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Abstract. This paper is concerned with the following two-species Lotka-

Volterra competition-diffusion system in the three-dimensional spatial space{ ∂
∂t

u1(x, t) = ∆u1(x, t) + u1(x, t) [1− u1(x, t)− k1u2(x, t)] ,
∂
∂t

u2(x, t) = d∆u2(x, t) + ru2(x, t) [1− u2(x, t)− k2u1(x, t)] ,

where x ∈ R3 and t > 0. For the bistable case, namely k1, k2 > 1, it is well
known that the system admits a one-dimensional monotone traveling front

Φ(x + ct) = (Φ1(x + ct),Φ2(x + ct)) connecting two stable equilibria Eu =

(1, 0) and Ev = (0, 1), where c ∈ R is the unique wave speed. Recently, two-
dimensional V-shaped fronts and high-dimensional pyramidal traveling fronts

have been studied under the assumption that c > 0. In this paper it is shown

that for any s > c > 0, the system admits axisymmetric traveling fronts

Ψ(x′, x3 + st) =
(
Φ1(x′, x3 + st),Φ2(x′, x3 + st)

)
in R3 connecting Eu = (1, 0) and Ev = (0, 1), where x′ ∈ R2. Here an
axisymmetric traveling front means a traveling front which is axially symmetric

with respect to the x3-axis. Moreover, some important qualitative properties of

the axisymmetric traveling fronts are given. When s tends to c, it is proven that
the axisymmetric traveling fronts converge locally uniformly to planar traveling

wave fronts in R3. The existence of axisymmetric traveling fronts is obtained
by constructing a sequence of pyramidal traveling fronts and taking its limit.
The qualitative properties are established by using the comparison principle

and appealing to the asymptotic speed of propagation for the resulting system.

Finally, the nonexistence of axisymmetric traveling fronts with concave/convex
level sets is discussed.
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1. Introduction. In this paper we study the existence of traveling wave solu-
tions in the following two-species Lotka-Volterra competition-diffusion system in
the three-dimensional spatial space:{

∂
∂tu1(x, t) = ∆u1(x, t) + u1(x, t) [1− u1(x, t)− k1u2(x, t)] ,
∂
∂tu2(x, t) = d∆u2(x, t) + ru2(x, t) [1− u2(x, t)− k2u1(x, t)] ,

x ∈ R3, t > 0,

(1)
where k1, k2, r and d are positive constants, the variables u1(x, t) and u2(x, t) are
the population densities of two competing species. In the field of population biology
the Lotka-Volterra competition system is known as a physiological model describing
competing interactions of multiple species. The related kinetic system of (1) is as
follows: {

d
dtu1(t) = u1(t) [1− u1(t)− k1u2(t)] ,
d
dtu2(t) = ru2(t) [1− u2(t)− k2u1(t)] ,

t > 0. (2)

We note that systems (1) and (2) are normalized so that they have the equilibrium
solutions Eu = (1, 0) and Ev = (0, 1). Obviously, E0 = (0, 0) is also an equilibrium
of systems (1) and (2). When k1, k2 < 1 or k1, k2 > 1, there exists the fourth
equilibrium (co-existence state) E∗ = (E∗,1, E∗,2), where

E∗,1 =
k1 − 1

k1k2 − 1
, E∗,2 =

k2 − 1

k1k2 − 1
.

In general, the species u1 is called a strong (weak, resp.) competitor if k2 > 1
(k2 < 1, resp.). For the case 0 < k1 < 1 < k2 (or 0 < k2 < 1 < k1), one species is
superior than the other. In this case, there is only one stable equilibrium and it is
called the monostable case. For the case k1, k2 > 1, both Eu and Ev are stable and
it is called the bistable (strong competition) case. We call the case when k1, k2 < 1
the weak competition (coexistence) case. See Guo and Wu [16] and Morita and
Tachibana [38].

Traveling wave solutions of (1) in the one-dimensional spatial space have been
extensively studied in the literature. We refer to a nice survey by Guo and Wu
[16], see also Li et al. [33], Lin and Li [35], Morita and Tachibana [38], Zhao and
Ruan [58] and the references therein. In this paper we are interested in the bistable
case (or the strong competition case), namely, k1, k2 > 1. As mentioned above,
in this case both Eu and Ev are stable. Following from Conley and Gardner [8],
Gardner [12], Kan-on [28], Kan-on and Fang [31], and Volpert et al. [51], we know
that in the bistable case system (1) admits a one-dimensional traveling wave front
Φ (x+ ct) = (Φ1 (x+ ct) ,Φ2 (x+ ct)) connecting Ev and Eu, where x ∈ R, t > 0,
and the wave speed c ∈ R. The traveling wave front Φ (ξ) = (Φ1 (ξ) ,Φ2 (ξ)) with
ξ = x + ct is unique up to translation and satisfies Φ′1 (ξ) > 0 and Φ′2 (ξ) < 0 for
any ξ ∈ R. In particular, the wave speed c is also unique. It should be pointed
out that though the existence of traveling wave fronts is well known, there are few
conclusions on the sign of the wave speed c of traveling wave solutions of (1) in
the bistable case since it is difficult to determine the sign of c. Recently, Guo and
Lin [15] gave some sufficient criteria about the sign of the wave speed under some
parameter restrictions by using the result of Kan-on [28] (see also Alcahrani et al.
[1] for the sign of wave speed for near-degenerate bistable competition models).
For the positive stationary solutions in the bistable case, we refer to Kan-on [30]
for the instability of stationary solutions and Kan-on [29] for the standing waves.
Other than traveling wave solutions, there are solutions with two fronts approaching
each other from both ends of the real line, which are called entire solutions and
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are constructed by Morita and Tachibana [38]. Here an entire solution means a
solution defined for all t ∈ R. Moreover, we refer to Guo and Wu [17] for a two-
component lattice dynamical system derived from strong competition models and
Lin and Li [35] for a Lotka-Volterra competition-diffusion system with nonlocal
delays, respectively.

The above results on the existence of traveling wave solutions of (1) are only
about one-dimensional traveling wave solutions (or planar traveling wave solutions
in high-dimensional spaces). However, it is observed that in high-dimensional spaces
propagating wave fronts may change shape and evolve to new nonplanar traveling
waves. Therefore, it is interesting but challenging to study possible nonplanar trav-
eling waves. In the past decade, multi-dimensional traveling fronts have attracted
a lot of attention and new types of nonplanar traveling waves have been obtained
for the scalar reaction-diffusion equation

∂

∂t
u(x, t) = d∆u(x, t) + f(u(x, t)), x ∈ Rm, t > 0 (3)

with various nonlinearities. For the combustion nonlinearity, see Bonnet and Hamel
[3], Hamel and Monneau [18], Hamel et al. [19] and Wang and Bu [54]. For the
monostable case, see Brazhnik and Tyson [4], Bu and Wang [5], Hamel and Roque-
joffre [22], Huang [27] and Wang and Bu [54]. For the bistable case (in particular the
Allen-Cahn equation), see Fife [11], Hamel et al. [20, 21], Ninomiya and Taniguchi
[40, 41] and Gui [14] for V-form front solutions with m = 2, Chen et al. [7], Hamel
et al. [20, 21] and Taniguchi [49] for cylindrically symmetric traveling fronts with
m ≥ 3, and Taniguchi [47, 48, 49] and Kurokawa and Taniguchi [32] for travel-
ing fronts with pyramidal shapes with m ≥ 3. For traveling fronts with V-shape,
pyramidal shape and conical shape for a bistable reaction-diffusion equation with
time-periodic nonlinearity, we refer to Wang and Wu [56], Sheng et al. [45] and
Wang [53], respectively. For non-connected traveling fronts and non-convex travel-
ing fronts, we refer to del Pino et al. [42, 43]. See also a survey by Witelski et al.
[57] on axisymmetric traveling waves of semi-linear elliptic equations. Other related
works can be found in Chapuisat [6], El Smaily et al. [10], Fife [11], Hamel and
Roquejoffre [23], and Morita and Ninomiya [37].

Recently, there have been important progresses on the study of nonplanar trav-
eling wave solutions in systems of reaction-diffusion equations. By using bifurcation
theory, Haragus and Scheel [24, 25, 26] studied almost planar waves (V-form waves)
in reaction-diffusion systems in which the interface region is close to hyperplanes
(the angle of the interface is close to π). By developing the arguments of Ninomiya
and Taniguchi [40, 41], Wang [52] established the existence and stability of two-
dimensional V-form curved fronts for bistable reaction-diffusion systems for any
admissible wave speed. In particular, the result of Wang [52] are applicable to sys-
tem (1) with k1, k2 > 1 in R2. Furthermore, the existence, uniqueness and stability
of pyramidal traveling fronts of bistable reaction-diffusion systems in R3 were es-
tablished in Wang et al. [55] by extending the arguments of Taniguchi [47, 48]. The
result of [55] is also applicable to system (1) with k1, k2 > 1 in R3. At the same
time, Ni and Taniguchi [39] also established the existence of pyramidal traveling
fronts of (1) with k1, k2 > 1 in Rm (m ≥ 3). We refer to [55, 39] and the next
section for details on the pyramidal traveling fronts of (1).

In this paper we are interested in the axisymmetric traveling wave solutions of
(1) with k1, k2 > 1 in x ∈ R3. Though axisymmetric traveling wave solutions in
scalar bistable reaction-diffusion equations have been studied before (see Hamel et
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al. [20, 21] and Taniguchi [49]), here we would like to emphasize that there is no
result about the axisymmetric traveling wave solutions of bistable reaction-diffusion
systems in R3 up to now (according to our best knowledge). The purpose of the
current paper is to establish the existence of axisymmetric traveling fronts with wave
speed s > c > 0 for (1) in R3 and to show some important qualitative properties
of the axisymmetric traveling fronts. In addition, we will show the nonexistence of
axisymmetric traveling fronts. Now we state the main results of this paper.

Theorem 1.1. Assume that k1, k2 > 1 and c > 0, where c is the wave speed of the
planar traveling wave front Φ (x · e + ct) = (Φ1 (x · e + ct) ,Φ2 (x · e + ct)) of (1)
with Φ (−∞) = Ev, Φ (+∞) = Eu, e ∈ R3 and |e| = 1. Then for any s > c, there
exists a function Ψ(x) = (Ψ1(x),Ψ2(x)) ∈ C2

(
R3
)

satisfying{
∆Ψ1(x)− s ∂

∂x3
Ψ1(x) + Ψ1(x) [1−Ψ1(x)− k1Ψ2(x)] = 0,

d∆Ψ2(x)− s ∂
∂x3

Ψ2(x) + rΨ2(x) [1−Ψ2(x)− k2Ψ1(x)] = 0,
x ∈ R3. (4)

In addition, one has
(i) Ψ (x′1, x3) = Ψ (x′2, x3), ∀ x′1,x

′
2 ∈ R2 with |x′1| = |x′2|, x3 ∈ R;

(ii) for any (x′0, x
′
3) ∈ R2 × R with x′3 ≥ m∗ |x′0|,

Ψ1(x′ + x′0, x3) ≤ Ψ1(x′, x3 + x′3), ∀ (x′, x3) ∈ R2 × R

and

Ψ2(x′ + x′0, x3) ≥ Ψ2(x′, x3 + x′3), ∀ (x′, x3) ∈ R2 × R,

where m∗ =
√

s2−c2
c ;

(iii) ∂
∂x3

Ψ1 (x) > 0 and ∂
∂x3

Ψ2 (x) < 0 for any x ∈ R3;

(iv) ∂
∂xi

Ψ1 (x) > 0 on xi ∈ (0,∞), ∂
∂xi

Ψ2 (x) < 0 on xi ∈ (0,∞), i = 1, 2;

(v) limx3→+∞ ‖Ψ(·, x3)−Eu‖C(R2) = 0 and limx3→−∞ ‖Ψ(·, x3)−Ev‖Cloc(R2) = 0;

(vi) ∂
∂νΨ1 (x) > 0 and ∂

∂νΨ2 (x) < 0 for any x ∈ R3, where

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1)

satisfies
√
ν2

1 + ν2
2 ≤ 1

m∗
.

We call the function Ψ(x) satisfing (i)-(v) of Theorem 1.1 an axisymmetric trav-
eling front of (1). As stated previously, it is difficult to determine the sign of the
wave speed c of traveling wave solutions of (1) with k1, k2 > 1. For the reader’s
convenience, here we recall some sufficient conditions from Guo and Lin [15] to
ensure c > 0. That is, c > 0 if one of the following conditions holds:

1) r = d and k2 > k1 > 1;

2) r < d, k1 > 1 and k2 ≥
(
d
r

)2
k1;

3) r = d
4 , k2 ≥ 4

3 and 1 < k1 ≤ 5
4 except (k1, k2) =

(
5
4 ,

4
3

)
.

In the following we evaluate the limits of the axisymmetric traveling front Ψ(x)
with speed s > c as s→ c and the nonexistence of axisymmetric traveling fronts.

Theorem 1.2. Let s > c and denote Ψ(x) defined in Theorem 1.1 by Ψs(x). Let
Ψs

2(0) = Φ2(0). Then one has

lim
s→c
‖Ψs(x)−Φ(x3)‖C2

loc(R3) = 0.



