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Abstract

An epidemic model with a constant removal rate of infective individuals is proposed to unde
the effect of limited resources for treatment of infectives on the disease spread. It is found th
unnecessary to take such a large treatment capacity that endemic equilibria disappear to erad
disease. It is shown that the outcome of disease spread may depend on the position of the init
for certain range of parameters. It is also shown that the model undergoes a sequence of bifu
including saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The asymptotic behavior of epidemic models has been studied by many resea
(see [1,4–6,8–11,18,20] and the references cited therein). Periodic oscillations hav
observed in the incidence of many infectious diseases, including measles, mumps,
chickenpox, and influenza. In some locations, the incidence of some diseases, s
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chickenpox, mumps, and poliomyelitis, goes up and down every year (see Hethco
Levin [8]). Because of the observed periodicity in the incidence of many diseases
has been great interest in determining how periodic solutions can arise in epidem
cal models. Hethcote et al. [9] found that a single population epidemiological mode
bilinear incidence rates, constant population size and constant parameter values c
periodic solutions if and only if the model is cyclic of SIRS or SEIRS type and individ
can be “significantly delayed” in the removed class by mechanisms such as a larg
stant period of temporary immunity. Liu, Hethcote, and Levin [15], Liu, Levin, and Iw
[16] proved that the nonlinear incidence rate ofβIpSq type can lead to periodic solution
in SIRS models. Lizana and Rivero [17] found that such a model admits codimens
bifurcations.

Treatment including isolation or quarantine is an important method to decreas
spread of diseases such as measles, AIDS, tuberculosis, and flu (Feng and Thie
Wu and Feng [21], Hyman and Li [12]). In classical epidemic models, the removal ra
infectives is assumed to be proportional to the number of the infectives. This is unsa
tory because the resources for treatment should be quite large. In fact, every com
should have a suitable capacity for treatment. If it is too large, the community pay
unnecessary cost. If it is too small, the community has the risk of the outbreak of th
ease. Thus, it is important to determine a suitable capacity for the treatment of a d
In this paper, we suppose that the capacity for the treatment of a disease in a com
is a constantr. In order to easily understand its effect, we consider a case that the re
rate of infectives equalsr. This means that we use the maximal treatment capacity to
or isolate infectives so that the disease is eradicated. This can occur if the diseas
dangerous that we hope to wipe out it quickly, or the disease spreads rapidly so t
treatment capacity is insufficient for treatment in a period (flu, for example).

The model to be studied takes the following form:

dS

dt
=A− dS − λSI,

dI

dt
= λSI − (d + γ )I − h(I),

dR

dt
= γ I + h(I)− dR, (1.1)

whereS(t), I (t), andR(t) denote the numbers of susceptible, infective, and recovere
dividuals at timet , respectively,A is the recruitment rate of the population,d is the natural
death rate of the population,γ is the natural recovery rate of the infective individuals.
adopt a bilinear incidence rate in (1.1). A good alternative for this is a modified sta
incidence rateλSI/(S + I) (see [7,21]). In (1.1),h(I) is the removal rate of infective in
dividuals due to the treatment of infectives. We suppose that the treated infectives b
recovered when they are treated in treatment sites. We also suppose that

h(I)=
{
r, for I > 0,

0, for I = 0,
(1.2)

wherer > 0 is a constant and represents the capacity of treatment for infectives
means that we use a constant removal rate for the infectives until the disease disa
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Suppose that(S(t), I (t),R(t)) is a solution of (1.1). IfS(t) > 0, I (t) > 0, R(t) > 0 for
0 � t < t0 andI (t0)= 0, it is natural to assume that(S(t), I (t),R(t)) satisfies



dS

dt
=A− dS,

I (t) = 0,
dR

dt
= −dR,

for t � t0.

Consequently,R3+ is positively invariant for system (1.1).
The purpose of this paper is to show that this removal rate has significant effects

dynamics of (1.1). We will prove that (1.1) undergoes a sequence of bifurcations incl
saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation. We
also present a global analysis of the model and discuss the existence and nonexis
limit cycles. Optimal capacity for treatment can be chosen according to our results. B
going into any detail, we simplify the model. Since the first two equations are indepe
of the third one and its dynamic behavior is trivial whenI (t0) = 0 for somet0 > 0, it
suffices to consider the first two equations withI > 0. Thus, we restrict our attention to th
following reduced model:

dS

dt
=A− dS − λSI,

dI

dt
= λSI − (d + γ )I − r. (1.3)

It is assumed that all the parameters are positive constants.
The organization of this paper is as follows. In the next section, we study the bifurc

of (1.3). In Section 3 we present a global analysis of the model. The paper ends with
discussions in Section 4.

