) + L̄1Z(x, r) + f
(
Z(x, r),

(
G ∗ S(Z)

)
(x, r)

)
≤ D

m∑
i=1

(J ∗ ui)(x, r) + L̄1 min

{
K,

m∑
i=1

ui(x, r)

}

+ f

(
min

{
K,

m∑
i=1

ui(x, r)

}
,min

{
S(K),

m∑
i=1

(
G ∗ S(ui)

)
(x, r)

})

≤
m∑

i=1

[
D(J ∗ ui)(x, r) + L̄1ui(x, r) + f

(
ui(x, r),

(
G ∗ S(ui)

)
(x, r)

)]
=

m∑
i=1

F
(
(ui)r

)
(x).

Noting that

T (t − s)
[
ui(s)

]
(x) +

t∫
s

T (t − r)
[
F

(
(ui)r

)]
(x)dr = ui(t)(x), i = 1, . . . ,m,

for 0 ≤ s < t < +∞, we obtain
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T (t − s)
[
Z(s)

]
(x) +

t∫
s

T (t − r)
[
F(Zr)

]
(x)dr

≤
m∑

i=1

{
T (t − s)

[
ui(s)

]
(x) +

t∫
s

T (t − r)
[
F

(
(ui)r

)]
(x)dr

}

=
m∑

i=1

ui(t)(x) for 0 ≤ s < t < +∞. (3.19)

Therefore, (3.16) follows from (3.17) and (3.19), i.e., Z(x, t) is a supersolution of (1.7) and the 
assertion of this lemma follows from Lemma 3.6. �
4. Entire solutions: quasi-monotone case

In this section, we consider entire solutions of (1.7) in the quasi-monotone case. First, we use 
the conclusions established in the previous section to obtain some appropriate upper estimates 
for solutions of (1.7). Then, we prove the existence and various qualitative properties of entire 
solutions.

For any k ∈N, m, n ∈N ∪{0}, h1, . . . , hm, ϑ1, . . . , ϑn, h ∈ R, c1, . . . , cm, c̄1, . . . , c̄n ≥ c∗, and 
χ ∈ {0, 1} with m + n + χ ≥ 2, we denote

ϕk(x, s) := max
{

max
i=1,...,m

φci
(x + cis + hi), max

j=1,...,n
φc̄j

(−x + c̄j s + ϑj ),χΓ (s + h)
}
,

u(x, t) := max
{

max
i=1,...,m

φci
(x + ci t + hi), max

j=1,...,n
φc̄j

(−x + c̄j t + ϑj ),χΓ (t + h)
}
,

where x ∈ R, s ∈ (−∞, −k] and t > −k. Let uk(x, t) be the unique solution of the following 
initial value problem{

ut = D(J ∗ u − u)(x, t) + f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)
,

u(x, s) = ϕk(x, s),
(4.1)

for x ∈R, s ∈ (−∞, −k] and t > −k. From Lemma 3.6, we see that

u(x, t) ≤ uk(x, t) ≤ K for (x, t) ∈ R
2.

4.1. Existence of entire solutions

Using the comparison theorems established in Section 3, we can obtain some appropriate 
upper estimates of uk(x, t). For simplicity, denote

Π(x, t) :=
m∑

φci
(x + ci t + hi) +

n∑
φc̄j

(−x + c̄j t + ϑj ) + χΓ (t + h),
i=1 j=1
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Π0(x, t) :=
∑

1≤i≤m

eλ1(ci )(x+ci t+hi) +
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h),

Π1(x, t) := min
1≤i0≤m

{
φci0

(x + ci0 t + hi0) +
∑

1≤i≤m,i �=i0

eλ1(ci )(x+ci t+hi)

+
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h)

}
,

Π2(x, t) := min
1≤j0≤n

{
φc̄j0

(−x + c̄j0 t + ϑj0) +
∑

1≤j≤n,j �=j0

eλ1(c̄j )(−x+c̄j t+ϑj )

+
∑

1≤i≤m

eλ1(ci )(x+ci t+hi) + χeλ∗(t+h)

}
,

Π3(x, t) :=
∑

1≤i≤m

eλ1(ci )(x+ci t+hi) +
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χΓ (t + h).

Lemma 4.1. Assume (G1) and (C1)–(C3). The unique solution uk(x, t) of (4.1) satisfies

uk(x, t) ≤ u+(x, t) := min
{
K,Π(x, t)

}
for (x, t) ∈ R

2.

Proof. The assertion of this lemma follows directly from Lemma 3.8. So, we omit it here. �
Lemma 4.2. Assume (G1) and (C1)–(C2). If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then the unique solution 
uk(x, t) of (4.1) satisfies

uk(x, t) ≤ ũ(x, t) := min
{
K,Π0(x, t)

}
(4.2)

for (x, t) ∈ R
2. If, in addition, the following condition

(C4) ∂if (u, v) ≤ ∂if (0, 0) and S′(u) ≤ S′(0) for any (u, v) ∈ Ī , i = 1, 2,

holds, then

uk(x, t) ≤ u(x, t) := min
{
K,Π1(x, t),Π2(x, t),Π3(x, t)

}
(4.3)

for (x, t) ∈ R
2.

Proof. We first prove (4.3). Since uk(x, t) ≤ K for (x, t) ∈ R
2, it suffices to show that uk(x, t) ≤

Πi(x, t), i = 1, 2, 3, for (x, t) ∈ R
2. We only prove uk(x, t) ≤ Π1(x, t) for (x, t) ∈ R

2. The other 
case can be proved similarly. Given any i0 ∈ {1, . . . , m}. Take

Wk(x, t) := uk(x, t) − φci0
(x + ci0 t + hi0) for (x, t) ∈R

2.