AXISYMMETRIC TRAVELING FRONTS IN L-V COMPETITION SYSTEMS 1115

Theorem 1.3. For s > c, there is no axisymmetric traveling front Ψ(x) of (1)
satisfying (4), limx3→+∞Ψ(0, x3) = Eu, limx3→−∞Ψ(0, x3) = Ev and

∂2

∂x2
i

Ψ1(x)

∣∣∣∣
x′=0

≤ 0,
∂2

∂x2
i

Ψ2(x)

∣∣∣∣
x′=0

≥ 0,
∂

∂x3
Ψ1(x) ≥ 0,

∂

∂x3
Ψ2(x) ≤ 0,

where i = 1, 2.

Theorem 1.4. For s < c, there is no axisymmetric traveling front Ψ(x) of (1)
satisfying (4), limx3→+∞Ψ(0, x3) = Eu, limx3→−∞Ψ(0, x3) = Ev and

∂2

∂x2
i

Ψ1(x)

∣∣∣∣
x′=0

≥ 0,
∂2

∂x2
i

Ψ2(x)

∣∣∣∣
x′=0

≤ 0,
∂

∂x3
Ψ1(x) ≥ 0,

∂

∂x3
Ψ2(x) ≤ 0,

where i = 1, 2.

The result of Theorem 1.3 corresponds to Remark 1.7 of Hamel et al. [20] for the
scalar bistable equation, see also Hamel and Monneau [18, Theorems 1.1 and 1.6]
for the combustion equation. As reported by Hamel et al. [20], in the terminology
of Haragus and Scheel [25], there is no exterior corner for system (1), while the
solutions given in Theorem 1.1 are interior corners. Theorem 1.4 further implies
that there must be s > c for an interior corner. See also Haragus and Scheel [25,
Theorem 1.1].

In this paper we prove Theorems 1.1-1.4 by using the results of Wang et al. [55]
and Ni and Taniguchi [39] on the pyramidal traveling fronts of (1). Set u∗2 = 1−u2

and transform system (1) into (for the sake of simplicity, we drop the symbol ∗){
∂
∂tu1 = ∆u1 + u1(x, t) [1− k1 − u1(x, t) + k1u2(x, t)] ,
∂
∂tu2 = d∆u2 + r (1− u2(x, t)) [k2u1(x, t)− u2(x, t)] ,

x ∈ R3, t > 0. (5)

Correspondingly, the equilibria Eu = (1, 0), Ev = (0, 1), E0 = (0, 0) and E∗ =
(E∗,1, E∗,2) become E1 = (1, 1), E0 = (0, 0), Ev = (0, 1) and E∗ = (E∗1 , E

∗
2 ),

respectively, where

E∗1 =
k1 − 1

k1k2 − 1
, E∗2 =

k2(k1 − 1)

k1k2 − 1
.

Let U1 (ξ) = Φ1 (ξ) and U2 (ξ) = 1 − Φ2 (ξ). Then U (ξ) = (U1 (ξ) , U2 (ξ)) is a
traveling wave front of (5) connecting E1 = (1, 1) and E0 = (0, 0), where ξ = x·e+ct,
e ∈ R3 with |e| = 1. In particular, U(−∞) = E0, U(+∞) = E1, U ′1 (ξ) > 0 and
U ′2 (ξ) > 0 for any ξ ∈ R. To complete the proof of Theorem 1.1, we need only to
prove that there exists an axisymmetric traveling front W(x) of (5) satisfying (14)
and (ii)-(vii) of Theorem 3.1 in Section 3. In order to obtain such a function W(x),
we use the results of Wang et al. [55] to construct a sequence of pyramidal traveling
fronts of (5), and then take a limit for the sequence of pyramidal traveling fronts.
Thus, the limit function is just the expected solution. This step is similar to that
in Taniguchi [49]. However, due to the effect of the coupled nonlinearity, we cannot
use the arguments of Taniguchi [49] and Hamel et al. [20] to prove qualitative
properties of the axisymmetric traveling front W(x) (namely (ii)-(vii) of Theorem
3.1). Therefore, in this paper we develop a new method to show (ii)-(vii) of Theorem
3.1 in Section 3, where a crucial procedure is to use the comparison principle and
appeal to the spreading speed of solutions of the resulting equations (systems).
The proof of Theorem 1.2 can be completed by using the result of Theorem 1.1.
In Section 4, we prove Theorems 1.3 and 1.4, which imply the nonexistence of
axisymmetric traveling fronts. Before giving the proofs of Theorems 1.1-1.4, we first
show the existence results and some qualitative properties of pyramidal traveling
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fronts of (5) in Section 2. In Section 5, we give the proofs of two important lemmas,
which are listed in Section 4. Finally, in Section 6 we give a discussion on the
obtained results of this paper.

2. Preliminaries. In this section we state the existence results on the pyramidal
traveling fronts of (5) in R3, which has been established by Ni and Taniguchi [39] and
Wang et al. [55]. Then we show some properties of the pyramidal traveling fronts
which are very important to establish the axisymmetric traveling wave solutions in
next section. Suppose k1, k2 > 1. Let U(x · e + ct) = (U1(x · e + ct), U2(x · e + ct))
be the planar traveling wave front of (5) connecting E0 and E1. Assume c > 0.

For two vectors c = (c1, c2) and d = (d1, d2), the symbol c� d means ci < di for
each i = 1, 2 and c ≤ d means ci ≤ di for each i = 1, 2. The interval [c,d] denotes

the set of q ∈R2 with c ≤ q ≤ d. For c = (c1, c2), we denote |c| =
√
c21 + c22. For

any u ∈ BC
(
R3,R2

)
, we define

‖u‖C(R3) = sup
x∈R3

|u(x)| ,

where BC
(
R3,R2

)
denotes the set of bounded and continuous functions defined on

R3. Fix s > c > 0. Assume that the solutions travel towards the −x3 direction
without loss of generality. Take

u (x, t) = v (x′, x3 + st, t) , x′ = (x1, x2) , x = (x′, x3) = (x1, x2, x3) .

Then we have the following initial value problem
∂
∂tv1(x, t) = ∆v1(x, t)− s ∂

∂x3
v1(x, t) + v1(x, t) [1− k1 − v1(x, t) + k1v2(x, t)] ,

∂
∂tv2(x, t) = d∆v2(x, t)− s ∂

∂x3
v2(x, t) + r (1− v2(x, t)) [k2v1(x, t)− v2(x, t)] ,

v1(x, 0) = v0
1(x), v2(x, 0) = v0

2(x),
(6)

where x ∈ R3, t > 0.
Let n ≥ 3 be a given integer and

m∗ =

√
s2 − c2
c

.

Let {Aj = (Aj , Bj)}nj=1 be a set of unit vectors in R2 such that

AjBj+1 −Aj+1Bj > 0, j = 1, 2, · · · , n− 1; AnB1 −A1Bn > 0.

Now (m∗Aj , 1) ∈ R3 is the normal vector of
{

x ∈ R3
∣∣− x3 = m∗ (Aj ,x

′)
}

. Set

hj (x′) = m∗ (Aj ,x
′) and h (x′) = max

1≤j≤n
hj (x′) = m∗ max

1≤j≤n
(Aj ,x

′)

for x′ ∈ R2. We call
{

x = (x′, x3) ∈ R3
∣∣− x3 = h (x′)

}
a 3-dimensional

pyramid in R3. Letting

Ωj =
{

x′ ∈ R2
∣∣h (x′) = hj (x′)

}
for j = 1, · · · , n, we have R2 = ∪nj=1Ωj . Denote the boundary of Ωj by ∂Ωj . Let

E = ∪nj=1∂Ωj .

Now we set

Sj =
{

x ∈ R3
∣∣− x3 = hj (x′) for x′ ∈ Ωj

}
for j = 1, · · · , n, and call ∪nj=1Sj ⊂ R3 the lateral faces of the pyramid. Put

Γj = Sj ∩ Sj+1, Γn = Sn ∩ S1, j = 1, · · · , n− 1.
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Then Γ := ∪nj=1Γj represents the set of all edges of a pyramid. Define

v− (x) = U
( c
s

(x3 + h (x′))
)

= max
1≤j≤n

U
( c
s

(x3 + hj (x′))
)
.

Define
D (γ) =

{
x ∈ R3

∣∣ dist
(
x,∪nj=1Γj

)
> γ

}
for γ > 0.

Let v (x, t; v−) = (v1 (x, t; v−) , v2 (x, t; v−)) be the solution of (6) with v0 = v−.
Then there exists a function V(x) ∈ C2

(
R3
)

such that

V(x) = lim
t→∞

v
(
x, t; v−

)
.

The following theorem is obtained by Wang et al. [55, Theorem 1.1], see also Ni
and Taniguchi [39].

Theorem 2.1. For each s > c > 0, there exists a solution u(x, t) = V(x′, x3 + st)
of (5) satisfying V(x) > v−(x), limγ→∞ supx∈D(γ) |V(x)− v−(x)| = 0 and{

∆V1 − s ∂
∂x3

V1 + V1(x) [1− k1 − V1(x) + k1V2(x)] = 0,

d∆V2 − s ∂
∂x3

V2 + r (1− V2(x)) [k2V1(x)− V2(x)] = 0,
x ∈ R3. (7)

Moreover, for any u0 ∈ C
(
R3,RN

)
with u0(x) ∈

[
E0,E1

]
for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

|u0(x)−V(x)| = 0, (8)

the solution u(x, t; u0) of (5) with initial value u0 satisfies

lim
t→∞

∥∥u(·, ·, t; u0)−V(·, ·+ st)
∥∥
C(R3)

= 0. (9)

The next two lemmas show the monotonicity of the pyramidal traveling front V.

Lemma 2.2. For any (x0, y0, z0) ∈ R3 with z0 ≥ h(x0, y0), one has

V(x1 + x0, x2 + y0, x3) ≤ V(x1, x2, x3 + z0) for any (x1, x2, x3) ∈ R3.

Lemma 2.3. Let

ν =
1√

1 + ν2
1 + ν2

2

 ν1

ν2

1


be a given constant vector with

√
ν2

1 + ν2
2 ≤ 1

m∗
. Then one has

∂

∂ν
V(x)� 0, ∀ x ∈ R3.

The proofs of the above lemmas are similar to those of Taniguchi [49, Lemma
2.5] and Taniguchi [49, Lemma 3.4], respectively. Here we omit them.

It follows from Lemma 2.3 that ∂
∂x3

V(x) � 0 for any x ∈ R3. In the following

we further show that if the initial value v0 is even in x1, then the solution v(x, t; v0)
is also even in x1. Furthermore, if v0 is nondecreasing in x1 ≥ 0, then the solution
v(x, t; v0) is also nondecreasing in x1 ≥ 0. Here we use a method which is different
from that in Taniguchi [49, Lemma 3.5].

Lemma 2.4. Assume that f (x) ∈ BC ([0,∞) ,R) is nondecreasing. Then the
function

F (x, t) =
1√

4πkt

∫ ∞
0

(
e− (x−y)2/4kt + e− (x+y)2/4kt

)
f(y)dy, x ≥ 0, t > 0

is nondecreasing on x ∈ [0,∞), where k > 0.



1118 ZHI-CHENG WANG, HUI-LING NIU AND SHIGUI RUAN

Proof. Let ε > 0. We show that F (x+ ε, t)− F (x, t) ≥ 0. We have

F (x+ ε, t)− F (x, t)

=
1√

4πkt

∫ ∞
0

(
e− ((x+ε)−y)2/4kt + e− ((x+ε)+y)2/4kt

)
f(y)dy

− 1√
4πkt

∫ ∞
0

(
e− (x−y)2/4kt + e− (x+y)2/4kt

)
f(y)dy

=
1√

4πkt

∫ x+ε

−∞
e−y

2/4ktf ((x+ ε)− y) dy

+
1√

4πkt

∫ ∞
x+ε

e−y
2/4ktf (y − (x+ ε)) dy

− 1√
4πkt

∫ x

−∞
e−y

2/4ktf (x− y) dy − 1√
4πkt

∫ ∞
x

e−y
2/4ktf (y − x) dy

=
1√

4πkt

∫ x

−∞
e−y

2/4kt [f ((x+ ε)− y)− f (x− y)] dy

+
1√

4πkt

∫ ∞
x+ε

e−y
2/4kt [f (y − (x+ ε))− f (y − x)] dy

+
1√

4πkt

∫ x+ε

x

e−y
2/4kt [f ((x+ ε)− y)− f (y − x)] dy.

By direct calculations, we have

1√
4πkt

∫ x

−∞
e−y

2/4kt [f ((x+ ε)− y)− f (x− y)] dy

=
1√

4πkt

∫ ∞
0

e− (x−y)2/4kt [f (ε+ y)− f (y)] dy,

1√
4πkt

∫ ∞
x+ε

e−y
2/4kt [f (y − (x+ ε))− f (y − x)] dy

= − 1√
4πkt

∫ ∞
0

e− (x+ε+y)2/4kt [f (ε+ y)− f (y)] dy

and

1√
4πkt

∫ x+ε

x

e−y
2/4kt [f ((x+ ε)− y)− f (y − x)] dy

=
1√

4πkt

∫ x+ ε
2

x

e−y
2/4kt [f ((x+ ε)− y)− f (y − x)] dy

+
1√

4πkt

∫ x+ε

x+ ε
2

e−y
2/4kt [f ((x+ ε)− y)− f (y − x)] dy

=
1√

4πkt

∫ ε
2

0

e− (x+y)2/4kt [f (ε− y)− f (y)] dy

− 1√
4πkt

∫ ε
2

0

e− (x+ε−y)2/4kt [f (ε− y)− f (y)] dy

=
1√

4πkt

∫ ε
2

0

(
e− (x+y)2/4kt − e− (x+ε−y)2/4kt

)
[f (ε− y)− f (y)] dy.



