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Abstract In the one-dimensional space, traveling wave solutions of parabolic differential equations have been

widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts

has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar

reaction-diffusion equation with various nonlinearities. In this paper, by using the comparison argument and

constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three-

dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in

R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the

lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular,

our results are applicable to some important models in biology, such as Lotka-Volterra competition-diffusion

systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.
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1 Introduction

In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely

studied and well characterized, see for example, Conley and Gardner [7], Fife and McLeod [11, 12],

Gardner [14], Liang and Zhao [34], Mischaikow and Hutson [37], Tsai [51], and Volpert et al. [52]. In

high-dimensional spaces, however, because propagating wave fronts may change shape and evolve to

new nonplanar traveling waves, it is still interesting but extremely difficult and challenging to find and

characterize possible nonplanar traveling waves. From the dynamical point of view, the characterization

of nonplanar traveling waves is essential for a complete understanding of the structure of global attrac-

tors, which usually determine the long-time behavior of solutions of reaction-diffusion equations under

consideration.

Recently, the mathematical study of higher-dimensional traveling fronts has attracted a lot of attention

and many new types of nonplanar traveling waves have been observed for the following scalar reaction-

diffusion equation with various nonlinearities

∂

∂t
u(x, t) = d∆u(x, t) + f(u(x, t)), x ∈ Rm, t > 0. (1.1)

For the combustion nonlinearity, Bonnet and Hamel [2], Hamel et al. [21] and Wang and Bu [55] have

studied V-form curved fronts of (1.1) with m = 2. For the Fisher-KPP case, nonplanar traveling wave

solutions of (1.1) with m > 2 have been studied by Brazhnik and Tyson [3], Hamel and Roquejoffre [24]

and Huang [29]. For the unbalanced bistable case (specially for Allen-Cahn equation), V-form front

solutions of (1.1) with m = 2 have been studied by Hamel et al. [22, 23], Ninomiya and Taniguchi

[39, 40] and Gui [17], cylindrically symmetric traveling fronts of (1.1) with m > 3 have been studied

by Hamel et al. [22, 23], and traveling fronts with pyramidal shapes of (1.1) with m > 3 have been

studied by Taniguchi [47–50] and Kurokawa and Taniguchi [32]. Wang and Wu [57] and Sheng et al. [45]

extended the arguments of Ninomiya and Taniguchi [39, 40] and Taniguchi [47, 48] and established two-

dimensional V-shaped traveling fronts and pyramidal traveling wave fronts, respectively, for bistable

reaction-diffusion equations with time-periodic nonlinearity; namely, (1.1) with a nonlinearity f(u, t) such

that f(·, ·) = f(·, ·+T ) for some T > 0. In particular, Sheng et al. [46] have studied the multidimensional

stability of V-form traveling fronts in the Allen-Cahn equation. Multidimensional stability of planar

traveling waves in reaction-diffusion equations has been studied in Xin [58], Levermore and Xin [33],

Kapitula [31], and Zeng [59,60].

Note that the nonplanar traveling waves obtained in the above mentioned studies are connected and

convex. It needs to be pointed out that the balanced bistable case (specially f(u) = u(1 − u2)), which

is more interesting and complex, has been studied by Chen et al. [6] and del Pino et al. [42, 43]. Chen

et al. [6] have studied the existence and qualitative properties of cylindrically symmetric traveling waves

with paraboloid like interfaces of (1.1), which are also connected and convex. In [42], del Pino, Kowalczyk

and Wei have showed a new stationary wave when dimension m > 9, which is a counterexample to De

Giorgi’s conjecture. In [43] they have proved that there exist traveling wave solutions whose traveling

fronts are non-connected, multi-component surfaces, and that there are solutions whose fronts are non-

convex when m > 3. Other related studies can be found in Bu and Wang [4], Chapuisat [5], El Smaily et

al. [9], Fife [10], Hamel [20], Hamel and Roquejoffre [25], Morita and Ninomiya [38], Wang [54].

In contrast to the scalar equations, the study on nonplanar traveling waves of systems of reaction-

diffusion equations mainly focuses on two-dimensional V-form curved fronts. Haragus and Scheel [26–28]

have studied almost planar waves (V-form waves) in reaction-diffusion systems by using bifurcation

theory. Here “almost planar” means that the interface region is close to the hyperplanes (the angle of the

interface is close to π). By developing the arguments of Ninomiya and Taniguchi [39, 40], Wang [53] has

established the existence and stability of two-dimensional V-form curved fronts for the following systems
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with m = 2
∂u

∂t
= D∆u + F (u (x, t)) , x ∈ Rm, t > 0, u (x, t) ∈ RN , N > 1, (1.2)

under the following hypotheses:

(H1) D = diag (D1, D2, · · · , DN ) is a diagonal matrix of order N with Di > 0.

(H2) F has two stable equilibrium points E− � E+, i.e., F (E±) = 0 where 0 = {0, · · · , 0}, and all

eigenvalues of F′ (E±) have negative real parts.

(H3) There exist two vectors R± =
(
r±1 , · · · , r

±
N

)
with r±i > 0(i = 1, · · · , N) and two positive numbers

λ± such that F′ (E+) R+ 6 −λ+R+ and F′ (E−) R− 6 −λ−R−.

(H4) The reaction term F (u) =
(
F 1 (u) , · · · , FN (u)

)
is defined on an open domain Ω ⊂ RN , is of class

C1 in u, and satisfies the following conditions:

∂F i

∂uj
(u) > 0 for all u ∈

[
E−,E+

]
⊂ Ω and for all 1 6 i 6= j 6 N.

Furthermore, there exist nonnegative constants L−ij and L+
ij such that

∂F i

∂uj
(u) + L−ij

{
ui − E−i

}−
+ L+

ij

{
E+
i − ui

}−
> 0, i 6= j,

for u ∈
[
Ê−, Ê+

]
⊂ Ω, where Ê− � E− � E+ � Ê+ and for any a ∈ R,

{a}− =

{
0 if a > 0,

−a if a < 0.

(H5) System (1.2) admits a planar traveling wave front

U (e · x + ct) = (U1 (e · x + ct) , · · · , UN (e · x + ct))

satisfying the following ordinary differential equations
DiU

′′
i − cU ′i + F i (U) = 0,

U (±∞) := limξ→±∞U (ξ) = E±,

U ′i > 0 on R for i = 1, · · · , N,

where ξ = e · x + ct with e ∈ Rm and |e| = 1, c > 0 is the wave speed.

Here the real vector-valued function u (x, t) = (u1 (x, t) , · · · , uN (x, t)) is unknown and F′ (E) denotes

the Jacobian matrix of F at E ∈ RN . For two vectors c = (c1, · · · , cN ) and d = (d1, · · · , dN ), the symbol

c � d means ci < di for each i ∈ {1, · · · , N} and c 6 d means ci 6 di for each i ∈ {1, · · · , N} . The

interval [c,d] denotes the set of q ∈RN with c 6 q 6 d. For some comments on assumptions (H1)-(H5) we

refer to Wang [53]. In general, assumptions (H1)-(H4) do not ensure that system (1.2) admits a traveling

planar wave front connecting the equilibria E− and E+. Therefore, the assumption on the existence of

planar traveling wave solutions in (H5) is standard. A further assumption is that the wave speed c > 0.

It should be pointed out that to determine the sign of the wave speed c for a given reaction-diffusion

system is a very difficult job. Nevertheless, some sufficient conditions can be given for the positivity of

the wave speed c for some particular cases, see Wang [53] and Alcahrani et al. [1] for some examples.

It follows from Volpert et al. [52, Chapter 3] that there exist positive constants C1 and β1 such that∣∣Ui (±ξ)− E±i
∣∣+ |U ′i (±ξ)|+ |U ′′i (±ξ)| 6 C1e

−β1|ξ| for ξ > 0 and i = 1, · · · , N. (1.3)
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Contrasting to the results of Haragus and Scheel [26–28] which are valid only for sufficiently small s−c > 0

(namely, when the curved wave speed s is sufficiently close to the planar wave speed c), the results of

Wang [53] hold for any s > c > 0. In particular, the results are applicable to some important biological

models with m = 2 (see [53, Section 5] for details), such as Lotka-Volterra competition-diffusion systems

with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.

Recently, Ni and Taniguchi [41] have established the existence of pyramidal traveling wave solutions

for competition-diffusion systems in Rm (m > 3), which covers the classical Lotka-Volterra competition-

diffusion system with two components. Note that such pyramidal traveling wave solutions in R3 are

indeed three-dimensional traveling wave solutions with pyramidal structures and are neither cylindrically

symmetric nor reducible to two-dimensional traveling wave solutions. Also notice that traveling wave

solutions with pyramidal shape for the Allen-Cahn equation (a single equation) are first constructed by

Taniguchi [47] in x ∈ R3. His method is to use the super- and subsolutions technique and the comparison

principle, which is similar to that of Ninomiya and Taniguchi [39]. To construct a suitable supersolution,

a key technique is to construct an appropriate mollified pyramid above a pyramid in R3. Kurokawa and

Taniguchi [32] have extended the argument of Taniguchi [47] and established pyramidal traveling fronts

for the Allen-Cahn equation in Rm (m > 4). Taniguchi [48] has studied the uniqueness and asymptotic

stability of pyramidal traveling fronts established in Taniguchi [47]. For a given admissible pyramid it

has been proved that a pyramidal traveling front is uniquely determined and that it is asymptotically

stable under the condition that given perturbations decay at infinity. Furthermore, the pyramidal trav-

eling front is characterized as a combination of planar traveling fronts on the lateral surfaces and as a

combination of two-dimensional V-form traveling fronts on the edges, respectively. Recently, Sheng et

al. [45] have developed the arguments of Taniguchi [47,48] and studied periodic pyramidal traveling fronts

for bistable reaction-diffusion equations with time-periodic nonlinearity. More recently, Taniguchi [49,50]

has constructed generalized pyramidal traveling fronts with convex polyhedral shapes.

Though the existence of pyramidal traveling fronts for competition-diffusion systems has been estab-

lished by Ni and Taniguchi [41], the uniqueness and stability of pyramidal traveling fronts still remain

open. The purpose of this paper is to extend the arguments of Taniguchi [47, 48] for a scalar equation

to study the existence, uniqueness and stability of traveling waves of pyramidal shapes for the reaction-

diffusion system (1.2) in R3 under assumptions (H1)-(H5). The main method is also to use the super-

and subsolution technique and the comparison principle. We would like to point out that even though

the main strategy of the current paper is similar to that in Taniguchi [47, 48], it needs new techniques

and many modifications to obtain the expected results due to the presence of nonlinear coupling in the

system which is a nontrivial work. First, because we are treating a coupled system of reaction-diffusion

equations (not a single equation), we have to use the planar traveling wave fronts of the system to modify

the super- and subsolutions of Taniguchi [47, 48] so that they can be applied to the system. To reach

this aim, we define two monotone vector-valued functions P(·) and Q(·) and incorporate them into the

resulting super- and subsolutions. Of course, the functions P(·) and Q(·) have been used by the first

author in [53]. Second, as seen in the following, the super- and subsolutions constructed later cannot

be bounded from above by E+ and from below by E−, which results in the comparison principle on

[E−,E+] (see the first part of the condition (H4)) being invalid for the supersolutions and subsolutions.

This is very different from the case for a single equation. Therefore, we construct an auxiliary system

(2.1) to help our analysis for the below (1.4), which is the traveling wave system corresponding to the

original reaction-diffusion system (1.2). The auxiliary system (2.1) with nonlinearity G(u), which has

been constructed by Wang [53], admits the comparison principle on an interval
[
Ê−, Ê+

]
larger than

[E−,E+]. In particular, G(u) ≡ F(u) for u ∈ [E−,E+] , and a solution of system (2.1) with nonlinearity

G(u) bounded in [E−,E+] is also a solution of system (1.2) with nonlinearity F(u). Third, we prove the

asymptotic stability of the pyramidal traveling front established in Section 3 by considering two cases,

u0 > v− and u0 6 v−, respectively. See below for the definitions of u0 and v−. Note that we prove for

the later case by using an argument similar to that in Wang [53] and Ninomiya and Taniguchi [40], which

is different from that in Taniguchi [48], where an estimate from below for the solutions of the initial value
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problem is required.

In the following we state our main result in this paper. Throughout this paper, we always assume that

assumptions (H1)-(H5) hold and let m = 3 and c > 0. For any e1, e2, · · · , ek ∈ RN , define

∧kj=1ej =

(
min

16j6k
ej1, · · · , min

16j6k
ejN

)
and ∨kj=1 ej =

(
max

16j6k
ej1, · · · , max

16j6k
ejN

)
,

where k ∈ N. For c = (c1, · · · , cN ), denote |c| =
√∑N

i=1 c
2
i . For any bounded u ∈ C

(
R3,RN

)
, define

‖u‖C(R3) = sup
x∈R3

|u(x)| .

Fix s > c. We assume that solutions travel towards the −x3 direction without loss of generality. Take

u (x, t) = v (x′, x3 + st, t) , x′ = (x1, x2) , x = (x′, x3) .

Then we have

∂v

∂t
= D∆v − s ∂v

∂x3
+ F (v) , x ∈ R3, t > 0, (1.4)

v (x, 0) = v0 (x) , x ∈ R3. (1.5)

We seek for V (x) with

L [V] := −D∆V + s
∂V

∂x3
− F (V) = 0, x ∈ R3. (1.6)

Let n > 3 be a given integer and

m∗ =

√
s2 − c2
c

.

Let {Aj = (Aj , Bj)}nj=1 be a set of unit vectors in R2 such that

AjBj+1 −Aj+1Bj > 0, j = 1, 2, · · · , n− 1; AnB1 −A1Bn > 0.

