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Abstract

An epidemic model with a constant removal rate of infective individuals is proposed to understand
the effect of limited resources for treatment of infectives on the disease spread. It is found that it is
unnecessary to take such a large treatment capacity that endemic equilibria disappear to eradicate the
disease. It is shown that the outcome of disease spread may depend on the position of the initial states
for certain range of parameters. It is also shown that the model undergoes a sequence of bifurcations
including saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation.

0 2003 Elsevier Inc. All rights reserved.

Keywords: Epidemic; Constant removal rate; Bifurcation; Global analysis; Limit cycle

1. Introduction

The asymptotic behavior of epidemic models has been studied by many researchers
(see [1,4-6,8—-11,18,20] and the references cited therein). Periodic oscillations have been
observed in the incidence of many infectious diseases, including measles, mumps, rubella,
chickenpox, and influenza. In some locations, the incidence of some diseases, such as
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chickenpox, mumps, and poliomyelitis, goes up and down every year (see Hethcote and
Levin [8]). Because of the observed periodicity in the incidence of many diseases, there
has been great interest in determining how periodic solutions can arise in epidemiologi-
cal models. Hethcote et al. [9] found that a single population epidemiological model with
bilinear incidence rates, constant population size and constant parameter values can have
periodic solutions if and only if the model is cyclic of SIRS or SEIRS type and individuals
can be “significantly delayed” in the removed class by mechanisms such as a large con-
stant period of temporary immunity. Liu, Hethcote, and Levin [15], Liu, Levin, and Iwasa
[16] proved that the nonlinear incidence rategdf’ S¢ type can lead to periodic solutions

in SIRS models. Lizana and Rivero [17] found that such a model admits codimension 2
bifurcations.

Treatment including isolation or quarantine is an important method to decrease the
spread of diseases such as measles, AIDS, tuberculosis, and flu (Feng and Thieme [7],
Wu and Feng [21], Hyman and Li [12]). In classical epidemic models, the removal rate of
infectives is assumed to be proportional to the number of the infectives. This is unsatisfac-
tory because the resources for treatment should be quite large. In fact, every community
should have a suitable capacity for treatment. If it is too large, the community pays for
unnecessary cost. If it is too small, the community has the risk of the outbreak of the dis-
ease. Thus, it is important to determine a suitable capacity for the treatment of a disease.
In this paper, we suppose that the capacity for the treatment of a disease in a community
is a constant. In order to easily understand its effect, we consider a case that the removal
rate of infectives equals This means that we use the maximal treatment capacity to cure
or isolate infectives so that the disease is eradicated. This can occur if the disease is so
dangerous that we hope to wipe out it quickly, or the disease spreads rapidly so that the
treatment capacity is insufficient for treatment in a period (flu, for example).

The model to be studied takes the following form:

as

—=A—-dS—\SI,

dt

a5 d+y)I —h(I)

dr Y ’

dR

$=V1+h(1)—dR, (1.1)

whereS(t), I (t), andR(¢) denote the numbers of susceptible, infective, and recovered in-
dividuals at time, respectivelyA is the recruitment rate of the populatiehis the natural

death rate of the populatiop,is the natural recovery rate of the infective individuals. We
adopt a bilinear incidence rate in (1.1). A good alternative for this is a modified standard
incidence rate.S1/(S + I) (see [7,21]). In (1.1)k (1) is the removal rate of infective in-
dividuals due to the treatment of infectives. We suppose that the treated infectives become
recovered when they are treated in treatment sites. We also suppose that

r, forlI >0,
0, forl=0,

wherer > 0 is a constant and represents the capacity of treatment for infectives. This
means that we use a constant removal rate for the infectives until the disease disappears.

h(l) = { (1.2)
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Suppose thatS(z), I (¢), R(t)) is a solution of (1.1). IfS(z) > 0, I(¢) > 0, R(¢) > 0O for
0<t <tgandl(tg) =0, itis natural to assume thes(¢), 1(z), R(¢)) satisfies

ds

—=A-dS,

dt

I1(t) =0, fort > 1.
dR

— = —dR,

dt

ConsequentIyRi is positively invariant for system (1.1).