AXISYMMETRIC TRAVELING FRONTS IN L-V COMPETITION SYSTEMS 1119

In view of x ≥ 0, we obtain

F (x+ ε, t)− F (x, t)

=
1√

4πkt

∫ ∞
0

(
e− (x−y)2/4kt − e− (x+ε+y)2/4kt

)
[f (ε+ y)− f (y)] dy

+
1√

4πkt

∫ ε
2

0

(
e− (x+y)2/4kt − e− (x+ε−y)2/4kt

)
[f (ε− y)− f (y)] dy

≥ 0.

This completes the proof.

Lemma 2.5. Assume that v0 (x) ∈ C
(
R3,

[
E0,E1

])
is even in x1, uniformly con-

tinuous in x ∈ R3, and nondecreasing in x1 ∈ [0,∞). Then there exists a unique
solution v (x, t) ∈ C

(
R3 × [0,∞) ,

[
E0,E1

])⋂
C2,1

(
R3 × (0,∞) ,

[
E0,E1

])
of (6)

such that v (x, t) is even in x1 and nondecreasing in x1 ∈ [0,∞).

Proof. The proof is divided into three steps.
Step 1. Let X = BUC

(
R3,R2

)
with norm ‖·‖C(R3,R2), where BUC

(
R3,R2

)
denotes the set of bounded and uniformly continuous functions defined on R3. De-
fine

T (t) =

(
Γ (t) 0
0 Γ (dt)

)
by T (t) u =diag(Γ (t)u1,Γ (dt)u2) for u (x) ∈ X, where

Γ (t)u (x) =

∫∫∫
R3

1(√
4πt
)3 e− (x1−x)

2+(x2−y)
2+(x3−z)

2

4t u (x, y, z) dxdydz.

By results in Daners and McLeod [9] we know that T (t) is a strongly continuous
analytic semigroup of contractions on X which is generated by D∆X , where D =(

1 0
0 d

)
and ∆X is the X-realisation of ∆. In particular, for any u (x) ∈ X we

have

T (t) u→ u as t→ 0+ in X. (10)

We identify an element w ∈ C([0,∞), X) as a function from R3 × [0,∞) to R2

defined by w(x, t) = w(t)(x). Let

S∞ =

w (t) ∈ C ([0,∞) , X)

∣∣∣∣∣∣
w (0) = v0, E0 ≤ w(x, t) ≤ E1,∀x ∈ R3, t > 0;

w (x, t) is nondecreasing in x1 ∈ [0,∞) ;
w (x, t) is even in x1 ∈ R.

 .

For any w (t) ∈ S∞, consider the following initial-valued problem
∂
∂tu1 −∆u1 +M1u1 = M1w1 + f1 (w1, w2) ,
∂
∂tu2 − d∆u2 +M2u2 = M2w2 + f2 (w1, w2) ,
u1(0) = v0

1 , u2(0) = v0
2 ,

(11)

where f1 (w1, w2) = w1 (1− k1 − w1 + k1w2), f2 (w1, w2) = r (1− w2) (k2w1 − w2),
the positive constants M1 and M2 are large enough so that Miwi + fi (w1, w2)
are nondecreasing on wi in

[
E0,E1

]
, i = 1, 2. The existence and uniqueness of

solutions of (11) are well known. In particular, the solution u (x, t) of (11) satisfies
the following integral equation

u (t) = e−MtT (t) v0 +

∫ t

0

e−M(t−s)T (t− s) H (w (s)) ds,
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where e−Mt=diag
(
e−M1t, e−M2t

)
, H (w) =

(
H1 (w) , H2 (w)

)
and

Hi (w) = Miwi+fi (w) .

Since Hi (w) are nondecreasing on wj(j = 1, 2), it is easy to show that

E0 ≤ u (x, t) ≤ E1, ∀x ∈ R3, t > 0.

By virtue of (10), we further obtain that u (t) ∈ C ([0,∞) , X).
In view of the evenness of v0 (x) and w (x, t) in x1, we know that the solution

u (x, t) of (11) is also even on x1 ∈ R. In particular, we have

∂

∂x1
u (0, x2, x3, t) = 0, ∀ (x2, x3) ∈ R2, t > 0.

Consequently, we have that the solution u (x, t) of (11) satisfies the following para-
bolic problem

∂
∂tu1 −∆u1 +M1u1 = M1w1 + w1 [1− k1 − w1 + k1w2] , x ∈ Ω, t > 0,
∂
∂tu2 − d∆u2 +M2u2 = M2w2 + r (1− w2) [k2w1 − w2] , x ∈ Ω, t > 0,
∂
∂nu1(x) = ∂

∂nu2(x) = 0, x ∈ ∂Ω, t > 0,
u1(x, 0) = v0

1(x), u2(x, 0) = v0
2(x), x ∈ Ω,

(12)

where Ω =
{
x ∈ R3, x1 > 0

}
, ∂
∂n denotes the outside normal derivative. It is known

that the solution u(x, t) = (u1(x, t), u2(x, t)) of (12) satisfies the following integral
equation

ui (x, t) = e−Mit

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

1(√
4πDit

)3 e− (x2−y)
2+(x3−z)

2

4Dit

×
(
e
− (x1−x)

2

4Dit + e
− (x1+x)2

4Dit

)
v0
i (x, y, z) dxdydz

+

∫ t

0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

e−Mi(t−s)(√
4πDi (t− s)

)3 e
− (x2−y)

2+(x3−z)
2

4Di(t−s)

×
(
e
− (x1−x)

2

4Di(t−s) + e
− (x1+x)2

4Di(t−s)

)
Hi (w (x, y, z, s)) dxdydzds,

where i = 1, 2. By the uniqueness of solutions of (12), we have u (x, t) ≡ u (x, t)
on Ω × [0,∞). Following Lemma 2.4, we know that the solution u (x, t) of (11) is
nondecreasing on x1 ∈ (0,∞). Define an operator A by u (t) = Aw (t). Then we
know that A maps S∞ into S∞.

Step 2. Fix T0 > 0. Denote

ST0 =

w (t) ∈ C ([0, T0] , X)

∣∣∣∣∣∣∣∣
w (x, 0) = v0(x), ∀ x ∈ R3;

E0 ≤ w(x, t) ≤ E1, ∀ x ∈ R3, t ∈ [0, T0];
w (x, t) is nondecreasing on x1 ∈ [0,∞) ;

w (x, t) is even in x1 ∈ R.

 .

It is obvious that A maps ST0
into ST0

. Let L > 0 such that

|H (φ)−H (ψ)| ≤ L |φ− ψ|

for any φ, ψ ∈R2. Take T0 <
1

2L . By virtue of

u (t) = e−MtT (t) v0 +

∫ t

0

e−M(t−s)T (t− s) H (w (s)) ds, 0 < t ≤ T0,
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we can show that A mapping ST0 into ST0 is a contraction map. Thus, the con-
traction mapping principle implies that there exists a unique u (t) ∈ ST0 such that
u (·) = Au (·), namely,

∂
∂tu1 (x, t) = ∆u1 (x, t) + u1 (x, t) [1− k1 − u1 (x, t) + k1u2 (x, t)] ,
∂
∂tu2 (x, t) = d∆u2 (x, t) + r (1− u2 (x, t)) [k2u1 (x, t)− u2 (x, t)] ,
u1 (x, 0) = v0

1 (x) , u2 (x, 0) = v0
2 (x) ,

(13)

on (x, t) ∈ R3 × (0, T0]. Consequently, repeating the above procedure on t ∈
[T0, 2T0], · · · , [mT0, (m+ 1)T0] , · · · , we know that there exists u (t) ∈ S∞ such
that u (·) = Au (·), namely, there exists a unique

u (x, t) ∈ C
(
R3 × [0,∞) ,

[
E0,E1

])⋂
C2,1

(
R3 × (0,∞) ,

[
E0,E1

])
satisfying (13).

Step 3. Let v (x, t) := u (x1, x2, x3 − st, t) for any x ∈ R3 and t > 0, where
u (x, t) is the solution of (13). Then it is easy to see that v (x, t) is the solution of
(6). Since u ∈ S∞, we have that v (x, t) is symmetric on x1 and is nondecreasing
in x1 ∈ [0,+∞). This completes the proof.

Corollary 1. Suppose that v−(x) is even in x1 ∈ R and x2 ∈ R, respectively. Then
the pyramidal traveling front V(x) defined by Theorem 2.1 satisfies

V(x1, x2, x3) = V(−x1, x2, x3), V(x1, x2, x3) = V(x1,−x2, x3), ∀ x ∈ R3,

∂

∂x1
V(x)� 0, ∀ x ∈ (0,+∞)× R2,

∂

∂x2
V(x)� 0, ∀ x ∈ R× (0,+∞)× R.

Proof. Since v−(x) is even in x1 and x2, respectively, it is easy to see that v−(x)
is nondecreasing in x1 > 0 and x2 > 0, respectively. It follows from Lemma 2.5
that v(x, t; v−) is even in x1 and x2 and is nondecreasing in x1 > 0 and x2 > 0,
respectively. Thus, V(x) is even in x1 and x2 and is nondecreasing in x1 > 0 and
x2 > 0, respectively. By (7), we obtain

∆ϕ1(x)− s ∂
∂x3

ϕ1(x)− [k1 + 2V1(x)]ϕ1(x)

= − [1 + k1V2(x)]ϕ1(x)− k1V1(x)ϕ2(x),
d∆ϕ2(x)− s ∂

∂x3
ϕ2(x)− 2V2(x)ϕ2(x)

= − [1 + k2V1(x)]ϕ2(x)− rk2 [1− V2(x)]ϕ1(x),
ϕ1(0, x2, x3) = ϕ2(0, x2, x3) = 0

for x = (x1, x2, x3) ∈ (0,+∞)× R2, where

ϕ1(x) =
∂

∂x1
V1(x) ≥ 0 and ϕ2(x) =

∂

∂x1
V2(x) ≥ 0, ∀ x ∈ (0,+∞)× R2.

Therefore, we have
∆ϕ1(x)− s ∂

∂x3
ϕ1(x)− [k1 + 2V1(x)]ϕ1(x) ≤ 0, ∀ x ∈ (0,+∞)× R2,

d∆ϕ2(x)− s ∂
∂x3

ϕ2(x)− 2V2(x)ϕ2(x) ≤ 0, ∀ x ∈ (0,+∞)× R2,

ϕ1(0, x2, x3) = ϕ2(0, x2, x3) = 0, ∀ (x2, x3) ∈ R2.

By Theorem 2.1 we have ϕ1(x) = ∂
∂x1

V1(x) 6≡ 0 and ϕ2(x) = ∂
∂x1

V2(x) 6≡ 0 in

x ∈ (0,+∞)× R2. Applying the maximum principle (Potter and Weinberger [44])
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for the scalar equation yields

∂

∂x1
V1(x) = ϕ1(x) > 0,

∂

∂x1
V2(x) = ϕ2(x) > 0, ∀ x ∈ (0,+∞)× R2.

This completes the proof.

3. Axisymmetric traveling fronts. In this section we establish the existence
of axisymmetric traveling fronts of (5) in R3. The method is to take the limit of
a sequence of pyramidal traveling fronts. Consequently, we show some important
qualitative properties of the axisymmetric traveling fronts.

Let

hk (x1, x2) = m∗ max
1≤i≤2k

{
x1 cos

2 (i− 1)π

2k
+ x2 sin

2 (i− 1)π

2k

}
, k = 1, 2, · · · .

It is not difficult to show that the plane

x3 = m∗

(
x1 cos

2 (i− 1)π

2k
+ x2 sin

2 (i− 1)π

2k

)
is tangent to the rotating surface

x3 = m∗

√
x2

1 + x2
2

for any k ∈ N and 1 ≤ i ≤ 2k. Replacing h(x′) by hk (x′) in Theorem 2.1, we obtain
a sequence of pyramidal traveling fronts of (5), namely,

V1,V2, · · · ,Vk, · · · ,
where

Vk (x) = lim
t→∞

v
(
x, t; vk,−

)
, vk,− (x) = U

( c
s

(
x3 + hk (x′)

))
.

Denote the edge of the pyramid x3 = hk (x′) by Γk and

Dk (γ) =
{

x ∈ R3
∣∣dist

(
x,∪2k

j=1Γkj

)
> γ

}
for γ > 0.