Now (m∗Aj , 1) ∈ R3 is the normal vector of
{

x ∈ R3
∣∣− x3 = m∗ (Aj ,x

′)
}

. Set

hj (x′) = m∗ (Aj ,x
′) and h (x′) = max

16j6n
hj (x′) = m∗ max

16j6n
(Aj ,x

′)

for x′ ∈ R2. We can obtain that h (x′) > 0 for x′ ∈ R2 and limR→∞ inf |x′|>R h (x′) = ∞. We call{
x = (x′, x3) ∈ R3

∣∣− x3 = h (x′)
}

a three-dimensional pyramid in R3. Letting

Ωj =
{

x′ ∈ R2
∣∣h (x′) = hj (x′)

}
for j = 1, · · · , n, we have R2 = ∪nj=1Ωj . Denote the boundary of Ωj by ∂Ωj . Let

E = ∪nj=1∂Ωj .

Now we set

Sj =
{

x ∈ R3
∣∣− x3 = hj (x′) for x′ ∈ Ωj

}
for j = 1, · · · , n, and call ∪nj=1Sj ⊂ R3 the lateral surface of a pyramid. Denote

Γj = Sj ∩ Sj+1, Γn = Sn ∩ S1, j = 1, · · · , n− 1.

Then Γ := ∪nj=1Γj represents the set of all edges of a pyramid. Define

v− (x) = U
( c
s

(x3 + h (x′))
)

= max
16j6n

U
( c
s

(x3 + hj (x′))
)

and

D (γ) =
{

x ∈ R3
∣∣dist

(
x,∪nj=1Γj

)
> γ

}
for γ > 0. We note that the above setting on a pyramid comes from Taniguchi [47]. The following

theorem is the main result of this paper.
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Theorem 1.1. Assume that (H1)-(H5) hold. Then for each s > c > 0, there exists a solution u(x, t) =

V(x′, x3 + st) of (1.2) satisfying (1.6), V(x) > v−(x) and

lim
γ→∞

sup
x∈D(γ)

∣∣V(x)− v−(x)
∣∣ = 0. (1.7)

Furthermore, for any u0 ∈ C
(
R3,RN

)
with u0(x) ∈ [E−,E+] for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

|u0(x)−V(x)| = 0, (1.8)

the solution u(x, t; u0) of (1.2) with initial value u0 satisfies

lim
t→∞

∥∥u(·, ·, t; u0)−V(·, ·+ st)
∥∥
C(R3)

= 0. (1.9)

Following Theorem 1.1, we can see that the function V satisfying (1.6) and (1.7) is unique. Following

(1.7), we know that the nonplanar traveling wave V has pyramidal structures and is characterized as a

combination of planar traveling fronts on the lateral surface. In the following, we call V(x′, x3 + st) a

pyramidal traveling front of (1.2). In the end of section 4 (see Corollary 4.18), we further characterize

the pyramidal traveling fronts as a combination of two-dimensional V-form waves on the edges of the

pyramid. Note that when N = 1, namely, when system (1.2) reduces to a scalar equation, the result of

Theorem 1.1 has been obtained by Taniguchi [47,48].

The rest of this paper is organized as follows: In next section, we give some preliminaries which are

needed in the followng sections. Theorem 1.1 will be proved in sections 3 and 4. More specifically, we

show the existence of a pyramidal traveling front V of (1.2) in section 3 and prove the asymptotic stability

of the front V in section 4. In section 5, we apply Theorem 1.1 to three important models in biology,

namely, a two-soecies Lotka-Volterra reaction-diffusion competition system, a two-species competition

system with spatio-temporal delays, and a reaction-diffusion systems of multiple obligate mutualists.

2 Preliminaries

Associated with system (1.4)-(1.5), consider the following initial value problem:

∂u

∂t
= D∆u− s ∂u

∂x3
+ G (u (x, t)) , x ∈ R3, t > 0, (2.1)

u(0) = u0 ∈ C
(
R3,RN

)
∩ L∞

(
R3,RN

)
, (2.2)

where G (u) =
(
G1 (u) , · · · , GN (u)

)
with Gi(u) = F i(u) +Hi

−(u) +Hi
+(u) and

Hi
− (u) =

∑
16j6N,j 6=i

L−ij
{
ui − E−i

}− (
uj − E−j

)
,

Hi
+(u) =

∑
16j6N,j 6=i

L+
ij

{
E+
i − ui

}− (
uj − E+

j

)
for i = 1, · · · , N . It is obvious that G(u) = F(u) for u ∈ [E−,E+].

In this section we establish a comparison theorem for the auxiliary system (2.1) and give the relationship

between solutions of (1.4)-(1.5) and solutions of (2.1)-(2.2). Then we obtain a mollified pyramid which

was constructed by Taniguchi [47].

Definition 2.1. A continuous vector-valued function u is called a supersolution (subsolution) of (2.1)

on R3 × R+ if ui (·, t) ∈ C2
(
R3
)

for t ∈ (0,∞), ui (x, ·) ∈ C1 (0,+∞) for x ∈ R3, and u satisfies that

N [u] :=
∂u

∂t
−D∆u + s

∂u

∂x3
−G (u) > 0 (6 0)

for all x ∈ R3 and t ∈ (0,∞).
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Following Wang [53], we have the following theorem and corollaries.

Theorem 2.2. Assume that (H1)-(H4) hold. Suppose that u+ and u− are supersolution and subsolution

of (2.1) on R3 × R+, respectively, and satisfy u±(x, t) ∈
[
Ê−, Ê+

]
and u−(x, 0) 6 u+(x, 0) for any

x ∈ R3 and t > 0. Then one has u−(x, t) 6 u+(x, t) for any x ∈ R3 and t > 0.

Corollary 2.3. Assume that (H1)-(H4) hold. Suppose that u+ and u− are supersolution and subsolution

of (2.1) on R3×R+, respectively, and satisfy u+(x, t) ∈
[
E−, Ê+

]
, u−(x, t) ∈

[
Ê−,E+

]
and u−(x, 0) 6

u+(x, 0) for any x ∈ R3 and t > 0. Then for any v0 ∈ X with v0(x) ∈ [E−,E+] and u−(x, 0) 6 v0(x) 6
u+(x, 0) for any x ∈ R3, the solution v(x, t; v0) of (1.4)-(1.5) satisfies u−(x, t) 6 v(x, t; v0) 6 u+(x, t)

and E− 6 v(x, t; v0) 6 E+ for any x ∈ R3 and t > 0.

Corollary 2.4. Assume that (H1)-(H4) hold. If v1 and v2 are a pair of supersolution and subsolution

of (1.4) on R3 × R+ with E+ > v1 (·, 0) > v2 (·, 0) > E− on R3, then v1 (x, t) > v2 (x, t) on R3 × R+.

The following lemma can be proved as in Wang [53, Theorem 2.2] via using the results of Martin and

Smith [36].

Lemma 2.5. Assume that u± ∈ C
(
R3 × [0,∞),RN

)
solve the following linear system

∂

∂t
u± = D∆u± − s ∂

∂x3
u± + H±(x, t)u± (x, t) ,

u±(0) = u±,0 ∈ C
(
R3,RN

)
∩ L∞

(
R3,RN

)
,

where H±(x, t) =
(
h±ij(x, t)

)
N×N , in which h±ij(x, t) ∈ C

(
R3 × R+,R

)
∩ L∞

(
R3 × R+,R

)
are matrix-

valued functions and satisfy h±ij(x, t) > 0 on R3 × R+ for i 6= j. If H+(x, t) > H−(x, t) and u+,0(x) >
u−,0(x) > 0 for any x ∈ R3 and t > 0, then u+(x, t) > u−(x, t) for x ∈ R3 and t > 0.

Let ρ̃ (r) ∈ C∞ [0,∞) be a function with the following properties:

ρ̃ (r) > 0, ρ̃r (r) 6 0 for r > 0,

ρ̃ (r) = 1 if r > 0 is small enough,

ρ̃ (r) = e−r if r > 0 is large enough, say r > R0,∫
R2

ρ̃ (|x′|) dx′ = 1.

Assume R0 > 1 without loss of generality. We have
∫
R2 ρ̃ (|x′|) dx′ = 2π

∫∞
0
rρ̃ (r) dr.

Put ρ (x′) = ρ̃ (|x′|). Then ρ : R2 → R belongs to C∞
(
R2
)

and satisfies
∫
R2 ρ (x′) dx′ = 1 and

(ρ ∗ hj) (x′) = hj (x′) for x′ ∈ R2 and j = 1, · · · , n. Here the convolution ρ ∗ hj of ρ and hj is defined by

(ρ ∗ hj) (x′) =

∫
R2

ρ (y′)hj (x′ − y′) dy′.

For all nonnegative integers j1 and j2 with 0 6 j1 + j2 6 3, we have∣∣Dj1
x1
Dj2
x2
ρ (x′)

∣∣ 6M1ρ (x′) for all x′ ∈ R2,

where Dji
xi = ∂ji

∂x
ji
i

, M1 > 0 is a constant.

Define ϕ = ρ ∗ h, namely,

ϕ (x′) =

∫
R2

ρ (x′ − y′)h (y′) dy′ =

∫
R2

ρ (y′)h (x′ − y′) dy′ (2.3)

for x′ ∈ R2. We call −x3 = ϕ (x′) a mollified pyramid for a pyramid −x3 = h (x′). Set

S (x′) =
s√

1 + |∇ϕ (x′)|2
− c, (2.4)

where ∇ϕ (x′) =
(
∂ϕ
∂x1

, ∂ϕ∂x2

)
. The following lemmas come from Taniguchi [47,48].



8 Wang Z-C et al. Sci China Math April 2016 Vol. 59 No. 4

Lemma 2.6. Let ϕ and S be given by (2.3) and (2.4), respectively. For any pair of fixed integers j1 > 0

and j2 > 0, one has supx′∈R2

∣∣Dj1
x1
Dj2
x2
ϕ (x′)

∣∣ <∞. In addition, one has

h (x′) < ϕ (x′) 6 h (x′) + 2πm∗

∫ ∞
0

r2ρ̃ (r) dr,

|∇ϕ (x′)| < m∗, 0 < S (x′) 6 s− c, ∀ x′ ∈ R2

and

lim
λ→∞

sup
{
S(x′)|x′ ∈ R2,dist(x′, E) > λ

}
= 0,

lim
λ→∞

sup
{
ϕ(x′)− h(x′)|x′ ∈ R2,dist(x′, E) > λ

}
= 0.

Lemma 2.7. There exist positive constants ν1 and ν2 such that

0 < ν1 = inf
x′∈R2

ϕ (x′)− h (x′)

S (x′)
6 sup

x′∈R2

ϕ (x′)− h (x′)

S (x′)
= ν2 <∞.

In addition, for every pair of integers j1 > 0 and j2 > 0 with 2 6 j1 + j2 6 3, one has

sup
x′∈R2

Dj1
x1
Dj2
x2
ϕ (x′)

S (x′)
<∞.

3 Existence of Pyramidal Traveling Fronts

In this section we establish the existence of pyramidal traveling fronts for system (1.2) in R3. The main

method is to construct a suitable supersolution v+ of (2.1) with v+ > v− and then take a limit for the

solution v (x, t; v−) of (1.4)-(1.5) with v0 = v− as t→ +∞. The limit function is just the desired front

V. By Corollary 2.3, we have v−(x) 6 V (x) 6 v+ (x) on R3. The construction of the supersolution

v+ is a combination of the arguments in Taniguchi [47] and Wang [53]. In addition, we construct a

subsolution v̂(x) of (2.1), which will be used to establish the stability of the pyramidal traveling front V

in next section.

For α ∈ (0, 1), set 1
αh (αx′) = h (x′). Define z3 = αx3, z′ = αx′, z = αx, and

µ (x) :=
x3 + 1

αϕ (αx′)√
1 + |∇ϕ (αx′)|2

=
1

α

z3 + ϕ (z′)√
1 + |∇ϕ (z′)|2

. (3.1)

Then we have µx3 = 1√
1+|∇ϕ(z′)|2

, µx3x3 = 0, and

µxi :=

(√
1 + |∇ϕ (z′)|2

)−1

ϕzi − αµXi (z′) , µxixi = αYi (z′)− α2µZi (z′) ,

where

Xi (z′) =

√
1 + |∇ϕ (z′)|2 ∂

∂zi

(√
1 + |∇ϕ (z′)|2

)−1

,

Yi (z′) =
∂

∂zi

((√
1 + |∇ϕ (z′)|2

)−1

ϕzi

)
− Xi (z′)√

1 + |∇ϕ (z′)|2
ϕzi ,

Zi (z′) =
∂Xi

∂zi
−X2

i (z′) ,

and i = 1, 2. Set

σ (x′) = εS (αx′) ,
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where ε and α are positive constants, which will be determined later. Then we have

σxj (x′) = αεSzj (z′) and σxjxj (x′) = α2εSzjzj (z′) , j = 1, 2.

Take η± > 0 small enough so that η−R− � R+ and η+R+ � R−. Let P− := η−R−, P+ := R+,

Q− := R− and Q+ := η+R+. The assumptions (H2) and (H3) imply that there exist constant matrixes

A± =
(
µ±ij
)

such that ∂F i

∂uj
(E±) < µ±ij for all i, j = 1, · · · , N , A+P+ � − 1

2λ
+P+, A+Q+ � − 1

2λ
+Q+,

A−P− � − 1
2λ
−P−, A−Q− � − 1

2λ
−Q−. Define

ω (ζ) :=
1

2

(
1 + tanh

ζ

2

)
, ζ ∈ R.