2. Bifurcations

In this section, we first consider the equilibria of (1.3) and their local stability. The
study the Hopf bifurcation and the Bogdanov–Takens bifurcation of (1.3).

In order to find endemic equilibria of (1.3), we substituteS = A/(d + λI) into λSI −
(d + γ )I − r = 0 to obtain the quadratic equation

−λ(d + γ )I2 + (
λA− rλ− γ d − d2)I − rd = 0. (2.1)

Set

R0 = λA

d(d + γ )
, H = λr

d(d + γ )
.

Then (2.1) can be written as

λ
I2 − (R0 − 1−H)I + r = 0. (2.2)
d d + γ
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R0 = λA/(d(d + γ )) is the reproduction number of (1.3) in the absence of the rem
rate. It is evident that (2.2) does not have a positive solution ifR0 � 1. If R0 > 1, it is easy
to see that (2.2) does not have a positive solution if(√

R0 − 1
)2
<H, (2.3)

admits a positive solution if(√
R0 − 1

)2 =H, (2.4)

and has two positive solutions if(√
R0 − 1

)2
>H > 0. (2.5)

Thus, (1.3) does not have a positive equilibrium ifR0 � 1 or (2.3) holds. Furthermore
(2.4) implies that (1.3) has one endemic equilibrium and (2.5) implies that (1.3) ha
endemic equilibria. IfN1 = S + I , we have

dN1

dt
=A− r − dN1 − γ I �A− r − dN1.

It follows that positive solutions of (1.3) are bounded. Note that the nonnegativeI -axis
repels positive solutions of (1.3) and that there is no equilibrium on the nonnegativeS-axis.
If R0 � 1 or (2.3) holds, it follows thatI (t) becomes 0 in finite time, i.e., the disea
disappears in a finite time.

Now, we propose the following assumption:

(H1) R0 > 1 and 0<H < (
√
R0 − 1)2.

Let (H1) hold. Then (1.3) admits two endemic equilibria:E1 = (S1, I1) andE2 =
(S2, I2), where

I1 = d

2λ

(
R0 − 1−H −

√
(R0 − 1−H)2 − 4H

)
, S1 =A/(d + λI1),

I2 = d

2λ

(
R0 − 1−H +

√
(R0 − 1−H)2 − 4H

)
, S2 =A/(d + λI2).

Although the endemic equilibria occur under the assumption (H1), we will show tha
disease can disappear in a range of the parameters. This means that it is unnece
increase the removal rater to H > (

√
R0 − 1)2 to make the disease disappear. We be

by analyzing the stability of these two equilibria. The Jacobian matrix of (1.3) at(S1, I1)

is

J1 =
[−d − λI1 −λS1

λI1 λS1 − d − γ

]
.

Note thatA− dS1 = λS1I1 = (d + γ )I1 + r. We haveS1 = (A− (d + γ )I1 − r)/d . Thus,
we have

det(J1)= −dλS1 + d2 + γ d + λdI1 + λγ I1

= −λA+ 2λ(d + γ )I1 + λr + d(d + γ )
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the
= d(d + γ )

[
−R0 + 2λ

d
I1 +H + 1

]

= −d(d + γ )
√
(R0 − 1−H)2 − 4H < 0.

It follows that(S1, I1) is a saddle point. The Jacobian matrix of (1.3) at(S2, I2) is

J2 =
[−d − λI2 −λS2

λI2 λS2 − d − γ

]
.

By the same argument, we obtain det(J2) = d(d + γ )
√
(R0 − 1−H)2 − 4H > 0. Thus,

(S2, I2) is a focus, a node, or a center. The stability of this equilibrium is stated in
following theorem.

Theorem 2.1. Let (H1) hold. Then

(i) E2 is stable if either

λA− 3d2 − dγ − 2d3/γ � λr (2.6)

or

λr < λA− 3d2 − dγ − 2d3/γ and

λr <
1

2

[
2λA+ (2d + γ )(d + γ )

(
1−

√
1+ 4λA

(γ + d)2

)]
. (2.7)

(ii) E2 is unstable if

λr < λA− 3d2 − dγ − 2d3/γ and

λr >
1

2

[
2λA+ (2d + γ )(d + γ )

(
1−

√
1+ 4λA

(γ + d)2

)]
. (2.8)

Proof. SinceS2 = (A− (d + γ )I2 − r)/d , we see that the trace ofJ2 is

tr(J2)= −2d − λI2 + λS2 − γ = − (2dλ+ γ λ)

d
I2 − 2d2 − λA+ rλ+ γ d

d
. (2.9)

Thus, the trace is negative if 2d2 − λA+ rλ+ γ d � 0. Suppose

2d2 − λA+ rλ+ γ d < 0. (2.10)

Let us find the conditions under which tr(J2)= 0. Set

D1 � − d(d + γ )

λ(2d + γ )

(
d

d + γ
+ 1−R0 +H

)
.