Since vk,− (x) is nondecreasing in x1 ∈ (0,∞) and x2 ∈ (0,∞) and is even in x1 ∈ R
and x2 ∈ R, respectively, by Theorem 2.1, Lemma 2.3 and Corollary 1 we obtain

V1 ≤ V2 ≤ · · · ≤ Vk ≤ · · · , ∀ x ∈ R3,

∂

∂x1
Vk (x)� 0, ∀ x ∈ (0,∞)× R2,

∂

∂x2
Vk (x)� 0, ∀ x ∈ R× (0,∞)× R,

∂

∂ν
Vk (x)� 0, ∀ x ∈ R3,

where ν = 1√
1+ν2

1+ν2
2

(ν1, ν2, 1) satisfies
√
ν2

1 + ν2
2 ≤ 1

m∗
. Since

hk (x1, x2) = hk
(
x1 cos

π

2k−1
+ x2 sin

π

2k−1
,−x1 sin

π

2k−1
+ x2 cos

π

2k−1

)
,

we have
Vk (x) = Vk (x′, x3) = Vk (Bkx

′, x3) , ∀x ∈ R3,

where

Bk =

(
cos π

2k−1 sin π
2k−1

− sin π
2k−1 cos π

2k−1

)
.
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Take xk3 ∈ R such that xk3 ≥ xk+1
3 and V k2

(
0, 0, xk3

)
= θ2, where θ2 ∈ (0, E∗2 )

satisfies the following assumption

(H) Assume that θ2 = E∗2 − Λ2, where Λ2 satisfies

0 < Λ2 < min

E∗2 , (k1k2 − 1) (1− E∗2 ) ,

√
(1− E∗2 )

2
+ 4 (1− E∗2 )E∗2 − (1− E∗2 )

2


and

Λ2 6=
(
k1k2

2
− 1

)
(1− E∗2 ) .

Let

Ṽk (x) = Vk
(
x′, x3 + xk3

)
, ∀x ∈ R3.

By Lemmas 2.2 and 2.3 and Corollary 1 we have that Ṽk (x) satisfies:

(a) Ṽ k2 (0) = θ2;

(b) ∂
∂ν Ṽ

k
i (x) > 0 for any x ∈ R3, where i = 1, 2; k ∈ N; ν = 1√

1+ν2
1+ν2

2

(ν1, ν2, 1)

satisfies
√
ν2

1 + ν2
2 ≤ 1

m∗
;

(c) For any (x0, y0, z0) ∈ R3 with z0 ≥ hk(x0, y0), there holds

Ṽk(x1 + x0, x2 + y0, x3) ≤ Ṽk(x1, x2, x3 + z0), ∀ (x1, x2, x3) ∈ R3;

(d) Ṽk (x′, x3) = Ṽk (Bkx
′, x3) , ∀x ∈ R3;

(e) There are ∂
∂x1

Ṽ ki (x) > 0 in x1 ∈ (0,∞) and ∂
∂x2

Ṽ ki (x) > 0 in x2 ∈ (0,∞),
where k ∈ N, i = 1, 2;

(f) There exists a constant K > 0 such that
∥∥∥Ṽk(x)

∥∥∥
C3(R3)

≤ K, ∀ k ∈ N.

Now we define a function W(x) = (W1(x),W2(x)) ∈ C2
(
R3,

[
E0,E1

])
by (up

to an extraction of some subsequence)

Ṽk (x)→W (x) in ‖·‖C2
loc(R3) as k →∞.

Then we have the following theorem for the function W(x) ∈ C2
(
R3,

[
E0,E1

])
.

Theorem 3.1. Assume that k1, k2 > 1 and c > 0. There exists a function W(x) =
(W1(x),W2(x)) ∈ C2

(
R3,

[
E0,E1

])
satisfying{

∆W1(x)− s ∂
∂x3

W1(x) +W1(x) [1− k1 −W1(x) + k1W2(x)] = 0,

d∆W2(x)− s ∂
∂x3

W2(x) + r (1−W2(x)) [k2W1(x)−W2(x)] = 0,
x ∈ R3.

(14)
In addition, one has
(i) W2 (0) = θ2;

(ii) W (x′1, x3) = W (x′2, x3), ∀ x′1,x
′
2 ∈ R2 with |x′1| = |x′2|, x3 ∈ R;

(iii) for any (x0, y0, z0) ∈ R3 with z0 ≥ m∗
√
x2

0 + y2
0, one has

W(x1 + x0, x2 + y0, x3) ≤W(x1, x2, x3 + z0), ∀ (x1, x2, x3) ∈ R3;

(iv) ∂
∂x3

W (x)� 0 for any x ∈ R3, i = 1, 2;

(v) ∂
∂x1

W (x)� 0 for x1 ∈ (0,∞), ∂
∂x2

W (x)� 0 for x2 ∈ (0,∞);
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(vi) lim
x3→+∞

‖W(·, x3)−E1‖C(R2) = 0 and limx3→−∞ ‖W(·, x3)−E0‖Cloc(R2) = 0.

(vii) ∂
∂νW (x)� 0 for any x ∈ R3, where

ν =
1√

1 + ν2
1 + ν2

2

(ν1, ν2, 1) with
√
ν2

1 + ν2
2 ≤

1

m∗
.

It can be shown that W(x) satisfies (14) and (i) and (ii) of Theorem 3.1. In view

of hk(x1, x2) ≤ m∗
√
x2

1 + x2
2 for any (x1, x2) ∈ R2 and hk(x1, x2)→ m∗

√
x2

1 + x2
2 in

Cloc
(
R2
)

as k → +∞, we can prove (iii) of Theorem 3.1. In the following we prove
(iv)-(vii) of Theorem 3.1 by a sequence of lemmas. Following the properties (a)-(f)

of Ṽ(x)k, we have: (I) ∂
∂x3

Wi (x) ≥ 0 for x ∈ R3, i = 1, 2; (II) ∂
∂x1

Wi(0, x2, x3) =

0 for (x2, x3) ∈ R2 and ∂
∂x2

Wi(x1, 0, x3) = 0 for (x1, x3) ∈ R2, i = 1, 2; (III)
∂
∂x1

Wi(x) ≥ 0 for x ∈ (0,+∞) × R2 and ∂
∂x2

Wi(x) ≥ 0 for x ∈ R × (0,+∞) × R,
i = 1, 2.

Lemma 3.2. W1 (x) 6≡ θ1 and W2 (x) 6≡ θ2 for x ∈ R3, where θi = Wi(0).

Proof. Notice that 0 < W2 (0) = θ2 < E∗2 = (k1−1)k2
k1k2−1 . If W2 (x) ≡ θ2 for any

x ∈ R3, we have k2W1 (x) − W2 (x) ≡ 0 for any x ∈ R3. Thus, 0 < W1 (x) ≡
θ2
k2
< E∗1 = k1−1

k1k2−1 . It follows that system (5) admits an equilibrium
(
θ2
k2
, θ2

)
with

E0 �
(
θ2
k2
, θ2

)
� E∗, which is impossible. Therefore, W2 (x) 6≡ θ2 for x ∈ R3.

Now we show that W1 (x) 6≡ θ1 for x ∈ R3. On the contrary we assume that
W1 (x) ≡ θ1 for x ∈ R3. In view of 0 ≤ θ1 ≤ 1, we consider two cases: (a) θ1 = 0
and (b) 0 < θ1 ≤ 1.

(a) If θ1 = 0, it follows from the second equation of (14) that

d∆W2(x)− s ∂

∂x3
W2(x)− rW2(x) (1−W2(x)) = 0, ∀ x ∈ R3.

Let W̃ (x) = 1 − W2(x) for any x ∈ R3. It follows that ∂
∂x1

W̃ (x) ≤ 0 for any

x ∈ (0,+∞) × R2, ∂
∂x2

W̃ (x) ≤ 0 for any x ∈ R × (0,+∞) × R and ∂
∂x3

W̃ (x) ≤ 0

for any x ∈ R3. In addition, we have

d∆W̃ (x)− s ∂

∂x3
W̃ (x) + rW̃ (x)

(
1− W̃ (x)

)
= 0, ∀ x ∈ R3.

Furthermore, let
˜̃
W (x) = W̃ (x1, x2,−x3) for any x = (x1, x2, x3) ∈ R3. Then we

have ∂
∂x3

˜̃
W (x) ≥ 0 for any x ∈ R3 and

d∆
˜̃
W (x) + s

∂

∂x3

˜̃
W (x) + r

˜̃
W (x)

(
1− ˜̃W (x)

)
= 0, ∀ x ∈ R3,

which implies that
˜̃
W (x1, x2, x3 − st) is a solution of the following Fisher-KPP

equation

∂

∂t
u(x, t) = d∆u(x, t) + ru(x, t) (1− u(x, t)) , x ∈ R3, t > 0. (15)

Let

u(x, t) = min

{˜̃
W (x1, x2, x3 − st),

˜̃
W (x1, x2,−x3 − st)

}
=

˜̃
W (x1, x2,−|x3| − st), ∀ x = (x1, x2, x3) ∈ R3.
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Then u(x, t) is also a supersolution of (15). In particular, u(x, t) ≤ u(x, 0) ≤˜̃
W (0) = 1 − θ2 < 1 for any x ∈ R3. By the classical results of Aronson and
Weinberger [2, Corollary 1] on the asymptotic speed of propagation for the Fisher-
KPP equation, we know that the solution u(x, t;ϕ) of (15) with initial value ϕ
satisfies

lim
t→+∞

inf
|x|≤τt

u(x, t;ϕ) = 1 for any τ ∈ (0, τ∗) (16)

if ϕ(·) ∈ C
(
R3, [0, 1]

)
satisfies that ϕ(·) 6≡ 0 and supp ϕ is compact, where τ∗ =

2
√
dr. However, the comparison principle implies that

u(x, t;ϕ) ≤ u(x, t) ≤ u(x, 0) ≤ ˜̃W (0) < 1 for any x ∈ R3, t > 0, (17)

if ϕ further satisfies ϕ(x) < u(x, 0) for any x ∈ R3. It is obvious that (17) contradicts
the fact (16). Therefore, θ1 6= 0.

(b) Assume that W1(x) ≡ θ1 and 0 < θ1 ≤ 1. Then by the first equation of (14)
we have

1− k1 − θ1 + k1W2(x) ≡ 0.

Then we have W2(x) ≡ k1+θ1−1
k1

in R3, which contradicts the fact that W2(0) = θ2

and W2(·) 6≡ θ2.
Following the above arguments, we conclude that W1 (x) 6≡ θ1 for x ∈ R3. This

completes the proof.

In the following we prove (v) of Theorem 3.1. To reach the aim, we first present a
lemma, which will be proved in Section 5. Consider the following reaction-diffusion
system in R{

∂
∂tu1 = ∂2

∂x2u1 + (E∗1 − u1) (k1u2 − u1) ,
∂
∂tu2 = d ∂2

∂x2u2 + r (1− E∗2 + u2) (k2u1 − u2) ,
x ∈ R, t > 0. (18)

Lemma 3.3. There exists κ∗ > 0 such that for any κ ≥ κ∗ system (18) admits
an increasing traveling wave front (ρ1 (x+ κt) , ρ2 (x+ κt)) connecting the equilibria
E0 and E∗, and for any κ < κ∗ system (18) does not admit an increasing traveling
wave front (ρ1 (x+ κt) , ρ2 (x+ κt)) connecting the equilibria E0 and E∗.

Now we prove (v) of Theorem 3.1, namely, we have the following lemma.

Lemma 3.4. ∂
∂x1

Wi(x) > 0 for any x ∈ (0,+∞)× R2 and ∂
∂x2

Wi(x) > 0 for any

x ∈ R× (0,+∞)× R, i = 1, 2.

Proof. We first show that it is impossible that ∂
∂x1

W1(x) 6≡ 0 and ∂
∂x1

W2(x) ≡ 0

for x ∈ (0,+∞)× R2. We prove it by contradiction. Assume on the contrary that
∂
∂x1

W1(x) 6≡ 0 and ∂
∂x1

W2(x) ≡ 0 for x ∈ (0,+∞)×R2. Since ∂
∂x1

W1(0, x2, x3) ≡ 0

for (x2, x3) ∈ R2 and ∂
∂x1

Wi(x) ≥ 0 for x ∈ (0,+∞) × R2, by a similar argument

to that in Corollary 1 we have ∂
∂x1

W1(x) > 0 for any x ∈ (0,+∞)×R2. Note that
∂
∂x1

W2(x) ≡ 0 for x ∈ (0,+∞)× R2. Differentiating with respect to x1 the second

equation of (14), we obtain

rk2 (1−W2(x))
∂

∂x1
W1(x) ≡ 0, ∀ x ∈ R3,

which yields that W2(x) ≡ 1 for any x ∈ R3. This contradicts (i) of Theorem
3.1. Similarly, we can show that it is also impossible that ∂

∂x1
W1(x) ≡ 0 and

∂
∂x1

W2(x) 6≡ 0 for x ∈ (0,+∞)× R2.
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By (ii) of Theorem 3.1, we have ∂
∂x1

Wi(x, y, x3) = ∂
∂x2

Wi(y, x, x3) for any (x, y) ∈
R2 and x3 ∈ R, where i = 1, 2. Following the above arguments, we have that
either ∂

∂x1
Wi(x) > 0 for any x ∈ (0,+∞) × R2 and ∂

∂x2
Wi(x) > 0 for any x ∈

R × (0,+∞) × R, or ∂
∂x1

Wi(x) ≡ 0 for x ∈ (0,+∞) × R2 and ∂
∂x2

Wi(x) ≡ 0 for

x ∈ R× (0,+∞)× R, where i = 1, 2.
We then prove that it is not true that ∂

∂x1
Wi(x) ≡ 0 for x ∈ (0,+∞) × R2 and

∂
∂x2

Wi(x) ≡ 0 for x ∈ R× (0,+∞)× R, i = 1, 2. For a contrary, we assume that

∂

∂x1
W1(x) ≡ ∂

∂x2
W1(x) ≡ ∂

∂x1
W2(x) ≡ ∂

∂x2
W2(x) ≡ 0, x ∈ R3,

which implies that Wi(x) only depend on x3 ∈ R. We rewrite Wi(x) as Wi(x3) and
denote Wi(x3) by Wi(z) with z = x3, i = 1, 2. By Lemma 3.2 we have Wi (z) 6≡ θi
and Wi (0) = θi, which implies that d

dzWi (z) 6≡ 0 on z ∈ R. It follows from the

maximum principle that d
dzWi (z) > 0 for any z ∈ R, i = 1, 2. Let

W1 (−∞) = α−, W1 (+∞) = α+, 0 ≤ α− < α+ ≤ 1,

W2 (−∞) = β−, W2 (+∞) = β+, 0 ≤ β− < β+ ≤ 1.