Let P± =
(
p±1 , · · · , p

±
N

)
and Q± =

(
q±1 , · · · , q

±
N

)
. Define positive vector-valued functions

P (ζ) := (P1 (ζ) , · · · , PN (ζ)) and Q (ζ) := (Q1 (ζ) , · · · , QN (ζ))

by Pi (ζ) = ω (ζ) p+
i +(1− ω (ζ)) p−i and Qi (ζ) = ω (ζ) q+

i +(1− ω (ζ)) q−i , where i = 1, · · · , N . It is easy

to see that P (ζ) and Q (ζ) satisfy the following:

p−i 6 Pi (·) 6 p+
i and P ′i (·) > 0 on R, p0 := max

16i6N
p+
i > 0, p0 := min

16i6N
p−i > 0,

∣∣P (±ζ)−P±
∣∣+ |P′ (±ζ)|+ |P′′ (±ζ)| 6 K1e

−ζ for ζ > 0 and some K1 > 0,

and

q+
i 6 Qi (·) 6 q−i and Q′i (·) < 0 on R, q0 := max

16i6N
q−i > 0, q0 := min

16i6N
q+
i > 0,∣∣Q (±ζ)−Q±

∣∣+ |Q′ (±ζ)|+ |Q′′ (±ζ)| 6 K2e
−ζ for ζ > 0 and some K2 > 0.

Recall that v− (x) is a subsolution of (1.4). In particular, ∂
∂x3

v−i (x) > 0 for any x ∈ R3, i = 1, · · · , N .

Lemma 3.1. Assume that (H1)-(H5) hold. There exist a positive constant ε+ < 1 and a positive function

α+ (ε) such that for 0 < ε < ε+ and 0 < α < α+ (ε),

v+ (x; ε, α) := U (µ (x)) + P (µ (x))σ (x′)

is a supersolution of (1.6). Furthermore,

lim
γ→∞

sup
x∈D(γ)

∣∣v+ (x; ε, α)− v− (x)
∣∣ 6 p0ε, (3.2)

v− (x) < v+ (x; ε, α) for x ∈ R3, (3.3)

∂

∂x3
v+
i (x; ε, α) > 0 for x ∈ R3, i = 1, 2, · · · , N. (3.4)

Proof. Firstly, we show that v+ is a supersolution of (1.6). Note that v+ (x′; ε, α) := U (µ (x)) +

P (µ (x))σ (x′) > E− and
{
v+
i − E

−
i

}− ≡ 0. Therefore, Hi
− (v+) ≡ 0. Consequently, we have

Ni
[
v+
]

= −Di∆v
+
i + s

∂

∂x3
v+
i − F

i
(
v+
)
−Hi

+

(
v+
)

= −Di

2∑
j=1

[(
U ′i (µ)µxj

)
xj

+
(
p′i (µ)µxjσ (x′) + pi (µ)σxj (x′)

)
xj

]
−Di (U ′′i (µ) + p′′i (µ)σ (x′))

1 + |∇ϕ (αx′)|2
+
s (U ′i (µ) + p′i (µ)σ (x′))√

1 + |ϕ (αx′)|2

−F i (U (µ) + P (µ)σ (x′))−Hi
+ (U(µ) + P(µ)σ(x′))

= Di

1−
2∑
j=1

µ2
xj −

1

1 + |∇ϕ (αx′)|2

 (U ′′i (µ) + p′′i (µ)σ (x′))
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−Di

2∑
j=1

µxjxj (U ′i (µ) + p′i (µ)σ (x′))− 2Di

2∑
j=1

p′i (µ)µxjσxj (x′)

−Di

2∑
j=1

pi (µ)σxjxj (x′)−Dip
′′
i (µ)σ (x′)

+

 s√
1 + |ϕ (αx′)|2

− c

U ′i (µ) +
s√

1 + |ϕ (αx′)|2
p′i (µ)σ (x′)

+F i (U (µ))− F i (U (µ) + P (µ)σ (x′))−Hi
+ (U (µ) + P (µ)σ (x′)) .

Let

Ii1 = Di

(
1− µ2

x1
− µ2

x2
− 1

1 + |∇ϕ (αx′)|2

)
(U ′′i (µ) + p′′i (µ)σ (x′))

=

2αDiµ (X1ϕz1 +X2ϕz2)√
1 + |∇ϕ (αx′)|2

− α2µ2
(
X2

1 +X2
2

) (U ′′i (µ) + p′′i (µ)σ (x′)) ,

Ii2 = −Di (U ′i (µ) + p′i (µ)σ (x′))

2∑
j=1

µxjxj − 2Dip
′
i (µ)

2∑
j=1

µxjσxj (x′)

= −αDi (U ′i (µ) + p′i (µ)σ (x′))

 2∑
j=1

Yj(z
′)− αµ

2∑
j=1

Zj(z
′)


−2αεDip

′
i (µ)

2∑
j=1

 ϕzj√
1 + |∇ϕ (z′)|2

− αµXj (z′)

Szj ,

Ii3 = −Dip
′′
i (µ)σ (x′) +

sp′i (µ)σ (x′)√
1 + |∇ϕ (αx′)|2

= −εDip
′′
i (µ)S (z′) +

εsp′i (µ)S (z′)√
1 + |∇ϕ (z′)|2

,

Ii4 = −Di

2∑
j=1

pi (µ)σxjxj (x′) = −α2εDipi (µ)

2∑
j=1

Szjzj ,

Ii5 =

 s√
1 + |ϕ (αx′)|2

− c

U ′i (µ) = S (z′)U ′i (µ) ,

Ii6 = F i (U (µ))− F i (U (µ) + P (µ)σ (x′)) ,

and

Ii7 = Hi
+ (U(µ) + P(µ)σ(x′)) .

By Lemmas 2.5-2.6 and direct calculations, we have

sup
x′∈R2

∣∣∣∣ Ii1 (x′)

S (αx′)

∣∣∣∣ 6 Ci1α, sup
x′∈R2

∣∣∣∣ Ii2 (x′)

S (αx′)

∣∣∣∣ 6 Ci2α and sup
x′∈R2

∣∣∣∣ Ii4 (x′)

S (αx′)

∣∣∣∣ 6 Ci4α
2

for 0 < α < 1 and 0 < ε < 1, where Ci1, Ci2 and Ci4 are positive constants independent of α and ε,

i = 1, · · · , N .

For v ∈RN and r > 0, we define Br (v) :=
{
u ∈ RN : |u− v| < r

}
. Now by the definition of µ±ij , there

exist a sufficiently small positive constant

ε0 < min

{
p0

4
,
q0

4
,

1

4
min

16i6N

(
E+
i − E

−
i

)}
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and a positive constant κ such that

∂F i

∂uj
(u) 6 µ±ij for all u ∈ B4ε0 (E±) ⊂

[
Ê−, Ê+

]
and for all i, j = 1, · · · , N,∑N

j=1 µ
±
ijrj 6 −κri for r = (r1, · · · , rN ) ∈ RN+ ∩B2ε0 (P±)

or r = (r1, · · · , rN ) ∈ RN+ ∩B2ε0 (Q±) .

(3.5)

Take D = max16i6N Di, L
− = max16i,j6N L

−
ij and L+ = max16i,j6N L

+
ij . Using the fact that

U (x)→ E± as x→ ±∞ and the properties of P (x) and Q (x), there exists a sufficiently large constant

M > 0 such that

|U (x)−E+| < ε0 and |U (x)−E+| < κ(p0−ε0)
8p0N(L++1)) for x > M,

|U (x)−E−| < ε0 and |U (x)−E−| < κ(q0−ε0)
8q0N(L−+1)) for x < −M,

|P (x)−P+| 6 ε0 and |P (x)−P+| 6 κ(p0−ε0)
8p0N(L++1)) for x > M,

|P (x)−P−| 6 ε0 for x 6 −M, |Q (x)−Q+| 6 ε0 for x > M,

|Q (x)−Q−| 6 κ(q0−ε0)
8q0N(L−+1)) and |Q (x)−Q−| 6 ε0 for x < −M,

|P ′i (x)| < 1
8sκ (p0 − ε0) and |P ′′i (x)| < 1

8Dκ (p0 − ε0) for |x| > M,

|Q′i (x)| < 1
8sκ (q0 − ε0) and |Q′′i (x)| < 1

8Dκ (q0 − ε0) for |x| > M.

(3.6)

For ε ∈
(
0, ε0/

(
Np0s

))
, we have v+ (x; ε, α) ∈

[
Ê−, Ê+

]
for x ∈ R3. Furthermore, take

ε < min

{
1

2p0sN
min

16i6N

{
E+
i − Ui(M)

}
,

κ (p0 − ε0)

8sN (L+ + 1) (p0)
2

}
. (3.7)

For |µ(x)| > M and z′ ∈ R2, we have

|Ii3| 6 εDi |p′′i (µ)|S (z′) + εs |p′i (µ)|S (z′) 6
1

4
εκ(p0 − ε0)S (z′) .

Since

Ii6 = −

 N∑
j=1

∂

∂uj
F i (U (µ) + θεP (µ)S (z′)) pj (µ)

 εS (z′)

> −

 N∑
j=1

µ+
ijpj(µ)

σ (z′) > κpi(µ)εS (z′)

> κ
(
p+
i − ε0

)
εS (z′)

and

Ii7 =
∑

j=1,...,N ;j 6=i

L+
ij

{
E+
i − Ui(µ)− εpi(µ)S(z′)

}− (
Uj(µ) + εpj(µ)S(z′)− E+

j

)
6

∑
j=1,...,N ;j 6=i

ε2L+
ijpi(µ)pj(µ)S2(z′)

6
1

8
κ (p0 − ε0) εS (z′)

for µ > M and z′ ∈ R2 due to (3.5), (3.6) and (3.7). We have

Ni
[
v+
]

= Ii1 + Ii2 + Ii3 + Ii4 + Ii5 + Ii6 − Ii7

> S (z′)

[
−Ci1α− Ci2α−

1

4
κ (p0 − ε0) ε
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−Ci4α2 + κ
(
p+
i − ε0

)
ε − 1

8
κ (p0 − ε0) ε

]
>

[
− (Ci1 + Ci2 + αCi4)α+

1

2
κ
(
p+
i − ε0

)
ε

]
S (z′) > 0

for µ(x) > M and z′ ∈ R2 provided that

α < min
16i6N

{
κ
(
p+
i − ε0

)
2 (Ci1 + Ci2 + Ci4)

}
ε.

By (3.7), we have that Ii7 (x) = 0 when µ (x) 6M . Then using an argument similar to that for µ(x) > M ,

we have Ni [v+] > 0 for µ(x) < −M and z′ ∈ R2 provided that

α < min
16i6N

{
κ
(
p−i − ε0

)
2 (Ci1 + Ci2 + Ci4)

}
ε.

Let

Mij := sup
u∈[Ê−,Ê+]

∣∣∣∣ ∂∂uj F i (u)

∣∣∣∣ (3.8)

and Ci6 =
∑N
j=1Mijp

+
j , i, j = 1, · · · , N . Then |Ii6| 6 Ci6εS(z′) for all z′ ∈ R2. Take a constant Ci3 > 0

such that |Ii3| 6 Ci3εS(z′) for all z′ ∈ R2, i = 1, · · · , N . Let

p∗ := min
|x|6M,16i6N

U ′i (x) > 0.

For |µ(x)| 6M and z′ ∈ R2, we have

Ni
[
v+
i

]
= Ii1 + Ii2 + Ii3 + Ii4 + Ii5 + Ii6

> S (z′)
[
−Ci1α− Ci2α− Ci3ε− Ci4α2 + p∗ − Ci6ε

]
> 0.

Up to now, we have showed that v+ is a supersolution of (1.6) provided that

ε < min
16i6N

p∗

2 (Ci3 + Ci6)
and α < min

16i6N

min {p∗, κ (p0 − ε0) ε}
2 (Ci1 + Ci2 + Ci4)

.

Now we prove the inequality (3.3). It suffices to prove

Ui

( c
s

(x3 + hj (x′))
)
< v+

i (x; ε, α) for all i = 1, · · · , N and j = 1, · · · , n.

When µ (x) > c
s (x3 + hj(x

′)), it is easy to get

Ui

( c
s

(x3 + hj (x′))
)
6 Ui (µ (x)) < v+

i (x; ε, α) .

Assume that

µ (x) <
c

s
(x3 + hj (x′)) .

By the definition of µ, we have

c

s
(x3 + hj (x′)) >

x3 + 1
αϕ (αx′)√

1 + |∇ϕ (αx′)|2
=
x3 + hj (x′) + 1

αϕ (αx′)− hj (x′)√
1 + |∇ϕ (αx′)|2

.

It follows that

(x3 + hj (x′))

 s√
1 + |∇ϕ (z′)|2

− c

 <
s

α

hj (z′)− ϕ (z′)√
1 + |∇ϕ (z′)|2

,
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namely,

x3 + hj (x′) <
s

α

1√
1 + |∇ϕ (z′)|2

hj (z′)− ϕ (z′)

S (z′)
.

By the definition of ν1 we have

x3 + hj (x′) <
s

α

1√
1 + |∇ϕ (z′)|2

hj (z′)− ϕ (z′)

S (z′)
6 −cν1

α
.

Since

hj (x′) =
1

α
hj (z′) 6

1

α
h (z′) 6

1

α
ϕ (z′) ,

we have

v+
i (x; ε, α)− Ui

( c
s

(x3 + hj (x′))
)

= Ui

 x3 + 1
αϕ (αx′)√

1 + |∇ϕ (αx′)|2

+ εpi

 x3 + 1
αϕ (αx′)√

1 + |∇ϕ (αx′)|2

S (αx′)

−Ui
( c
s

(x3 + hj (x′))
)

> Ui

 x3 + hj (x′)√
1 + |∇ϕ (αx′)|2

+ εpi

 x3 + 1
αϕ (αx′)√

1 + |∇ϕ (αx′)|2

S (αx′)

−Ui
( c
s

(x3 + hj (x′))
)
.

Since

Ui

 x3 + hj (x′)√
1 + |∇ϕ (αx′)|2

− Ui ( c
s

(x3 + hj (x′))
)

= (x3 + hj (x′))
1

s
S (αx′)

×
∫ 1

0

U ′i

(x3 + hj (x′))

 θ√
1 + |∇ϕ (αx′)|2

+
c

s
(1− θ)

 dθ,

we have

v+
i (x; ε, α)− Ui

( c
s

(x3 + hj (x′))
)

> εp0S (αx′) + (x3 + hj (x′))
1

s
S (αx′)

×
∫ 1

0

U ′i

(x3 + hj (x′))

 θ√
1 + |∇ϕ (αx′)|2

+
c

s
(1− θ)

 dθ.