(2.9) implies that tr(J2)= 0 is equivalent to

I2 = −2d2 − λA+ rλ+ γ d =D1. (2.11)

λ(2d + γ )
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D2 � − 2d

2d + γ
+ γ

2d + γ
(R0 − 1−H),

it follows from the definition ofI2 that tr(J2)= 0 is equivalent to

D2 =
√
(R0 − 1−H)2 − 4H. (2.12)

Thus, the set of tr(J2)= 0 is empty if

H �R0 − 1− 2d

γ
. (2.13)

Suppose

H <R0 − 1− 2d

γ
. (2.14)

Taking squares on both sides of (2.12) and simplifying the resulting equation, we ob

D3 � r2λ+ (−3γ d − 2λA− γ 2 − 2d2)r + λA2 − dAγ − 2Ad2 = 0. (2.15)

Hence,

r = 1

2λ

[
2λA+ (2d + γ )(d + γ )

(
1±

√
1+ 4λA

(γ + d)2

)]
.

In view of (2.10), we have

r = 1

2λ

[
2λA+ (2d + γ )(d + γ )

(
1−

√
1+ 4λA

(γ + d)2

)]
. (2.16)

As a consequence, we see that (H1), (2.14) and (2.16) are the necessary and s
conditions for tr(J2)= 0.

Now, we show thatE2 is stable if (2.6) is valid. The previous discussions show tha
stability ofE2 does not change if (2.13) holds. Note that (2.13) is equivalent toλA−3d2−
dγ − 2d3/γ < λr. By the definitions ofD1 andD2, we have

tr(J2)= − (2dλ+ γ λ)

d
(I2 −D1)= − (2d + γ )

2

(√
(R0 − 1−H)2 − 4H −D2

)
.

(2.17)

Thus, (2.13) implies that tr(J2) < 0. Therefore,E2 is stable if (2.6) holds.
Notice that[

(R0 − 1−H)2 − 4H
]−D2

2 = 4λ

d(2d + γ )2(d + γ )
D3.

It follows that tr(J2) < 0 if (2.7) is valid and that tr(J2) > 0 if (2.8) holds. ✷
Now, we discuss some implications of Theorem 2.1. If we draw the stability re

of the endemic equilibriumE2 in the (λ, r)-plane by fixingA and γ , we see that the
region becomes smaller asd becomes larger. If we draw the stability region of the ende
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Fig. 1. Stability region ofE2 whenA= 4, γ = 0.8, d = 0.3.

equilibriumE2 in the (λ, r)-plane by fixingA and d , we see that the region becom
smaller asγ becomes larger. If we draw the stability region of the endemic equilibriumE2
in the(λ, r)-plane by fixingd andγ , we see that the region becomes larger asA becomes
larger. Thus, we may say thatd andγ destabilize the endemic equilibriumE2 and thatA
stabilizes the endemic equilibriumE2. A typical stability region forE2 is shown in Fig. 1.
The region with dashed lines is the stable region and the region between the curveS and
the curveU is the unstable region.E2 disappears above the curveU . From this figure, we
see that there is aλ0 > 0 such that ifλ > λ0, E2 undergoes stable state, unstable state
disappears at last ash increases from 0. This suggests a possibility that (1.3) admits a
bifurcation.

Let us now verify the existence of a Hopf bifurcation in (1.3) and determine its direc
Set

h0 = 1

2λ

[
2λA+ (2d + γ )(d + γ )

(
1−

√
1+ 4λA

(γ + d)2

)]
.

Theorem 2.2. Let (H1) hold. Assume further that

r <
[
λA− 3d2 − dγ − 2d3/γ

]
/λ. (2.18)

Then there is a family of unstable limit cycles if r is less than and near h0, i.e., a subcritical
Hopf bifurcation occurs when r passes through h0.

Proof. Supposer = h0. Then tr(J2)= 0. It follows from (2.11) that
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I2 = d + γ

λ

(
− d

d + γ
− 1

2
+ 1

2

√
1+ 4λA

(d + γ )2

)
,

S2 = d + γ

2λ

(
1+

√
1+ 4λA

(d + γ )2

)
.

Set

ω =√
det(J2)=

√
d(d + γ )

√
(R0 − 1−H)2 − 4H.