The purpose of this paper is to show that this removal rate has significant effects on the
dynamics of (1.1). We will prove that (1.1) undergoes a sequence of bifurcations including
saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation. We will
also present a global analysis of the model and discuss the existence and nonexistence of
limit cycles. Optimal capacity for treatment can be chosen according to our results. Before
going into any detail, we simplify the model. Since the first two equations are independent
of the third one and its dynamic behavior is trivial wheégrg) = 0 for somerg > 0, it
suffices to consider the first two equations witk 0. Thus, we restrict our attention to the
following reduced model:

ds
—=A-dS—ASI,
dt
dl

It is assumed that all the parameters are positive constants.

The organization of this paper is as follows. In the next section, we study the bifurcations
of (1.3). In Section 3 we present a global analysis of the model. The paper ends with a brief
discussions in Section 4.

2. Bifurcations

In this section, we first consider the equilibria of (1.3) and their local stability. Then we
study the Hopf bifurcation and the Bogdanov—Takens bifurcation of (1.3).

In order to find endemic equilibria of (1.3), we substitSte- A/(d + A I) into AST —
(d+ y)I —r =0 to obtain the quadratic equation

~Ad+IP+ (A —rr—yd —d*)] —rd=0. (2.1)
Set
AA Ar
Ro=—+—, H=—"—.
d(d+y) d(d+y)

Then (2.1) can be written as

)\. 2 r
—I1“—(Rop—1-H)I+ —=0. 2.2
7 (Ro ) +d+y (2.2)
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Ro=AA/(d(d + y)) is the reproduction number of (1.3) in the absence of the removal
rate. It is evident that (2.2) does not have a positive solutidy i€ 1. If Rp > 1, itis easy
to see that (2.2) does not have a positive solution if

(\/R7 - 1)2 <H, (2.3)

admits a positive solution if

(VRo—1)°=H, (2.4)

and has two positive solutions if

(\/R7 — 1)2 > H >0. (2.5)

Thus, (1.3) does not have a positive equilibriumkig < 1 or (2.3) holds. Furthermore,
(2.4) implies that (1.3) has one endemic equilibrium and (2.5) implies that (1.3) has two
endemic equilibria. IVy = S + I, we have

dN1

7=A—r—le—y1<A—r—le.
It follows that positive solutions of (1.3) are bounded. Note that the nonnegativés
repels positive solutions of (1.3) and that there is no equilibrium on the nonnegedixis.
If Ro <1 or (2.3) holds, it follows that (r) becomes 0 in finite time, i.e., the disease
disappears in a finite time.

Now, we propose the following assumption:

(H1) Ro>1and O< H < (v/Ro — 1)2.

Let (H1) hold. Then (1.3) admits two endemic equilibrigj = (S1, I1) and E2 =
(S2, I2), where

d
Ilzﬁ(Ro—l—H—\/(Ro—l—H)2—4H), S1=A/d+ i),

d
I = Z(Ro— 1-H+V(Ro—1— H)2—4H), So=A/(d + ).
Although the endemic equilibria occur under the assumption (H1), we will show that the
disease can disappear in a range of the parameters. This means that it is unnecessary to
increase the removal rateto H > (v/Ro — 1)2 to make the disease disappear. We begin

by analyzing the stability of these two equilibria. The Jacobian matrix of (1.83:atl1)

IS
—d — A1 —A851
J1= .
M1 AS1—d—y

Note thatA —dSy =AS111 = (d + y)I1+r. We haveS; = (A — (d + y)I1 —r)/d. Thus,
we have

det(J1) = —dAS1 +d? + yd + AdI1 + Ay Iy
=—A+20d+y) 1+ Ir+dd+y)
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2\
=d(d+y)[—R0+ 311+H+1i|

=—d(d+y)V(Ro—1— H)2—4H <O.
It follows that(S1, I1) is a saddle point. The Jacobian matrix of (1.3)$t 1) is

—d — Al> —AS2
Jo = .
Mo ASo—d—y

By the same argument, we obtain d&) = d(d + y)\/(Ro —1— H)2—4H > 0. Thus,
(82, I) is a focus, a node, or a center. The stability of this equilibrium is stated in the
following theorem.