In particular, we have β− < E∗2 . In this case we rewrite the system (14) as{
W ′′1 − sW ′1 +W1 (1− k1 −W1 + k1W2) = 0,
dW ′′2 − sW ′2 + r (1−W2) (k2W1 −W2) = 0.

(19)

Obviously, (α−, β−) and (α+, β+) are the roots of the following algebra equations{
u (1− k1 − u+ k1v) = 0,
(1− v) (k2u− v) = 0.

Therefore, we have either (α−, β−) = (0, 0) and (α+, β+) = (1, 1) or (α−, β−) =
(0, 0) and (α+, β+) = (E∗1 , E

∗
2 ). We argue that it is impossible to have (α+, β+) =

(1, 1). Otherwise, system (5) admits a planar traveling front (W1(x+ st),W2(x+ st))
with wave speed s > c connecting two stable equilibria (0, 0) and (1, 1), which
contradicts the uniqueness of the planar traveling wave front (U, c) of (5).

Assume that (α−, β−) = (0, 0) and (α+, β+) = (E∗1 , E
∗
2 ). Let ψ1 (z) = E∗1 −

W1 (z) and ψ2 (z) = E∗1 −W2 (z) for any z ∈ R. We have{
ψ′′1 − sψ′1 + (E∗1 − ψ1) (k1ψ2 − ψ1) = 0,
dψ′′2 − sψ′2 + r (1− E∗2 + ψ2) (k2ψ1 − ψ2) = 0.

Let ρi (z) = ψi (−z) for any z ∈ R, i = 1, 2. Then (ρ1(z), ρ2(z)) satisfies{
ρ′′1 + sρ′1 + (E∗1 − ρ1) (k1ρ2 − ρ1) = 0,
dρ′′2 + sρ′2 + r (1− E∗2 + ρ2) (k2ρ1 − ρ2) = 0

(20)

and

ρi (−∞) = E∗i −Wi (+∞) = 0, ρi (+∞) = E∗i −Wi (−∞) = E∗i , i = 1, 2.

System (20) implies that the system (18) admits an increasing traveling wave front
(ρ1 (x− st) , ρ2 (x− st)) connecting E0 and E∗. Thus, (ρ1 (x+ s′t) , ρ2 (x+ s′t)) is
an increasing traveling wave front connecting E0 and E∗ with wave speed s′ =
−s < 0, but this is impossible due to the fact showed by Lemma 3.3. The proof is
completed.
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Following Lemma 3.4, we have W(x1, x2, 0) �W(0, 0, 0) for any (x1, x2) ∈ R2

with x2
1+x2

2 > 0. By (iii) of Theorem 3.1 we have that W(0, 0, x3) ≥W(x1, x2, 0)�
W(0, 0, 0) for any x3 > m∗

√
x2

1 + x2
2 > 0, which implies that ∂

∂x3
W(x) ≥ 0

and ∂
∂x3

W(x) 6≡ 0 on x ∈ R3. Furthermore, the maximum principle yields that
∂
∂x3

W(x)� 0 for x ∈ R3. Thus, we have proved (iv) of Theorem 3.1.

In the following we prove (vi) of Theorem 3.1. Since ∂
∂x3

Wi(x) > 0 (i = 1, 2) for

x ∈ R3, we define

(α1, α2) := lim
x3→+∞

W(0, 0, x3) and (β1, β2) := lim
x3→−∞

W(0, 0, x3).

Lemma 3.5. One has (β1, β2) = E0, and either (α1, α2) = E∗ or (α1, α2) = E1.
In particular, one has

lim
x3→−∞

∥∥W(·, ·, x3)−E0
∥∥
Cloc(R2)

= 0

and

lim
x3→+∞

‖W(·, ·, x3)− (α1, α2)‖C(R2) = 0.

Proof. By (iii) of Theorem 3.1, for any z0 ≥ m∗
√
x2

0 + y2
0 we have

W(0, 0, x3) ≤W(x0, y0, x3) ≤W(0, 0, x3 + z0) ∀x3 ∈ R.

It follows that

lim
x3→+∞

‖W(·, ·, x3)− (α1, α2)‖C(R2) = 0

and

lim
n→+∞

‖W(·, ·, zn + ·)− (α1, α2)‖C2
loc(R3) = 0

for some sequence {zn} satisfying zn → +∞ as n → +∞. Thus, the vector
(α1, α2) ∈ R2 satisfies

f1(α1, α2) = 0 and f2(α1, α2) = 0.

In view of E0 � (α1, α2) ≤ E∗, we conclude that either (α1, α2) = E∗ or (α1, α2) =
E1. Similarly, we have (β1, β2) = E0,

lim
x3→−∞

‖W(·, ·, x3)− (β1, β2)‖Cloc(R2) = 0

and

lim
n→+∞

∥∥W(·, ·,−zn + ·)−E0
∥∥
C2
loc(R3)

= 0,

where zn → +∞ as n→ +∞. This completes the proof.

In order to complete the proof of Theorem 3.1 (vi), we need further to show that

lim
x3→+∞

‖W(·, ·, x3)−E1‖C(R2) = 0. (21)

To do this, it is sufficient to show that there must be (α1, α2) = E1. Our method is
to assume (α1, α2) = E∗ and derive a contradiction, which is similar to the argument
in Lemma 3.4. To obtain the contradiction, we first consider the spreading speed
for a cooperation reaction-diffusion system, namely, the below (23). Since we are
working in three-dimensional spatial space, the results of Liang and Zhao [34] on the
spreading speed of the monotone semiflow are not applicable, so we use the theory of
Thieme and Zhao [50]. Before presenting the lemma, we introduce some notations,
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which come from Thieme and Zhao [50]. Let σ > 0 and u(x, t) : R3×[0,+∞)→ R2.
Define

lim inf
t→∞,|x|≤σt

u(x, t) = sup
t≥0

inf {u(x, s) : s ≥ t, |x| ≤ σs}

and

lim sup
t→∞,|x|≤σt

u(x, t) = inf
t≥0

sup {u(x, s) : s ≥ t, |x| ≤ σs} .

We say that limt→∞,|x|≤σt u(x, t) = u∗ if and only if

lim inf
t→∞,|x|≤σt

u(x, t) = lim sup
t→∞,|x|≤σt

u(x, t) = u∗.

This is equivalent to the statement that for any ε > 0, there exists some t > 0 such
that |u(x, s)− u∗| < ε whenever s > t and |x| ≤ σs.

Let

v∗1 =

(
k1k2 (1− E∗2 )

1− E∗2 + Λ2
− 1

)
4 (1− E∗2 + Λ2)

2

k2
1k

2
2 (1− E∗2 )

2 E∗1 ,

v∗2 =

(
k1k2 (1− E∗2 )

1− E∗2 + Λ2
− 1

)
4 (1− E∗2 + Λ2)

k2
1k2 (1− E∗2 )

E∗1

and E∗∗ = (v∗1 , v
∗
2). It is clear that E∗∗ = (v∗1 , v

∗
2) is the unique positive root of the

equation {
k1E

∗
1v2

(
1− k1

4E∗1

)
− E∗1v1 = 0,

rk2 (1− E∗2 ) v1 − r (1− E∗2 + Λ2) v2 = 0.

Recall that Λ2 = E∗2 − θ2, where θ2 satisfies the assumption (H). Define

g (u) =

 infv∈(u,v∗2 ]

{
v − k1

4E∗1
v2
}
, u ∈ [0, v∗2 ] ,

infv∈[v∗2 ,u)

{
v − k1

4E∗1
v2
}
, u > v∗2 .

(22)

Consider the following system{
∂
∂t
˜̃u1 = ∆˜̃u1(x, t) + k1E

∗
1g(˜̃u2)− E∗1 ˜̃u1,

∂
∂t
˜̃u2 = d∆˜̃u2(x, t) + rk2 (1− E∗2 ) ˜̃u1 − r (1− E∗2 + Λ2) ˜̃u2,

x ∈ R3, t > 0.

(23)
Due to the strict convexity of the function v− k1

4E∗1
v2, we have that E∗∗ = (v∗1 , v

∗
2) is

the unique positive equilibrium of system (23). In particular, g(·) is nondecreasing
on [0, v∗2 ]. Here we emphasize that the reason that we can establish the spreading
speed for solutions of system (23) is that the theory of Thieme and Zhao [50] only
works for scalar nonlinear integral equations and system (23) exactly enables us to

reduce it to a scalar integral equation for the second component ˜̃u2. But it is difficult
to reduce any component of solutions of the original Lotka-Volterra competition-
diffusion system to a scalar integral equation.

Lemma 3.6. Assume that φ = (φ1, φ2) ∈ C
(
R3,

[
E0,E∗∗

])
is compactly supported

with φ1(·) + φ2(·) 6≡ 0. Let ˜̃u(x, t;φ) =
(˜̃u1 (x, t;φ) , ˜̃u2 (x, t;φ)

)
be the solution of

system (23) with the initial value φ. Then there exists σ∗ > 0 such that

(i) ˜̃u(x, t;φ) ∈
[
E0,E∗∗

]
for any x ∈ R3 and t > 0;

(ii) limt→∞,|x|≥σt
˜̃u (x, t) = E0 for any σ > σ∗;

(iii) limt→∞,|x|≤σt
˜̃u (x, t) = E∗∗ for any σ < σ∗.
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We postpone to prove the lemma in subsection 5.2. Now we are in a position to
prove (21).

Lemma 3.7. One has

lim
x3→+∞

‖W(·, ·, x3)−E1‖C(R2) = 0.

Proof. As mentioned above, we need only to show limx3→+∞W(0, 0, x3) = E1. By
Lemma 3.5, we have that

either lim
x3→+∞

W(0, 0, x3) = E1 or lim
x3→+∞

W(0, 0, x3) = E∗.

Therefore, it is sufficient to show that the latter is impossible.
On the contrary we assume that

lim
x3→+∞

W(0, 0, x3) = E∗. (24)

Consequently, we have E0 ≤ W(x) ≤ E∗ for all x ∈ R3. Set Φ̌i (x1, x2, x3) =
E∗i −Wi (x1, x2,−x3), i = 1, 2. We have{

∆Φ̌1 + s ∂
∂x3

Φ̌1 +
(
E∗1 − Φ̌1

) (
k1Φ̌2 − Φ̌1

)
= 0,

d∆Φ̌2 + s ∂
∂x3

Φ̌2 + r
(
1− E∗2 + Φ̌2

) (
k2Φ̌1 − Φ̌2

)
= 0,

∀ x ∈ R3.

By virtue of Wi(−x1, x2, x3) = Wi(x1, x2, x3) and Wi(x1,−x2, x3) = Wi(x1, x2, x3)
for all (x1, x2, x3) ∈ R3, and ∂

∂x1
Wi > 0 for x1 > 0, ∂

∂x2
Wi > 0 for x2 > 0 and

∂
∂x3

Wi > 0 for any x3 ∈ R, we have that Φ̌i(−x1, x2, x3) = Φ̌i(x1, x2, x3) and

Φ̌i(x1,−x2, x3) = Φ̌i(x1, x2, x3) for all (x1, x2, x3) ∈ R3, and ∂
∂x1

Φ̌i < 0 for x1 > 0,
∂
∂x2

Φ̌i < 0 for x2 > 0 and ∂
∂x3

Φ̌i > 0 for any x3 ∈ R, i = 1, 2. It is obvious that(
Φ̌1(x1, x2, x3 − st), Φ̌2(x1, x2, x3 − st)

)
is a solution of the following system{

∂
∂t û1 = ∆û1 + (E∗1 − û1) (k1û2 − û1) ,
∂
∂t û2 = d∆û2 + r (1− E∗2 + û2) (k2û1 − û2) ,

∀ x ∈ R3, t > 0. (25)

Note that
[
E0,E∗

]
is an invariant interval of solutions of system (25). Define

Φ̂i (x, t) := min
{

Φ̌i (x1, x2, x3 − st) , Φ̌i (x1, x2,−x3 − st)
}

for x = (x1, x2, x3) ∈ R3 and t ≥ 0, where i = 1, 2. Then

Φ̂ (x, t) =
(

Φ̂1 (x, t) , Φ̂2 (x, t)
)

is a supersolution of (25). In particular, we have that

0 ≤ Φ̂i (x, t) = Φ̌i (x1, x2,−|x3| − st) ≤ Φ̌i (0, 0,−st) ≤ E∗i − θi.