Then 0 ≤ Wk(x, t) ≤ K for (x, t) ∈ R
2. Using ∂if (u, v) ≤ ∂if (0, 0) and S′(u) ≤ S′(0) for any 

(u, v) ∈ Ī , i = 1, 2, we obtain
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Wk

∂t
≤ D

[(
J ∗ Wk

)
(x, t) − Wk(x, t)

]
+ ∂1f (0,0)Wk(x, t) + ∂2f (0,0)S′(0)

(
G ∗ Wk

)
(x, t),

Wk(x, s) := uk(x, s) − φci0
(x + ci0s + hi0),

(4.4)

where x ∈ R, t > −k, s ∈ (−∞, −k]. Taking

V (x, t) :=
∑

1≤i≤m,i �=i0

eλ1(ci )(x+ci t+hi) +
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h)

for (x, t) ∈ R
2. It is easy to verify that

∂V

∂t
= D

[
(J ∗ V )(x, t) − V (x, t)

] + ∂1f (0,0)V (x, t) + ∂2f (0,0)S′(0)(G ∗ V )(x, t)

where x ∈ R, t > −k. According to Proposition 3.2, we have

Wk(x, s) = ϕk(x, s) − φci0
(x + ci0s + hi0)

≤
∑

1≤i≤m,i �=i0

φci
(x + cis + hi) +

∑
1≤j≤n

φc̄j
(−x + c̄j s + ϑj ) + χΓ (s + h)

≤
∑

1≤i≤m,i �=i0

eλ1(ci )(x+ci s+hi) +
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j s+ϑj ) + χeλ∗(s+h)

= V (x, s) for x ∈ R, s ∈ (−∞,−k].

Then, it follows from Lemma 3.7 that Wk(x, t) ≤ V (x, t) for (x, t) ∈ R
2, that is,

uk(x, t) ≤ φci0
(x + ci0 t + hi0) +

∑
1≤i≤m,i �=i0

eλ1(ci )(x+ci t+hi)

+
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h).

Since i0 ∈ {1, . . . , m} is arbitrary, we have uk(x, t) ≤ Π1(x, t) for (x, t) ∈ R
2. Therefore, 

(4.3) holds. The proof of (4.2) is similar and is omitted. This completes the proof. �
By using upper estimates of Lemmas 4.1 and 4.2, we can obtain the following result.

Theorem 4.3. Assume (G1) and (C1)–(C2). For any m, n ∈ N ∪ {0}, h1, . . . , hm,ϑ1, . . . , ϑn, 
h ∈ R, c1, . . . , cm, c̄1, . . . , c̄n ≥ c∗, and χ ∈ {0, 1} with m + n + χ ≥ 2, there exists an entire 
solution Φp(x, t) of (1.7) such that

u(x, t) ≤ Φp(x, t) ≤ K for (x, t) ∈ R
2, (4.5)

where p := pm,n,χ = (c1, h1, . . . , cm, hl, c̄1, ϑ1, . . . , c̄n, ϑn, χh). Furthermore, the following re-
sults hold.
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(i) If (C3) holds, then Φp(x, t) ≤ u+(x, t) for (x, t) ∈ R
2.

(ii) If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then Φp(x, t) ≤ ũ(x, t) for (x, t) ∈ R
2. If, in addition, (C4)

holds, then Φp(x, t) ≤ ū(x, t) for (x, t) ∈ R
2.

Proof. Recall that uk(x, t) is the unique solution of the initial value problem (4.1). By 
Lemma 3.6, it is easy to see that

u(x, t) ≤ uk(x, t) ≤ uk+1(x, t) ≤ K (4.6)

for all x ∈R and t ≥ −k. Then there exists a function Φp(x, t) satisfying 0 ≤ Φp(x, t) ≤ K such 
that for any (x, t) ∈ R

2, there is limk→∞ uk(x, t) = Φp(x, t). For any given t0 ∈ R, there exists 
k ∈N such that t0 > −k and uk(x, t) satisfies

uk(t)(x) = T (t − t0)
[
uk(t0)

]
(x) +

t∫
t0

T (t − r)
[
F

(
uk

r

)]
(x)dr,

where T and F are defined as in Section 3. By Lebesgue’s dominated convergence theorem, we 
get

Φp(t)(x) = T (t − t0)
[
Φp(t0)

]
(x) +

t∫
t0

T (t − r)
[
F

(
(Φp)r

)]
(x)dr.

It is clear that Φp(x, t) is continuous and differentiable about t . Differentiating two sides of the 
above equation, it is easy to verify that

∂tΦp(x, t) = D
[
(J ∗ Φp)(x, t) − Φp(x, t)

] + f
(
Φp(x, t),

(
G ∗ S(Φp)

)
(x, t)

)
.

Therefore, Φp(x, t) is an entire solution of (1.7). Moreover, the assertions of (i) and (ii) follow 
from Lemmas 4.1–4.2. The proof is complete. �
4.2. Qualitative properties of entire solutions

In the previous subsection, some new types of entire solutions of (1.7) were constructed by 
considering a combination of any finite number of traveling wave fronts with speeds c ≥ c∗
and a spatial independent solution. In this subsection we continue to investigate the qualitative 
properties of the entire solutions, such as the monotonicity and limit of Φp(x, t) with respect to 
the variables x and t , and the shift parameters hi , ϑj and h.

Theorem 4.4. Assume (G1) and (C1)–(C2). Let Φp(x, t) be the entire solution of (1.7) as stated 
in Theorem 4.3, then the following properties hold.

(i) 0 < Φp(x, t) < K and ∂
∂t

Φp(x, t) > 0 for any (x, t) ∈R
2.

(ii) limt→+∞ supx∈R |Φpm,n,1(x, t) − K| = 0, limt→+∞ sup|x|≤A |Φpm,n,0(x, t) − K| = 0 for 
any A ∈R+.
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(iii) If m ≥ 1, then limx→+∞ supt≥a |Φp(x, t) − K| = 0 for every a ∈ R; if n ≥ 1, then 
limx→−∞ supt≥a |Φp(x, t) − K| = 0 for every a ∈R.

(iv) If (C3) holds or c1, . . . , cm, c̄1, . . . , c̄n > c∗, then limt→−∞ supx∈[A1,A2] Φp(x, t) = 0 for 
any A1 < A2.

(v) For any (x, t) ∈ R
2, Φp(x, t) is increasing with respect to hi , ϑj and h, respectively, 

∀i = 1, . . . , m and j = 1, . . . , n.
(vi) For any A, γ ∈ R, Φp(x, t) converges to K

(a) as hi → +∞ uniformly on (x, t) ∈ [A, +∞) × [γ, +∞), i = 1, . . . , m;
(b) as ϑj → +∞ uniformly on (x, t) ∈ (−∞, A] × [γ, +∞), j = 1, . . . , n;
(c) as h → +∞ uniformly on (x, t) ∈R × [γ, +∞).

(vii) If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then for every x ∈R,

Φpm,n,1(x, t) ∼ Γ (t + h) ∼ eλ∗(t+h) and Φpm,n,0(x, t) = O
(
ecmaxλ1(cmax)

)
,

as t → −∞, where cmax := max{maxi=1,...,m{ci}, maxj=1,...,n{c̄j }}.
(viii) Let (C4) hold.