Theorem 2.1. Let (H1) hold. Then
() E2isstableif either
AA —3d2—dy — 243y <or (2.6)
or

Ar <AA—3d°—dy —24%/y and

1 40A
Ar < =|20A + (2d d 1- [1+—— )| 2.7
V<2|: +(2d +y)( +)/)< +(y+d)2>:| (2.7)

(i) Eisungableif

Ar <AA—3d°—dy —2d%/y and

1 / 4)0A

Proof. SinceS> = (A — (d +y)I2 —r)/d, we see that the trace d$ is
(2dx + yx)l 2d2 —AA +r)+yd

tr(Jo))=—2d — Ao+ AS2 —y = — p 2 7 (2.9)
Thus, the trace is negative ifi2 — A + ri + yd > 0. Suppose
2d° —AA+r)+yd <O. (2.10)
Let us find the conditions under which{fp) = 0. Set
L dd+y) ( d )
£ +1—Ro+H|.
YT h@d v \d+y °
(2.9) implies that tf./>) = 0 is equivalent to
2d%> — LA +ri+yd
bh=— tratvd _p, (2.11)

A2d +y)
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y

it follows from the definition ofl, that t(J2) = 0 is equivalent to

Dy 2

D2=+/(Ro—1— H)2—4H. (2.12)
Thus, the set of tt/>) = 0 is empty if
HZRo—l—%. (2.13)
14
Suppose
H<R0—1—%. (2.14)
14
Taking squares on both sides of (2.12) and simplifying the resulting equation, we obtain
D32 1%\ + (—3yd — 20A — y? — 2d®)r + AA? —dAy — 2Ad?* = 0. (2.15)
Hence,

—i_Z)\A+(2d+ Yd+y)| 1+ 1+M7A _
2 e o raz) |

In view of (2.10), we have

1] / HA ]

As a consequence, we see that (H1), (2.14) and (2.16) are the necessary and sufficient
conditions for tfJ>) = 0.

Now, we show that is stable if (2.6) is valid. The previous discussions show that the
stability of £, does not change if (2.13) holds. Note that (2.13) is equivalentte 342 —
dy — 2d®/y < rr. By the definitions ofD1 and D2, we have

R e AN ) T 5}
(2.17)
Thus, (2.13) implies thattv2) < 0. ThereforeE> is stable if (2.6) holds.
Notice that
[(Ro—1- H)2—4H] - D= 4 Ds.
d2d +y)?(d +v)

It follows that tr(J2) < 0 if (2.7) is valid and that {/2) > 0 if (2.8) holds. O

Now, we discuss some implications of Theorem 2.1. If we draw the stability region
of the endemic equilibriunEs in the (4, r)-plane by fixingA andy, we see that the
region becomes smaller ddecomes larger. If we draw the stability region of the endemic
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Fig. 1. Stability region of£, whenA =4,y =0.8,d = 0.3.

equilibrium E> in the (1, r)-plane by fixingA andd, we see that the region becomes
smaller ag’ becomes larger. If we draw the stability region of the endemic equilibAym
in the (&, r)-plane by fixingd andy, we see that the region becomes largeAdscomes
larger. Thus, we may say thdtandy destabilize the endemic equilibriuRp and thatA
stabilizes the endemic equilibriuftp. A typical stability region forE2 is shown in Fig. 1.
The region with dashed lines is the stable region and the region between theScamde
the curvel is the unstable regiork, disappears above the curt/e From this figure, we
see that there is & > 0 such that ifs > 1g, E2 undergoes stable state, unstable state and
disappears at last asncreases from 0. This suggests a possibility that (1.3) admits a Hopf
bifurcation.

Let us now verify the existence of a Hopf bifurcationin (1.3) and determine its direction.
Set

h —i 2A+@2d+y)d+y)|1- l—i—4)L7A
T e oz )|

Theorem 2.2. Let (H1) hold. Assume further that
r< [AA—3d2—dy—2d3/y]/A. (2.18)

Thenthereisafamily of unstablelimit cyclesif r islessthan and near Ko, i.e., a subcritical
Hopf bifurcation occurs when r passes through /.

Proof. Suppose = hg. Then ti(J2) = 0. It follows from (2.11) that
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d+ d 1 1 4).A
=" sy 1 ),
A d+y 2 2 da+vy)

d+y 4)0A
S=247Y 14 14 24 )
2= "1 <+ +(d+y)2>

Set

w =+/det() = \/d(d +y)W(Ro—1— H)2—4H.

