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Abstract A species is semelparous if every individual reproduces only once in its
life and dies immediately after the reproduction. While the reproduction opportunity
is unique per year and the individual’s period from birth to reproduction is just n
years, the individuals that reproduce in the i th year (modulo n) are called the i th year
class, i = 1, 2, . . . , n. The dynamics of the n year-class system can be described by
a differential equation system of Lotka–Volterra type. For the case n = 4, there is
a heteroclinic cycle on the boundary as shown in previous works. In this paper, we
focus on the case n = 4 and show the existence, growth and disappearance of periodic
orbits near the heteroclinic cycle, which is a part of the conjecture by Diekmann and
van Gils (SIAM J Appl Dyn Syst 8:1160–1189, 2009). By analyzing the Poincaré map
near the heteroclinic cycle and introducing a metric to measure the size of the periodic
orbit, we show that (i) when the average competitive degree among subpopulations
(year classes) in the system is weak, there exists an asymptotically stable periodic
orbit near the heteroclinic cycle which is repelling; (ii) the periodic orbit grows in size
when some competitive degree increases, and converges to the heteroclinic cycle when
the average competitive degree tends to be strong; (iii) when the average competitive
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856 Y. Wang et al.

degree is strong, there is no periodic orbit near the heteroclinic cycle which becomes
asymptotically stable. Our results provide explanations why periodic solutions expand
and disappear and why all but one subpopulation go extinct.

Keywords Replicator equation · Periodic orbit · Heteroclinic cycle ·
Average competitive degree · Semelparous population

Mathematics Subject Classification (2000) 34C37 · 92D25 · 37N25

1 Introduction

There has been a growing literature on the theoretical study of semelparous popula-
tion dynamics in recent years. Examples of semelparous species include annual and
biennial plants, butterflies, cicadas, mayflies, Pacific salmon, etc (Behncke 2000). If
there is a unique reproduction opportunity per year and the length of the life cycle
is just n years, then the population can be classified into different year classes: the
individuals that reproduce in the i th year (modulo n) are called the i th year class,
i = 1, 2, . . . , n.

Various dynamical outcomes are likely in semelparous populations since interac-
tions such as competition exist between different year classes as well as within the
same year class, a specific year class may be driven to extinction. The species in which
all year classes except one go extinct is called a periodical insect (Bulmer 1977). Inter-
esting examples include the 13- and 17-year classes of some cicada species. Mathemat-
ically, the dynamics of semelparous populations can be described by a discrete-time
nonlinear Leslie matrix model (Cushing 2006; Davydova 2004; Davydova et al. 2005;
Diekmann and van Gils year; Drissche and Zeeman 1998; Kon 2005; Kon and Iwasa
2007; Mjolhus et al. 2005). The phenomenon of periodical insects can be explained by
the invariance of coordinate axes and hyperplanes of the full life cycle map (Davydova
et al. 2003) and the existence of heteroclinic cycles connecting different year cycles
(Cushing 2009; Diekmann and van Gils 2009).

Diekmann and van Gils (2009) demonstrated that the n-dimensional discrete-time
Leslie matrix model can be reduced to a cyclic replicator system on the (n −1) dimen-
sional simplex and classified the repertoire of the dynamical behavior for n = 2 and 3.
For n = 4, they derived almost all possible dynamical behaviors and identified some
open problems about the dynamics near the heteroclinic cycles.

Consider the cyclic replicator system (Diekmann and van Gils 2009; Edalat A and
Zeeman 1992)

u̇i = ui

⎛
⎝−(Bu)i +

n∑
j=1

u j (Bu) j

⎞
⎠ , i = 1, 2, . . . , n, (1.1)

where u is an n−dimensional vector in the simplex Sn which is defined by

Sn =
⎧⎨
⎩u ∈ Rn :

n∑
j=1

u j = 1, u j ≥ 0, j = 1, 2, . . . , n

⎫⎬
⎭ ,
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Periodic orbits near heteroclinic cycles in a cyclic replicator system 857

and (Bu)i denotes the i th component of the vector Bu. B is a circulant matrix defined
by

B =

⎛
⎜⎜⎜⎝

0 b1 · · · bn−1
bn−1 0 · · · bn−2

...
...

. . .
...

b1 b2 · · · 0

⎞
⎟⎟⎟⎠ ,

where the rows of B are cyclic permutations of the first row. System (1.1) is derived
from the cyclic competitive system

ẋi = xi (1 − (Ax)i ), xi ≥ 0, i = 1, 2, . . . , n, (1.2)

where xi represents the population density of the i th year class of the semelparous
species, and n represents the individuals’ period from birth to reproduction while it
is supposed that there is a unique reproduction opportunity per year (Cushing 2006,
2009; Kon and Iwasa 2007; Mjolhus et al. 2005). The individuals that reproduce in
the i th year (modulo n) are called the i th year class. In system (1.2), all year classes
have the same intrinsic growth rate and the interaction matrix A is circulant. These
features are shown naturally in the interesting derivation in section A.2 of Diekmann
and van Gils (2009).

The circulant matrix A in (1.2) is defined by

A =

⎛
⎜⎜⎜⎝

a1 a2 · · · an

an a1 · · · an−1
...