(a) For any γ ∈ R, Φpm,n,1(x, t) converges to Φpm,n,0(x, t) as h → −∞ uniformly on 
(x, t) ∈ T̃γ := R × (−∞, γ ].

(b) If ci0 > c∗ for some i0 ∈ {1, . . . , m}, then for any A, γ ∈ R,

Φp(x, t) converges to Φ(ci ,hi ;i∈{1,...,m}\{i0},c̄j ,ϑj ;j∈{1,...,n},h)(x, t)

as hi0 → −∞ uniformly on (x, t) ∈ (−∞, A] × (−∞, γ ].
(c) If c̄j0 > c∗ for some j0 ∈ {1, . . . , n}, then for any A, γ ∈ R,

Φp(x, t) converges to Φ(ci ,hi ;i∈{1,...,m},c̄j ,ϑj ;j∈{1,...,n}\{j0},h)(x, t)

as ϑj0 → −∞ uniformly on (x, t) ∈ [A, +∞) × (−∞, γ ].

Proof. The proofs of parts (ii)–(vi) are straightforward and omitted.
(i) Clearly, 0 < Φp(x, t) ≤ K for all (x, t) ∈ R

2. Since

uk(x, t) ≥ u(x, t) ≥ u(x, s) = ϕ(x, s) = uk(x, s)

for x ∈ R, s ∈ (−∞, −k] and t > −k, by Lemma 3.6, we have ∂
∂t

uk(x, t) ≥ 0 for (x, t) ∈ R ×
(−k, +∞). This yields ∂

∂t
Φp(x, t) ≥ 0 for all (x, t) ∈ R

2. Now, we show that ∂
∂t

Φp(x, t) > 0 for 
(x, t) ∈ R

2. By direct computations, we have

∂ttΦp = D
[
(J ∗ ∂tΦp)(x, t) − ∂tΦp(x, t)

]
+ ∂1f

(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)
∂tΦp(x, t)

+ ∂2f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)(
G ∗ (

S′(Φp)∂tΦp

))
(x, t)

≥ −(D + L̄1)∂tΦp(x, t),

where L̄1 = max(u,v)∈[0,K]×[0,S(K)] |∂1f (u, v)|. For any r ∈R, we can obtain
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(Φp)t (x, t) ≥ (Φp)t (x, r)e−(D+L̄1)(t−r) ≥ 0, ∀x ∈ R, t > r. (4.7)

Suppose for the contrary that there exists (x0, t0) ∈ R
2 such that (Φp)t (x0, t0) = 0. By (4.7), we 

see that (Φp)t (x0, r) = 0 for all r ≤ t0. Hence Φp(x0, t) = Φp(x0, t0) for all t ≤ t0, which implies 
that limt→−∞ Φp(x0, t) = Φp(x0, t0). But following from (i) and (ii) of Theorem 4.3, we see that 
Φp(x0, t0) > 0 and limt→−∞ Φp(x0, t) = 0. This contradiction yields that ∂

∂t
Φp(x, t) > 0 for all 

(x, t) ∈ R
2.

If there exists (x0, t0) ∈ R
2 such that Φp(x0, t0) = K , then

0 < ∂tΦp(x0, t0) = D
[
(J ∗ Φp)(x0, t0) − K

] + f
(
K,

(
G ∗ S(Φp)

)
(x0, t0)

)
≤ f

(
K,S(K)

) = 0,

which is impossible. Therefore, Φp(x, t) < K for (x, t) ∈ R
2.

(vii) When c1, . . . , cm, c̄1, . . . , c̄n > c∗, the assertion (ii) of Theorem 4.3 implies that

χΓ (t + h) ≤ Φpm,n,χ (x, t) ≤
∑

1≤j≤m

eλ1(cj )(x+cj t+hj )

+
∑

1≤j≤n

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h). (4.8)

The second part of this statement follows from (4.8) with χ = 0 and the fact that ∂
∂c

[cλ1(c)] < 0
for any c > c∗.

Since limt→−∞ Γ (t)e−λ∗t = 1, to prove the first part of this statement, it suffices to prove 
that cλ1(c) > λ∗ for any c > c∗. Suppose for the contrary that there exists c0 > c∗ such that 
c0λ1(c0) ≤ λ∗. Then, from Propositions 3.1–3.2, we have

0 ≥ c0λ1(c0) − λ∗

= D

[ +∞∫
−∞

e−λ1(c0)yJ (y)dy − 1

]

+ ∂2f (0,0)S′(0)

[ +∞∫
0

+∞∫
−∞

[
e−λ1(c0)(y+cs) − e−λ∗s]G(y, s)dyds

]

> ∂2f (0,0)S′(0)

+∞∫
0

+∞∫
−∞

e−λ1(c0)cs
[
e−λ1(c0)y − 1

]
G(y, s)dyds ≥ 0.

This contradiction shows that cλ1(c) > λ∗ for any c > c∗, and the first part of this statement 
follows.

(viii) We only prove part (a) of this assertion, since the other cases can be considered similarly. 
Recall that uk(x, t) is the unique solution of the initial value problem (4.1). For χ = 1, we denote 
ϕk(x, s) by ϕk

pm,n,1
(x, s) and uk(x, t) by uk

pm,n,1
(x, t), respectively. Similarly, when χ = 0, we 

denote ϕk(x, s) and uk(x, t) by ϕk
p (x, s) and uk

p (x, t), respectively. Take

m,n,0 m,n,0
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Zk(x, t) := uk
pm,n,1

(x, t) − uk
pm,n,0

(x, t), for (x, t) ∈ R× (−k,+∞).

Then, 0 ≤ Zk(x, t) ≤ K for all (x, t) ∈R × (−k, +∞). By assumption (C4), we see that

∂Zk

∂t
= D

[(
J ∗ Zk

)
(x, t) − Zk(x, t)

]
+ f

(
uk

pm,n,1
(x, t),

(
G ∗ S

(
uk

pm,n,1

))
(x, t)

) − f
(
uk

pm,n,0
(x, t),

(
G ∗ S

(
uk

pm,n,0

))
(x, t)

)
≤ D

[(
J ∗ Zk

)
(x, t) − Zk(x, t)

] + ∂1f (0,0)Zk(x, t) + ∂2f (0,0)S′(0)
(
G ∗ Zk

)
(x, t).