Then the eigenvalues 0b arei; = wi andiy = —wi.
Perform coordinate transformations by= S — S», y = I — I>. Then system (1.3) be-
comes

d_); =—(d+Arl)x — AS2y — Axy,

d
d—f — Alox + (AS2 —d — y)y + Axy. (2.19)

Settingx = —AS2v, y = wu + (d + AI2)v and using t¢J2) = AS2 — 2d — y — Al =0,
w? =det(Jo) = —dASo + d%2 + yd + Ad > + Ay I, we obtain

du dv

—_— - _— = 2-2

- ov+ f(u,v), = ou + g(u,v), (2.20)
where

F= AV (=AS2 + Ao 4+ d) (wu + dv + L1ov)
a) bl

Using the fact thatS2 — 2d — y — AI> =0, we obtaing = wf/(d + y). If

g=— v(wu +dv+ Abv).

1
n= 1_6[fuuu + Sfuvv + uuv + guvvl

+ ﬁ[fuv(fuu + fov) — &uv(&uu + gvv) — fuuguu + fvvgvv]y

by some tedious calculations, we obtain
A2(=ASo 4+ Ao + d)2(d + AI2)(—3d? — dyd — y2 + % — 2dAIr — 2y A Do)

- 8w?(d +y)? '
Note that—AS2 + Al> +d = —d — y. We have

32(d + 112)(2d* 4 3yd + y? + AS2d + dAS2 + yAlp)

n= 82 >

The conclusion of this theorem follows from [13, Theorem 3.4.2 and formula (3.4.1d)].

0.

As an example, we fid =8,d =01, =1,y = 1. Then(/Ro — 1)%d(d + y) =
6.2338,LA — 3d? — dy — 2d%/y = 7.868 andho = 5.2023 (we always keep 4 decimal
places for a real number in this paper). Then Theorem 2.2 shows that there is an unstable
limit cycle whenr decreases from.8023, which is shown in Fig. 2.

At this time, the local stability of the equilibria of model (1.3) is clear. In order to
determine the global dynamics of the model, we investigate its global bifurcation. Suppose
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Fig. 2. An unstable periodic solution exists whér=8,d =0.1,A=1,y =1,r =5.1.
(H2) Ro > 1andH = (v/Ro— 1)2.
Then (1.3) has one unique positive equilibrigst, 7*) where
d A
I"=—(y/Ro—1), = 2.21
A.( ) d+/Ro ( )
The Jacobian matrix of (1.3) at this point is
o[ —AS*
OZ | At ast—d—y |

Suppose

(H3) VRo=1+d/y.

By (2.21), we have

—+A+d*Ro+ydRo

det(Jo) = —dAS* +d% + yd +rdI* + ryl* =
Furthermore, (H3) implies that

tr(Jo) = —2d — AI* + 18" —y =

d?/Ro+d*Ro— A +yd/Ry _

d+/Ro
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Thus, (H2) and (H3) imply that the Jacobian matrix has a zero eigenvalue with multiplic-
ity 2. This suggests that (1.3) may admit a Bogdanov—Takens bifurcation. We confirm this
by giving the following theorem.

Theorem 2.3. Suppose that (H2) and (H3) hold. Then the equilibrium (S*, I'*) of (1.3)is
a cusp of codimension 2, i.e,, it is a Bogdanov—Takens singul arity.

Proof. Introduce the change of variables= § — §*, y =1 — I'**. Then (1.3) becomes

dx * *
— =—d+AI")x —AS"y — Axy,

dt

dy . *

= =Al"x+ (AS" —d —y)y + rxy. (2.22)
Notice that tfJp) = 0 and detJp) = 0 imply that

d+Al* =18 —d—y, A°S*I"=@OS" —d—y)> (2.23)

LetX =x,Y =—(AS*—d — y)x — (AS* —d — y)2y/(AI*). Then (2.22) becomes

dx 5

o= Y +a11X” +a12XY,

dy )

=7 = @+ y)anX®+ (d +y)a2XY, (2.24)
where

AS —d—y 1
a =, a - -
11 5 12=g

Change the variables one more time by letting X —a12X2/2, y = Y +a11X?, we have

D Piry)

- = X, )

o =y TPy

d

d—f = (d + y)a11x® + ((d + y)aiz + 2a11)xy + Pa(x, y), (2.25)

whereP; are smooth functions ifx, y) at least of the third order.
Note thata;1 > 0 andai2 > 0. It follows from [2,3,19] that (1.3) admits a Bogdanov—
Takens bifurcation. O

In the following, we will find the versal unfolding in terms of the original parameters in
(1.3). In this way, we will know the approximate homoclinic bifurcation curve. We choose
A andr as bifurcation parameters. Fik= dg, . = A9, andy = yp. Let A = Ag+ A1 and
r =ro+ A2, whereis andi, are parameters which vary in a small neighborhood of the
origin.