Note that
c

s
6

θ√
1 + |∇ϕ (αx′)|2

+
c

s
(1− θ) 6 1 and x3 + hj(x

′) < 0.

Consequently, we have

v+
i (x; ε, α)− Ui

( c
s

(x3 + hj (x′))
)

> εp0S (αx′) + (x3 + hj (x′))
1

s
S (αx′)
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×
∫ 1

0

U ′i

(x3 + hj (x′))

 θ√
1 + |∇ϕ (αx′)|2

+
c

s
(1− θ)

 dθ

>
S (αx′)

s

[
(x3 + hj (x′))C1e

− cβ1s |x3+hj(x′)| + sεp0

]
>

S (αx′)

s

 −sC1

cβ1
sup

x>
c2ν1β1
sα

xe−|x| + sεp0


>

S (αx′)

s

[
−sC1

cβ1

c2ν1β1

sα
e−

c2ν1β1
sα + sεp0

]
=

S (αx′)

s

[
−cν1C1

α
e−

c2ν1β1
sα + sεp0

]
> 0

provided that α < α∗(ε), where 0 < α∗(ε) < s
c2ν1β1

satisfies

sεp0 −
cν1C1

α
e−

c2ν1β1
sα > 0 for α < α∗(ε).

Now we prove (3.2). It is sufficient to show that

lim
γ→∞

sup
x∈D(γ)

∣∣∣Uj(µ(x))− Uj
( c
s

(x3 + h(x′))
)∣∣∣ = 0

for all j = 1, · · · , N . Assume the contrary for some l ∈ {1, · · · , N}. Then there exist a positive constant

ε′ and sequences {γk}k∈N ⊂ R and {xk}k∈N ⊂ R3 such that

lim
k→∞

γk =∞, xk ∈ D (γk) (3.9)

and ∣∣∣Ul (µ (xk))− Ul
( c
s

(xk,3 + h (x′k))
)∣∣∣ > ε′, (3.10)

where x′k = (xk,1, xk,2). It follows that

µ (xk) =
1

α

zk,3 + ϕ (z′k)√
1 + |∇ϕ (z′k)|2

=
xk,3 + h (x′k) + 1

α (ϕ (z′k)− h (z′k))√
1 + |∇ϕ (z′k)|2

.

If limk→∞ dist (x′k, E) =∞, by Lemma 2.6 we have limk→∞ |ϕ (x′k)− h (x′k)| = 0 and limk→∞ S (x′k) = 0.

If further xk,3 + h (x′k) → ±∞ as k → +∞, then µ (xk) → ±∞, which again contradicts (3.10). If

xk,3 + h (x′k) are bounded for k ∈ N, we have

lim
k→∞

∣∣∣µ (xk)− c

s
(xk,3 + h (x′k))

∣∣∣ = 0.

This contradicts (3.10) once more. If dist (x′k, E) keeps finite uniformly in k, then (3.9) implies that

limk→∞ (xk,3 + h (x′k)) = ±∞ and limk→∞ µ (xk) = ±∞, respectively. This contradicts (3.10). Thus, we

have proved (3.2).

Finally, we take

ε+ = min

{
1,

ε0
Np0s

, min
16i6N

p∗

2 (Ci3 + Ci6)
, min
16i6N

E+
i − Ui(M)

2Np0s
,

κ (p0 − ε0)

8sN (L+ + 1) (p0)
2

}

and

α+ (ε) := min

{
1, min

16i6N

min {p∗, κ(p0 − ε0)ε}
2 (Ci1 + Ci2 + Ci4)

, α∗(ε)

}
.

This completes the proof.
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Take ψ (ϑ) := − 1
m∗β2

ln (1 + exp (−β2ϑ)) . There exist some constants C ′i > 0 (i = 2, 3, 4) such that

max
{∣∣∣ψ (ϑ)− ϑ

m∗

∣∣∣ , ∣∣∣ψ′ (ϑ)− 1
m∗

∣∣∣} 6 C ′2 sech (β2ϑ) for ϑ 6 0,

max {|ψ (ϑ)| , |ψ′ (ϑ)|} 6 C ′2 sech (β2ϑ) for ϑ > 0,

max {|ψ′′ (ϑ)| , |ψ′′′ (ϑ)|} 6 C ′2 sech (β2ϑ) for ϑ ∈ R,
c− sψ(ϑ)√

1+ψ′(ϑ)2
> C ′3 min {1, exp (β2ϑ)} for ϑ ∈ R,

0 6 s√
1+ψ′(ϑ)2

− cm∗ 6 C ′4 min {1, exp (β2ϑ)} for ϑ ∈ R.

(3.11)

We notice that (3.11) follows directly from Ninomiya and Taniguchi [40], see also Wang [53].

To establish the existence of pyramidal traveling fronts for system (1.2), we still need the following

lemma which was proved in Wang [53].

Lemma 3.2. Assume that (H1)-(H5) hold. There exist a positive constant ε− and a positive function

α− (ε) so that, for 0 < ε < ε− and 0 < α < α− (ε),

v̂ (x, z; ε, α) := U

 x+ ψ (αz)/α√
1 + ψ′ (αz)

2

− εQ
 x+ ψ (αz)/α√

1 + ψ′ (αz)
2

 sech (β2αz)

is a subsolution to the following system

∂u

∂t
= D

(
∂2

∂x2
u +

∂2

∂z2
u

)
− s ∂

∂z
u + G (u (x, z, t)) ,

where x, z ∈ R. In addition, we have ∂
∂x v̂i > 0, i = 1, · · · , N .

We note that

ε− = min


ε0
q0 ,

1
2q0 min16i6N

{
Ui(−M)− E−i

}
, κ(q0−ε0)

8N(L−+1)(q0)2
,

min16i6N
C′3p

∗

2(C′i3+C′i5)
infϑ∈R

min{1,exp(ϑ)}
sech(ϑ)


and

α− (ε) := min

{
1, min

16i6N

C ′3p
∗

2 (C ′i1 + C ′i2)
inf
ϑ∈R

min {1, exp (ϑ)}
sech (ϑ)

, min
16i6N

κ(q0 − ε0)ε

2 (C ′i1 + C ′i2)

}
,

where ε0, q
0, q0,M are defined as before, C ′i1, C

′
i2, C

′
i3, C

′
i5, C

′
3 are positive constants. Thus, it is obvious

that

v̂j (x; ε, α) := U

 hj(x
′)

m∗
+ ψ(αx3)

α√
1 + ψ′ (αx3)

2

− εQ
 hj(x

′)
m∗

+ ψ(αx3)
α√

1 + ψ′ (αx3)
2

 sech (β2αx3)

is a subsolution of (2.1) on t > 0 and x ∈ R3. Consequently, we have that

ṽ(x; ε, α) := ∨nj=1v̂
j (x; ε, α) = U

 h(x′)/m∗ + ψ (αx3)/α√
1 + ψ′ (αx3)

2


−εQ

 h(x′)/m∗ + ψ (αx3)/α√
1 + ψ′ (αx3)

2

 sech (β2αx3)

is a subsolution of (2.1) on t > 0.

In the following we show the existence of pyramidal traveling fronts of (1.2). By the parabolic estimate,

we know that there exists K > 0 such that solutions v(x, t; v0) of (1.4)-(1.5) with v0(x) ∈ [E−,E+]

satisfy
∥∥v (·, t; v0

)∥∥
C3(R3)

< K for any t > 1. Since v− is a subsolution of (1.6), we have v(x, t1; v−) 6

v(x, t2; v−) for all x ∈ R3 and 0 < t1 6 t2. Consequently, define

V (x) := lim
t→∞

v
(
x, t; v−

)
(3.12)
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for all x ∈ R3. It follows that v (·, t ; v−) converges monotonically to V (·) under the norm ‖·‖C2
loc(R3) as

t→∞. Since V(x) 6 v+(x; ε, α) for any x ∈ R3, by the arbitrariness of ε and α, we have

lim
γ→∞

sup
x∈D(γ)

∣∣V(x)− v−(x)
∣∣ = 0. (3.13)

Furthermore, following an argument in Sattinger [44] we know that V(·) defined by (3.12) satisfies (1.6).

We thus have proved the following theorem on the existence of pyramidal traveling fronts for system

(1.2).

Theorem 3.3. Assume that (H1)-(H5) hold. For any s > c, (1.2) admits a pyramidal traveling front

V satisfying (1.6), (3.13) and v−(x) < V (x) < v+(x; ε, α) for any x ∈ R3, where 0 < ε < ε+ and

0 < α < α+ (ε). Moreover, one has ∂
∂x3

Vi (x) > 0 for x ∈ R3, i = 1, · · · , N .

In view of the monotonicity of v−(x) in the variable x3, we conclude that ∂
∂x3

Vi(x) > 0 for all x ∈ R3.

Then the strong maximum principle implies the strict inequality.

4 Stability and Uniqueness of Traveling Curved Fronts

In this section we develop the arguments of Taniguchi [48] and Wang [53] to establish the stability and

uniqueness of the pyramidal traveling front V obtained in section 3. We first prove that (1.9) holds for

u0 > v− and u0 6 v−, respectively. See Theorems 4.13 and 4.17. We then characterize the pyramidal

traveling front as a combination of two-dimensional V-form fronts on the edges of the pyramid.

Consider the following Cauchy problem{
∂
∂tw̃(ξ, η, t)−D ∂2

∂ξ2 w̃(ξ, η, t)−D ∂2

∂η2 w̃(ξ, η, t) + s̄ ∂∂η w̃(ξ, η, t)− F(w̃) = 0,

w̃(ξ, η, 0) = w̃0(ξ, η),
(4.1)

where (ξ, η) ∈ R2, t > 0, i = 1, · · · , N ; w̃ (ξ, η, t) = (w̃1 (ξ, η, t) , · · · , w̃N (ξ, η, t)). The following theorem

was established by Wang [53].

Theorem 4.1. Assume that (H1)-(H5) hold. Then for each s̄ > c, there exists a steady state Φ(ξ, η; s̄)

of (4.1) satisfying Φ(ξ, η; s̄) > ṽ−(ξ, η) and

lim
R→∞

sup
ξ2+η2>R2

∣∣Φ(ξ, η)− ṽ−(ξ, η)
∣∣ = 0,

where

ṽ−(ξ, η) = U

(
c

s̄

(
η +

√
s̄2 − c2
c

|ξ|

))
.

Moreover, for any w̃0 ∈ C
(
R2,RN

)
with w̃0(ξ, η) ∈ [E−,E+] for (ξ, η) ∈ R2 and

lim
R→∞

sup
ξ2+η2>R2

|w̃0(ξ, η)− ṽ−(ξ, η)| = 0,

the solution w̃(ξ, η, t; w̃0) of (4.1) with initial value w̃0 satisfies

lim
t→∞

∥∥w̃(·, t; w̃0)−Φ(·)
∥∥
C(R2)

= 0.

For any subset D ⊂ R3 we denote the characteristic function of D by χD, namely, χD(x) = 1 for x ∈ D
and χD(x) = 0 for x /∈ D. Let hij(x, t) ∈ C

(
R3 × R+

)
(i, j = 1, · · · , N) be given continuous functions

satisfying

0 6 hij(x, t) 6Mij , i 6= j; sup
x∈R3,t>0

|hij(x, t)| 6Mij , i = j, (4.2)

where Mij are defined by (3.8). Consider the following linear system{
∂
∂twi −Di

∑3
k=1

∂2

∂x2
k
wi + s ∂

∂x3
wi −

∑N
j=1 hij (x, t)wj = 0, x ∈ R3, t > 0,

wi(x, 0) = w0
i (x) ∈ C

(
R3,RN

)⋂
L∞

(
R3,RN

)
, x ∈ R3, i = 1, · · · , N.

(4.3)
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Lemma 4.2. Let w(x, t) := (w1(x, t), · · · , wN (x, t)) be a solution of (4.3). Then there exist positive

constants Ã, B̃ and λ0 such that

max
16i6N

sup
x∈R3

wi(x, t) 6 eλ0t max

{
0, max

16i6N
sup
x∈R3

w0
i (x)

}
, ∀ t > 0,

eλ0t min

{
0, min

16i6N
inf
x∈R3

w0(x)

}
6 min

16i6N
inf
x∈R3

wi(x, t), ∀ t > 0,

max
16i6N

sup
x∈R3

|wi(x, t)| 6 eλ0t max
16i6N

‖w0
i ‖L∞(R3), ∀ t > 0

and for any γ > 0,

sup
16i6N

sup
x∈D(2γ)

|wi(x, t)| 6 eλ0t
3πÃ

B̃

∫ +∞

√
3γ

3
√
t

exp
(
−B̃r2

)
dr max

16i6N
sup

x∈D(γ)c

∣∣w0
i (x)

∣∣ (4.4)

+
π
√
πÃ

B̃
√
B̃
eλ0t sup

16i6N
sup

x∈D(γ)

∣∣w0
i (x)

∣∣ , ∀ t > 0,

where D(γ)c =
{
x
∣∣x ∈ R3,x 6∈ D(γ)

}
. In particular, one has

sup
16i6N

|wi(x0, t)| 6 eλ0t
3πÃ

B̃

∫ +∞

R√
t

exp
(
−B̃r2

)
dr max

16i6N
sup
x∈R3

∣∣w0
i (x)

∣∣ , ∀ t > 0 (4.5)

for any x0 ∈ R3 and R > 0, provided that w0
i (x) = 0 for any i = 1, · · · , N and x ∈ B

(
x0,
√

3R
)

:={
x ∈ R3

∣∣|x− x0| <
√

3R
}

.