Then the eigenvalues ofJ2 areλ1 = ωi andλ2 = −ωi.
Perform coordinate transformations byx = S − S2, y = I − I2. Then system (1.3) be

comes
dx

dt
= −(d + λI2)x − λS2y − λxy,

dy

dt
= λI2x + (λS2 − d − γ )y + λxy. (2.19)

Settingx = −λS2v, y = ωu + (d + λI2)v and using tr(J2) = λS2 − 2d − γ − λI2 = 0,
ω2 = det(J2)= −dλS2 + d2 + γ d + λdI2 + λγ I2, we obtain

du

dt
= −ωv + f (u, v),

dv

dt
= ωu+ g(u, v), (2.20)

where

f = λv(−λS2 + λI2 + d)(ωu+ dv + λI2v)

ω
, g = −λv(ωu+ dv + λI2v).

Using the fact thatλS2 − 2d − γ − λI2 = 0, we obtaing = ωf/(d + γ ). If

µ= 1

16
[fuuu + fuvv + guuv + gvvv]

+ 1

16ω

[
fuv(fuu + fvv)− guv(guu + gvv)− fuuguu + fvvgvv

]
,

by some tedious calculations, we obtain

µ= −λ2(−λS2 + λI2 + d)2(d + λI2)(−3d2 − 4γ d − γ 2 +ω2 − 2dλI2 − 2γ λI2)

8ω2(d + γ )2
.

Note that−λS2 + λI2 + d = −d − γ . We have

µ= λ2(d + λI2)(2d2 + 3γ d + γ 2 + λS2d + dλS2 + γ λI2)

8ω2 > 0.

The conclusion of this theorem follows from [13, Theorem 3.4.2 and formula (3.4.11)]✷
As an example, we fixA = 8, d = 0.1, λ = 1, γ = 1. Then(

√
R0 − 1)2d(d + γ ) =

6.2338,λA − 3d2 − dγ − 2d3/γ = 7.868 andh0 = 5.2023 (we always keep 4 decim
places for a real number in this paper). Then Theorem 2.2 shows that there is an u
limit cycle whenr decreases from 5.2023, which is shown in Fig. 2.

At this time, the local stability of the equilibria of model (1.3) is clear. In orde
determine the global dynamics of the model, we investigate its global bifurcation. Su
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Fig. 2. An unstable periodic solution exists whenA= 8, d = 0.1, λ= 1, γ = 1, r = 5.1.

(H2) R0 > 1 andH = (
√
R0 − 1)2.

Then (1.3) has one unique positive equilibrium(S∗, I∗) where

I∗ = d

λ

(√
R0 − 1

)
, S∗ = A

d
√
R0

. (2.21)

The Jacobian matrix of (1.3) at this point is

J0 =
[−d − λI∗ −λS∗

λI∗ λS∗ − d − γ

]
.

Suppose

(H3)
√
R0 = 1+ d/γ .

By (2.21), we have

det(J0)= −dλS∗ + d2 + γ d + λdI∗ + λγ I∗ = −λA+ d2R0 + γ dR0√
R0

= 0.

Furthermore, (H3) implies that

tr(J0)= −2d − λI∗ + λS∗ − γ = −d2√R0 + d2R0 − λA+ γ d
√
R0√ = 0.
d R0
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Thus, (H2) and (H3) imply that the Jacobian matrix has a zero eigenvalue with mul
ity 2. This suggests that (1.3) may admit a Bogdanov–Takens bifurcation. We confir
by giving the following theorem.

Theorem 2.3. Suppose that (H2) and (H3) hold. Then the equilibrium (S∗, I∗) of (1.3) is
a cusp of codimension 2, i.e., it is a Bogdanov–Takens singularity.

Proof. Introduce the change of variablesx = S − S∗, y = I − I∗. Then (1.3) becomes

dx

dt
= −(d + λI∗)x − λS∗y − λxy,

dy

dt
= λI∗x + (λS∗ − d − γ )y + λxy. (2.22)

Notice that tr(J0)= 0 and det(J0)= 0 imply that

d + λI∗ = λS∗ − d − γ, λ2S∗I∗ = (λS∗ − d − γ )2. (2.23)

LetX = x, Y = −(λS∗ − d − γ )x − (λS∗ − d − γ )2y/(λI∗). Then (2.22) becomes

dX

dt
= Y + a11X

2 + a12XY,

dY

dt
= (d + γ )a11X

2 + (d + γ )a12XY, (2.24)

where

a11 = λS∗ − d − γ

S∗ , a12 = 1

S∗ .

Change the variables one more time by lettingx =X− a12X
2/2,y = Y + a11X

2, we have

dx

dt
= y + P1(x, y),

dy

dt
= (d + γ )a11x

2 + (
(d + γ )a12 + 2a11

)
xy + P2(x, y), (2.25)

wherePi are smooth functions in(x, y) at least of the third order.
Note thata11> 0 anda12> 0. It follows from [2,3,19] that (1.3) admits a Bogdano

Takens bifurcation. ✷
In the following, we will find the versal unfolding in terms of the original parameter

(1.3). In this way, we will know the approximate homoclinic bifurcation curve. We cho
A andr as bifurcation parameters. Fixd = d0, λ = λ0, andγ = γ0. LetA = A0 + λ1 and
r = r0 + λ2, whereλ1 andλ2 are parameters which vary in a small neighborhood of
origin.