Define the function Ẑ(x, t) := eλ∗(t+h), (x, t) ∈ R
2. By Proposition 3.2, we have

Zk(x, s) = uk
pm,n,1

(x, s) − uk
pm,n,0

(x, s) ≤ Γ (s + h) ≤ eλ∗(s+h) = Ẑ(x, s)

for x ∈R and s ∈ (−∞, −k]. Moreover, it is easy to see that Ẑ(x, t) satisfies the linear equation:

∂Ẑ

∂t
= D

[
(J ∗ Ẑ)(x, t) − Ẑ(x, t)

] + ∂1f (0,0)Ẑ(x, t) + ∂2f (0,0)S′(0)(G ∗ Ẑ)(x, t).

It then follows from Lemma 3.7 that

0 ≤ Zk(x, t) = uk
pm,n,1

(x, t) − uk
pm,n,0

(x, t) ≤ Ẑ(x, t) = eλ∗(t+h)

for all (x, t) ∈ R × [−k, +∞). Since limk→∞ uk
pm,n,χ

(x, t) = Φpm,n,χ (x, t), we have

0 ≤ Φpm,n,1(x, t) − Φpm,n,0(x, t) ≤ eλ∗(t+h) for all (x, t) ∈R
2,

which implies that Φpm,n,1(x, t) converges to Φpm,n,0(x, t) as h → −∞ uniformly on (x, t) ∈ T̃γ

for any γ ∈ R, and the assertion of this part follows. This completes the proof. �
In the following theorem, we establish the relationship between the entire solution Φp(x, t)

and the traveling wave fronts which they originated.

Theorem 4.5. Assume (G1) and (C1)–(C3). Let Φp(x, t) be the entire solution of (1.7) stated in 
Theorem 4.3. Then for any c ≥ c∗, the following properties hold.

(i) (a) If there exists i0 ∈ {1, . . . , m} such that c = ci0 and c < ci for any i �= i0, then Φp(−ct +
x, t) → φci0

(x + hi0); if there exists j0 ∈ {1, . . . , n} such that c = c̄j0 and c < c̄j for any 
j �= j0, then Φp(ct + x, t) → φc̄j0

(x + ϑj0) as t → −∞;
(b) if c < ci for all i ∈ {1, . . . , m}, then Φp(−ct + x, t) → 0 as t → −∞; if c < c̄j for all 

j ∈ {1, . . . , n}, then Φp(ct + x, t) → 0 as t → −∞;
(c) if there exists i0 ∈ {1, . . . , m} such that c > ci0 , then Φp(−ct + x, t) → K as t → −∞; 

if there exists j0 ∈ {1, . . . , n} such that c > c̄j0 , then Φp(ct + x, t) → K as t → −∞.
(ii) If there exists i0 ∈ {1, . . . , m} such that c < ci0 , then Φp(−ct + x, t) → K as t → +∞; if 

there exists j0 ∈ {1, . . . , n} such that c < c̄j0 , then Φp(ct + x, t) → K as t → +∞.

All these limits are uniform in x in any compact subset of R.
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Proof. (i) We only prove the statement (a), since the others can be proved similarly. From The-
orem 4.3, we have

0 ≤ Φp(−ct + x, t) − φci0

(
(ci0 − c)t + x + hi0

)
≤

∑
1≤i≤m,i �=i0

φci

(
x + (ci − c)t + hi

) +
∑

1≤j≤n

φc̄j

(−x + (c̄j + c)t + ϑj

) + χΓ (t + h)

and

0 ≤ Φp(ct + x, t) − φc̄j0

(
(c̄j0 − c)t − x + ϑj0

)
≤

∑
1≤i≤m

φci

(
x + (ci + c)t + hi

) +
∑

1≤j≤n,j �=j0

φc̄j

(−x + (c̄j − c)t + ϑj

) + χΓ (t + h)

for all (x, t) ∈ R
2, hence the assertion of part (i) follows. Similarly, we can prove the assertion 

of part (ii). This completes the proof. �
Remark 4.6. Roughly speaking, the convergences in the statements of part (i) of Theorem 4.5
mean that only some fronts, i.e. those with small speeds, can be “viewed” as t → −∞, the others 
are being “hidden”. But, it seems impossible to view any fronts as t → +∞. Similar phenomenon 
has been observed by Hamel and Nadirashvili [16] for the Fisher–KPP equation.

5. Entire solutions: non-quasi-monotone case

In this section, we consider the entire solutions of (1.7) in the non-quasi-monotone case. It is 
well known that the comparison principle is not applicable for such non-quasi-monotone systems. 
In addition to (C2)

′ and (G1), we further make the following assumptions:

(C3)
′ S+(u) is concave on [0, K+] and for any m ∈ Z

+, (ai, bi) ∈ Ī+, i = 1, . . . , m,

L+
f min

{
K+,

m∑
i=1

ai

}
+ f +

(
min

{
K+,

m∑
i=1

ai

}
,min

{
S+(

K+)
,

m∑
i=1

bi

})

≤
m∑

i=1

[
L+

f ai + f +(ai, bi)
]
,

where Ī+ = [0, K+] × [0, S+(K+)] and L+
f := max(u,v)∈Ī+ |∂1f

+(u, v)|.
Similar to Lemma 3.6, it is easy to verify that for any ϕ ∈ C[0,K+], (1.7) has a unique solution 

u(x, t; ϕ) on [0, ∞) with 0 ≤ u(x, t; ϕ) ≤ K+ for x ∈ R, t ≥ 0. Moreover, u(x, t; ϕ) is classical 
on (0, +∞). Here and in what follows, X[0,K±] and C[0,K±] are defined as (3.9) and (3.10) by 
replacing [0, K] with [0, K±].

According to the assumption (C2)
′, we consider the following two auxiliary quasi-monotone 

nonlocal dispersal equations with spatio-temporal delay:
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ut = D(J ∗ u − u)(x, t) + f +(
u(x, t),

(
G ∗ S+(u)

)
(x, t)

)
, (5.1)

ut = D(J ∗ u − u)(x, t) + f −(
u(x, t),

(
G ∗ S−(u)

)
(x, t)

)
, (5.2)

where x ∈ R, t ∈R.
It is clear that �(c, λ) = 0 is also the characteristic equation of (5.1) and (5.2) with respect to 

the trivial equilibrium. By Proposition 3.2, we have the following result.