Proof. Define ŵ(x, t) = (ŵ1(x, t), · · · , ŵN (x, t)) by wi(x, t) = eλ
′
0tŵi(x, t), where λ′0 :=

∑N
i=1

∑N
j=1Mij

and Mij is defined by (3.8). Then we have{
∂
∂t ŵi −Di

∑3
k=1

∂2

∂x2
k
ŵi + s ∂

∂x3
ŵi + (λ′0 − hii (x, t)) ŵi −

∑N
j=1,j 6=i hij (x, t) ŵj = 0,

ŵi(x, 0) = w0
i (x),

(4.6)

where x ∈ R3, t > 0, i = 1, · · · , N . It is easy to show that the constant-valued function w(x, t) =

(w1(x, t), · · · , wN (x, t)) defined by

wi(x, t) ≡ max

{
0, max

16i6N
sup
x∈R3

w0
i (x)

}
, x ∈ R3, t > 0

is a supersolution of (4.6). Similarly, the function w(x, t) = (w1(x, t), · · · , wN (x, t)) defined by

wi(x, t) ≡ min

{
0, min

16i6N
inf
x∈R3

w0
i (x)

}
, x ∈ R3, t > 0

is a subsolution of (4.6). By Lemma 2.5, we have

min

{
0, min

16i6N
inf
x∈R3

w0
i (x)

}
6 ŵi(x, t) 6 max

{
0, max

16i6N
sup
x∈R3

w0
i (x)

}
for x ∈ R3, t > 0 and i = 1, · · · , N . Therefore, for any x ∈ R3 and t > 0 we have

eλ
′
0t min

{
0, min

16i6N
inf
x∈R3

w0
i (x)

}
6 wi(x, t) 6 eλ

′
0t max

{
0, max

16i6N
sup
x∈R3

w0
i (x)

}
,

where i = 1, · · · , N . We have proved the first three inequalities in the lemma for any λ0 > λ′0. We will

determine an exact λ0 > 0 below.
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Now we prove inequality (4.4). Consider initial-value problems{
∂
∂tw

+
i −Di

∑3
k=1

∂2

∂x2
k
w+
i + s ∂

∂x3
w+
i + (λ′0 − hii (x, t))w+

i −
∑N
j=1,j 6=i hij (x, t)w+

j = 0,

w+
i (x, 0) = max

{
0, w0

i (x)
}

and {
∂
∂tw

−
i −Di

∑3
k=1

∂2

∂x2
k
w−i + s ∂

∂x3
w−i + (λ′0 − hii (x, t))w−i −

∑N
j=1,j 6=i hij (x, t)w−j = 0,

w−i (x, 0) = min
{

0, w0
i (x)

}
,

where x ∈ R3, t > 0 and i = 1, · · · , N . It is easy to show that w+
i (x, t) > 0, w−i (x, t) 6 0 and

w−i (x, t) 6 ŵi(x, t) 6 w+
i (x, t) for x ∈ R3, t > 0 and i = 1, · · · , N . Consider{

∂
∂t w̃i −Di

∑3
k=1

∂2

∂x2
k
w̃i + s ∂

∂x3
w̃i + (λ′0 −Mii) w̃i −

∑N
j=1,j 6=iMijw̃j = 0, x ∈ R3, t > 0,

w̃i(x, 0) =
∣∣w0
i (x)

∣∣ , x ∈ R3.
(4.7)

By virtue of w̃i(x, 0) > w+
i (x, 0), it follows from Lemma 2.5 that w̃i(x, t) > w+

i (x, t) for x ∈ R3, t > 0

and 1 6 i 6 N . Similarly, we have w̃i(x, t) > −w−i (x, t) for x ∈ R3, t > 0 and 1 6 i 6 N . Consequently,

we obtain

|ŵi(x, t)| 6 w̃i(x, t), ∀ x ∈ R3, t > 0, 1 6 i 6 N.

Following Theorems 2 and 3 of Friedman [13, Chapter 9], we know that there exists a smooth N × N
matrix-valued function Ψ (x,y, t, s) for x,y ∈ R3 and 0 6 s < t 6 2 such that

w̃(x, t) =

∫
R3

Ψ(x,y, t, 0)w̃(y, 0)dy.

Since the coefficients in (4.7) are constants, the matrix-valued function Ψ (x,y, t, s) can be rewritten into

Ψ (x− y, t− s), see [13, Section 9.2]. It follows that

w̃(x, t) =

∫
R3

Ψ(x− y, t)w̃(y, 0)dy

for x ∈ R3 and 0 < t 6 2. Consequently, by the uniqueness of solutions we have

w̃(x, t) =

∫
R3

Ψ(x− y1, 1)dy1

∫
R3

Ψ(y1 − y2, 1)dy2 · · ·∫
R3

Ψ(yk−1 − yk, 1)dyk

∫
R3

Ψ(yk − y, t− k)w̃(y, 0)dy

for any t > 0, where k = max{[t − 1], 0} and [s] = max{n : n ∈ Z, n 6 s} for any s ∈ R. Therefore, we

have

w̃i(x, t) =

∫
R3

Ψi(x− y1, 1)dy1

∫
R3

Ψ(y1 − y2, 1)dy2 · · ·
∫
R3

Ψ(yk−1 − yk, 1)dyk∫
R3

Ψ(yk − y, t− k)
(
χD(γ)(y)w̃(y, 0) + χD(γ)c(y)w̃(y, 0)

)
dy

for any t > 0 and i ∈ {1, 2, · · · , N}. Consequently, we have

w̃i(x, t) 6
∫
R3

N∑
j=1

|Ψij(x− y1, 1)| dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)| dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)| dyk
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∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)(y)dy max
16j6N

sup
y∈D(γ)

∣∣w0
j (y)

∣∣
+

∫
R3

N∑
j=1

|Ψij(x− y1, 1)| dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)| dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)| dyk

∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)c(y)dy max
16j6N

sup
y∈D(γ)c

∣∣w0
j (y)

∣∣ . (4.8)

By Friedman [13, Chapter 9], there exist positive numbers Ã > 1 and B̃ 6 1 such that∑
16l,j6N

|Ψlj(x− y, t− s)| 6 Ã(t− s)− 3
2 exp

(
−B̃ |x− y|2

t− s

)
for any 0 6 s < t 6 2. Since γ 6 |dist(x,Γ)− dist(y,Γ)| 6 |x− y| for any x ∈ D(2γ) and y ∈ D(γ)c, we

have that ∫
R3

N∑
j=1

|Ψij(x− y1, 1)| dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)| dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)| dyk
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)c(y)dy

6 Ãk+1

∫
R3

exp
(
−B̃|x− y1|2

)
dy1

∫
R3

exp
(
−B̃|y1 − y2|2

)
dy2

· · ·
∫
R3

exp
(
−B̃|yk−1 − yk|2

)
dyk

∫
R3

(t− k)−
3
2 exp

(
−B̃ |yk − y|2

t− k

)
χD(γ)c(y)dy

= Ãk+1

∫
R3

exp

(
− B̃

2
|x− y1|2

)
dy1

∫
R3

exp

(
− B̃

2
|y1 − y2|2

)
dy2

· · ·
∫
R3

exp

(
− B̃

2
|yk−1 − yy|2

)
dyk

∫
R3

(t− k)−
3
2 exp

(
− B̃

2
|x− y1|2

)
· · · exp

(
−B̃ |yk − y|2

t− k

)
χD(γ)c(y)dy

6 Ãk+1

(
t

t− k

) 3
2

(∫
R3

exp

(
− B̃|z|

2

2

)
dz

)k ∫
R3

t−
3
2 exp

(
−B̃ |x− y|2

t

)
χD(γ)c(y)dy

6 Ãk+1(1 + t)
3
2

(∫
R3

exp

(
− B̃|z|

2

2

)
dz

)k ∫
R3

t−
3
2 exp

(
−B̃ |x− y|2

t

)
χD(γ)c(y)dy

6 e2tÃk+1

(
2
√

2π
√
π

B̃
√
B̃

)k ∫
R3\B(x,γ)

t−
3
2 exp

(
−B̃ |x− y|2

t

)
dy

6 3e2tÃk+1

(
2
√

2π
√
π

B̃
√
B̃

)k ∫
y∈R3,|y1|>

√
3γ
3

t−
3
2 exp

(
−B̃ |y|

2

t

)
dy

= 3e2t Ãπ

B̃

(
2
√

2π
√
πÃ

B̃
√
B̃

)t ∫ +∞

√
3γ

3
√
t

exp
(
−B̃r2

)
dr

for x ∈ D(2γ), where we have used the facts that k = 0 for t ∈ (0, 2), t − k < 2, and k 6 t and
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(1 + t)
3
2 < e2t for t > 0. In addition, we have∫

R3

N∑
j=1

|Ψij(x− y1, 1)| dy1

∫
R3

N∑
l,j=1

|Ψlj(y1 − y2, 1)| dy2

· · ·
∫
R3

N∑
l,j=1

|Ψlj(yk−1 − yk, 1)| dyk
∫
R3

N∑
l,j=1

|Ψlj(yk − y, t− k)|χD(γ)(y)dy

6 Ãk+1(1 + t)
3
2

(∫
R3

exp

(
− B̃

2
|z|2
)
dz

)k ∫
R3

t−
3
2 exp

(
−B̃ |x− y|2

t

)
χD(γ)(y)dy

6 e2tÃk+1

(
2
√

2π
√
π

B̃
√
B̃

)k ∫
R3

t−
3
2 exp

(
−B̃ |x− y|2

t

)
dy

6 e2t Ãπ
√
π

B̃
√
B̃

(
2
√

2π
√
πÃ

B̃
√
B̃

)t
.

Thus, letting λ0 := λ′0 + 2 + ln

(
2
√

2π
√
πÃ

B̃
√
B̃

)
yields the inequality (4.4). Note that the constants Ã and B̃

are independent of γ.

To prove the inequality (4.5), we need only to replace x and D(γ) with x0 and B(x0,
√

3R) in (4.8).

This completes the proof.

Remark 4.3. The positive constants Ã, B̃ and λ0 in Lemma 4.2 are independent of the functions

hij(x, t) ∈ C
(
R3 × R+

)
(i, j = 1, · · · , N) satisfying (4.2).

As in Taniguchi [48], in the following we show that the pyramidal traveling front V converges to two-

dimensional V -form fronts on edges of the pyramid at infinity. For each j (1 6 j 6 n) we consider a plane

perpendicular to an edge Γj = Sj ∩ Sj+1. Then the cross section of −x3 = max{hj(x′), hj+1(x′)} in this

plane has a V-form front. Let Vj be the two-dimensional V-form front as in Theorem 4.1 corresponding

to the cross section −x3 = max{hj(x′), hj+1(x′)}. We first determine the exact formulation of Vj .

Let An+1 := A1 and Bn+1 := B1. Define

pj := AjBj+1 −Aj+1Bj > 0, qj :=
√

(Aj+1 −Aj)2 + (Bj+1 −Bj)2 > 0, 1 6 j 6 n.

Take

νj =
1√

1 +m2
∗
{m∗Aj ,m∗Bj , 1} , j = 1, · · · , n+ 1.

The direction of Γj is given by

νj+1 × νj =
1√

m2
∗p

2
j + q2

j


Bj+1 −Bj
Aj −Aj+1

m∗(Aj+1Bj −AjBj+1)

 ,

and the traveling direction of the two-dimensional V-form wave Vj is given by

(νj+1 × νj)×
νj+1 − νj
|νj+1 − νj |

=
1

qj
√
m2
∗p

2
j + q2

j


m∗(Bj+1 −Bj)pj
m∗(Aj −Aj+1)pj

q2
j

 .

Let sj be the speed of Vj and 2θj (0 < θj < π/2) be the angle between Sj and Sj+1. Then we get

sj sin θj = c, sin θj =
√
m2
∗p

2
j + q2

j

(
qj
√

1 +m2
∗

)−1

, sj = sqj

(√
m2
∗p

2
j + q2

j

)−1

.
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The speed of Vj toward the x3-axis equals

sj

√
m2
∗p

2
j + q2

j

/
qj = c

√
1 +m2

∗ = s,

which coincides with the speed of V. Let
x1

x2

x3

 = Rj


ξ

η

ζ

 ,


ξ

η

ζ

 = RT
j


x1

x2

x3

 ,

where RT
j is the transposed matrix of Rj . Here we take

Rj =


Aj+1−Aj

qj

m∗(Bj+1−Bj)pj
qj
√
m2
∗p

2
j+q

2
j

Bj+1−Bj√
m2
∗p

2
j+q

2
j

Bj+1−Bj
qj

m∗(Aj−Aj+1)pj

qj
√
m2
∗p

2
j+q

2
j

Aj−Aj+1√
m2
∗p

2
j+q

2
j

0
qj√

m2
∗p

2
j+q

2
j

− m∗pj√
m2
∗p

2
j+q

2
j

 .

Define Vj as Vj(x) := Φ (ξ, η; sj). Direct calculations show that

−Di
∂2

∂ξ2
Φi −Di

∂2

∂η2
Φi + sj

∂

∂η
Φi − F i(Φ) = 0, ∀ (ξ, η) ∈ R2, i = 1, · · · , N.

Hence, for each j (1 6 j 6 n), Vj(x) satisfies (1.6). We call Vj a planar V-form front corresponding to

an edge Γj .

Set

Qj :=
{
x ∈ R3

∣∣dist(x,Γ) = dist(x,Γj)
}
, 1 6 j 6 n.

Then we have R3 =
⋃n
j=1Qj . Define

V̂(x) := ∨16j6nVj(x).

We have that V̂(x) is strictly monotone increasing in x3 due to the strict monotonicity of Vj(x) in x3.

In addition, V̂(x) has the following properties.

Lemma 4.4. V̂(x) satisfies v−(x) < V̂(x) < V(x) for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

∣∣∣V̂(x)− v−(x)
∣∣∣ = 0. (4.9)

Proof. By Theorem 4.1 we have

U
( c
s

(x3 + hj (x′))
)
∨U

( c
s

(x3 + hj+1 (x′))
)
< Vj(x), x ∈ R3.