Suppose thatA = A0, d = d0, λ = λ0, γ = γ0, andr = r0 satisfy (H2) and (H3). Then
by the transformations ofx = S − S∗, y = I − I∗, (1.3) becomes

dx

dt
= λ1 − (d0 + λ0I

∗)x − λ0S
∗y − λ0xy,

dy = −λ2 + λ0I
∗x + (λ0S

∗ − d0 − γ0)y + λ0xy. (2.26)

dt
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Note that (H2) and (H3) imply that

S∗ = (d0 + γ0)
2

λ0γ0
, I∗ = d2

0

λ0γ0
. (2.27)

Now, we transform (2.26) by setting

X = x, Y = λ1 − (d0 + λ0I
∗)x − λ0S

∗y − λ0xy.

If we rewriteX, Y asx, y, respectively, by means of (2.27) we obtain

dx

dt
= y,

dy

dt
= c0 + (−λ1 + λ2)λ0x − λ1

S∗ y + λ0d0x
2 + c1xy + 1

S∗ y
2 +R1(x, y), (2.28)

whereR1(x, y) is a smooth function ofx andy at least of order three and

c0 = (d0 + γ0)(λ2γ0 − d0λ1 + d0λ2)

γ0
,

c1 = λ0(2d4
0 + 7d3

0γ0 + 9d2
0γ

2
0 + 5d0γ

3
0 + γ 4

0 + λ0γ
2
0 λ1)

(d0 + γ0)4
.

Next, introduce a new time variableτ by dt = (1 − x/S∗) dτ . Rewriting τ as t , we
obtain

dx

dt
= y

(
1− x

S∗

)
,

dy

dt
=
(

1− x

S∗

)(
c0 + (−λ1 + λ2)λ0x − λ1

S∗ y + λ0d0x
2 + c1xy + 1

S∗ y
2

+R1(x, y)

)
. (2.29)

LetX = x, Y = y(1− x/S∗) and renameX andY asx andy, we have

dx

dt
= y,

dy

dt
= c0 + c2x − λ1

S∗ y + c3x
2 + c4xy +R2(x, y), (2.30)

whereR2(x, y) is a smooth function ofx andy at least of order three and

c2 = −2c0 − λ0λ2S
∗ + λ0λ1S

∗

S∗ ,

c3 = c0 + λ0d0S
∗2 − 2λ0λ2S

∗ + 2λ0λ1S
∗

S∗2
,

c4 = c1S
∗2 + λ1

S∗2
.

Make the change of variablex =X + λ1/(c4S
∗) and rewriteX asx, we obtain
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dx

dt
= y,

dy

dt
= c5 + c6x + c3x

2 + c4xy +R3(x, y), (2.31)

whereR3(x, y) is a smooth function ofx, y, λ1, andλ2 at least of order three and

c5 = c0c
2
4S

∗2 + c2λ1c4S
∗ + c3λ

2
1

c2
4S

∗2 , c6 = c2c4S
∗ + 2c3λ1

c4S∗ .

Notice thatc4 > 0 andc3 > 0 whenλi are small. Make the change of variables o
more time by setting

X = c2
4x/c3, Y = c3

4y/c
2
3, τ = c3t/c4

and denoting them byx, y, t , respectively. Then we obtain

dx

dt
= y,

dy

dt
= τ1 + τ2x + x2 + xy +R4(x, y), (2.32)

whereR4(x, y) is a smooth function ofx, y, λ1, andλ2 at least of order three and

τ1 = c5c
4
4

c3
3

, τ2 = c6c
2
4

c2
3

.

By the theorems in Bogdanov [2,3] and Takens [19] or Kuznetsov [14], we obtai
following local representations of the bifurcation curves in a small neighborhood o
origin:

Theorem 2.4. Suppose that A0, d0, λ0, γ0, and r0 satisfy (H2) and (H3). Then (1.3)admits
the following bifurcation behavior:

(1) There is a saddle-node bifurcation curve SN = {(λ1, λ2): 4c3c5 = c2
6 +o(|(λ1, λ2)|2)}.

(2) There is a Hopf bifurcation curve H = {(λ1, λ2): c5 + o(|(λ1, λ2)|2)= 0, c6 < 0}.
(3) There is a homoclinic bifurcation curve HL = {(λ1, λ2): 25c3c5+6c2

6 = o(|(λ1, λ2)|2)}.