...
. . .

...

a2 a3 · · · a1

⎞
⎟⎟⎟⎠ , ai ≥ 0, i = 1, 2, . . . , n,

where 1
a1

represents the carrying capacity of every year class and ai
a1

(i �= 1) represents
the competitive degree from other year classes. As shown by Diekmann and van Gils
(2009, p.1163), the derivation of (1.1) from (1.2) is mainly by the projection from Rn+
to Sn through ui = xi/

∑n
j=1 x j and

bi = ai+1 − a1, i = 1, 2, . . . , n − 1.

Since xi denotes the population density of the i th year class, then ui represents the
fraction of the i th year class. As shown by Diekmann and van Gils (2009), the dynam-
ical behavior of (1.1) with n = 2, 3 is completely understood and presented while that
of the case n = 4 is given in an almost complete picture. Let n = 4, matrix B in (1.1)
becomes

B =

⎛
⎜⎜⎝

0 b1 b2 b3
b3 0 b1 b2
b2 b3 0 b1
b1 b2 b3 0

⎞
⎟⎟⎠ . (1.3)
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858 Y. Wang et al.

It is shown by Diekmann and van Gils (2009) that (i) when b1 + b3 �= 0, Hopf bifur-
cations occur at b2 = 0 and small periodic orbits emerge when b2 is close to zero, and
(ii) there exist heteroclinic cycles on the boundary of S4. Since the stability change
of heteroclinic cycles will lead to large periodic orbits, an intriguing conjecture is put
forward by Diekmann and van Gils (2009, p.1180): “We conjecture that the small
periodic orbits grow in size and finally disappear in the heteroclinic cycles”.

In this paper, we consider the case (b1 + b3)b2 < 0 and b1b3 < 0 while we focus
on the case b1 + b3 < 0, b2 > 0 and b1b3 < 0 because of the symmetry of system
(1.1). Our aim is to establish the existence, uniqueness, growth and disappearance of
periodic orbits near the heteroclinic cycle, which is part of the conjecture of Diekmann
and van Gils (2009). By analyzing the Poincaré map near the heteroclinic cycle and
introducing a metric to measure the size of periodic orbits, we show that (i) when
b1 + b2 + b3 is slightly less than zero, there exists a periodic orbit near the hetero-
clinic cycle and the periodic orbit is asymptotically stable while the heteroclinic cycle
is repelling; (ii) the periodic orbit grows in size when b2 increases and tends to the
heteroclinic cycle when b1 + b2 + b3 converges to zero; (iii) when b1 + b2 + b3 is
slightly larger than zero, there is no periodic orbit near the heteroclinic cycle which
becomes asymptotically stable. While the expression b1 + b2 + b3 corresponds to the
average competitive degree among different year classes, our results provide explana-
tions why periodic solutions expand and disappear, and why all but one year class go
extinct: when the average competitive degree is weak, the year classes in the system
coexist and exhibit periodic oscillations; the magnitude of the periodic oscillations
grows in size when the competitive degree a3

a1
increases; when the average compet-

itive degree is strong, the periodic oscillations disappear and all but one year class
go extinct. Numerical simulations are also given to show the existence, growth and
disappearance of periodic orbits.

The paper is organized as follows. In Sect. 2, we recall some results by Diekmann
and van Gils (2009) on the cyclic replicator system. In Sect. 3, we establish the exis-
tence and uniqueness of periodic orbits. The growth and disappearance of periodic
orbit is studied in Sect. 4. In Sect. 5, we give some ecological applications of our
results and present some discussions.

2 The cyclic replicator system

In this section, some previous results about (1.1) for n = 4 are recalled. Since the
dynamical behavior of (1.1) for the case (b1 + b3)b2 > 0 is given by Diekmann and
van Gils (2009), we analyze the case (b1 + b3)b2 < 0 and b1b3 < 0 in this paper.
While system (1.1) is invariant under (B, t) → (−B,−t), we focus on the case

b1 + b3 < 0, b2 > 0, b1b3 < 0.

Results for the case b1 + b3 > 0, b2 < 0 and b1b3 < 0 are similar: the directions of
the orbits are just opposite to those in the case b1 + b3 < 0, b2 > 0 and b1b3 < 0.

Without loss of generality, we suppose b3 < 0. When both of the left and right sides
of (1.1) are divided by −b3 and a time rescaling t → t/(−b3) is applied, matrix B
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Periodic orbits near heteroclinic cycles in a cyclic replicator system 859

of (1.1) as shown in (1.3) becomes the following form while b1/(−b3) and b2/(−b3)

are still denoted by b1 and b2, respectively:

B =

⎛
⎜⎜⎝

0 b1 b2 −1
−1 0 b1 b2
b2 −1 0 b1
b1 b2 −1 0

⎞
⎟⎟⎠ .

Then the case we focus on becomes

0 < b1 < 1, b2 > 0, b3 = −1. (2.1)

Let S be a circular matrix defined by

S =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

Lemma 2.1 (Diekmann and van Gils 2009) The replicator system (1.1) is equivariant
with respect to S, i.e., if u is a solution of (1.1), then Su is also a solution of (1.1).