It follows that v−(x) = U
(
c
s (x3 + h (x′))

)
< V̂(x) for x ∈ R3. In addition, by

U
( c
s

(x3 + hj (x′))
)
∨U

( c
s

(x3 + hj+1 (x′))
)
< Vj(x),

we get Vj(x) 6 V(x) for x ∈ R3. Therefore, we have V̂(x) 6 V(x) for x ∈ R3. Finally, (4.9) follows

from (3.13). This completes the proof.

Assume that v0 ∈ [E−,E+] satisfies (1.8). Let

v
(
x, t; v0

)
=
(
v1

(
x, t; v0

)
, · · · , vN

(
x, t; v0

))
be the solution of (1.4) and (1.5). By Lemma 4.2, we have

max
16i6N

sup
x∈D(2γ)

∣∣vi(x, t; v0)− Vi(x)
∣∣
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6 eλ0t
3πÃ

B̃

∫ +∞

√
3γ

3
√
t

exp
(
−B̃r2

)
dr max

16i6N
sup

x∈D(γ)c

∣∣v0
i (x)− Vi(x)

∣∣ (4.10)

+
π
√
πÃ

B̃
√
B̃
eλ0t sup

16i6N
sup

x∈D(γ)

∣∣v0
i (x)− Vi(x)

∣∣
for any γ > 0 and t > 0. It follows that

lim
γ→∞

max
16i6N

sup
x∈D(γ)

∣∣vi(x, t; v0)− Vi(x)
∣∣ = 0 for any fixed t > 0,

which implies

lim
γ→∞

sup
x∈D(γ)

∣∣v (x, t; v0
)
− v−(x)

∣∣ = 0 for any fixed t > 0, (4.11)

lim
γ→∞

max
16j6n

sup
x∈D(γ),x∈Qj

∣∣v (x, t; v0
)
−Vj(x)

∣∣ = 0 for any fixed t > 0 (4.12)

and

lim
γ→∞

sup
x∈D(γ)

∣∣∣v (x, t; v0
)
− V̂(x)

∣∣∣ = 0 for any fixed t > 0. (4.13)

Now we state a proposition which plays a key role in the following estimates.

Proposition 4.5. Assume that v0 ∈ [E−,E+] satisfies (1.8). For any given ε1 > 0, one can choose

T ∗ > 0 large enough such that

lim
R→∞

max
16j6n

sup
|x|>R,x∈Qj

∣∣v(x, t; v0)−Vj(x)
∣∣ < ε1 for any fixed t > T ∗. (4.14)

Proof. Set

Ij := Ωj
⋂

Ωj+1 =

{
r

(
Aj +Aj+1

Bj +Bj+1

)∣∣∣∣r > 0

}
, 1 6 j 6 n− 1,

In := Ωn
⋂

Ω1 =

{
r

(
An +A1

Bn +B1

)∣∣∣∣r > 0

}
.

Then Ij is the projection of Γj onto the x1-x2 plane and
⋃n
j=1 Ij is the projection of Γ onto the x1-x2

plane.

Fix j ∈ {1, · · · , n}. Without loss of generality we assume that x ∈ Qj as |x| → ∞. Since (∂/∂x1)2 +

(∂/∂x2)2 is invariant under rotations on the x1-x2 plane, we assume Ωj ∩ Ωj+1 = { (0, x2, 0)|x2 > 0},
(Aj , Bj) = (A,B) and (Aj+1, Bj+1) = (−A,B), where A > 0, B > 0 and A2 + B2 = 1. Two planes

Sj+1 and Sj are −x3 = m∗(−Ax1 + Bx2) and −x3 = m∗(Ax1 + Bx2), respectively. The common

line Γj of them is x1 = 0, −x3 = m∗Bx2. The projection of Qj onto the x1-x2 plane is given by

{x2 > a|x1|, x1 > 0} ∪ {x2 > b|x1|, x1 6 0} for some a > 0 and b > 0.

By the assumption on v0, we have

lim
γ→∞

sup
x∈D(γ),x∈Qj

∣∣∣v0(x)−U
( c
s

(x3 +m∗Bx2 +m∗A|x1|)
)∣∣∣ = 0.

The unit normal vector of the common line Γj directing downwards and lying on the plane {x1 = 0} is

given by

1√
1 +m2

∗B
2


0

m∗B

−1

 .
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Since 2θj is the angle between Sj and Sj+1 (0 < θj < π/2), we have that sin θj =
√

1 +m2
∗B

2
/√

1 +m2
∗.

In this case we make a change of variables as follows
ξ

η

ζ

 =


−1 0 0

0 m∗B√
1+m2

∗B
2

1√
1+m2

∗B
2

0 1√
1+m2

∗B
2
− m∗B√

1+m2
∗B

2




x1

x2

x3

 .

Then we have

U

 c

sj

η +

√
s2
j − c2

c
|ξ|

 = U
( c
s

(x3 +m∗Bx2 +m∗A|x1|)
)
,

where sj = s√
1+m2

∗B
2
. It is obvious that

Vj(x) = Φ(ξ, η; sj) = Φ

(
−x1,

x3 +m∗Bx2√
1 +m2

∗B
2

; sj

)

is a solution of (1.6). Let W̃(ξ, η, t) =
(
W̃1

(
ξ, η, t; W̃0

)
, · · · , W̃N

(
ξ, η, t; W̃0

))
be the solution of

{
∂
∂tW̃ −D ∂2

∂ξ2 W̃ −D ∂2

∂η2 W̃ + sj
∂
∂ηW̃ − F(W̃) = 0, (ξ, η) ∈ R2, t > 0,

W̃(ξ, η, 0) = W̃0(ξ, η), (ξ, η) ∈ R2.
(4.15)

Taking W0(x) = W̃0

(
−x1,

x3+m∗Bx2√
1+m2

∗B
2

)
, we have that W(x, t; W0) = W̃(ξ, η, t; W̃0) satisfies

{
∂
∂tW −D∆W + s ∂

∂x3
W − F(W) = 0, x ∈ R3, t > 0,

W(x, 0) = W0(x), x ∈ R3.
(4.16)

Utilizing (4.9) and the assumption on v0, we have

lim
γ→∞

sup
x∈D(γ)∩Qj

|v0(x)−Vj(x)| = 0.

Choose functions gi(·) ∈ C(R) ∩ L∞(R) (i = 1, · · · , N) with

gi(γ) = sup
x∈D(γ)∩Qj

|v0
i (x)− V ji (x)| for γ > 1,

sup
x∈D(γ)∩Qj

|v0
i (x)− V ji (x)| 6 gi(γ) 6 E+

i − E
−
i + 1 +

∥∥v0
i − E−i

∥∥
L∞(R3)

for 0 < γ < 1,

g′i(γ) 6 0 for 0 < γ < 1,

gi(γ) = gi(−γ) for γ ∈ R.

It is obvious that gi(γ) is monotone nonincreasing in γ > 0 and satisfies limγ→∞ gi(γ) = 0. Since

dist(x,Γ) = dist (x,Γj) =

√
(1 +m2

∗B
2)x2

1 + (x3 +m∗Bx2)2√
1 +m2

∗B
2

for x ∈ Qj ,

we have, for x ∈ Qj , that

|v0
i (x)− V ji (x)| 6 gi (dist(x,Γ)) = gi

(√
(1 +m2

∗B
2)x2

1 + (x3 +m∗Bx2)2√
1 +m2

∗B
2

)
. (4.17)
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We study (4.15) for W̃±,0(ξ, η) =
(
W̃±,01 (ξ, η), · · · , W̃±,0N (ξ, η)

)
with

W̃+,0
i (ξ, η) := min

{
Φi(ξ, η; s̄) + gi

(√
ξ2 + η2

)
, E+

i

}
and

W̃−,0i (ξ, η) := max
{

Φi(ξ, η; s̄)− gi
(√

ξ2 + η2
)
, E−i

}
,

which is equivalent to study (4.16) for W±,0(x) =
(
W±,01 (x), · · · ,W±,0N (x)

)
with

W+,0
i (x) := min

{
V ji (x) + gi

(√
x2

1 +
1

1 +m2
∗B

2
(x3 +m∗Bx2)2

)
, E+

i

}

and

W−,0i (x) := max

{
V ji (x)− gi

(√
x2

1 +
1

1 +m2
∗B

2
(x3 +m∗Bx2)2

)
, E−i

}
,

respectively. Then we have

lim
R→∞

sup
ξ2+η2>R2

∣∣∣W̃±,0i (ξ, η)− Φi(ξ, η; sj)
∣∣∣ = 0, i = 1, · · · , N.

For sj = s√
1+m2

∗B
2
, applying Theorem 4.1 we have

lim
t→∞

∥∥∥W̃ (
ξ, η, t; W̃±,0

)
−Φ(ξ, η; sj)

∥∥∥
C(R2)

= 0,

which implies that limt→∞
∥∥W (

x, t; W±,0)−Vj(x)
∥∥
C(R3)

= 0. Taking Tj > 0 large enough such that

sup
t>Tj

∥∥W (
·, t; W±,0)−Vj(·)

∥∥
C(R3)

<
ε1

2
. (4.18)

Put v±(x, t) = v(x, t; v0)−W(x, t; W±,0). Then v± satisfies(
∂

∂t
−Di

∂2

∂x2
1

−Di
∂2

∂x2
2

−Di
∂2

∂x2
3

+ s
∂

∂x3

)
v±i (x, t)

+

N∑
k=1

(∫ 1

0

∂

∂uk
F i
(
θv(x, t) + (1− θ)W

(
x, t; W±,0)) dθ) v±k (x, t) = 0, x ∈ R3, t > 0,

v±i (x, 0) = v0
i (x)−W±,0i (x), x ∈ R3,

respectively. In particular, from (4.17) we have v+(x, 0) 6 0 and v−(x, 0) > 0 for x ∈ Qj . Let v̂±(x, t)

be defined by(
∂

∂t
−Di

∂2

∂x2
1

−Di
∂2

∂x2
2

−Di
∂2

∂x2
3

+ s
∂

∂x3

)
v̂±i (x, t)

+

N∑
k=1

(∫ 1

0

∂

∂uk
F i
(
θv(x, t) + (1− θ)W

(
x, t; W±,0)) dθ) v̂±k (x, t) = 0, x ∈ R3, t > 0,

v̂+
i (x, 0) = max

{
v+
i (x, 0), 0

}
and v̂−i (x, 0) = max

{
−v−i (x, 0), 0

}
, x ∈ R3.

It is easy to see that v̂+(x, 0) > v+(x, 0) and −v̂−(x, 0) 6 v−(x, 0) for x ∈ R3. By the comparison

principle we obtain

v+(x, t) 6 v̂+(x, t), − v̂−(x, t) 6 v−(x, t), ∀x ∈ R3, t > 0. (4.19)
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Notice that
∣∣v̂±i (x, 0)

∣∣ 6 2
(
E+
i − E

−
i

)
+ 1 for x ∈ R3 and v̂±i (x, 0) = 0 for x ∈ Qj , where i = 1, · · · , N .

Applying the inequality (4.5) to v̂±(x, t), one has

0 6 v̂±i (x, t) 6

(
2 max

16i6N

(
E+
i − E

−
i

)
+ 1

)
eλ0t

3πÃ

B̃

∫ +∞

R√
t

exp
(
−B̃r2

)
dr, ∀ t > 0

if x ∈ Qj and
√

3R < dist(x, ∂Qj) for i = 1, · · · , N . It follows that

lim
R→∞

sup
x∈Qj , dist(x,∂Qj)>R

v̂±i (x, t) = 0, i = 1, · · · , N

for any fixed t > 0. Applying this equality, (4.18) and (4.19) to v(x, t; v0) = v±(x, t) + W(x, t; W0), for

given t > Tj we can take a constant Rj > 0 large enough such that

sup
x∈Qj , dist(x,∂Qj)>Rj

|v(x, t; v0)−Vj(x)| < ε1. (4.20)

Thus we have obtained the estimates on Qj for given j.

Set

T ∗ := max{T1, · · · , Tn}.

Fix t > T ∗. Let R̂ := max{R1, R2, · · · , Rn}. From the definitions of Γ and Qj we get

lim
R→∞

inf
|x|>R,dist(x,∂Qj)6R̂

dist(x,Γ) =∞ for all 1 6 j 6 n.

Using (4.12), we have

lim
R→∞

max
16j6n

sup
|x|>R,x∈Qj ,dist(x,∂Qj)6R̂

∣∣v(x, t; v0)−Vj(x)
∣∣ = 0.

By this estimate and (4.20), we obtain (4.14). The proof is completed.

Lemma 4.6. Assume that v0 ∈ [E−,E+] satisfies (1.8). Let V be as in Theorem 3.3. For any given

ε1 > 0, one can choose T ∗ > 0 large enough such that

lim
R→∞

sup
|x|>R

∣∣v(x, t; v0)−V(x)
∣∣ < ε1 for any fixed t > T ∗. (4.21)

In particular, one has

lim
R→∞

sup
|x|>R

∣∣∣V(x)− V̂(x)
∣∣∣ = 0. (4.22)

Proof. By taking v0 = V in Proposition 4.5, for any ε1 > 0 we have

lim
R→∞

max
16j6n

sup
|x|>R,x∈Qj

∣∣V(x)−Vj(x)
∣∣ < ε1.

Due to the arbitrariness of ε1 > 0, we obtain the equalities (4.22) and

lim
R→∞

max
16j6n

sup
|x|>R,x∈Qj

∣∣V(x)−Vj(x)
∣∣ = 0.

Furthermore, using the last equality and Proposition 4.5, we can obtain (4.21). This completes the

proof.

The equality (4.22) shows that the pyramidal traveling front V converges to two-dimensional V-form

fronts Φ near the edges.
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Lemma 4.7. Let V be as in Theorem 3.3. Then it satisfies

lim
R→∞

sup
|x3+h(x′)|>R

∣∣∣∣ ∂∂x3
V(x)

∣∣∣∣ = 0.