Theorem 2.4 gives us a global picture on the dynamical behavior of (1.3) near th
generate equilibrium. In order to illustrate the results, let us consider an example. Fi
express the three curves by the original parameters. After some calculations, we ob
saddle-node bifurcation curve:

4d2
0(d0 + γ0)

2λ1 − 4d0(d0 + γ0)
3λ2 + λ0γ0(γ0 + 5d0)λ

2
1

− 2λ0γ0(3γ0 + 5d0)λ1λ2 + 5λ0γ0(d0 + γ0)λ
2
2 + o

(
λ2

1 + λ2
2

)= 0,

the Hopf bifurcation curve:

(d0 + γ0)
3d0(γ0 + 2d0)

2λ1 − (d0 + γ0)
4(γ0 + 2d0)

2λ2 + λ0γ
2
0

(
γ 2

0 − 2d2
0

)
λ2

1

+ λ0γ
2
0 (γ0 + 2d0)(d0 + γ0)λ1λ2 + o

(
λ2

1 + λ2
2

)= 0,
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and the homoclinic bifurcation curve:

25d2
0(d0 + γ0)

2(γ0 + 2d0)
2λ1 − 25d0(d0 + γ0)

3(γ0 + 2d0)
2λ2

− λ0
(
6γ 3

0 − 93d0γ
2
0 − 150d2

0γ0 − 76d3
0

)
γ0λ

2
1

− λ0
(
62γ 2

0 + 113d0γ0 + 76d2
0)γ0(γ0 + 2d0

)
λ1λ2

+ 19λ0γ0(γ0 + 2d0)
2(d0 + γ0)λ

2
2 + o

(
λ2

1 + λ2
2

)= 0.

If d0 = 0.1,λ0 = 0.2,γ0 = 4.0,A0 = 2.1538,r0 = 0.0013, it is easy to see thatA=A0,
d = d0, λ = λ0, γ = γ0, andr = r0 satisfy (H2) and (H3). By the previous formulae, w
see that the saddle-node bifurcation curve is

−1.025λ1 + 42.025λ2 − 5.4878λ2
1 + 30.4878λ1λ2 − 25.0λ2

2 + o
(
λ2

1 + λ2
2

)= 0,

the Hopf bifurcation curve is

−1.025λ1 + 42.025λ2 − 0.4311λ2
1 − 0.4646λ1λ2 + o

(
λ2

1 + λ2
2

)= 0,

and the homoclinic bifurcation curve is

−1.025λ1 + 42.025λ2 + 2.5344λ2
1 + 48.2211λ1λ2 − 15.2λ2

2 + o
(
λ2

1 + λ2
2

)= 0.

The(λ1, λ2)-plane near the origin is divided into 4 regions by these bifurcation cu
as shown in Fig. 3. Fixλ1 > 0 and increaseλ2 from 0. When(λ1, λ2) lies in the region I
which is below the curveHL, there is no limit cycle or homoclinic orbit andE2 is stable.
When(λ1, λ2) lies in the region II which is between the curveH and the curveHL, E2
remains stable and there is a unique unstable limit cycle inside which the positive or

Fig. 3. Bifurcation curves and the four typical regions. The horizontal axis is theλ1-axis and the vertical axis i
theλ2-axis.
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(1.3) tend toE2 ast tends to infinity. Thus, the disease is persistent inside the cycle. W
(λ1, λ2) lies in the region III which is between the curveSN and the curveH ,E1 is a saddle
E2 is an unstable node and the limit cycle disappears. By the results of the next secti
see that any positive orbit of (1.3) except the two equilibriaE1,E2 and the stable manifold
of E1 intersects the positiveS-axis in finite time, i.e., the disease becomes extinct in fi
time. When(λ1, λ2) lies in the region IV which is above the curveSN, (1.3) does not hav
a positive equilibrium, which implies that any positive orbit of (1.3) meets the pos
S-axis in finite time, and therefore, the disease will disappear. Since the increaseλ2

corresponds to the increase of the removal rater, the above discussions indicate that it
sufficient to increaser to the extent whereE2 becomes unstable in order to wipe out t
disease.

3. Global analysis

The objective of this section is to study the global structure of (1.3). We always
pose that (H1) holds in this section. If system (1.3) does not have a limit cycle, it is
to classify its dynamical behavior. IfE2 is unstable, any positive semi-orbit except
two equilibria and the stable manifolds ofE1 intersects the positiveS-axis in finite time.
A typical phase portrait is shown in Fig. 4. IfE2 is stable, there is a region whose bound
includes the two stable manifolds ofE1 such that any positive semi-orbit inside this reg

Fig. 4. Extinction of the disease, whereA= 4, d = 0.3, γ = 0.8, λ= 0.3, andr = 0.87.
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Fig. 5. Persistence of the disease, whereA= 4, d = 0.3, γ = 0.8, λ= 0.3, andr = 0.6.

tends toE2 ast tends to infinity and any positive semi-orbit outside this region meets
positiveS-axis in a finite time. A typical phase portrait is shown in Fig. 5.