Let Ei denote the equilibrium with i coexisting species. When conditions in (2.1)
hold, the equilibria of (1.1) (modulo cyclic permutation) are:

E1 = (1, 0, 0, 0), E2s =
(

1

2
, 0,

1

2
, 0

)
, E4 =

(
1

4
,

1

4
,

1

4
,

1

4

)
.

Lemma 2.2 (Diekmann and van Gils 2009)

(i) The equilibrium E1 has eigenvalues −b1, 1,−b2 with corresponding eigenvec-
tors (1, 0, 0,−1), (−1, 1, 0, 0) and (−1, 0, 1, 0), respectively ;

(ii) The equilibrium E2s has eigenvalues 1
2 b2,

1
2 (b2 − b1 + 1), 1

2 (b2 − b1 + 1)

with corresponding eigenvectors (1, 0,−1, 0), (0, 1, 1
b1

(−1 − b1),
1
b1

) and

(1, 0,− 1
b1

, 1
b1

(1 − b1)), respectively;

(iii) The equilibrium E4 has eigenvalues 1
4 (b1 − 1 − b2),

1
4 [b2 ± i(1 + b1)] and the

eigenvalue 1
4 (b1 − 1 − b2) has an eigenvector (−1, 1,−1, 1).

Lemma 2.3 (Diekmann and van Gils 2009) Let (2.1) hold.

(i) A supercritical Hopf bifurcation occurs at b2 = 0, i.e., there exist small stable
periodic orbits near E4 when b2 is slightly larger than zero;

(ii) There exists a heteroclinic cycle �, which connects the four equilibria E1 (i.e.,
E1, SE1, S2 E1, S3 E1) in cyclic order. When b1 + b2 − 1 > 0, � is asymptoti-
cally stable.

123

Author's personal copy



860 Y. Wang et al.

Fig. 1 The heteroclinic cycle � of (1.1) is the connection of ei in the order of e1 → e2 → e3 → e4 → e1.
u0 is a trivial point on � and � is a hyperplane perpendicular to � at u0. The empty circles denote the
unstable equilibria (E2s ) on the boundary

Remark 2.4 While system (1.1) comes from (1.2) where ai ≥ 0 for 1 ≤ i ≤ n, the
constraints on bi , 1 ≤ i ≤ n − 1 in (1.1) for n = 4 are

b1 + b3 ≤ 1 − b2,

3b1 − b3 ≥ b2 − 1,

3b3 − b1 ≥ b2 − 1,

3b2 − b1 ≥ b3 − 1.

(2.2)

Since the analysis in this paper is limited in a parameter region |b1 + b2 + b3| < ε

where ε is sufficiently small, the constraints in (2.2) are not specifically considered.
However, parameters are given under the constraints in numerical simulations.

3 Existence and uniqueness of periodic orbits

In this section, we establish the existence and uniqueness of a periodic orbit of (1.1)
near the heteroclinic cycle � by analyzing the fixed point of the Poincaré map near �.
In order to study how the dynamic behavior of (1.1) changes when the parameter b2
varies, we fix the other parameters b1 and b3.

Let e1 = (1, 0, 0, 0)T and ei = Si−1e1, i = 2, 3, 4. Then the heteroclinic cycle �

is the connection of ei in the order of e1 → e2 → e3 → e4 → e1, which lies on the
boundary of S4 as shown in Fig. 1. The boundary of S4 is denoted by bdS4, and the
following result shows the asymptotical stability of � on bd S4.

Lemma 3.1 Let (2.1) hold. The heteroclinic cycle � is asymptotically stable on bdS4.

Proof It follows from Lemma 2.1 that we only need to show � is asymptotically
stable on the two-dimensional surface S3 = {u ∈ S4 : u4 = 0 and

∑3
i=1 ui = 1}.

By Lemma 2.2, there are four equilibria of (1.1) on S3. Equilibrium e1 has eigenvalues
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Periodic orbits near heteroclinic cycles in a cyclic replicator system 861

Fig. 2 On S3, equilibria e1 and
e2 are saddles, e3 is a stable
node and E2s is an unstable
node. Both equilibrium e3 and
the orbit e1e2 ∪ e2e3 ⊂ � are
asymptotically stable on S3

−b2 and 1 with corresponding eigenvectors (−1, 0, 1, 0) and (−1, 1, 0, 0), respec-
tively. It follows from e2 = Se1 and Lemma 2.2(i) that equilibrium e2 has eigenvalues
−b1 and 1 with corresponding eigenvectors (−1, 1, 0, 0) and (0,−1, 1, 0), respec-
tively. Then equilibria e1 and e2 are saddles on S3. Similarly, e3 has eigenvalues −b1
and −b2 with corresponding eigenvectors (0,−1, 1, 0) and (1, 0,−1, 0), respectively.
Then e3 is a stable node. Since all the eigenvalues of E2s are positive, E2s is an unsta-
ble node on S3. While there is no interior equilibrium on the planar surface S3, we can
draw the phase portraits of (1.1) on S3 as shown in Fig. 2, where � is asymptotically
stable on S3. 	