Following from (24), we have

lim
t→+∞

Φ̌i(0, 0,−st) = lim
t→+∞

E∗i −Wi(0, 0,−st) = 0, i = 1, 2.

Therefore,

lim
t→∞

sup
x∈R3

Φ̂(x, t) = 0. (26)

Following the definition of Φ̂(x, t), we have Φ̂(x, 0) � 0 for any x ∈ R3. Fix
φ ∈ C

(
R3,

[
E0,E∗∗

])
such that it is compactly supported with φ1(·) + φ2(·) 6≡ 0

and φ(x) ≤ Φ̂(x, 0) for any x ∈ R3. Let û(x, t;φ) be the solution of (25) with
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initial value û(x, 0;φ) = φ(x). Because Φ̂ (x, t) is a supersolution of (25), we have

û(x, t;φ) ≤ Φ̂ (x, t) for all x ∈ R3 and t > 0. It follows from (26) that

lim
t→∞

sup
x∈R3

û(x, t;φ) = 0. (27)

Consider the following system{
∂
∂t ũ1 = ∆ũ1 + (E∗1 − ũ1) (k1ũ2 − ũ1) ,
∂
∂t ũ2 = d∆ũ2 + rk2 (1− E∗2 ) ũ1 − r (1− E∗2 + Λ2) ũ2.

(28)

This system has two equilibria E0 = (0, 0) and E∗+ =
(
E∗1 ,

k2(1−E∗2 )
1−E∗2+Λ2

E∗1

)
. In par-

ticular, system (28) satisfies the comparison principle on
[
E0,E∗+

]
. Notice that

û2(x, t;φ) ≤ Φ̂2(x, t) ≤ Φ̂2(0, 0) ≤ E∗2 −θ2 = Λ2 for all x ∈ R3 and t > 0. By virtue
of

r (1− E∗2 + û2(x, t;φ)) (k2û1(x, t;φ)− û2(x, t;φ))

≥ rk2 (1− E∗2 ) û1(x, t;φ)− r (1− E∗2 + Λ2) û2(x, t;φ),

we have
∂
∂t û1(x, t;φ) = ∆û1(x, t;φ) + (E∗1 − û1(x, t;φ)) (k1ũ2(x, t;φ)− û1(x, t;φ)) ,
∂
∂t û2(x, t;φ) ≥ d∆û2(x, t;φ) + rk2 (1− E∗2 ) û1(x, t;φ)

−r (1− E∗2 + Λ2) û2(x, t;φ),

which implies that û(x, t;φ) is a supersolution of (28). Let ũ(x, t;φ) be the solution
of (28) with initial value φ(·). By the condition (H), we have Λ2 < E∗+. Then the
comparison principle implies that û(x, t;φ) ≥ ũ(x, t;φ) ≥ 0 for any x ∈ R3 and
t > 0. Therefore, it follows from (27) that

lim
t→∞

sup
x∈R3

ũ(x, t;φ) = 0. (29)

Using the inequality

uv ≤ η

4
u2 +

1

η
v2,

where η > 0 is a constant, we have

(E∗1 − u) (k1v − u) = k1E
∗
1v − k1uv − E∗1u+ u2

≥ k1E
∗
1v −

ηk1

4
v2 − k1

η
u2 − E∗1u+ u2.

Setting η = k1, we get

(E∗1 − u) (k1v − u) ≥ k1E
∗
1v −

k2
1

4
v2 − E∗1u, ∀ u, v ≥ 0.

By the definition of g(·), we have

(E∗1 − u) (k1v − u) ≥ k1E
∗
1v −

k2
1

4
v2 − E∗1u

≥ k1E
∗
1g(v)− E∗1u

for any (u, v) ∈
[
E0,E∗∗

]
. In particular, when (H) holds, one has E∗∗ ≤ E∗+.

Let ˜̃u (x, t;φ) be the solution of (23) with initial value φ(·). Then by the above
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inequality and Lemma 3.6 (i) we obtain
∂
∂t
˜̃u1 (x, t;φ) = ∆˜̃u1 (x, t;φ) + k1E

∗
1g
(˜̃u2 (x, t;φ)

)
− E∗1 ˜̃u1 (x, t;φ)

≤ ∆˜̃u1 (x, t;φ) +
(
E∗1 − ˜̃u1 (x, t;φ)

)(
k1
˜̃u2 (x, t;φ)− ˜̃u1 (x, t;φ)

)
,

∂
∂t
˜̃u2 (x, t;φ) = d∆˜̃u2 (x, t;φ) + rk2 (1− E∗2 ) ˜̃u1 (x, t;φ)

−r (1− E∗2 + Λ2) ˜̃u2 (x, t;φ) ,

which implies that ˜̃u (x, t;φ) is a subsolution of (28). Using the comparison principle
for systems (28), we have˜̃u (x, t;φ) ≤ ũ (x, t;φ) , ∀ x ∈ R3, t > 0. (30)

Following Lemma 3.6 (iii), we have

lim
t→∞,|x|≤σt

˜̃u (x, t;φ) = E∗∗ for any σ ∈ (0, σ∗),

which implies ˜̃u (x, t;φ)→ E∗∗ in the sense of Cloc
(
R3
)

as t→ +∞. (31)

Combining (30) and (31), we get

lim
t→∞

inf
|x|<R

ũ (x, t;φ) ≥ E∗∗ for any fixed R > 0. (32)

Finally, there exists a contradiction between (29) and (32). This contradiction
shows that (24) is impossible. Therefore,

lim
z→+∞

W(0, 0, z) = E1.

This completes the proof.

Up to now, we have completed the proof of Theorem 3.1 (vi). Theorem 3.1 (vii)
can be easily proved by using the results of Theorem 3.1 (ii)-(v) and the maximum
principle. Here we omit the details of the proof. Thus, we have completed the proof
of Theorem 3.1.

Theorem 3.8. Let s > c > 0 and denote the axisymmetric traveling front W(x)
defined in Theorem 3.1 by Ws(x). Let U2(0) = W s

2 (0) = θ2. Then one has

lim
s→c+0

‖Ws(x)−U(x3)‖C2
loc(R3) = 0,

where (U, c) is the planar traveling wave front of (5) connecting E0 and E1.

Proof. Note that there exists K > 0 such that ‖Ws(·)‖C3(R3) < K for any s ∈
(c, c + 1). Let {sn} satisfy sn < sn+1 < c + 1 and sn → c as n → ∞. Then there

exists a function Û(·) ∈ C2
(
R,
[
E0,E1

])
such that

Wsn(0, 0, ·)→ Û(·) under the norm ‖ · ‖C2
loc(R) as n→∞.

By (iii) of Theorem 3.1, we have

Wsn(0, 0, x3) ≤Wsn(x1, x2, x3) ≤Wsn

(
0, 0, x3 +mn

∗

√
x2

1 + x2
2

)
for any (x1, x2, x3) ∈ R3, where mn

∗ =
√

s2n−c2
c . Due to mn

∗ → 0 as n→∞, we have

that Wsn(x1, x2, x3) converges to Û(x3) uniformly in any compact set Ω ⊂ R3

as n → ∞. Consequently, we have that Wsn(x1, x2, x3) converges to Û(x3) in
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the sense of ‖ · ‖C2
loc(R3) as n → ∞. Thus, we have that Û(·) =

(
Û1(·), Û1(·)

)
∈

C2
(
R,
[
E0,E1

])
satisfies Û ′′1 (x)− cÛ ′1(x) + Û1(x)

(
1− Û1(x)− k1Û2(x)

)
= 0,

dÛ ′′2 (x)− cÛ ′2(x) + r
(

1− Û2(x)
)(

k2Û1(x)− Û2(x)
)

= 0,
x ∈ R.

In view of Û2(0) = θ2 and Û ′i(x) ≥ 0 for any x ∈ R, similar to the proof of Theorem

3.1 we can show that Û(+∞) = E1, Û(−∞) = E0 and Û ′i(x) > 0 for any x ∈ R ,
where i = 1, 2. It then follows from the uniqueness of planar traveling wave fronts

of (5) connecting two equilibria E0 and E1 that Û(x) ≡ U(x) in x ∈ R. This
completes the proof.

4. Nonexistence of axisymmetric traveling fronts. In this section we prove
Theorems 1.3 and 1.4, which imply the nonexistence of axisymmetric traveling
fronts. Here we give only the proof of Theorem 1.4. Theorem 1.3 can be similarly
proved.
Proof of Theorem 1.4. We prove it by a contradiction argument. On the contrary, we
assume that for s < c, there exists an axisymmetric traveling front Ψ(x) satisfying
(4), limx3→+∞Ψ(0, 0, x3) = Eu, limx3→−∞Ψ(0, 0, x3) = Ev and

∂2

∂x2
i

Ψ1(x)

∣∣∣∣
x1=x2=0

≥ 0,
∂2

∂x2
i

Ψ2(x)

∣∣∣∣
x1=x2=0

≤ 0,
∂

∂x3
Ψ1(x) > 0,

∂

∂x3
Ψ2(x) < 0.

Let W1(x) = Ψ1(x) and W2(x) = 1 − Ψ2(x) for any x ∈ R3. Then W(x) =
(W1(x),W2(x)) satisfies (14), limx3→+∞W(0, 0, x3) = E1, limx3→−∞W(0, 0, x3) =
E0 and

∂2

∂x2
i

W1(x)

∣∣∣∣
x1=x2=0

≥ 0,
∂2

∂x2
i

W2(x)

∣∣∣∣
x1=x2=0

≥ 0,
∂

∂x3
W1(x) > 0,

∂

∂x3
W2(x) > 0.

Let Ũ(x3) = W(0, 0, x3) for any x3 ∈ R. Then we have

Ũ ′′1 (x3)− sŨ ′1(x3) + Ũ1(x3)
(

1− k1 − Ũ1(x3) + k1Ũ2(x3)
)

= − ∂2

∂x2
1

W1(x)

∣∣∣∣
x1=x2=0

− ∂2

∂x2
2

W1(x)

∣∣∣∣
x1=x2=0

≤ 0

and

dŨ ′′2 (x3)− sŨ ′2(x3) + r
(

1− Ũ2(x3)
)(

k2Ũ1(x3)− Ũ2(x3)
)

= −d ∂2

∂x2
1

W2(x)

∣∣∣∣
x1=x2=0

− d ∂2

∂x2
2

W2(x)

∣∣∣∣
x1=x2=0

≤ 0,

which imply that u+(x, t) =
(
u+

1 (x, t), u+
2 (x, t)

)
with u+

i (x, t) = Ũi(x+st) (i = 1, 2)
is a supersolution of the following system{

∂
∂t ǔ1(x, t) = ∂2

∂x2 ǔ1(x, t) + ǔ1(x, t) (1− ǔ1(x, t)− k1ǔ2(x, t)) ,
∂
∂t ǔ2(x, t) = d ∂2

∂x2 ǔ2(x, t) + r (1− ǔ2(x, t)) (k2ǔ1(x, t)− ǔ2(x, t)) ,
x ∈ R, t > 0.

(33)



AXISYMMETRIC TRAVELING FRONTS IN L-V COMPETITION SYSTEMS 1133

On the other hand, following Wang [52, Lemma 4.2] (see also Lin and Li [35]), we
obtain that the function

u−(x, t) = U
(
x+ ct− ξ− − ρδ

(
1− e−βt

))
−δe−βtQ

(
x+ ct− ξ− − ρδ

(
1− e−βt

))
is a subsolution of (33), where ρ, δ, β are appropriate positive constants, Q(·) ∈
C2
(
R,R2

+

)
is a monotone vector-valued function and satisfies Q(±∞)� 0, ξ− ∈ R

is an arbitrary number. In view of

u−(x, 0) = U(x− ξ−)− δQ(x− ξ−), u+(−∞, 0) = E0 and u+(+∞, 0) = E1,

there exists a sufficiently large ξ− > 0 so that u−(x, 0) ≤ u+(x, 0) for all x ∈ R.
Applying the comparison principle (see also Wang [52, Sections 2 and 5]), we have

u−(x, t) ≤ u+(x, t) = Ũ(x+ st), ∀ x ∈ R, t > 0.

It follows that

E1 � Ũ(0) = u+(−st, t)
≥ u−(−st, t)
= U

(
(c− s)t− ξ− − ρδ

(
1− e−βt

))
−δe−βtQ

(
(c− s)t− ξ− − ρδ

(
1− e−βt

))
→ E1 as t→ +∞,

which is a contradiction, this completes the proof of Theorem 1.4. �

5. Proofs of Lemmas 3.3 and 3.6. In this section we prove Lemmas 3.3 and
3.6.

5.1. Proof of Lemma 3.3. Consider system (18), namely, the following reaction-
diffusion system{

∂
∂tu1 = ∂2

∂x2u1 + (E∗1 − u1) (k1u2 − u1) ,
∂
∂tu2 = d ∂2

∂x2u2 + r (1− E∗2 + u2) (k2u1 − u2) .
(34)

For the corresponding ODE system{
d
dtu1 = (E∗1 − u1) (k1u2 − u1) ,
d
dtu2 = r (1− E∗2 + u2) (k2u1 − u2) ,

(35)

the equilibrium E0 is unstable and the equilibrium E∗ is stable. Following Volpert
et al. [51, Theorem 4.2] and Liang and Zhao [34, Theorems 4.3 and 4.4] we know
that there exists κ∗ ∈ R such that for any κ ≥ κ∗, system (18) admits an increasing
traveling wave front (ρ1 (x+ κt) , ρ2 (x+ κt)) connecting the equilibria E0 and E∗

and for any κ < κ∗, system (18) does not admit an increasing traveling wave front
(ρ1 (x+ κt) , ρ2 (x+ κt)) connecting the equilibria E0 and E∗. To complete the
proof, it is sufficient to show that κ∗ > 0.