Proposition 5.1. Assume (G1) and (C2)
′.

(i) For any c ≥ c∗, (5.1) and (5.2) have traveling wave fronts φ+
c (ξ), φ−

c (ξ), ξ = x + ct , respec-
tively, which satisfy (φ±

c )′(·) > 0, φ±
c (−∞) = 0 and φ±

c (+∞) = K±. Moreover, if c > c∗, 
then

lim
ξ→−∞φ±

c (ξ)e−λ1(c)ξ = 1, φ±
c (ξ) ≤ eλ1(c)ξ for all ξ ∈R.

(ii) There exist solutions Γ ±(t) : R → [0, K+] of the following delayed equations:

Γ ′(t) = f ±
(

Γ (t),

∞∫
0

S±(
Γ (t − s)

) +∞∫
−∞

G(y, s)dyds

)
, t ∈R, (5.3)

which satisfy Γ ±(−∞) = 0, Γ ±(+∞) = K± and

d

dt
Γ ±(t) > 0, lim

t→−∞Γ ±(t)e−λ∗t = 1 and Γ −(t) ≤ eλ∗t for all t ∈R.

Define F̃ , F± : C[0,K+] → X by

F±(ϕ)(x) := D(J ∗ ϕ)(x,0) + Lϕ(x,0) + f ±(
ϕ(x,0),

(
G ∗ S±(ϕ)

)
(x,0)

)
,

F̃ (ϕ)(x) := D(J ∗ ϕ)(x,0) + Lϕ(x,0) + f
(
ϕ(x,0),

(
G ∗ S(ϕ)

)
(x,0)

)
,

where

L := max
(u,v)∈Ī+

max
{∣∣∂1f

+(u, v)
∣∣, ∣∣∂1f

−(u, v)
∣∣, ∣∣∂1f (u, v)

∣∣}.
It is clear that F±(·) are non-decreasing in C[0,K+] and

F−(ϕ) ≤ F̃ (ϕ) ≤ F+(ϕ) for ϕ ∈ C[0,K+].

Moreover, we define T̃ (t) = e−(D+L)t .
The following two lemmas play an important role in the proof of our main result for the 

non-quasi-monotone nonlocal dispersal system with spatio-temporal delay.
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Lemma 5.2. Assume (G1) and (C2)
′. Given r ∈ R. Let u, u± ∈ C(R, X[0,K+]) be such that

u−(t)(x) ≤ T̃ (t − r)
[
u−(r)

]
(x) +

t∫
r

T̃ (t − s)
[
F−(

u−
s

)]
(x)ds, (5.4)

u(t)(x) = T̃ (t − r)
[
u(r)

]
(x) +

t∫
r

T̃ (t − s)
[
F̃ (us)

]
(x)ds, (5.5)

u+(t)(x) ≥ T̃ (t − r)
[
u+(r)

]
(x) +

t∫
r

T̃ (t − s)
[
F+(

u+
s

)]
(x)ds (5.6)

for all x ∈ R, t > r and u−(x, s) ≤ u(x, s) ≤ u+(x, s) for x ∈R and s ∈ (−∞, r]. Then,

u−(x, t) ≤ u(x, t) ≤ u+(x, t) for all x ∈ R and t ≥ r.

Proof. We only prove u(x, t) ≤ u+(x, t) for all x ∈ R and t ≥ r , since the other case can be 
proved similarly. Let

z(x, t) := u(x, t) − u+(x, t) for (x, t) ∈ R
2.

Note that u(x, s) ≤ u+(x, s) for x ∈ R, s ∈ (−∞, r]. Using the assumption (C2)
′, we have for 

any x ∈ R and s ≥ r that

F̃ (us)(x) − F+(
u+

s

)
(x)

≤ F+(us)(x) − F+(
u+

s

)
(x)

= D(J ∗ z)(x, s) + Lz(x, s)

+ f +(
u(x, s),

(
G ∗ S+(u)

)
(x, s)

) − f +(
u+(x, s),

(
G ∗ S+(u)

)
(x, s)

)
+ f +(

u+(x, s),
(
G ∗ S+(u)

)
(x, s)

) − f +(
u+(x, s),

(
G ∗ S+(

u+))
(x, s)

)
≤ D(J ∗ z)(x, s) + [

L + ∂1f
+(

η(x, s),
(
G ∗ S+(u)

)
(x, s)

)]
z(x, s)

+ Lf LS

∞∫
0

+∞∫
−∞

G(x − y, r)max
{
z(y, s − r),0

}
dydr

≤ D

+∞∫
−∞

J (y)max
{
0, z(x − y, s)

}
dy + 2Lmax

{
0, z(x, s)

}

+ Lf LS

∞∫
0

+∞∫
−∞

G(x − y, r)max
{
z(y, s − r),0

}
dydr, (5.7)

where η(x, s) = θu(x, s) + (1 − θ)u+(x, s), θ ∈ (0, 1).
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Denote [B]+ := max{B, 0} for any B ∈R. Then, it follows from (5.5)–(5.7) that

z(x, t) ≤ T̃ (t − r)
[
z(r)

]
(x) +

t∫
r

T̃ (t − s)
[
F̃ (us) − F+(

u+
s

)]
(x)ds

≤
t∫

r

T̃ (t − s)
[
F̃ (us) − F+(

u+
s

)]
(x)ds

≤
t∫

r

T̃ (t − s)

{
D

+∞∫
−∞

J (y)
[
z(x − y, s)

]
+dy + 2L

[
z(x, s)

]
+

+ Lf LS

∞∫
0

+∞∫
−∞

G(y, r)
[
z(x − y, s − r)

]
+dydr

}
ds,

which implies that

[
z(x, t)

]
+ ≤

t∫
r

T̃ (t − s)

{
D

+∞∫
−∞

J (y)
[
z(x − y, s)

]
+dy + 2L

[
z(x, s)

]
+

+ Lf LS

∞∫
0

+∞∫
−∞

G(y, r)
[
z(x − y, s − r)

]
+dydr

}
ds.

Using the similar method as in the proof of Lemma 3.7, we can show that z(x, t) ≤ 0 for x ∈ R

and t ≥ r . Therefore, u(x, t) ≤ u+(x, t) for x ∈ R and t ≥ r . This completes the proof. �
Lemma 5.3. Assume (G1) and (C2)

′. Let u(x, t; ϕ) be the solution of (1.7) with the initial value 
ϕ ∈ C[0,K+].