The Poincaré map near � can be approximated by the following projection
(Hofbauer 1987; Hofbauer and Sigmund 1998, 15, p. 226, equation(17.20)):

L : z → Pz + q, (3.1)

where z = (z1, z2)
T . The heteroclinic cycle � corresponds to z1, z2 → +∞, and the

periodic orbit of (1.1) near � corresponds to the fixed point ẑ = (ẑ1, ẑ2)
T of L if ẑ is

positive and large, i.e., ẑ = (I − P)−1q is positive and large when the matrix I − P
is invertible.

P and q in (3.1) are obtained as follows. At the equilibrium e1, eigenvalues −b1
and 1 have eigenvectors on �, and eigenvalue −b2 has an eigenvector (−1, 0, 1, 0),
which is transversal to � as shown in Fig. 1. By Lemma 2.1, similar discussions can
be given for equilibria ei , i = 2, 3, 4. That is, at ei , eigenvalues −b1 and 1 have
eigenvectors on �, and eigenvalue −b2 has an eigenvector which is transversal to
�, i = 2, 3, 4. Hence, the matrix P comes from the combination of eight projections
and can be expressed as the product of four matrices C (Hofbauer and Sigmund 1998,
p. 226), i.e. P = C4 and

C =
(

b2 1
b1 0

)
,
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862 Y. Wang et al.

then

P =
((

b1 + b2
2

)2 + b1b2
2 b2

(
2b1 + b2

2

)
b1b2

(
2b1 + b2

2

)
b1

(
b1 + b2

2

)
)

. (3.2)

Similarly, the vector q comes from the combination of eight projections and can be
expressed as the sum of four vectors as follows:

q = C3α + C2α + Cα + α,

where α = (α1, α2)
T and

α1 = −
1∫

0

c1(u2)du2, α2 = −
1∫

0

c2(u2)du2.

The function c1(u2) is given by

c1(u2) = lim
u3,u4→0

u̇3

u3u̇2
+ b2

1

u2
− 1

b1

1

1 − u2

= lim
u1→1−u2

−b2u1 + u2 + (b1 − 1)u1u2

u1u2(1 + (b1 − 1)u2)
+ b2

1

u2
− 1

b1

1

1 − u2

= −b2

(
1

u2
+ 1 − b1

1 + (b1 − 1)u2

)
+

(
1

b1

1

1 − u2
+ b1 − 1

b1

1

1 + (b1 − 1)u2

)

+ b1 − 1

1 + (b1 − 1)u2
+ b2

1

u2
− 1

b1

1

1 − u2

= (b1 − 1)
1 + b1 + b1b2

b1(1 + (b1 − 1)u2)
.

Thus, we have

α1 = (1 + b1 + b1b2)b̄1, b̄1 = − log b1

b1
> 0.

Similarly,

c2(u2) = lim
u3,u4→0

u̇4

u4u̇2
+ b1

1

u2
+ b2

b1

1

1 − u2

= lim
u1→1−u2

−b1u1 − b2u2 + (b1 − 1)u1u2

u1u2(1 + (b1 − 1)u2
+ b1

1

u2
+ b2

b1

1

1 − u2

= −b1

(
1

u2
+ 1 − b1

1 + (b1 − 1)u2

)
− b2

(
1

b1

1

1 − u2
+ b1 − 1

b1

1

1 + (b1 − 1)u2

)
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+ b1 − 1

1 + (b1 − 1)u2
+ b1

1

u2
+ b2

b1

1

1 − u2

= (b1 − 1)
b1 + b2

1 − b2

b1(1 + (b1 − 1)u2)
.

Therefore, we have

α2 = (b1 + b2
1 − b2)b̄1.

Let

μ = b1 + b2 − 1. (3.3)

Then P = P(μ) and q = q(μ) are functions of μ since b1 is fixed and b2 = 1−b1+μ.
We now show that I − P(μ) is invertible. Since the matrix P in (3.2) is positive, it

follows from Perron–Frobenius Theorem that there is a principal eigenvalue ρ(μ) > 0
with corresponding left and right eigenvectors v(μ) and w(μ), which satisfy

ρ(μ)−k Pk z → cw(μ), ∀ z > 0, k → +∞, (3.4)

where c = ∑4
i=1 vi zi and b2 = 1 − b1 + μ. A straightforward computation shows

that ρ(0) = 1. Since the parameter b1 in μ is fixed, all entries of matrix P in (3.2)
are positive and strictly increasing functions of μ (i.e., b2). Then ρ(μ) is a strictly
increasing function of μ [21, p. 4]. Thus we have

dρ

dμ
> 0.

Hence, if μ < 0 then ρ < 1, and it follows from (3.4) that Pk z → 0+, i.e., � is
repelling. Similarly, if μ > 0 then ρ > 1 and � is asymptotically stable.

Since dρ(μ)
dμ

> 0 and ρ(0) = 1, there is μ1 > 0 such that if −μ1 < μ < 0, both
eigenvalues of P(μ) are less than 1; if 0 < μ < μ1, only one of the eigenvalues is
larger than 1. Thus, we have proved the following results.