Suppose that = Ao, d = do, A = Ao, ¥ = yo, andr = ro satisfy (H2) and (H3). Then
by the transformations of = § — §*, y =1 — I'*, (1.3) becomes

dx * *
o= A1 — (do+Aol™)x — AoS™y — Aoxy,
dy

o = ket Aol*x + (hoS™ —do — yo)y + Aoxy. (2.26)
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Note that (H2) and (H3) imply that

_otyw)?® . _ 4§
rovo 20¥0
Now, we transform (2.26) by setting

S*

X =x, Y = A1 — (do+ 2ol*)x — AoS*y — Aoxy.
If we rewrite X, Y asx, y, respectively, by means of (2.27) we obtain

dx _
E =Y,

dy =co+ (—A1+ A2)Aox — ﬂy + Aodox? + c1xy + iy2 + Ri(x, y),
dt S* S*

whereR1(x, y) is a smooth function af andy at least of order three and
co— (do+ y0)(A2yo — dor1 + dok2)
Y0 ’
_ ho(2d§ + Td3yo + 9d3v¢ + 5doyg + v + rovEr)
(do + yo0)* '

Cc1

785

(2.27)

(2.28)

Next, introduce a new time variabteby dr = (1 — x/S*)dt. Rewritingt asz, we

obtain
dx X
- 1—- =),
dt y( S*)
dy X Al 5 1,
Fri <1— §) (Co + (—A1+ A2)Aox — ﬁy + Aodox”© + caixy + Ey
+R1(x,y)).
LetX =x,Y=y(1—x/S* and rename& andY asx andy, we have
dx .
dt =Y,

d—y—c —i—cx—ﬂ + c3x? 4 caxy + Ra(x, y)
gy —Coteaxr—oydes 4xy + Ra(x, y),

whereR>(x, y) is a smooth function af andy at least of order three and
2co — AoA2S* + AoArS*

=

S* ’
_cot+ 20doS*? — 2002 S* + 2101 S*
c3= 52 ,
015*2 + A
=g

Make the change of variable= X + 11/(c4S™) and rewriteX asx, we obtain

(2.29)

(2.30)
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dx _

a7

dy _ 2

I =5+ cex + c3x° + caxy + R3(x, y), (2.31)

whereR3(x, y) is a smooth function af, y, A1, andi; at least of order three and

COCiS*Z + coA1caS* + 6‘3)»% co2caS* + 2c301

g = , cg=—""T—.

> czzlS"‘2 6 c4S8*

Notice thatcs > 0 andc3z > 0 whena; are small. Make the change of variables one
more time by setting

X:cix/cg, Y:ciy/c%, T =c3t/ca

and denoting them hy, vy, ¢, respectively. Then we obtain

dx _
dar Y,
dy 2
o =11+ 12x+x°+xy+ Ra(x, y), (2.32)
whereR4(x, y) is a smooth function af, y, A1, andi2 at least of order three and
4 2
c5C Cc6C
=200 =%
63 C3

By the theorems in Bogdanov [2,3] and Takens [19] or Kuznetsov [14], we obtain the
following local representations of the bifurcation curves in a small neighborhood of the
origin:

Theorem 2.4. Supposethat Ao, do, Ao, y0, and rg satisfy (H2) and (H3). Then (1.3)admits
the following bifurcation behavior:

(1) Thereisasaddle-nodebifurcation curve SN = {(A1, A2): 4cacs = cé +0(] (A1, 22) D).
(2) Thereisa Hopf bifurcation curve H = {(A1, 12): ¢5+ 0(](A1, 12)|?) =0, ce < O}.
(3) Thereisahomoclinicbifurcationcurve HL = {(11, A2): 25¢c3c5+ 6c§ =0(|(A1, 22)|3)}.