By Volpert et al. [51] we know that κ∗ := infφ∈K ψ
∗ (φ), where

ψ∗ (φ) := max

{
sup
x∈R

φ′′1 (x) + f1 (φ (x))

φ′1 (x)
, sup
x∈R

dφ′′2 (x) + f2 (φ (x))

φ′2 (x)

}
and

K =
{
φ (x) = (φ1 (x) , φ2 (x)) ∈ C2

(
R,
[
E0,E∗

])∣∣φ′i (x) > 0, i = 1, 2
}
.
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But it is difficult to show κ∗ > 0 via κ∗ := infφ∈K ψ
∗ (φ). Therefore, we use the

setting of Liang and Zhao [34] to show κ∗ > 0.
It is not difficult to show that the hypothesis (A1)-(A6) and (C1)-(C6) of Liang

and Zhao [34] hold in
[
E0,E∗

]
for system (18). Linearizing system (18) at E0 =

(0, 0), we obtain a linear system{
∂
∂tu1 = ∂2

∂x2u1 − E∗1u1 + k1E
∗
1u2,

∂
∂tu2 = d ∂2

∂x2u2 + rk2 (1− E∗2 )u1 − r (1− E∗2 )u2.
(36)

For any α ∈ R, let ui (x, t) = eαxηi (t), i = 1, 2. Then we have{
∂
∂tη1 (t) =

(
α2 − E∗1

)
η1 (t) + k1E

∗
1η2 (t) ,

∂
∂tη2 (t) = rk2 (1− E∗2 ) η1 (t) +

(
dα2 − r (1− E∗2 )

)
η2 (t) .

(37)

Namely,
d

dt
η (t) = A (α) η (t) ,

where

η (t) =

(
η1 (t)
η2 (t)

)
and A (α) =

(
α2 − E∗1 k1E

∗
1

rk2 (1− E∗2 ) dα2 − r (1− E∗2 )

)
.

It is obvious that the matrix A (α) is cooperative and irreducible (see Smith [46,
page 56]). Let λ (α) := s (A (α)) be a simple eigenvalue of A (α) with a strongly
positive eigenvector p (α) = (p1 (α) , p2 (α))� (0, 0). A direct calculation yields

λ (α) =
−
[
r (1− E∗2 ) + E∗1 − (1 + d)α2

]
+
√
ϑ(α)

2
,

where

ϑ(α) =
[
r (1− E∗2 ) + E∗1 − (1 + d)α2

]2
−4
(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
+ 4rk1k2E

∗
1 (1− E∗2 ) .

Define
Bt
α

(
η0
)

:= Mt

(
η0e−αx

)
(0) = η

(
t; η0

)
= exp (A (α) t) η0,

where Mt is the linear solution map defined by (36) and η
(
t, η0

)
is the solution of

(37) with η (0) = η0. Therefore, Bt
α is the solution map associated with (37) on R2,

and hence, Bt
α is the strongly positive matrix for each t > 0. Since η (t; p (α)) =

exp (A (α)) p (α), we have

Bt
α (p (α)) = η (t; p (α)) = exp (A (α) t) p (α) = exp (λ (α) t) p (α) ,

which implies that exp (λ (α) t) is the principle eigenvalue of Bt
α, and p (α) is the

associated strongly positive eigenvalue. Let t = 1. Then γ (α) := exp (λ (α)) is the
principle eigenvalue of Bα := B1

α. Define a function

Φ (α) :=
1

α
γ (α) =

λ (α)

α
.

A direct verification yields that:
(1) Φ (α)→ +∞ as α→ 0+;
(2) Φ (α) is decreasing near 0;
(3) Φ′ (α) changes sign once on (0,+∞);
(4) limα→+∞ Φ (α) = +∞.

In the following we prove that κ∗ ≥ infα>0 Φ (α) = infα>0
λ(α)
α . In view of

λ (0) > 0, we have γ (0) = exp (λ (0)) > 1. Therefore, the condition (C7) in Liang
and Zhao [34] is satisfied.
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For δ > 0, denote Cδ =
{
ϕ = (ϕ1, ϕ2) ∈ BC(R,R2)

∣∣ 0 ≤ ϕi(·) ≤ δ, i = 1, 2
}

. For
any ε ∈ (0, 1), there exists a δ > 0 such that 0 ≤ ui (x, t;ϕ) ≤ ui (t; δ) ≤ ε for any
x ∈ R, t ∈ [0, 1] and ϕ ∈ Cδ, where i = 1, 2, u (x, t;ϕ) = (u1 (x, t;ϕ) , u2 (x, t;ϕ)) is
the solution of (18) with initial value ϕ ∈ Cδ and u (t; δ) = (u1 (t; δ) , u2 (t; δ)) is the
solution of (35) with initial value u(0) = (δ, δ). Thus, u (x, t) = u (x, t;ϕ) satisfies

∂
∂tu1 ≥ ∂2

∂x2u1 − E∗1u1 + k1 (E∗1 − ε)u2,
∂
∂tu2 ≥ d ∂2

∂x2u2 + rk2 (1− E∗2 )u1 − r (1− E∗2 + ε)u2

for any x ∈ R and t ∈ [0, 1].
Let M ε

t , t ≥ 0, be the solution map associated with the linear system

∂
∂tv1 = ∂2

∂x2 v1 − E∗1v1 + k1 (E∗1 − ε) v2,
∂
∂tv2 = d ∂2

∂x2 v2 + rk2 (1− E∗2 ) v1 − r (1− E∗2 + ε) v2.

The comparison principle implies that M ε
t (ϕ) ≤ Qt (ϕ) for any ϕ ∈ Cδ and t ∈ [0, 1],

where Qt is the solution map associated with system (18), namely, Qt (ϕ) (·) =
u(·, t;ϕ). In particular, M ε

1 (ϕ) ≤ Q (ϕ) := Q1 (ϕ) for any ϕ ∈ Cδ. As we did for
Mt, a similar analysis can be made for M ε

t . It then follows from Liang and Zhao
[34, Theorem 3.10] that

inf
α>0

Φε (α) ≤ κ∗, ∀ ε ∈ (0, 1) .

Letting ε→ 0, we obtain κ∗ ≥ infα>0 Φ (α).
Now we show that infα>0 Φ (α) > 0. First, we have Φ (0 + 0) = +∞ and

Φ (+∞) = +∞. Therefore, it suffices to show that λ (α) > 0 for any α > 0.
We consider three cases in the proof.
Case i.

(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
> 0 and E∗1 − α2 < 0. In this case we have

−
[
r (1− E∗2 ) + E∗1 − (1 + d)α2

]
> 0, which implies that λ (α) > 0.

Case ii.
(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
< 0. By the fact that

ϑ(α) =
[
r (1− E∗2 ) + E∗1 − (1 + d)α2

]2
−4
(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
+ 4rk1k2E

∗
1 (1− E∗2 )

=
[(
r (1− E∗2 )− dα2

)
−
(
E∗1 − α2

)]2
+ 4rk1k2E

∗
1 (1− E∗2 ) ,

we obtain λ (α) > 0.

Case iii.
(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
> 0 and E∗1 − α2 > 0. In this case we have

4rk1k2E
∗
1 (1− E∗2 ) > 4rE∗1 (1− E∗2 ) > 4

(
E∗1 − α2

) (
r (1− E∗2 )− dα2

)
.

Therefore, we have

λ (α) >
−
[
r (1− E∗2 ) + E∗1 − (1 + d)α2

]
+
∣∣r (1− E∗2 ) + E∗1 − (1 + d)α2

∣∣
2

= 0.

Combining the above cases (i)-(iii), we obtain κ∗ ≥ infα>0 Φ (α) = infα>0
λ(α)
α >

0. This completes the proof of Lemma 3.3. �

5.2. Proof of Lemma 3.6. In this subsection we prove Lemma 3.6 by using the
theory of Thieme and Zhao [50]. For the reader’s convenience, in subsection 5.2.1
we state some results of Thieme and Zhao [50] on the spreading speed for scalar
nonlinear integral equations, which are needed in the next subsection. In subsection
5.2.2, we use these results to prove Lemma 3.6 in details.
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5.2.1. Spreading speed for scalar nonlinear integral equations. Consider the follow-
ing nonlinear integral equation

u (x, t) = u0 (x, t) +

∫ t

0

∫
Rn
F (u (x− y, t− r) ,y, r) dydr, (38)

where F : R2
+ × Rn → R is continuous in u and Borel measurable in (y, r), and

u0 : Rn × R+ → R+ is Borel measurable and bounded. We further impose the
following assumptions on F :

(A) There exists a function k : Rn × R+ → R+ such that
(A1) k∗ =

∫∞
0

∫
Rn k (x, t) dxdt <∞;

(A2) 0 ≤ F (u,x, t) ≤ uk (x, t), ∀u, t ≥ 0, x ∈ Rn;
(A3) For every compact interval I in (0,∞), there exists some ε > 0 such that

F (u,x, t) ≥ εk (x, t) , ∀u ∈ I, t ≥ 0, x ∈ Rn;

(A4) For every ε > 0, there exists some δ > 0 such that

F (u,x, t) ≥ (1− ε)uk (x, t) , ∀u ∈ [0, δ] , t ≥ 0, x ∈ Rn;

(A5) For every w > 0, there exists some Λ > 0 such that

|F (u,x, t)− F (v,x, t)| ≥ Λ |u− v| k (x, t) , ∀u, v ∈ [0, w] , t ≥ 0, x ∈ Rn.

Consequently, we make a couple of assumptions concerning the function k:
(B) k : Rn × R+ → R+ is a Borel measurable function such that

(B1) k∗ =
∫∞

0

∫
Rn k (x, t) dxdt ∈ (1,∞);

(B2) There exists some λ > 0 such that
∫∞

0

∫
Rn e

λx1k (x, t) dxdt <∞;
(B3) There exists numbers %2 > %1 > 0, ρ > 0 such that

k (x, t) > 0, ∀t ∈ (%1, %2) , |x| ∈ [0, ρ) ;

(B4) k (x, t) is isotropic on x for almost all t > 0.

To consider the special case F (u,x, t) = f (u) k (x, t), the function f needs to
satisfy the following assumptions:

(C) f (u) : R+ → R+ is a Lipschitz continuous function such that
(C1) f (0) = 0 and f (u) > 0 for any u > 0;
(C2) f is differentiable at u = 0, f ′ (0) = 1 and f (u) ≤ u, ∀u > 0;

(C3) limu→∞
f(u)
u = 0;

(C4) There exists a positive solution u∗ of u = k∗f (u) such that k∗f (u) > u
for u ∈ (0, u∗) , and k∗f (u) < u for u > u∗.

It is clear that if (B) and (C) hold, then (A) holds. Define

K (σ, λ) =

∫ ∞
0

∫
Rn
e−λ(σr−z1)k (z, t) dzdr, ∀σ ≥ 0, λ ≥ 0

and

σ∗ := inf {σ ≥ 0 : K (σ, λ) < 1 for some λ > 0} .
We say that u0 is admissible if for every σ, λ > 0 with K (σ, λ) < 1, there exists
some γ > 0 such that

u0 (x, t) ≤ γeλ(σt−|x|), ∀t ≥ 0, x ∈ Rn.

Now we state two theorems of Thieme and Zhao [50].
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Theorem 5.1. (Thieme and Zhao [50, Theorem 2.1]) Let (A) and (B) hold. Then
for every admissible u0, the unique solution u (x, t) of (38) satisfies

lim
t→∞,|x|≥σt

u (x, t) = 0

for each σ > σ∗.

Theorem 5.2. (Thieme and Zhao [50, Theorem 2.2]) Let F (u,x, r) = f (u) k (x, r).
Assume that (B) and (C) hold, and f is monotone increasing. Then for any
Borel measurable function u0 : Rn × R+ → R+ with the property that u0 (x, t) ≥
η > 0, ∀t ∈ (t1, t2), |x| ≤ η, for appropriate t2 > t1 ≥ 0, η > 0, there holds
lim inft→∞,|x|≤σt u (x, t) = u∗, ∀σ ∈ (0, σ∗).

5.2.2. Concrete proof of Lemma 3.6. Let

f (u) =

{
g(u), u ∈ [0, v∗2 ] ,
g(v∗2), u > v∗2 ,

where g(·) is defined by (22). Then f (u) is increasing and satisfies the assumption
(C). In particular, v∗2 is the positive solution of u = k∗f (u) and satisfies k∗f (u) > u

for u ∈ (0, v∗2) and k∗f (u) < u for u > v∗2 , where k∗ =
k1k2(1−E∗2 )
1−E∗2+Λ2

.