Lemma 3.2 There is μ1 > 0 such that when |μ| < μ1 and μ �= 0,

det(I − P(μ))μ < 0.

Hence, I − P(μ) is invertible as |μ| < μ1 and μ �= 0.

Next, we show that (I − P(μ))−1q(μ) is positive and large. When |μ| < μ1 and
μ �= 0, the projection L has a fixed point ẑ(μ):

ẑ(μ) = (I − P(μ))−1q(μ) = ad j (I − P(μ))q(μ)

det (I − P(μ))
. (3.5)
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864 Y. Wang et al.

Since

q(μ) = (q1(μ), q2(μ))T =
3∑

j=0

C jα,

3∑
j=0

C j =
(

1 + b1 + b2 + 2b1b2 + b2
2 + b3

2 1 + b1 + b2 + b2
2

b1 + b1b2 + b2
1 + b1b2

2 1 + b1 + b1b2

)
,

where b2 = 1 − b1 + μ, a long but straightforward computation shows that

q1(μ) =
[
1 + 13b1 − 10b2

1 + 6b3
1 − 3b4

1 + b5
1

+
(

20b1 − 20b2
1 + 12b3

1 − 4b4
1

)
μ + O(μ2)

]
b̄1,

q2(μ) =
[
−1 + 3b1 + 10b2

1 − 6b3
1 + 3b4

1 − b5
1

+
(
−1 + 10b2

1 − 8b3
1 + 3b4

1

)
μ + O(μ2)

]
b̄1,

where O(μk) denotes that μk O(μk) is a bounded function of μ as μ → 0 for k ≥ 1.
Let D = (di j )2×2 denote ad j (I − P(μ)). Then

D =
(

1 − b1
(
b1 + b2

2

)
b2

(
2b1 + b2

2

)
b1b2

(
2b1 + b2

2

)
1 − (

b1 + b2
2

)2 − b1b2
2

)
.

We have

(ad j (I − P(μ))q(μ))1 = d11q1 + d12q2

=
[
16

(
b1 − b2

1 + b3
1 − b4

1

)
+ 4

(
−1 + 8b1 − 10b2

1

+8b3
1 − b4

1

)
μ + O(μ2)

]
b̄1,

(ad j (I − P(μ))q(μ))2 = d21q1 + d22q2

=
[
16b2

1

(
1 − b1 + b2

1 − b3
1

)
+ 4

(
1 − 4b1 + 10b2

1

−12b3
1 + 9b4

1

)
μ + O(μ2)

]
b̄1. (3.6)

Since

b1 − b2
1 + b3

1 − b4
1 > 0, 1 − b1 + b2

1 − b3
1 > 0,

it follows from (3.6) that there is μ2 > 0 (μ2 < μ1) such that when |μ| < μ2, we
have

(ad j (I − P(μ))q(μ))1 ≥ 8(b1 − b2
1 + b3

1 − b4
1)b̄1 > 0,

(ad j (I − P(μ))q(μ))2 ≥ 8b2
1(1 − b1 + b2

1 − b3
1)b̄1 > 0.

(3.7)
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By Lemma 3.2, we have det(I − P(μ)) > 0 as −μ2 < μ < 0 and det(I −
P(0)) = 0. Since

ẑ(μ) = ad j (I − P(μ))q(μ)

det (I − P(μ))
,

it follows from (3.7) and the continuity of det(I − P(μ)) that when −μ2 < μ < 0,
we have ẑ(μ) > 0 and ẑ(μ) → ∞ as μ → 0−. That is, there is a periodic orbit near
� as μ is slightly less than zero, and the periodic orbit tends to � as μ converges to
zero. We still denote the small interval by −μ2 < μ < 0.

Finally, we show the periodic orbit of (1.1) is stable. By changing the variables
z = Z + ẑ(μ) in the projection L , it becomes

L : Z → P Z .

Since ρ(μ) < 1 as −μ2 < μ < 0, it follows from (3.4) that Pk Z → 0 as k → +∞.
That is, ẑ is asymptotically stable, which means that the periodic orbit is asymptotically
stable. Then we have the following result on the stability of the periodic orbit.

Theorem 3.3 Let (2.1) hold. There is μ2 > 0 (μ2 < μ1) such that when −μ2 <

μ < 0, there exists a periodic orbit near the heteroclinic cycle �. The periodic orbit
is asymptotically stable and tends to � as μ → 0.

We show the periodic orbit in Theorem 3.3 is unique in some region. On S4, let
u0 be a trivial point on � and � a hyperplane perpendicular to � at u0 as shown
in Fig. 1. While system (1.1) is defined on S4, we still denote � ∩ S4 by �. Let
O(u0, δμ) = {u : ||u − u0|| < δμ}. It follows from Lemma 3.1 that for any μ with
|μ| < μ2, there is δμ > 0 such that the transversal section O(u0, δμ)∩� satisfies that
for any point u ∈ O(u0, δμ) ∩ �, the solution of (1.1) through u will cross � again at
a point near u0. That is, the Poincaré map can be defined on O(u0, δμ) ∩ �.