(i) There exists a positive constant M1, independent of ϕ, such that for any x ∈ R and t > 0, 
|ut (x, t; ϕ)| ≤ M1.

(ii) If, in addition, (G2) holds, L1 := max(u,v)∈Ī+ ∂1f (u, v) < D and there exists a constant 
M > 0 such that for any η > 0, supx∈R |ϕ(x + η) − ϕ(x)| ≤ Mη, then for any η > 0,

sup
x∈R,t≥0

∣∣u(x + η, t;ϕ) − u(x, t;ϕ)
∣∣ ≤ M ′η,

where M ′ > 0 is a constant which is independent of ϕ and η.

Proof. Since 0 ≤ u(x, t) ≤ K+ for (x, t) ∈ R
2, it is easy to see that the first statement (i) holds.

(ii) For any given η > 0, let w(x, t) = u(x + η, t; ϕ) − u(x, t; ϕ). For simplicity, we denote 
u(x + η, t; ϕ) and u(x, t; ϕ) by u(x + η, t) and u(x, t), respectively. Clearly, |w(x, 0)| = |ϕ(x +
η) − ϕ(x)| ≤ Mη for all x ∈R. It follows from (G2) that
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∂w

∂t
= D

+∞∫
−∞

[
J (x + η − y) − J (x − y)

]
u(y, t)dy − Dw(x, t)

+ f
(
u(x + η, t),

(
G ∗ S(u)

)
(x + η, t)

) − f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

)
≤ DK+L̄η + [

h(x, t) − D
]
w(x, t)

+ L2

∞∫
0

+∞∫
−∞

∣∣G(x + η − y, s) − G(x − y, s)
∣∣S(

u(y, t − s)
)
dyds

≤ L̂η + [
h(x, t) − D

]
w(x, t)

for x ∈R and t ≥ 0, where L2 = max(u,v)∈Ī+ |∂2f (u, v)|, L̂ = DK+L̄ + L̄L2S
+(K+), and

h(x, t) = ∂1f
(
θu(x + η, t) + (1 − θ)u(x, t),

(
G ∗ S(u)

)
(x + η, t)

)
, θ ∈ (0,1).

Simple calculations show that, for x ∈R and t ≥ 0,

w(x, t) ≤ w(x,0)e
∫ t

0 [h(x,s)−D]ds +
t∫

0

L̂ηe
∫ t
s [h(x,r)−D]drds

≤ Mηe
∫ t

0 [L1−D]ds +
t∫

0

L̂ηe
∫ t
s [L1−D]drds

= Mηe−(D−L1)t +
t∫

0

L̂ηe−(D−L1)(t−s)ds

= Mηe−(D−L1)t + L̂η
(
1 − e−(D−L1)t

)
/(D − L1) := w(t).

Now, let w̃(x, t) := −w(x, t) = u(x, t) − u(x + η, t). Then we have

∂w̃

∂t
= D

+∞∫
−∞

[
J (x − y) − J (x + η − y)

]
u(y, t)dy − Dw̃(x, t)

+ f
(
u(x, t),

(
G ∗ S(u)

)
(x, t)

) − f
(
u(x + η, t),

(
G ∗ S(u)

)
(x + η, t)

)
≤ DK+L̄η + [

h(x, t) − D
]
w̃(x, t)

+ L2

∞∫
0

+∞∫
−∞

∣∣G(x + η − y, s) − G(x − y, s)
∣∣S(

u(y, t − s)
)
dyds

≤ L̂η + [
h(x, t) − D

]
w̃(x, t).
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Similarly, we can show that w̃(x, t) = −w(x, t) ≤ w(t) for x ∈ R and t ≥ 0. Therefore, since 
L1 < D, we get

∣∣w(x, t)
∣∣ ≤ w(t) ≤ M ′η := [

M + L̂/(D − L1)
]
η for all x ∈ R, t ≥ 0.

The proof is complete. �
Applying Lemmas 5.2 and 5.3, we have the following results for the nonlocal dispersal equa-

tion (1.7) with monostable and non-quasi-monotone nonlinearity. For the sake of convenience, 
we denote

U(x, t) := max
{

max
i=1,...,m

φ−
ci

(x + ci t + hi), max
j=1,...,n

φ−
c̄j

(−x + c̄j t + ϑj ),χΓ −(t + h)
}
,

Π+(x, t) :=
m∑

i=1

φ+
ci

(x + ci t + hi) +
n∑

j=1

φ+
c̄j

(−x + c̄j t + ϑj ) + χΓ +(t + h),

Π(x, t) :=
m∑

i=1

eλ1(ci )(x+ci t+hi) +
n∑

j=1

eλ1(c̄j )(−x+c̄j t+ϑj ) + χeλ∗(t+h).

Theorem 5.4. Assume (G1), (G2), (C2)
′ and L1 < D. For any m, n ∈ N ∪ {0}, h1, . . . , hm, 

ϑ1, . . . , ϑn, h ∈ R, c1, . . . , cm, c̄1, . . . , c̄n ≥ c∗, and χ ∈ {0, 1} with m + n + χ ≥ 1, there exists 
an entire solution Up(x, t) of (1.7) such that

Up(x, t) > 0 and U(x, t) ≤ Up(x, t) ≤ K+ for (x, t) ∈R
2,

where p := pm,n,χ = (c1, h1, . . . , cm, hl, c̄1, ϑ1, . . . , c̄n, ϑn, χh).
Furthermore, the following results hold.

(i) If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then

Up(x, t) ≤ U(x, t) := min
{
K+,Π(x, t)

}
for (x, t) ∈ R

2. (5.8)

(ii) If (C3)
′ holds, then

Up(x, t) ≤ U+(x, t) := min
{
K+,Π+(x, t)

}
for (x, t) ∈ R

2. (5.9)

(iii) If (C3)
′ holds or c1, . . . , cm, c̄1, . . . , c̄n > c∗, then

lim
t→−∞ sup

|x|≤A

∣∣Up(x, t)
∣∣ = 0 for any A ∈R+.

(iv) lim inft→+∞ infx∈R Upm,n,1(x, t) ≥ K− and lim inft→+∞ inf|x|≤A Upm,n,0(x, t) ≥ K− for 
any A ∈R+.