Consider the following system{
∂
∂tu1(x, t) = ∆u1(x, t) + k1E

∗
1f (u2(x, t))− E∗1u1(x, t),

∂
∂tu2(x, t) = d∆u2(x, t) + rk2 (1− E∗2 )u1(x, t)− r (1− E∗2 + Λ2)u2(x, t),

(39)
where x ∈ R3 and t > 0. System (39) has two equilibria E0 = (0, 0) and E∗∗ =
(v∗1 , v

∗
2). Therefore, the interval

[
E0,E∗∗

]
is invariant for the solution semiflows

of system (39). System (39) also satisfies the comparison principle on (u1, u2) ∈
[0,+∞)

2
.

Lemma 5.3. Assume that φ = (φ1, φ2) ∈ C
(
R3,

[
E0,E∗∗

])
satisfies that φ1(·) +

φ2(·) 6≡ 0 and for every µ1 > 0, there exists some µ2 > 0 such that φ1(x) +
φ2(x) ≤ µ2e

−µ1|x| for any x ∈ R3. Then there exists σ∗ > 0 such that the solution
u(x, t;φ) = (u1 (x, t;φ) , u2 (x, t;φ)) of (39) with initial value φ satisfies:

(i) u(x, t;φ) ∈
[
E0,E∗∗

]
for any x ∈ R3 and t > 0;

(ii) limt→∞,|x|≥σt u (x, t) = E0 for any σ > σ∗;
(iii) limt→∞,|x|≤σt u (x, t) = E∗∗ for any σ < σ∗.

Proof. By (39), we have

u1 (x, t) = e−E
∗
1 tΓ (t)φ1 (x) + k1E

∗
1

∫ t

0

e−E
∗
1 (t−s)Γ (t− s) f (u2 (x, s)) ds (40)

and

u2 (x, t) = e−r(1−E
∗
2+Λ2)tΓ (dt)φ2 (x)

+rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)Γ (d (t− s))u1 (x, s) ds,

where

Γ (t)ϕ (x) =

∫
R3

1(√
4πt
)3 e− |y|24t ϕ (x− y) dy.
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Consequently, we have

u2 (x, t)

= u0
2 (x, t) + rk1k2E

∗
1 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πdt)
− 3

2 e−
|y|2

4d(t−s)

×
∫ s

0

e−E
∗
1 (s−τ)Γ (s− τ) f (u2 (x− y, τ)) dτdyds

= u0
2 (x, t) + rk1k2E

∗
1 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πdt)
− 3

2 e−
|y|2

4d(t−s)

×
∫ s

0

e−E
∗
1 (s−τ)

∫
R3

(4πt)
− 3

2 e−
|z|2
4t f (u2 (x− y − z, τ)) dzdτdyds

= u0
2 (x, t) + rk1k2E

∗
1 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πdt)
− 3

2 e−
|y|2

4d(t−s)

×
∫ s

0

e−E
∗
1 (s−τ)

∫
R3

(4π(s− τ))
− 3

2 e−
|z−y|2
4(s−τ) f (u2 (x− z, τ)) dzdτdyds,(41)

where

u0
2 (x, t) = e−r(1−E

∗
2+Λ2)tΓ (dt)φ2 (x) + rk2 (1− E∗2 )

×
∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)Γ (d (t− s))

(
e−E

∗
1 sΓ (s)φ1 (x)

)
ds

= e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt φ2 (x− y) dy

+rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

×
∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s)

(
e−E

∗
1 sΓ (s)φ1 (x− y)

)
dyds

= e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt φ2 (x− y) dy

+rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z|2
4s φ1 (x− y − z) dzdyds

= e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt φ2 (x− y) dy

+rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z−y|2

4s φ1 (x− z) dz dyds.

In the following we define appropriate k(x, t) so that we can rewrite u2(x, t) in
the form of (38) with the special case F (u,x, t) = f(u)k(x, t). In particular, we
show that assumption (B) holds in this case and u0

2(x, t) is admissible. Following
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(41), we have

rk1k2E
∗
1 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4d(t−s)

×
∫ s

0

e−E
∗
1 (s−τ)

∫
R3

(4π(s− τ))
− 3

2 e−
|z−y|2
4(s−τ) f (u2 (x− z, τ)) dzdτdyds

= rk1k2E
∗
1 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫ s

0

e−E
∗
1 (s−τ)

∫
R3

(4π(s− τ))
− 3

2

×
∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4d(t−s) e−

|z−y|2
4(s−τ) dyf (u2 (x− z, τ)) dzdτds

= rk2k1E
∗
1 (1− E∗2 )

∫ t

0

∫ t

τ

e−r(1−E
∗
2+Λ2)(t−s)e−E

∗
1 (s−τ)

∫
R3

(4π(s− τ))
− 3

2

×
∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4d(t−s) e−

|z−y|2
4(s−τ) dyf (u2 (x− z, τ)) dzdsdτ

= rk1k2E
∗
1 (1− E∗2 )

∫ t

0

∫ t−τ

0

e−r(1−E
∗
2+Λ2)(t−s−τ)e−E

∗
1 s

∫
R3

(4πs)
− 3

2

×
∫
R3

(4πd(t− s− τ))
− 3

2 e−
|y|2

4d(t−s−τ) e−
|z−y|2

4s dyf (u2 (x− z, τ)) dzdsdτ

= rk1k2E
∗
1 (1− E∗2 )

∫ t

0

∫
R3

[∫ t−τ

0

e−r(1−E
∗
2+Λ2)(t−s−τ)e−E

∗
1 s

×
∫
R3

e−
|z−y|2

4s(√
4πs
)3 e−

|y|2
4d(t−s−τ)(√

4πd (t− s− τ)
)3 dyds

]
f (u2 (x− z, τ)) dzdτ.

Let

k̃ (z, t) =

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)e−E

∗
1 s

∫
R3

e−
|z−y|2

4s(√
4πs
)3 e−

|y|2
4d(t−s)(√

4πd (t− s)
)3 dyds.

A direct calculation yields∫ ∞
0

∫
R3

k̃ (z, t) dzdt =
1

rE∗1 (1− E∗2 + Λ2)
.

Set

k (z, t) = rk1k2E
∗
1 (1− E∗2 ) k̃ (z, t) .

It is easy to show that k (z, t) satisfies the assumption (B). In particular, we have

k∗ =
∫∞

0

∫
R3 k (z, t) dzdt =

k1k2(1−E∗2 )
1−E∗2+Λ2

> 1 due to the assumption (H).

Let

K (σ, λ) =

∫ ∞
0

∫
R3

e−λ(σt−z1)k (z, t) dzdt

=
rk1k2E

∗
1 (1− E∗2 )

(E∗1 + λσ − λ2) (r (1− E∗2 + Λ2) + λσ − dλ2)

and

λ](σ) = min

{
σ +

√
σ2 + 4E∗1
2

,
σ +

√
σ2 + 4dr (1− E∗2 + Λ2)

2d

}
for σ > 0.
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Then we have K (σ, λ) < +∞ for λ ∈
(
0, λ](σ)

)
and K (σ, λ) → +∞ as λ →

λ](σ)− 0. In particular, we have K (σ, 0) = k∗ > 1 for any σ ≥ 0 and

K (0, λ) =
rk1k2E

∗
1 (1− E∗2 )

(E∗1 − λ2) (r (1− E∗2 + Λ2)− dλ2)
<∞

for any 0 < λ < min
{√

E∗1 ,
√
r (1− E∗2 + Λ2)/ d

}
. By Thieme and Zhao [50,

Proposition 2.3], there exist a unique σ∗ > 0 and λ∗ > 0 such that

K (σ, λ) = 1 and
d

dλ
K (σ, λ) = 0.

Now we show that u0
2 (x, t) is admissible. Note that

u0
2 (x, t)

= e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt φ2 (x− y) dy

+rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4d(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z−y|2

4s φ1 (x− z) dz dyds.

It is easy to see that

u0
2 (x, t) ≤ v∗2e−r(1−E

∗
2+Λ2)t +

rk2 (1− E∗2 ) v∗1
r (1− E∗2 + Λ2)− E∗1

[
e−E

∗
1 t − e−r(1−E

∗
2+Λ2)t

]

for any x ∈ R3 and t > 0, which implies that u0
2 (x, t) converges to 0 uniformly in

x ∈ R3 as t → +∞. Give σ > 0 and λ ∈
(
0, λ](σ)

)
with K (σ, λ) < 1. In this case

we have dλ2 − λσ− r (1− E∗2 + Λ2) < 0 and λ2 − λσ−E∗1 < 0. It follows from the
assumption of the lemma that there exists γ > 0 such that φ1(x) +φ2(x) ≤ γe−λ|x|
for any x ∈ R3. For any e ∈ R3 with |e| = 1, we have φ1(x) + φ2(x) ≤ γeλe·x for
any x ∈ R3 due to the inequality −|x| ≤ e · x ≤ |x|. Consequently, we obtain

e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt φ2 (x− y) dy

≤ e−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt γeλe·xe−λe·ydy

= γeλe·xe−r(1−E
∗
2+Λ2)t

∫
R3

(4πdt)
− 3

2 e−
|y|2
4dt e−λy1dy

= γeλe·xe(dλ
2−r(1−E∗2+Λ2))t

≤ γeλ(σt+e·x)
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and

rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z−y|2

4s φ1 (x− z) dz dyds

≤ rk2 (1− E∗2 )

∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z−y|2

4s γeλe·xe−λe·zdz dyds

= rk2 (1− E∗2 ) γeλe·x
∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)

∫
R3

(4πd(t− s))−
3
2 e−

|y|2
4(t−s) e−E

∗
1 s

×
∫
R3

(4πs)
− 3

2 e−
|z−y|2

4s e−λz1dz dyds

= rk2 (1− E∗2 ) γeλe·x
∫ t

0

e−r(1−E
∗
2+Λ2)(t−s)edλ

2(t−s)e−E
∗
1 seλ

2sds

≤ rk2 (1− E∗2 ) γeλe·x
∫ t

0

eλσ(t−s)e−E
∗
1 seλ

2sds

≤ rγk2 (1− E∗2 )

E∗1 + λσ − λ2
eλ(σt+e·x)

for any x ∈ R3 and t ≥ 0. Letting e = − x
|x| yields

u0
2 (x, t) ≤

(
γ +

rγk2 (1− E∗2 )

E∗1 + λσ − λ2

)
eλ(σt−|x|), ∀ x ∈ R3, t ≥ 0,

which implies that u0
2 (x, t) is admissible.

Let F (u,x, s) = f(u)k(x, s). It is easy to show that the assumption (A) holds.
In addition, we have the integral equation

u2 (x, t) = u0
2 (x, t) +

∫ t

0

∫
R3

k(y, t− τ)f (u2 (x− y, τ)) dydτ. (42)

It follows from Thieme and Zhao [50, Proposition 2.1] that for any bounded u0
2(x, t),

the integral equation (42) has a unique solution which is bounded on (x, t) ∈ R3 ×
[0 +∞). It is obvious that the second component u2(x, t) of the solution of system
(39) is a solution of (42). Thus, the result of the lemma for u2(x, t) follows from
Theorems 5.1 and 5.2. Consequently, the result of the lemma for u1(x, t) follows
from an argument on (40), see [50, Theorem 4.4]. This completes the proof.

Now we prove Lemma 3.6.
Proof of Lemma 3.6: Assume that φ = (φ1, φ2) ∈ C

(
R3,

[
E0,E∗∗

])
is compactly

supported with φ1(·) + φ2(·) 6≡ 0. It is easy to show that φ satisfies the condition

of Lemma 5.3. By the comparison principle, we have ˜̃u(x, t;φ) ∈
[
E0,E∗∗

]
for any

x ∈ R3 and t > 0. By the definition of f , we have that the solution ˜̃u(x, t;φ) of
(23) is also a solution of (39). Applying Lemma 5.3, we know that the conclusions
of Lemma 3.6 hold. This completes the proof of Lemma 3.6. �

6. Discussion. Under the assumptions that k1, k2 > 1 and c > 0, in this paper
we have established the existence of axisymmetric traveling fronts of a two-species
Lotka-Volterra competition-diffusion system in R3 for any s > c and demonstrated
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some important qualitative properties, such as monotonicity, of the axisymmetric
traveling fronts. When s tends to c, we showed that the axisymmetric traveling
fronts converge locally uniformly to the planar traveling wave fronts in R3. Fur-
thermore, we showed the nonexistence of axisymmetric traveling fronts with convex
level set. Note that the nonexistence results of Theorems 1.3 and 1.4 remain valid
for two-dimensional V-shaped traveling fronts and high-dimensional pyramidal trav-
eling fronts.

Due to the effect of the coupled nonlinearity, in this paper we did not consider the
behavior of level sets of the axisymmetric traveling fronts at infinity. We conjecture
that the level set admits an asymptotic behavior similar to that for the scalar
equations, see Hamel et al. [20, 21] and Taniguchi [49]. Another natural problem
is the uniqueness and stability of the axisymmetric traveling fronts. We leave these
for our future studies. In addition, in the current paper we only considered the case
c > 0. For the case c = 0, it is expected that there exist more complex dynamics,
such as those obtained for the balanced Allen-Cahn equation. This case is very
interesting and remains open.
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