Since δμ could be chosen such that it is a continuous function of μ, we have
δ0 = min|μ|≤μ2/2 δμ > 0. By Theorem 3.3, the periodic orbit tends to � as μ → 0−.
Then for δ0 > 0, there is μ3 > 0(μ3 < μ2/2) such that for any μ with −μ3 < μ < 0,
there is a fixed point of (3.1) on O(u0, δ0)∩�. Since the matrix I − P(μ) is invertible
as −μ3 < μ < 0, the periodic orbit of (1.1) that crosses O(u0, δ0) ∩ � is unique.
Thus, we have just proved the following conclusion.

Theorem 3.4 There are δ0 > 0 and μ3 > 0 (μ3 < μ2/2) such that as −μ3 < μ < 0,
the periodic orbit of (1.1) that crosses O(u0, δ0) ∩ � is unique.

4 Growth and disappearance of periodic orbits

In this section, we introduce a metric to measure the size of periodic orbits. Then we
show that the periodic orbit, which is given in Theorems 3.3 and 3.4, grows in size
as μ increases and disappears as μ is slightly larger than zero.

The size of the periodic orbit can be measured by ||ẑ|| = |ẑ1| + |ẑ2|. The reason is
that while the heteroclinic cycle � corresponds to z1, z2 → +∞, then the larger the
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||ẑ|| the closer the periodic orbit to �, which implies the larger the size of the peri-
odic orbit. We show that the metric ||ẑ(μ)|| is a monotonously increasing function
of μ. In fact, it follows from Lemma 3.2 that det (I − P(μ)) > 0 as −μ3 <

μ < 0. Then by (3.5), we need to show that (i) d(det (I−P(μ)))
dμ

< 0 and (ii)
d||ad j (I−P(μ))q(μ)||

dμ
> 0 when −μ3 < μ < 0.

Since

det (I − P) = det

(
1 − (

b1 + b2
2

)2 − b1b2
2 −b2

(
2b1 + b2

2

)
−b1b2

(
2b1 + b2

2

)
1 − b1

(
b1 + b2

2

)
)

,

we have

d(det (I − P(μ)))

dμ
= d(det (I − P(μ)))

db2

= 2b2

(
3b1

(
b1 + b2

2

)2 − 2
(

b1 + b2
2

)
+ 2b2

1b2
2 + b3

1 − 2b1

−b1

(
2b1 + b2

2

)2 − 2b1b2
2

(
2b1 + b2

2

))
,

where b2 = 1 − b1 + μ. Let μ = 0, i.e., b2 = 1 − b1, we have

d(det (I − P(μ)))

dμ
|μ=0 = −4(1 − b1)(1 + b2

1) < 0.

By the continuity of d(det (I−P(μ)))
dμ

, we have

Lemma 4.1 There is μ4 > 0 (μ4 < μ3) such that when −μ4 < μ < 0,
d(det (I−P(μ)))

dμ
< 0.

It follows from (3.7) that when −μ4 < μ < 0, we have

(ad j (I − P(μ))q(μ))1 > 0, (ad j (I − P(μ))q(μ))2 > 0,

and

||ad j (I − P(μ))q(μ)|| = (ad j (I − P(μ))q(μ))1 + (ad j (I − P(μ))q(μ))2

= [16(b1 − b2
1 + b3

1 − b4
1) + 16b2

1(1 − b1 + b2
1 − b3

1)

+16(b1 − b3
1 + 2b4

1)μ + O(μ2)]b̄1,

that is,

d||ad j (I − P(μ))q(μ)||
dμ

|μ=0 = 16(b1 − b3
1 + 2b4

1)]b̄1 > 0.

It follows from the continuity of d||ad j (I−P(μ))q(μ)||
dμ

that there is μ5 > 0 (μ5 < μ4)

such that when −μ5 < μ < 0,
d||ad j (I−P(μ))q(μ)||

dμ
> 0. Hence, when −μ5 < μ < 0
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and μ increases, ||ẑ|| = ||ad j (I−P(μ))q(μ)||
det (I−P(μ))

increases, which means that the periodic
orbit in Theorems 3.3 and 3.4 increases in size. Then we have the following result.

Theorem 4.2 Let (2.1) hold. There is μ5 > 0 (μ5 < μ4) such that as −μ5 < μ < 0,
the periodic orbit near the heteroclinic cycle � increases in size as μ increases.

Finally, we will show that the large periodic orbit near � disappears when μ is
slightly larger than zero. As discussed in the proof of Theorem 3.3, the fixed point
of (3.1) as shown in (3.5) is positive when −μ5 < μ < 0. However, when 0 <

μ < μ5, it follows from Lemma 3.2 that det (I − P(μ)) < 0. By (3.7), we have
ad j (I − P(μ))q(μ) > 0. Hence, ẑ(μ) = ad j (I−P(μ))q(μ)

det (I−P(μ))
is negative. That is, there

is no positive fixed point of (3.1) when 0 < μ < μ5. Then there is no periodic orbit
of (1.1) which would cross through O(u0, δ0) ∩ �. Hence, the following conclusion
holds.

Theorem 4.3 Let (2.1) hold. When 0 < μ < μ5, there is no periodic orbit of (1.1)
that would cross through O(u0, δ0) ∩ �.