2464 S.-L. Wu, S. Ruan / J. Differential Equations 258 (2015) 2435–2470
(v) If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then for every x ∈ R, as t → −∞,

Upm,n,1(x, t) ∼ eλ∗(t+h) and Upm,n,0(x, t) = O
(
ecmaxλ1(cmax)

)
,

where cmax := max{maxi=1,...,m{ci}, maxj=1,...,n{c̄j }}.

Proof. For n ∈ Z, we denote

ϕn,−(x, s) := max
{

max
i=1,...,m

φ−
ci

(x + cis + hi), max
j=1,...,n

φ−
c̄j

(−x + c̄j s + ϑj ),χΓ −(s + h)
}
,

where x ∈R, s ∈ (−∞, −k]. Let Uk(x, t) be the unique mild solution of the initial value problem 
of (1.7) with initial condition:

Uk(x, s) = ϕn,−(x, s), x ∈R and s ∈ (−∞,−k].

It is clear that U(x, s) = ϕn,−(x, s) = Uk(x, s) ≤ K+ for x ∈ R and s ∈ (−∞, −k]. Since F−(·)
is non-decreasing in C[0,K+], one can easily verify that

U(t)(x) ≤ T̃ (t + k)
[
U(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F−(Us)

]
(x)ds,

Uk(t)(x) = T̃ (t + k)
[
Uk(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F̃

(
Uk

s

)]
(x)ds,

K+ = T̃ (t + k)K+ +
t∫

−k

T̃ (t − s)
[
F+(

K+)]
(x)ds

for any x ∈ R and t > −k. It follows from Lemma 5.2 that

U(x, t) ≤ Uk(x, t) ≤ K+ for x ∈ R, t > −k.

Now, we prove the following claim.

Claim. If c1, . . . , cm, c̄1, . . . , c̄n > c∗, then

Uk(x, t) ≤ U(x, t) for x ∈R, t > −k, (5.10)

and if (C3)
′ holds, then

Uk(x, t) ≤ U+(x, t) for x ∈ R, t > −k. (5.11)
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We first prove (5.10). According to Proposition 5.1, if c1, . . . , cm, c̄1, . . . , c̄n > c∗, then 
ϕn,−(x, s) = Uk(x, s) ≤ U(x, s) for x ∈ R and s ∈ (−∞, −k]. By Lemma 5.2, it suffices to 
show that

T̃ (t + k)
[
U(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(Us)

]
(x)ds ≤ U(t)(x) (5.12)

for x ∈R and t > −k. Since F+(·) is non-decreasing in C[0,K+], one can easily verify that

T̃ (t + k)
[
U(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(Us)

]
(x)ds ≤ K+ (5.13)

for x ∈R and t > −k. For any ϕ ∈ C((−∞, 0], X), define Q by

Q(ϕ)(x) = D(J ∗ ϕ)(x,0) + [
L + ∂1f (0,0)

]
ϕ(x,0) + ∂2f (0,0)S′(0)(G ∗ ϕ)(x,0).

Then, direct computations show that Π(t)(·) = Π(·, t) satisfies the integral equation:

Π(t)(x) = T̃ (t + k)
[
Π(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
Q(Πs)

]
(x)ds. (5.14)

By the assumption (C2)
′, we obtain

F+(Us)(x) = D(J ∗ U)(x, s) + LU(x, s) + f +(
U(x, s),

(
G ∗ S+(U)

)
(x, s)

)
≤ D(J ∗ U)(x, s) + [

L + ∂1f (0,0)
]
U(x, s) + ∂2f (0,0)S′(0)(G ∗ U)(x, s)

≤ D(J ∗ Π)(x, s) + [
L + ∂1f (0,0)

]
Π(x, s) + ∂2f (0,0)S′(0)(G ∗ Π)(x, s)

= Q(Πs)(x).

Then it follows from (5.14) that

T̃ (t + k)
[
U(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(Us)

]
(x)ds

≤ T̃ (t + k)
[
Π(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
Q(Πs)

]
(x)ds = Π(t)(x). (5.15)

Combining (5.13) and (5.15), (5.12) holds and (5.10) follows from Lemma 5.2.
Now, we prove (5.11). Clearly, ϕn,−(x, s) = Uk(x, s) ≤ U+(x, s) for x ∈ R and s ∈

(−∞, −k]. Similar to (5.13), we have
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T̃ (t + k)
[
U+(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(

U+
s

)]
(x)ds ≤ K+ (5.16)

for x ∈R and t > −k. For simplicity, denote

vi(x, t) := φ+
ci

(x + ci t + hi), i = 1, . . . ,m,

vm+j (x, t) := φ+
c̄j

(−x + c̄j t + ϑj ), j = 1, . . . , n and vm+n+1(x, t) = χΓ +(t + h).

Note that vi (i = 1, . . . , m + n + 1) satisfy the following equation:

T̃ (t + k)
[
vi(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(

(vi)s
)]

(x)ds = vi(t)(x), t > −k. (5.17)

Since S+(u) is concave and non-decreasing on [0, K+], we have

S+(
U+) ≤ min

{
S+(

K+)
, S+(v1) + · · · + S+(vm+n+1)

}
.

Furthermore, using assumption (C3)
′, we obtain

F+(
U+

s

)
(x) = D

(
J ∗ U+)

(x, s) + LU+(x, s) + f +(
U+(x, s),

(
G ∗ S+(

U+))
(x, s)

)
≤ D

m+n+1∑
i=1

(J ∗ vi)(x, s) + (
L − L+

f

)
U+(x, s) + L+

f U+(x, s)

+ f +
(

U+(x, s),min

{
S+(

K+)
,

m+n+1∑
i=1

(
G ∗ S+(vi)

)
(x, s)

})

≤
m+n+1∑

i=1

[
D(J ∗ vi)(x, s) + (

L − L+
f

)
vi(x, s)

+ L+
f vi(x, s) + f +(

vi(x, s),
(
G ∗ S+(vi)

)
(x, s)

)]
=

m+n+1∑
i=1

F+(
(vi)s

)
(x).

Then it follows from (5.17) that

T̃ (t + k)
[
U+(−k)

]
(x) +

t∫
−k

T̃ (t − s)
[
F+(

U+
s

)]
(x)ds

≤
m+n+1∑

i=1

{
T̃ (t + k)

[
vi(−k)

]
(x) +

t∫
T̃ (t − s)

[
F+(

(vi)s
)]

(x)ds

}

−k
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=
m+n+1∑

i=1

vi(t)(x) = Π+(x, t) (5.18)

for x ∈R and t > −k. Then, (5.11) follows from (5.16), (5.18) and Lemma 5.2.
By the uniform boundedness of d

dz
φ−

c (z) and d
dz

Γ −(z), it is easy to show that there exists a 
constant M > 0 such that for any η > 0,

sup
x∈R

∣∣ϕn,−(x + η) − ϕn,−(x)
∣∣ ≤ Mη.