Theorem 2.4 gives us a global picture on the dynamical behavior of (1.3) near the de-
generate equilibrium. In order to illustrate the results, let us consider an example. First, we
express the three curves by the original parameters. After some calculations, we obtain the
saddle-node bifurcation curve:

4d§(do + ¥0)?A1 — 4do(do + y0)3r2 + Aoyo(vo + 5do) A3
— 200y0(3y0 + 5do)A1A2 4+ Shoyo(do + )/0))»% + 0()\% + )»%) =0,

the Hopf bifurcation curve:

(do + v0)3do(yo + 2do)*r1 — (do + ¥0)*(yo + 2d0)h2 + royE (vE — 2d3)A2
+ 20 (yo + 2do) (do + yo)Arz + 0(A3 +43) =0,
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and the homoclinic bifurcation curve:
25d2(do + v0)*(yo + 2do)*r1 — 25do(do + 10)3(yo + 2d0)*22
— )o(Byg — 93doyE — 150d5y0 — 76d3) yor?
— 10(62y¢ + 113doyo + 76d3) yo(yo + 2do) Aar2
+ 19.00(y0 + 2d0)?(do + yo)A3 + 0(32 +-13) = .

If dg=0.1,A0=0.2,y9=4.0,Ap = 2.1538,r9 = 0.0013, it is easy to see that= Ay,
d =dop, . = Lo, y = y0, andr = rg satisfy (H2) and (H3). By the previous formulae, we
see that the saddle-node bifurcation curve is

—1.02541 4 42.025,, — 5.4878.2 + 30.4878.112 — 25.003 + 0(A% + 23) =0,
the Hopf bifurcation curve is

~1.025\1 + 42.025., — 0.43112% — 0.4646.112 + 0(A2 + 13) =0,
and the homoclinic bifurcation curve is

—1.0251 4 42.02502 + 2.53443 + 48.221 1112 — 15.242% + 0(2% +23) = 0.

The (11, A2)-plane near the origin is divided into 4 regions by these bifurcation curves,
as shown in Fig. 3. Fix1 > 0 and increas@» from 0. When(i1, A2) lies in the region |
which is below the curvéilL, there is no limit cycle or homoclinic orbit anil, is stable.
When (A1, A2) lies in the region Il which is between the cury¥e and the curveHL, E»
remains stable and there is a unique unstable limit cycle inside which the positive orbits of

0.006 - ,

SN, 7
/
Vv
//
0.004 P M
v s -
Sm -
7 e
0.002 el
///
Lz HL
z= |
-0.15 —0.1 —0.05 0.05 0.1 0.15
Tte—— - ::’/
SN -
- —0.002 -
// H
HL —0.004 -
~0.006 -

Fig. 3. Bifurcation curves and the four typical regions. The horizontal axis i&tkexis and the vertical axis is
the Ao-axis.
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(1.3) tend toE2 ast tends to infinity. Thus, the disease is persistent inside the cycle. When
(A1, A2) liesinthe region Il which is between the curSd and the curved, E1 is a saddle,

E> is an unstable node and the limit cycle disappears. By the results of the next section, we
see that any positive orbit of (1.3) except the two equililiiia E» and the stable manifolds

of E; intersects the positivg-axis in finite time, i.e., the disease becomes extinct in finite
time. When()1, A2) lies in the region IV which is above the cur@l, (1.3) does not have

a positive equilibrium, which implies that any positive orbit of (1.3) meets the positive
S-axis in finite time, and therefore, the disease will disappear. Since the increase of
corresponds to the increase of the removal rathe above discussions indicate that it is
sufficient to increase to the extent wheré> becomes unstable in order to wipe out the
disease.

3. Global analysis

The objective of this section is to study the global structure of (1.3). We always sup-
pose that (H1) holds in this section. If system (1.3) does not have a limit cycle, it is easy
to classify its dynamical behavior. > is unstable, any positive semi-orbit except the
two equilibria and the stable manifolds 8f intersects the positivS-axis in finite time.

A typical phase portraitis shown in Fig. 4.8 is stable, there is a region whose boundary
includes the two stable manifolds &f such that any positive semi-orbit inside this region

4 T

35 F

25 F

05 |

Fig. 4. Extinction of the disease, whe#e=4,d =0.3,y = 0.8, A =0.3, andr = 0.87.
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Fig. 5. Persistence of the disease, whére 4,d = 0.3,y = 0.8, 1 = 0.3, andr = 0.6.

tends toE> asrt tends to infinity and any positive semi-orbit outside this region meets the
positive S-axis in a finite time. A typical phase portrait is shown in Fig. 5.