Therefore, it follows from Theorems 3.3, 3.4, 4.2 and 4.3 that the unique periodic
orbit of (1.1), which crosses through O(u0, δ0) ∩ � when −μ5 < μ < 0, grows in
size as b2 increases, tends to � when μ → 0−, and disappears when 0 < μ < μ5.

Numerical simulations in Fig. 3 show that the periodic orbit of (1.1) grows in size
when b2 increases and disappears when μ > 0. We select (u1, u2) in the solution
u = (u1, u2, u3, u4) as an example while similar principles can be shown for (u3, u4).
In the simulations, we fix b1 = 0.1 and b3 = −0.2. Then it follows from (2.2) that
0 < b2 < 0.3. Let b2 = 0.005, 0.01, 0.04, 0.11, respectively, then μ = b1+b2+b3 =
−0.095,−0.09,−0.06,+0.01, respectively. When μ = −0.095 < 0, there is a small
periodic orbit. The periodic orbit grows in size as b2 increases from 0.005 to 0.01 to
0.04, and tends to � monotonously. When μ = 0.01 > 0, the periodic orbit disap-
pears and � is asymptotically stable. In Fig. 4, we select the first three components
(u1(t), u2(t), u3(t)) of solution u(t) while u4(t) = 1−u1(t)−u2(t)−u3(t). Numer-
ical simulations show that the periodic orbit of (1.1) is asymptotically stable in the
three-dimensional space.

In Sect. 2, we changed the variables as follows: b1−b3
→ b1,

b2−b3
→ b2 and b3 →

−1. Now we take the reverse changes of variables and return to the original parameters
b1, b2 and b3. Let μ̂ = −b3μ5. Then we can restate our results about (1.1) as follows.

Corollary 4.4 Suppose b1 + b3 < 0, b2 > 0 and b1b3 < 0. For μ̂ > 0 and δ0 > 0,
we have

(i) When −μ̂ < b1 + b2 + b3 < 0, there is a unique periodic orbit of (1.1) that
crosses through the transversal sector O(u0, δ0) ∩ �. The periodic orbit is
asymptotically stable.

(ii) The periodic orbit grows in size when b2 increases in the interval (−(b1 +
b3)− μ̂,−(b1 +b3)) and tends to the heteroclinic cycle � as b2 → −(b1 +b3).

(iii) There is no periodic orbit of (1.1) that would cross through O(u0, δ0)∩� when
0 < b1 + b2 + b3 < μ̂.

(iv) The heteroclinic cycle � is repelling as b1+b2+b3 < 0 while it is asymptotically
stable as b1 + b2 + b3 > 0.
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(a) (b)

(c) (d)

Fig. 3 In the computations, b1 = 0.1 and b3 = −0.2. Take b2 = 0.005, 0.01, 0.04, 0.11, respectively,
then μ = b1 + b2 + b3 = −0.095,−0.09,−0.06,+0.01, respectively. a When μ = −0.095 < 0, there
is a small periodic orbit. b The periodic orbit grows in size as b2 increases from 0.005 to 0.01 to 0.04 and
c tends to � monotonically. d When μ = 0.01 > 0, the periodic orbit disappears and � is asymptotically
stable

5 Applications and discussions

In this section, we apply our results to some ecological examples. As mentioned in
Sect. 1, there are many semelparous species in natural environments. While different
year classes of the species are identical except for their reproduction time, some of
them go asymptotically extinct. The most interesting periodical species are the 13th
and 17th year cicadas of eastern North America. What are the mechanisms that result
in both the persistence of only one brood and the remaining of this brood? How could
the year classes coexist?

The novel model (1.1) derived by Diekmann and van Gils (2009) provides a way
to explore the mechanisms. Based on the model and basic results by Diekmann and
van Gils (2009), our analysis gives some answers to the questions under conditions
in Corollary 4.4. In fact, conditions in (2.1) have interesting ecological meanings.
Consider the first equation of (1.2) for n = 4:

ẋ1 = x1(1 − a1x1 − a2x2 − a3x3 − a4x4).
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Fig. 4 In the computations, b1 = 0.1, b2 = 0.01 and b3 = −0.2. The first three components
(u1(t), u2(t), u3(t)) of a solution u(t) are selected while u4(t) = 1 − u1(t) − u2(t) − u3(t). It is shown
that the periodic orbit is asymptotically stable in the three-dimensional space

Then ai
a1

represents the competitive degree from the i th year class to the 1th year
class, i = 2, 3, 4. As shown by Adamic and Huberman (2000) and Lopez and Sanjuan
(2001), the competitive degree is called strong (weak) if ai

a1
> 1 (< 1). By (2.1), we

have b1 > 0 and b2 > 0, i.e., ai
a1

> 1, i = 2, 3. That is, the competition from the
i th year class to the 1st year class is strong, i = 2, 3. By (2.1), we have b3 < 0, i.e.,
a4
a1

< 1. That is, the competition from the 4th year class to the 1st year class is weak.
Since b1 = a2 − a1, b2 = a3 − a1 and b3 = a4 − a1, condition −(b1 + b3) − μ̂ <

b2 < −(b1 + b3) in Corollary 4.4(i) can be rewritten as

1 − μ̂

3a1
<

1

3

(
a2

a1
+ a3

a1
+ a4

a1

)
< 1.