In addition, for any δ ∈ (0, ε0) we have

min
16i6N

inf
E−i +δ6V ji (x)6E+

i −δ

∂

∂x3
V ji (x) > 0, 1 6 j 6 n,

and

min
16i6N

inf
E−i +δ6Vi(x)6E+

i −δ

∂

∂x3
Vi(x) > 0. (4.23)

Proof. Note that
∂

∂x3
V ji (x) :=

qj√
m2
∗p

2
j + q2

j

∂

∂η
Φi (ξ, η; sj) ,

where ξ = ((Aj+1 −Aj)x1 + (Bj+1 −Bj)x2)/ qj and

η =
(
m∗(Bj+1 −Bj)pjx1 +m∗(Aj −Aj+1)pjx2 + q2

jx3

)/(
qj

√
m2
∗p

2
j + q2

j

)
.

It follows from Wang [53, Lemma 4.2] that min16i6N minE−i +δ6V ji (x)6E+
i −δ

∂
∂x3

V ji (x) > 0.

Now we show that (4.23) holds. Since ∂
∂x3

Vi > 0 in R3, ∂
∂x3

Vi has a positive minimum on any compact

subset of R3. Thus we need only to study ∂
∂x3

Vi as |x| → ∞. Fix i ∈ {1, · · · , N}. Let

Ω̃i =
{
x ∈ R3

∣∣E−i + δ 6 Vi(x) 6 E+
i − δ

}
.

By (4.22) and (3.13) we have

lim
R→+∞

sup
x∈B(Qj ,2),|x|>R

∣∣V(x)−Vj(x)
∣∣ = 0,

where B (Qj , 2) :=
{

x ∈ R3
∣∣dist (x, Qj) 6 2

}
, j ∈ {1, · · · , n}. Then there exists R̂j > 0 such that

sup
x∈B(Qj ,2),|x|>R̂j

∣∣V(x)−Vj(x)
∣∣ < δ

2
.

Consequently, we have E−i + δ
2 6 V ji (x) < E+

i − δ
2 for x ∈ B(Qj , 2)∩ Ω̃i with |x| > R̂j . For any x0 ∈ Qj ,

we have

lim
R→+∞

sup
x0∈Qj ,|x0|>R

∥∥F i (V(·))− F i
(
Vj(·)

)∥∥
Lp(B(x0,2))

= 0,

where p > 3, B(x0, r) :=
{
x ∈ R3

∣∣|x− x0| < r
}

. Applying the interior Schauder estimate of Gilbarg and

Trudinger [15, Theorem 9.11] to

−Di∆
(
Vi − V ji

)
+ s

∂

∂x3

(
Vi − V ji

)
= F i (V)− F i

(
Vj
)

in B(x0, 2),∀x0 ∈ Qj ,

we obtain

lim
R→+∞

sup
x0∈Qj ,|x0|>R

∥∥∥Vi(·)− V ji (·)
∥∥∥
W 2,p(B(x0,1))

= 0.

Therefore, we have

lim
R→+∞

sup
x∈Qj ,|x|>R

∣∣∣∣ ∂∂x3
Vi(x)− ∂

∂x3
V ji (x)

∣∣∣∣ = 0.

Thus, by virtue of the estimate on Vj there exists R̃j > R̂j such that

min
x∈Ω̃i∩Qj ,|x|>R̃j

∂

∂x3
Vi(x) > 0.



Wang Z-C et al. Sci China Math April 2016 Vol. 59 No. 4 27

Applying the above arguments to all j = 1, · · · , n and i = 1, · · · , N , we obtain (4.23).

Obviously, the assumption |x3 + h(x′)| → ∞ implies dist(x,Γ)→∞. It follows that

lim
R→+∞

sup
x3+h(x′)>R

∣∣V(x)−E+
∣∣→ 0 and lim

R→+∞
sup

x3+h(x′)6−R

∣∣V(x)−E−
∣∣→ 0,

which yields limR→∞ sup|x3+h(x′)|>R
∣∣F i(V(x))

∣∣ = 0. Applying the interior Schauder estimate to

−Di∆Vi + s
∂

∂x3
Vi = F i(V) in B(x̄, 2),∀x̄ ∈ R3,

we have

lim
R→∞

sup
16i6N

sup
{
‖Vi‖W 2,p(B(x̄,1))

∣∣∣ x̄ ∈ R3, |x̄3 + h(x̄′)| > R
}

= 0

for p > 3. Therefore, we have

lim
R→∞

sup
|x3+h(x′)|>R

∣∣∣∣ ∂∂x3
Vi(x)

∣∣∣∣ = 0, 1 6 i 6 N.

This completes the proof.

Lemma 4.8. Assume that δ ∈ (0, ε0). For any x ∈ R3 with

E−i + δ 6 V̂i(x) = max
16j6n

V ji (x) 6 E+
i − δ,

we have

inf
0<%<%0

V̂i(x
′, x3 + %)− V̂i(x)

%
> min

16j6n
min

16i6N
inf

E−i + δ
26V

j
i (x)6E+

i −
δ
2

∂

∂x3
V ji (x) > 0,

where %0 is a positive constant depending on δ and is independent of x.

Proof. Fix i ∈ {1, · · · , N}. By the uniform continuity of V̂, there exists %0 > 0 such that

E−i +
δ

2
6 V̂i(x

′, x3 + %) 6 E+
i −

δ

2
for % ∈ (0, %0)

if x satisfies E−i + δ 6 V̂i(x) 6 E+
i − δ. For any x0 = (x0

1, x
0
2, x

0
3) ∈ R3 with E−i + δ 6 V̂i(x

0) 6 E+
i − δ,

there exists j0 ∈ {1, · · · , n} such that V̂i(x
0) = V j0i (x0). Then we have

V̂i(x
0
1, x

0
2, x

0
3 + %)− V̂i(x0) = V̂i(x

0
1, x

0
2, x

0
3 + %)− V j0i (x0)

> V j0i (x0
1, x

0
2, x

0
3 + %)− V j0i (x0) > % min

E−i + δ
26V

j0
i (x)6E+

i −
δ
2

∂

∂x3
V j0i (x)

> % min
16j6n

min
16i6N

inf
E−i + δ

26V
j
i (x)6E+

i −
δ
2

∂

∂x3
V ji (x).

Finally, the arbitrariness of % and x0 yields the expected result. This completes the proof.

For M > 0 defined in Lemma 3.1, it is not difficult to show that

E+
i > Ě+

i := sup
c
s (x3+h(x′))6M

Vi(x) > Ui(M)

and

E−i < Ui(−M +
c

s
m0) 6 Ě−i := inf

c
s (x3+h(x′))>−M

Vi(x)

for i = 1, · · · , N , where m0 = 2πm∗
∫∞

0
r2ρ̃(r)dr. In particular, Ě±i are independent of ε > 0 and α > 0.

By Lemmas 4.7 and 4.8, there exists β3 > 0 so that

min
16i6N

inf
| cs (x3+h(x′)|6M

∂

∂x3
Vi(x) > β3 and min

16i6N
inf

|µ(x)|6M

∂

∂x3
v+
i (x) > β3.
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Lemma 4.9. There exist a positive constant ρ sufficiently large and a positive constant β small enough

such that, for any δ > 0 with

δ < δ∗ := min

{
ε0
Np0

, min
16i6N

{
1

2p0

(
E+
i − Ě

+
i

)}
,

κ (p0 − ε0)

8N (L+ + 1) (p0)
2

}
,

W+ defined by

W+ (x, t; δ) = V
(
x′, x3 + ρδ

(
1− e−βt

))
+ δP

(
ς+
)
e−βt

is a supersolution of (2.1), and for any δ > 0 with

δ < min

{
ε0
Nq0

, min
16i6N

{
1

2q0

(
Ui(−M)− E−i

)}
,

κ (q0 − ε0)

8N (L− + 1) (q0)
2

}
,

W− defined by

W− (x, t; δ) = V
(
x′, x3 − ρδ

(
1− e−βt

))
− δQ

(
ς−
)
e−βt

is a subsolution of (2.1), where

ς± =
x3 ± ρδ

(
1− e−βt

)
+ ϕ (x′)√

1 + |∇ϕ (x′)|2
.

Proof. It follows from Lemma 2.5 that h(x′) 6 ϕ(x′) 6 m0 + h(x′) for all x′ ∈ R2. It is easy to verify

that there exist constants C+
i > 0 such that∣∣∣∣∣P ′′i (µ)

(
µ2
x1

+ µ2
x2

)
+ P ′i (µ) (µx1x1 + µx2x2) + P ′′i (µ)

1

1 + |∇ϕ (αx′)|2

∣∣∣∣∣ 6 C+
i , (4.24)

∣∣∣∣∣Q′′i (µ)
(
µ2
x1

+ µ2
x2

)
+Q′i (µ) (µx1x1

+ µx2x2
) +Q′′i (µ)

1

1 + |∇ϕ (αx′)|2

∣∣∣∣∣ 6 C+
i (4.25)

for any α ∈ (0, 1] and x ∈ R3, where µ is defined by (3.1) and i = 1, · · · , N . In addition, we can take

M > 0 large enough in Lemma 3.1 so that∣∣∣∣∣P ′′i (µ)
(
µ2
x1

+ µ2
x2

)
+ P ′i (µ) (µx1x1 + µx2x2) +

P ′′i (µ)

1 + |∇ϕ (αx′)|2

∣∣∣∣∣ < 1

4D
κ (p0 − ε0) , (4.26)

∣∣∣∣∣Q′′i (µ)
(
µ2
x1

+ µ2
x2

)
+Q′i (µ) (µx1x1

+ µx2x2
) +

Q′′i (µ)

1 + |∇ϕ (αx′)|2

∣∣∣∣∣ < 1

4D
κ (q0 − ε0) (4.27)

for any α ∈ (0, 1] and µ > M or α ∈ (0, 1] and µ < −M + c
sm0 < 0, i = 1, · · · , N .

We omit the rest of the proof, which is similar to that of Wang [53, Lemma 4.2]. This completes the

proof.

Lemma 4.10. There exists a positive constant ρ sufficiently large and a positive constant β small enough

such that, for any δ > 0 with

δ < δ∗ 6 min

{
ε0
Np0

, min
16i6N

{
1

2p0

(
E+
i − Ui(M)

)}
,

κ (p0 − ε0)

8N (p0)
2

(L+ + 1)

}
,

w+ defined by

w+ (x, t; δ) = v+
(
x′, x3 + ρδ

(
1− e−βt

)
; ε, α

)
+ δP (τ) e−βt

is a supersolution of (2.1), where

τ =
x3 + ρδ

(
1− e−βt

)
+ ϕ (αx′)/α√

1 + |∇ϕ (αx′)|2
.
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The proof of the lemma is similar to that of Lemma 4.9. Following Wang [53, Lemma 4.4], we obtain

the following lemma.

Lemma 4.11. There exists a positive constant ρ sufficiently large and a positive constant β small enough

such that, for any δ > 0 with

δ < min

{
ε0
q0
, min
16i6N

{
1

2q0

(
Ui(−M)− E−i

)}
,

κ (q0 − ε0)

8N (q0)
2

(L− + 1)

}
,

ŵj defined by

ŵj (x, t; δ) = U (%̂)− εQ (%̂) sech(αx3)− δQ (%̂) e−βt

is subsolutions of (2.1), j = 1, · · · , n, where

%̂ =
hj(x

′)/m∗ − ρδ
(
1− e−βt

)
+ ψ (αx3)/α√

1 + ψ′2 (αx3)
.

Following this lemma, we know that

w̃ (x, t; δ) := ∨nj=1ŵj (x, t; δ) = U (%̃)− εQ (%̃) sech(αx3)− δQ (%̃) e−βt

is also a subsolution of (2.1), where

%̃ =
h(x′)/m∗ − ρδ

(
1− e−βt

)
+ ψ (αx3)/α√

1 + ψ′2 (αx3)
.

In the following we prove (1.9) for the case u0 = v0 with v0 > v−. We further restrict that ε+
0 <

min
{
ε+, δ∗p0

4(s+1)p0

}
in Lemma 3.1. Then for ε ∈ (0, ε+

0 ) and α ∈ (0, α+(ε)), let v+(x; ε, α) be as in Lemma

3.1. Define

V∗(x) := lim
t→∞

v(x, t; v+
∗ ), ∀x ∈ R3,

where v+
∗ (x; ε, α) = v+(x; ε, α)∧E+. Since v+(x; ε, α) is a supersolution of (2.1), v+

∗ (x) is a supersolution

of (1.4). Consequently we have that v(x, t; v+
∗ ) 6 v+

∗ (x) for any x ∈ R3 and t > 0. Then proceeding the

similar argument as to V(x), we have that V∗(x) is C2 in x and satisfies (1.6). It is clearly that

V(x) 6 V∗(x), x ∈ R3.

Lemma 4.12. For x ∈ R3, V∗(x) ≡ V(x) holds.

Proof. Assume the contrary. Namely, V∗(x) 6≡ V(x). Take δ ∈
(
δ∗

2 , δ
∗
)

. By the definition of V∗(x),

there exists a sufficiently large λ > 0 such that

v+
∗ (x) 6 V(x′, x3 + λ) + δP

 x3 + λ+ ϕ(x′)√
1 + |∇ϕ(x′)|2

 , ∀x ∈ R3. (4.28)

Due to Lemma 4.9 we know that the function W+ (x′, x3 + λ, t; δ) is a supersolution of (2.1) on t > 0.