When (1.3) admits a limit cycle, more complicated dynamical behavior will occur, as is
suggested by the Bogdanov—Takens bifurcation in Section 2. For this reason, we consider
the existence and nonexistence of limit cycles in (1.3).etS — S;, y =1 — I>. Then
(1.3) becomes

dx
— =—(d+ Al2)x —AS2y — Axy,

dt
dy
= =ixy+Alx+ AS2—d —vy)y. (3.2)
SetX = —dx—(d+y)y,Y =x+yand rewriteX, Y asx, y, respectively. (3.1) becomes

d.x 2
o= (=2d —y + Soh — M)x + (—=dy — d* + dSoh — Aoy —d o))y

A r2d + rd(d +

+—x2+ ( y)xy+ ( J/)yz’

14 Y Y
dy
= = 3.2
o= (3.2)

If A=(Ro—1— H)?—4H, itis easy to see that

(=dy — d? +dSon — hlpy —dIo)) = —detJp) = —d(d + y)v/A <0,
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(—2d — y + Sor — o)) =tr(J2).

Make the change of the variables = x, Y = (d(d + y))Y2AY%y, 6 = (d(d +
y)Y2AY4 and rewriteX, Y andé asx, y andt, respectively. System (3.2) becomes

X 2 2
E:—y+8x+lx + mxy + ny*,

dy _
dr
where

X, (3.3)

_ A _
§=(dd+y)) A Y, l:;(d(d+y)) Y2 p-1/4

— A(2d +y) A-Y2
yd(d+y)
Now, we can state the following result.

n=x(dd+y)) 2a ¥4y (3.4)

Theorem 3.1. Let (H1) hold. Then there is no limit cycle in (1.3) if one of the following
holds:

(i) (2.8)holds;
(i) (2.6)isvalid.

Proof. It suffices to prove that (3.3) does not have a limit cycle. First, we suppose that as-
sumption (i) is valid. By the discussions in the proof of Theorem 2.1, we see thgt tr O.
Hences > 0, and thereforeim (I 4+ n) > 0. It follows from [22, Theorem 12.5] that there
is no limit cycle in (3.3).

If the assumption (ii) holds, we transform (3.3) By=mx, ¥ = my to obtain

dX

dt

dy

— =X

dt
Following the proof of Theorem 2.1, we see that the assumption (ii) implies tia} t O.
As a consequence, we havve: 0. Since /m > 0 andn/m > 0, it follows from [22, Lemma
12.1] that there is no limit cycle in (3.5) if

Lo n.2
=—Y+6X+—X"+XY+—-Y°
m m

(3.5)

m
§+—<0. 3.6
+ 5 (3:6)

By (3.4), we see that (3.6) is equivalent to
2d
tr(J) < —%AW. 3.7)

By (2.9) and the definition of,, we see that (3.7) is equivalent to

y(Ro—1—H)—2d <0. (3.8)
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It is easy to verify that (3.8) is equivalent to (2.6). Consequently, there is no limit cycle
in(1.3). O

Now, we know the global structure of (1.3) in almost all the cases. If (2.8) is valid, since
E> is unstable and there is no limit cycle, any orbit except the two endemic equilibria and
the stable manifolds of 1 meets the positiv-axis in finite time, i.e., the disease becomes
extinct in finite time. If the assumption (ii) of Theorem 3.1 holds, since there is no limit
cyclein (1.3) andr; is stable, there is a regiab whose boundary includes the two stable
manifolds of E1 such that any positive orbit inside tends toE> ast tends to infinity and
any positive orbit outsid® intersects the positivg-axis in finite time.

By Theorem 3.1, the significant change of dynamical behavior of (1.3) can only occur
in the case where (2.7) holds. Since a homoclinic orbit is important in determining the
asymptotic behavior of (1.3), we now present a different way to show the existence of a
homoclinic orbitin (1.3) where the homoclinic orbit may not be in a small neighborhood of
a degenerate equilibrium. Choasty, do, 10, Y0, ro) such that (2.18) holds whefi= Ao,

d =do, A= Ao,y = Y0, = rp, and

1 4)0A0
ho= =| 2h0A0 + (2do + v)(do + 1- /1+— ). 3.9
0 2|: 0Ao + (2do + y)(do Vo)( N (y0+d0)2):| (3.9)