When (1.3) admits a limit cycle, more complicated dynamical behavior will occur,
suggested by the Bogdanov–Takens bifurcation in Section 2. For this reason, we co
the existence and nonexistence of limit cycles in (1.3). Letx = S − S2, y = I − I2. Then
(1.3) becomes

dx

dt
= −(d + λI2)x − λS2y − λxy,

dy

dt
= λxy + λI2x + (λS2 − d − γ )y. (3.1)

SetX = −dx− (d + γ )y, Y = x + y and rewriteX, Y asx, y, respectively. (3.1) become

dx

dt
= (−2d − γ + S2λ− I2λ)x + (−dγ − d2 + dS2λ− λI2γ − dI2λ

)
y

+ λ

γ
x2 + λ(2d + γ )

γ
xy + λd(d + γ )

γ
y2,

dy

dt
= x. (3.2)

If ∆= (R0 − 1−H)2 − 4H , it is easy to see that(−dγ − d2 + dS2λ− λI2γ − dI2λ
)= −det(J2)= −d(d + γ )

√
∆< 0,
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(−2d − γ + S2λ− I2λ)= tr(J2).

Make the change of the variablesX = x, Y = (d(d + γ ))1/2∆1/4y, θ = (d(d +
γ ))1/2∆1/4t and rewriteX, Y andθ asx, y andt , respectively. System (3.2) becomes

dx

dt
= −y + δx + lx2 +mxy + ny2,

dy

dt
= x, (3.3)

where

δ = (
d(d + γ )

)−1/2
∆−1/4 tr(J2), l = λ

γ

(
d(d + γ )

)−1/2
∆−1/4,

m= λ(2d + γ )

γ d(d + γ )
∆−1/2, n= λ

(
d(d + γ )

)−1/2
∆−3/4/γ. (3.4)

Now, we can state the following result.

Theorem 3.1. Let (H1) hold. Then there is no limit cycle in (1.3) if one of the following
holds:

(i) (2.8) holds;
(ii) (2.6) is valid.

Proof. It suffices to prove that (3.3) does not have a limit cycle. First, we suppose th
sumption (i) is valid. By the discussions in the proof of Theorem 2.1, we see that tr(J2) > 0.
Henceδ > 0, and therefore,δm(l + n) > 0. It follows from [22, Theorem 12.5] that the
is no limit cycle in (3.3).

If the assumption (ii) holds, we transform (3.3) byX =mx, Y =my to obtain

dX

dt
= −Y + δX + l

m
X2 +XY + n

m
Y 2,

dY

dt
=X. (3.5)

Following the proof of Theorem 2.1, we see that the assumption (ii) implies that tr(J2) < 0.
As a consequence, we haveδ < 0. Sincel/m > 0 andn/m> 0, it follows from [22, Lemma
12.1] that there is no limit cycle in (3.5) if

δ + m

2n
� 0. (3.6)

By (3.4), we see that (3.6) is equivalent to

tr(J2)� −2d + γ

2
∆1/2. (3.7)

By (2.9) and the definition ofI2, we see that (3.7) is equivalent to

γ (R0 − 1−H)− 2d � 0. (3.8)
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It is easy to verify that (3.8) is equivalent to (2.6). Consequently, there is no limit c
in (1.3). ✷

Now, we know the global structure of (1.3) in almost all the cases. If (2.8) is valid, s
E2 is unstable and there is no limit cycle, any orbit except the two endemic equilibri
the stable manifolds ofE1 meets the positiveS-axis in finite time, i.e., the disease becom
extinct in finite time. If the assumption (ii) of Theorem 3.1 holds, since there is no
cycle in (1.3) andE2 is stable, there is a regionD whose boundary includes the two stab
manifolds ofE1 such that any positive orbit insideD tends toE2 ast tends to infinity and
any positive orbit outsideD intersects the positiveS-axis in finite time.