That is, the average competitive degree 1
3 ( a2

a1
+ a3

a1
+ a4

a1
) from the other three year

classes is slightly weak while two of them are strong. Corollary 4.4 shows that when
the average competitive degree is slightly weak, the year classes coexist and present
periodic oscillations. The oscillation magnitude grows monotonically as the parameter
a3
a1

increases, where a3
a1

represents the competitive degree from the year class which is
next to the next year class of the present one. In fact, as shown in Fig. 3a–c, orbits from
the interior of the cone gradually converge to the periodic solution, which means the
population densities of the broods change in a recurrent way and all of the broods are
persistent as defined by Hofbauer and Sigmund (1998). Furthermore, the sizes of the
periodic solutions in Fig. 3a–c increase monotonically as a3

a1
increases, which means

the population densities of the broods vary in enlarged regions and the oscillations
become more and more fierce. Here, the increase of a3

a1
is equivalent to the increase

of b2 since b2 = a3 − a1 and a1 is fixed in the simulations. Hence, the weak average
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competitive degrees guarantee the coexistence of the broods, and the coexistence is in
the form of periodic oscillations while the competitive degree a3

a1
plays an important

role in the magnitude of the oscillations.
Corollary 4.4 also shows that when the average competitive degree becomes strong,

i.e.,

1 <
1

3

(
a2

a1
+ a3

a1
+ a4

a1

)
< 1 + μ̂

3a1
,

the periodic solution disappears and � becomes asymptotically stable. Then the orbits
near � converge to � gradually, which means the orbits spiral outward to the boundary
of the cone in a recurrent and sequential movement near the equilibria ei (with longer
and longer time episodes). The ecological interpretation is as follows. When the orbits
are not so close to �, the broods coexist and there is not a fixed brood that remains
strong (dominant), i.e., the broods become the strong one in a cyclic way in the sense
that one brood is growing when its predecessor declines while the dominant period of
the broods becomes longer and longer. However, when the orbits gradually go close
to ei such that the quantities of other broods (i.e., not the i th brood) are less than
one, all broods but the i th one go extinct. In fact, as shown in Fig. 3d, orbits initially
converge to � in a recurrent way, which means that all the broods coexist while the
strong brood is not the same one but changes in a cyclic way. When the orbits go close
to ei such that the quantities of all but the i th brood are less than one, only the i th
brood could survive. Hence, it is the strong average competitive degree that results in
the persistence of only one brood in the situation we considered.

The remaining of the particular year class can be discussed as follows. Since the
orbit of (1.1) near � tends to � as t → ∞, one of the year classes will go extinct as
the first missing one when its number is less than one. Without loss of generality, let
x4 = 0. It follows from Lemma 3.1 that only the 3rd year classes can persist while
other year classes will go extinct. Then by Lemma 2.1, if the i th year class is the first
missing one, then the (i − 1)th (modulo 4) year class will be the unique persistent
class. Hence, the persistent year class is determined by the first missing class. The first
missing class sensitively depends on the distribution of the initial population densities
since the orbits of (1.1) tend to � in a cyclic way.

In a two-species competitive Lotka–Volterra system where the axial equilibria are
locally stable, it is shown by Hofbauer and Sigmund (1988) and Murry (1993) that
almost all the orbits converge to the axial equilibria without periodic oscillations and
the strong subpopulation that has the largest initial density would persist. The result
has been extended to higher dimensions (Drissche and Zeeman 1998; Wang 2003;
Wang and Wu 2011; Xiao and Li 2000; Zeeman 1993; Zeeman and Zeeman 2002). It
shows that in some ecological models where each of the competition degrees between
subpopulations (not the average competitive degree) is strong, only the strongest one
could persist while others go extinct. Our analysis shows a different result. In the
situation we consider, there are both strong and weak competitions ( a2

a1
> 1, a3

a1
> 1

but a4
a1

< 1). While weak average competitive degrees imply coexistence with peri-
odic oscillations, the strong average competitive degrees imply that there is only one
persistent subpopulation, which is not necessarily the one that has the largest initial
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density, but depends on the distribution of initial population densities in a sensitive
way.

While the periodic orbits shown in this paper are close to the heteroclinic cycle on
the boundary, the coexistence derived from their stability seems not so strong from the
ecological viewpoint. However, our work demonstrates both the effect of the average
competitive degrees on the coexistence and the effect of some particular factor on
the increase of the magnitudes of the periodic oscillations, which is verified in large
regions by numerical simulations. In fact, numerical simulations in Fig. 3 show that
when the average competitive degree is weak as shown in Fig. 3a, there is a stable
periodic orbit near the positive equilibrium (E4) where the coexistence is strong. Fur-
thermore, the increase of the particular factor ( a3

a1
) in large regions also leads to the

increase of the magnitude of the periodic orbit as shown in Fig. 3a–c. While our result
is restricted to a small region, it is possible that the result could be extended to large
regions, which still remains a challenge in the conjecture by Diekmann and van Gils
(2009).
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