Then, it follows from Lemma 5.3 that there exists a subsequence {Unk (x, t)} of {Uk(x, t)} and 
a function Up(x, t) such that limn→∞ Unk (x, t) = Up(x, t). For any given t0 ∈ R, there exists 
k ∈ N such that t0 > −k and Uk satisfies

Uk(t)(x) = T (t − t0)
[
Uk(t0)

]
(x) +

t∫
t0

T (t − r)
[
F

(
Uk

r

)]
(x)dr,

where T and F are defined as in Section 3. Using a similar method as in the proof of Theorem 4.3, 
we can show that Up(x, t) is an entire solution of (1.7).

The assertions for parts (i) and (ii) follow from (5.10) and (5.11). Note that cλ1(c) > λ∗ and 
∂
∂c

[cλ1(c)] < 0 for any c > c∗. The assertions for parts (iii)–(v) follow from Proposition 5.1 and 
(5.8)–(5.9). This completes the proof. �
6. Applications

In previous sections, we study the entire solutions for a class of nonlocal dispersal equations 
with spatio-temporal delay. In this section, we apply the abstract results to models (1.4) and (1.5).

Example 1. Consider the Nicholson’s blowflies model (1.4). Let f (u, v) = −δu + pve−av and 
S(v) = v. It is easy to see that (1.4) has two equilibria 0 and K = 1

a
ln p

δ
provided that p > δ. We 

have the following results on entire solutions for (1.4).

Theorem 6.1. Assume (G1).

(i) If δ < p ≤ δe, then the conclusions of Theorems 4.3–4.5 hold for (1.4).
(ii) If p > δe and (G2) holds, then the conclusions of Theorem 5.4 are valid for (1.4).

If δ < p ≤ δe, then K = 1
a

ln p
δ

≤ 1
a

, ∂1f (u, v) = −δ = ∂1f (0, 0), ∂2f (u, v) = p(1 −
av)e−av ≤ p = ∂2f (0, 0) and ∂2f (u, v) ≥ 0 for (u, v) ∈ [0, K]2. Hence (C1), (C2) and (C4)

hold. Let g(v) = pve−av . It is clear that g is concave on [0, K] when p ≤ δe. Note that 
L̄1 := max(u,v)∈[0,K]2 |∂1f (u, v)| = δ. Thus, for any m ∈ Z

+, ai, bi ∈ [0, K], i = 1, . . . , m,

L̄1 min

{
K,

m∑
ai

}
+ f

(
min

{
K,

m∑
ai

}
,min

{
S(K),

m∑
bi

})

i=1 i=1 i=1
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= g

(
min

{
K,

m∑
i=1

bi

})
≤

m∑
i=1

g(bi) =
m∑

i=1

[
L̄1ai + f (ai, bi)

]
,

that is, (C3) holds.
When p > δe, (1.4) is non-quasi-monotone. Let S±(u) := u, K+ := 1

δ
maxv∈[0,K] pve−av and 

K− ∈ (0, K] with K− := 1
δ
pK+e−aK+

. The auxiliary functions f ±(u, v) are defined as follows:

f +(u, v) := −δu + max
w∈[0,v]

pwe−aw and f −(u, v) := −δu + min
w∈[v,K+]

pwe−aw,

for (u, v) ∈ [0, K+]2. Direct computations show that L1 = max(u,v)∈[0,K+]2 ∂1f
+(u, v) =

−δ < D, f +(u, v) ≤ −δu + pv = ∂1f (0, 0)u + ∂2f (0, 0)v for u, v ≥ 0, and

f ±(u, v1) − f ±(u, v2) ≤ p max{0, v1 − v2}, ∀(u, v1), (u, v2) ∈ [
0,K+]2

.

Hence, (C2)
′ holds. Since h(v) = maxw∈[0,v] pwe−aw is concave on [0, K+], it is easy to show 

that (C3)
′ holds.

Example 2. Consider the population model (1.5). Let f (u, v) = −du + v and S(u) = b(u). We 
assume that

(A1) b ∈ C2[0, +∞), b(0) = b(K) − dK = 0, b′(0) > d , b(u) > du and b′(u) ≤ b′(0) for u ∈
(0, K), where K > 0 is a constant.

(A2) One of the following holds:
(a) b′(u) ≥ 0 for u ∈ [0, +∞) and b(u) is concave on [0, K].
(b) There exists a number umax > 0 such that b(u) is increasing for 0 < u ≤ umax and 

decreasing for u ≥ umax, and b(u) is concave on [0, umax].

If (A2)(a) or (A2)(b) holds with K ≤ umax, then (1.5) is quasi-monotone on [0, K], and it is 
easy to verify that (C1), (C2) and (C4) hold. Using the concavity of b, we see that (C3) holds.

If (A2)(b) holds with K > umax, then (1.5) is non-quasi-monotone on [0, K]. Let f ±(u, v) =
f (u, v), and define S±(u) as follows:

S+(u) =
{

S(u), u ∈ [0, umax],
S(umax), u > umax,

and S−(u) =
{

S(u), u ∈ [0, umin],
S(umin), u > umin,

where umin ∈ (0, K) satisfies S(umin) = S(S(umax)/d). Let

K+ = S(umax)/d and K− = S(umin)/d.

Moreover, it is easy to verify that

S±(u1) − S±(u2) ≤ max
u∈[0,umax]

b′(u)max{0, u1 − u2}, ∀u1, u2 ∈ [
0,K+]

.

Thus, (C2)
′ holds. Since S(u) is concave on [0, umax], we see that S+(u) is concave on [0, K+], 

and hence (C3)
′ holds. Moreover, L1 = max(u,v)∈[0,K+]2 ∂1f

+(u, v) = −d < D. Therefore, the 
following results hold.
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Theorem 6.2. Assume (G1) and (A1).

(i) If (A2)(a) or (A2)(b) holds with K ≤ umax, then the conclusions of Theorems 4.3–4.5 are 
valid for (1.5).

(ii) If (A2)(b) holds with K > umax and (G2) holds, then the conclusions of Theorem 5.4 hold 
for (1.5).
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