By Theorem 3.1, the significant change of dynamical behavior of (1.3) can only
in the case where (2.7) holds. Since a homoclinic orbit is important in determinin
asymptotic behavior of (1.3), we now present a different way to show the existenc
homoclinic orbit in (1.3) where the homoclinic orbit may not be in a small neighborho
a degenerate equilibrium. Choose(A0, d0, λ0, γ0, r0) such that (2.18) holds whenA=A0,
d = d0, λ= λ0, γ = γ0, r = r0, and

h0 = 1

2

[
2λ0A0 + (2d0 + γ )(d0 + γ0)

(
1−

√
1+ 4λ0A0

(γ0 + d0)2

)]
. (3.9)

We fix d = d0, λ= λ0, γ = γ0 and set

∆0 =
(

λ0A0

d0(d0 + γ0)
− 1− λ0r0

d0(d0 + γ0)

)2

− 4
λ0r0

d0(d0 + γ0)
.

Vary r andA by

r = r0 − θ,
λ0A

d0(d0 + γ0)
= 1+ λ0r

d0(d0 + γ0)
+
√
∆0 + 4

λ0r

d0(d0 + γ0)
. (3.10)

We can see that∆ is invariant asθ varies. As a consequence, by (3.4) we can see thatl, m,
n are invariant asθ varies. Furthermore, by (2.9) and the definition ofI2, we have

tr(J2)= γ0

2
(R0 − 1−H)− d0 − 2d0 + γ0

2

√
∆

= γ0

2

√
∆0 + 4

λ0r

d0(d0 + γ0)
− d0 − 2d0 + γ0

2

√
∆0.

It follows that tr(J2) is decreasing, and therefore,δ is decreasing, asθ increases. Now, it is
easy to check that (3.3) is a rotated vector field with respect to parameterθ . If we increase
θ from 0, it follows from Theorem 2.2 that an unstable limit cycle is produced due to H
bifurcation and this limit cycle expands asθ increases. Moreover, (H1) holds asθ varies
because we have (3.10). Whenθ is increased tor0, the equilibriumE1 of (1.3) becomes
(A/d0,0) (a disease-free equilibrium) and the equilibriumE2 of (1.3) becomes

(I2, S2)=
(
d0√

∆0,
A√

)
.

λ0 d0(1+ ∆0 )
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SinceE2 is globally stable in model (1.3) whenr = 0, it follows that the trivial equilibrium
(0,0) of (3.3) is globally stable at this time. Hence, the unstable limit cycle must m
homoclinic orbit beforeθ = r0. This means that there exists a homoclinic orbit in
following system

dS

dt
=A− dS − λSI,

dI

dt
= λSI − (d + γ )I − r,

which is considered in theR2 plane. By the form of the above system, a homoclinic o
starting from the interior ofR2+ cannot meet the nonnegativeS-axis and the positiveI -axis.
This shows that the homoclinic orbit starting from the interior ofR2+ must lie in the interior
of R2+. Therefore, we can state the following result.

Theorem 3.2. Let (A0, d0, λ0, γ0, r0) satisfy (2.18)and (3.9). Then there exist r < r0 and
A which satisfy (3.10)such that (3.3)admits a homoclinic orbit, and therefore, (1.3)has a
homoclinic orbit.

4. Discussion

In this paper, we have proposed an epidemic model with a constant removal r
the infective individuals to understand the effect of the treatment capacity on the d
transmission. If the parameters satisfy (2.8), Theorems 2.1 and 3.1 imply that the d
becomes extinct in a finite time because the endemic equilibriumE2 is unstable and ther
is no limit cycle in (1.3). Thus, it is unnecessary to take such a large treatment capac
the endemic equilibria disappear to eradicate the disease. If the parameters satisf
there is a region such that the number of infectives tends toI2 if the initial position lies
in the region and the disease dies out if the initial position lies outside this region.
parameters satisfy (2.7), the disease is persistent if the initial position lies in the regi
the disease becomes extinct if the initial position lies outside this region. Since the ev
behavior is related to the initial positions, this model may be more realistic and usef

We have shown that the model exhibits Bogdanov–Takens bifurcations, i.e., the
saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation in
system, even though the incidence rate is bilinear. Since the model is globally sta
the absence of the removal rate, this suggests that a constant removal rate of the in
induces the periodic oscillations of diseases. In contrast, the previous studies sho
periodic coefficients, corresponding to periodic environment, time delays and non
incidence rates ofβIpSq type are the causes of periodicity of diseases.

By carrying out the bifurcation analysis, we have obtained a clear picture about th
namic behavior of the model near the degenerate equilibrium and obtained the appro
homoclinic bifurcation curve. We have also carried out a global qualitative analysis
model. The result on the nonexistence of a limit cycle in (1.3) gives us the global stru
of the model and indicates that complicated behavior of the model can only occur
(2.7) holds. Theorem 3.2 presents the existence of a homoclinic orbit in (1.3) in a
range of parameters.
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The model we have studied in this paper is of SIR type, which is applicable for dis
such as measles, AIDS, flu, etc. Our analysis can be adapted to an SI model, which
for sexually transmitted diseases or bacterial infections.
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