We fix d = dg, . = Lo, ¥ = yp and set
( A0Ao 1 Aoro >2 4 Aoro
o=\777—"""=—-"1- - :
do(do + y0) do(do + o) do(do + yo0)
Vary r andA by

AoA A A
r=ro—20, 0 =1+ or + A0+470r . (3.10)
do(do + o) do(do + o) do(do + o)

We can see thal is invariant a® varies. As a consequence, by (3.4) we can sed that
n are invariant ag varies. Furthermore, by (2.9) and the definition/gfwe have

2d
tr(Jp) = %(RO —1—H)—do— %JZ

A 2dp +
1 JAOHL to- 20X 7

do(do+ y0)

It follows that tr(J2) is decreasing, and therefofeis decreasing, asincreases. Now, it is
easy to check that (3.3) is a rotated vector field with respect to paraénéteve increase

6 from O, it follows from Theorem 2.2 that an unstable limit cycle is produced due to Hopf
bifurcation and this limit cycle expands ésncreases. Moreover, (H1) holds @waries
because we have (3.10). Whers increased tag, the equilibriumEq of (1.3) becomes
(A/do, 0) (a disease-free equilibrium) and the equilibridim of (1.3) becomes

do

A
b, So)= —+vAg, —————— ).
(12, 52) (Ao °do(1+¢Ao)>
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SinceEys is globally stable in model (1.3) when= 0, it follows that the trivial equilibrium
(0, 0) of (3.3) is globally stable at this time. Hence, the unstable limit cycle must meet a
homoclinic orbit before® = rg. This means that there exists a homoclinic orbit in the
following system

ds dI

Z:A—dS—)\SI, E:ASI—(d-i-V)I—r,
which is considered in th&? plane. By the form of the above system, a homoclinic orbit
starting from the interior oz“?_",'r cannot meet the nonnegati¥eaxis and the positivé-axis.
This shows that the homoclinic orbit starting from the interioRéjmust lie in the interior
of Ri. Therefore, we can state the following result.

Theorem 3.2. Let (Ao, do, Mo, Y0, ro) satisfy (2.18)and (3.9). Then there exist r < rg and
A which satisfy (3.10)such that (3.3)admits a homoclinic orbit, and therefore, (1.3) hasa
homoclinic orbit.

4, Discussion

In this paper, we have proposed an epidemic model with a constant removal rate of
the infective individuals to understand the effect of the treatment capacity on the disease
transmission. If the parameters satisfy (2.8), Theorems 2.1 and 3.1 imply that the disease
becomes extinct in a finite time because the endemic equilibAgiis unstable and there
is no limit cycle in (1.3). Thus, it is unnecessary to take such a large treatment capacity that
the endemic equilibria disappear to eradicate the disease. If the parameters satisfy (2.6),
there is a region such that the number of infectives tends tbthe initial position lies
in the region and the disease dies out if the initial position lies outside this region. If the
parameters satisfy (2.7), the disease is persistent if the initial position lies in the region and
the disease becomes extinct if the initial position lies outside this region. Since the eventual
behavior is related to the initial positions, this model may be more realistic and useful.

We have shown that the model exhibits Bogdanov—Takens bifurcations, i.e., there are
saddle-node bifurcation, subcritical Hopf bifurcation, and homoclinic bifurcation in the
system, even though the incidence rate is bilinear. Since the model is globally stable in
the absence of the removal rate, this suggests that a constant removal rate of the infectives
induces the periodic oscillations of diseases. In contrast, the previous studies show that
periodic coefficients, corresponding to periodic environment, time delays and nonlinear
incidence rates g8 17 59 type are the causes of periodicity of diseases.

By carrying out the bifurcation analysis, we have obtained a clear picture about the dy-
namic behavior of the model near the degenerate equilibrium and obtained the approximate
homoclinic bifurcation curve. We have also carried out a global qualitative analysis of the
model. The result on the nonexistence of a limit cycle in (1.3) gives us the global structure
of the model and indicates that complicated behavior of the model can only occur when
(2.7) holds. Theorem 3.2 presents the existence of a homoclinic orbit in (1.3) in a large
range of parameters.
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The model we have studied in this paper is of SIR type, which is applicable for diseases
such as measles, AIDS, flu, etc. Our analysis can be adapted to an SI model, which is used
for sexually transmitted diseases or bacterial infections.
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