Thus by Corollary 2.3 we have

v
(
x, t; v+

∗
)
6 W+ (x′, x3 + λ, t; δ) (4.29)

for x ∈ R3 and t > 0. Letting t→∞ we get

V∗(x) 6 V(x′, x3 + λ+ ρδ) for x ∈ R3. (4.30)

Here we first show that

lim
R→∞

sup
|x|>R

∣∣∣V∗(x)− V̂(x)
∣∣∣ = 0. (4.31)
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It follows from (4.30) that limR→∞ sup|x3+h(x′)|>R

∣∣∣V∗(x)− V̂(x)
∣∣∣ = 0. For x ∈ R3 with |x3 + h(x′)| 6

R∗ for some sufficiently large R∗ > 0, there must be dist(x′, E) → ∞ if dist(x,Γ) → ∞. Then by

V∗ 6 v+ and Lemmas 2.6 and 2.7 we have

lim
γ→∞

sup
|x3+h(x′)|6R∗,x∈D(γ)

∣∣V∗(x)− v−(x)
∣∣ = 0.

Combining the above arguments, we obtain limγ→+∞ supx∈D(γ) |V∗ − v−| = 0. Applying Proposition

4.5 to V∗, we obtain (4.31).

Define

Λ := inf
{
λ ∈ R|V∗(x) 6 V (x′, x3 + λ) ,∀x ∈ R3

}
.

Then Λ > 0 and V∗(x) 6 V(x′, x3 + Λ) for x ∈ R3. The assumption V∗(x) 6≡ V(x) yields Λ > 0. By the

strong maximum principle of elliptic equations we have that either V ∗i (x) ≡ Vi (x′, x3 + Λ) for all x ∈ R3

and some i ∈ {1, · · · , N} or V∗(x) � V(x′, x3 + Λ) for any x ∈ R3. We conclude that the former is

impossible. In fact, take a sequence
{
x′m ∈ R2

}
m∈N satisfying h (x′m) → +∞ and dist (x′m, E) → +∞,

then by v− 6 V 6 V∗ 6 v+, we have

lim
m→+∞

V∗ (x′m,−h(x′m)) = U(0) and lim inf
m→+∞

V (x′m,−h(x′m) + Λ) > U
( c
s

Λ
)
,

which contradicts V ∗i (x) ≡ Vi (x′, x3 + Λ).

Now we assume that

V∗(x′, x3)� V(x′, x3 + Λ), ∀x ∈ R3.

By Lemma 4.7 we can take R∗ > 0 sufficiently large satisfying

2ρ sup
|x3+h(x′)|>R∗−ρδ∗

∣∣∣∣ ∂∂x3
V(x′, x3 + Λ)

∣∣∣∣ < p0.

Define

D :=
{
x ∈ R3

∣∣|x3 + h(x′)| 6 R∗
}
.

We choose a constant ε1 > 0 sufficiently small satisfying 0 < ε1 < min
{
δ∗

2 ,
Λ
4ρ

}
. Utilizing Lemma 4.8,

for x ∈ D we have

V̂i

(
x′, x3 +

Λ

2

)
− V̂i

(
x′, x3 +

Λ

4

)
> min

{
%0,

Λ

4

}
min

16j6n
min

16i6N
inf

E−i +
δ0
2 6V ji (x)6E+

i −
δ0
2

∂

∂x3
V ji (x) > 0,

where

δ0 = min
16i6N

min

{
δ∗

2
, E+

i − max
16j6n

sup
x∈D

V ji

(
x′, x3 +

Λ

2

)
, min
16j6n

inf
x∈D

V ji (x)− E−i
}
,

and %0 is defined in Lemma 4.10 associated with δ0. Thus, it follows that

inf
x∈D

(
V̂i(x

′, x3 + Λ− 2ρε1)− V̂i(x)
)

> min

{
%0,

Λ

4

}
min

16j6n
min

16i6N
inf

E−i +
δ0
2 6V ji (x)6E+

i −
δ0
2

∂

∂x3
V ji (x) > 0.

Applying Lemma 4.7 and (4.31), we have that there exists R0 > 0 such that

V∗(x) < V

(
x′, x3 +

Λ

2

)
6 V(x′, x3 + Λ− 2ρε1) for x ∈ D with |x| > R0.
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Since D ∩ B(0;R0) is compact, we have V∗(x) < V(x′, x3 + Λ − 2ρε1) in D ∩ B(0;R0) for sufficiently

small ε1. Thus,

V∗(x) < V(x′, x3 + Λ− 2ρε1) in D.

In R3 \ D, we have

Vi(x
′, x3 + Λ)− Vi(x′, x3 + Λ− 2ρε1) = 2ρε1

∫ 1

0

∂

∂x3
Vi (x′, x3 + Λ + 2θρε1) dθ 6 ε1p0

for i = 1, · · · , N . Combining both cases, we have V∗(x) 6 V(x′, x3 + Λ − 2ρε1) + ε1P
− in R3. By

Lemma 4.11 we know that W+(x′, x3 + Λ − 2ρε1, t; ε1) is a supersolution of (2.1). Thus V∗(x) 6
W+(x′, x3 + Λ− 2ρε1, t; ε1) for x ∈ R3 and t > 0. Letting t→∞ yields V∗(x) 6 V(x′, x3 + Λ− ρε1) for

x ∈ R3. This contradicts the definition of Λ. Thus Λ = 0 follows and we have proved that V∗(x) ≡ V(x).

The proof is completed.

Theorem 4.13. Assume that (H1)-(H5) hold. Let V(x′, x3 + st) be a pyramidal traveling front of (1.2)

with speed s > c established in Section 3. Assume that v0 ∈ C
(
R3,RN

)
satisfying v0(x) ∈ [E−,E+] for

x ∈ R3, v0(x) > v−(x) for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

|v0(x)−V(x)| = 0. (4.32)

Then the solution v(x, t; v0) of (1.4) with the initial value v0 satisfies

lim
t→∞

∥∥v(·, t; v0)−V(·)
∥∥
C(R3)

= 0. (4.33)

Proof. Let δ ∈
(

0, δ
∗

2

)
be given arbitrarily. Take ε ∈

(
0,min

{
ε+

0 ,
δ∗

4s

})
. Utilizing (4.21), we take

α ∈ (0, α+(ε)) such that

v(x, 1; v0) 6 v+(x; ε, α) + δp0I for x ∈ R3,

where I is the N ×N identical matrix. By using an argument similar to that in Taniguchi [48], we have

that

lim
t→∞

∥∥v(·, t; v−)−V(·)
∥∥
L∞(R3)

= 0 and lim
t→∞

∥∥v(·, t; v+
∗ )−V(·)

∥∥
L∞(R3)

= 0.

Take t̂ > 0 large enough such that

v(x, t; v−) 6 v(x, t; v+
∗ ) < V(x) + δp0I for x ∈ R3 and t > t̂. (4.34)

Let ρ and β be as in Lemma 4.12 and note that ρ and β are independent of δ. We have that w+(x, t; δ)

is a supersolution of (1.3). Then there exists t̃ > 0 large enough so that

v(x, t+ 1; v0) < v+(x′, x3 + ρδ) + δe−λ0 t̂p0I

for any t > t̃. Let v+,δ
∗ (x) = v+(x′, x3 + ρδ) ∧E+. Then

v(x, t̃+ 1; v0) < v+,δ
∗ (x) + δe−λ0 t̂p0I.

Lemma 4.2 implies that v(x, t̃ + t̂ + 1; v0) 6 v(x, t̂; v+,δ
∗ ) + δp0I for x ∈ R3. Using (4.34), we have

v(x, t̃+ t̂+1; v0) 6 V(x′, x3+ρδ)+2δp0I for x ∈ R3. By Lemma 4.9, it follows that v(x, t+ t̃+ t̂+1; v0) 6
W+ (x′, x3 + ρδ, t; 2δ) for t > 0. Therefore, we have

V(x) 6 v(x, t; v0) 6 V (x′, x3 + ρδ + 2ρδ) + 2δp0 6 V(x) +M∗δI

for t > tδ := t̃ + t̂ + 1, where M∗ > 0 is a constant and is independent of δ. Due to the arbitrariness of

δ, we have completed the proof.
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Now we consider the case that the initial value u0 = v0 satisfies v0 6 v−. Define

δ∗ = min

{
ε0
Nq0

, min
16i6N

1

4q0

(
Ui(−M)− E−i

)
,

κ (q0 − ε0)

8N (L− + 1) (q0)
2

}
.

Take 0 < ε < min
{
ε−0 ,

1
2δ∗,

ε0q0
2(q0)2

}
. Define

v (x) := V (x′, x3 −M ′) and v− (x) := ṽ (x; ε, α) ∨ v (x) ,

where M ′ > 0 is a constant specified later. Recall that w̃ is defined in Lemma 4.11. Set

w (x, t; δ) := W− (x′, x3 −M ′, t; δ) and w− (x, t; δ) := w̃ (x, t; δ) ∨w (x, t; δ) .

Lemma 4.14. For any positive constant δ and any initial function v0 satisfying

lim
γ→∞

sup
x∈D(γ)

∣∣v0 − v−
∣∣ = 0 and v0(x) ∈

[
E−,E+

]
for x ∈ R3,

there exist positive constants ε < min
{
ε−, 1

4δ∗,
ε0q0

2(q0)2

}
, α < α−(ε), T ′ and M ′ such that

v− (x)− δQ+ 6 v
(
x, T ′; v0

)
for x ∈ R3.

Proof. Clearly E− 6 v
(
x, t; v0

)
6 E+. Applying Proposition 4.5 with ε1 = δq0

4 and Lemma 4.7, we have

lim
R→∞

sup
|x|>R

∣∣v (x, T ∗ + 1; v0
)
−V (x)

∣∣ 6 δq0

4
, (4.35)

where T ∗ is determined in Proposition 4.5. Fix T ′ = T ∗ + 1. By (4.35) we can choose a large constant

M ′ such that

v (x)− δQ+ = V (x′, x3 −M ′)− δQ+ 6 v
(
x, T ′; v0

)
for x ∈ R3.

From (4.35) there exists a positive constant R1 such that

V (x)− δ

4
Q+ 6 v

(
x, T ′; v0

)
for |x| > R1.

Note that

ṽ (x; ε, α) 6 U

(
h(x′)/m∗ + ψ(αx3)/α√

1 + ψ′(αx3)2

)
− εQ+sech (β2αx3) .

Since ψ(αx3)
α = − 1

m∗αβ2
ln (1 + exp (−β2αx3)) 6 x3

m∗
, we have

ṽ (x; ε, α) 6 U

(
x3 + h(x′)

m∗
√

1 + ψ′(αx3)2

)
− εQ+sech (β2αx3) .

It is not difficult to show that there exists R′1 > 0 such that

U

(
x3 + h(x′)

m∗
√

1 + ψ′(αx3)2

)
− δ

2
Q+ 6 v−(x)

for x ∈ R3 with |x3 + h(x′)| > R′1. Since 1

m∗
√

1+ψ′(αx3)2
→ c

s as αx3 → −∞, there exists R2 > 0 such

that

U

(
x3 + h(x′)

m∗
√

1 + ψ′(αx3)2

)
− δ

2
Q+ 6 v−(x)
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for x ∈ R3 with |x3 + h(x′)| 6 R′1 and αx3 < −R2. Note that R2 is independent of α ∈ (0, 1). For

− R2/α 6 x3 6 R′1 and |x3 + h(x′)| 6 R′1, it follows from the definition of ψ that there exists a small

positive constant α such that

1√
1 + ψ′ (αx3)

2

(
1

α
ψ (αx3) +

1

m∗
h(x′)

)

=
1√

1 + ψ′ (αx3)
2

(
x3

m∗
− 1

αm∗β2
ln
(
1 + eαβ2x3

)
+

1

m∗
h(x′)

)

6
1√

1 + ψ′ (αx3)
2

(
R′1
m∗
− 1

αm∗β2
ln
(
1 + e−β2R2

))

6 U−1
i

(
E−i +

δ

2
q+
i

)
.

Take R′1 and R2 large enough so that{
x ∈ R3

∣∣ |x| 6 R1

}
⊂
{

x ∈ R3
∣∣−R2/α 6 x3 6 R′1, |x3 + h(x′)| 6 R′1

}
.

Therefore,

ṽ (x; ε, α)− δQ+ 6 v
(
x, T ′; v0

)
for x ∈ R3.

Finally, it is clear that

v−(x)− δQ+ =
(
ṽ (x; ε, α)− δQ+

)
∨
(
v (x)− δQ+

)
.

This completes the proof.

Take 0 < δ < δ∗. For x ∈ R3, define

vδ− (x) := ṽδ− (x) ∨ v (x′, x3 −m∗ρδ) ,

where ṽδ− (x) = U (%̌(x))− εQ (%̌(x)) sech(αx3) with

%̌(x) :=
h(x′)/m∗ − ρδ + ψ (αx3)/α√

1 + ψ′ (αx3)
2

.

In view of w− (x, t; δ) 6 v
(
x, t+ T ′; v0

)
, taking t→∞ we have

vδ− (x) 6 lim inf
t→+∞

v
(
x, t; v0

)
. (4.36)

Lemma 4.15. We have

lim
R→∞

inf
|x|>R

(
vδ−(x)− v− (x′, x3 −m∗ρδ)

)
> 0. (4.37)

Proof. It is clear that
∣∣vδ−(x)−V (x′, x3 −m∗ρδ)

∣∣→ 0 as x3 → +∞ uniformly for x′ ∈ R2. In addition,

one can show that

lim
R→∞

sup
|x3+h(x′)|>R

∣∣vδ−(x)−V (x′, x3 −m∗ρδ)
∣∣ = 0.

It remains to consider |x3 + h(x′)| < X2 for some X2 > 0 sufficiently large and x3 < X1. To ensure that

|x| → +∞, there must be x3 → −∞. By the definition of ṽδ− (x) we have

lim
R→∞

sup
|x3+h(x′)|<X2,x36−R

∣∣ṽδ− (x)− v− (x′, x3 −m∗ρδ)
∣∣ = 0.

Since v− (x′, x3 −m∗ρδ) 6 V (x′, x3 −m∗ρδ), it follows that (4.37) holds. The proof is completed.
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Lemma 4.16. The limit of v
(
x, t; vδ−

)
as t→∞ exists and the limit function

Vδ
∗ (x) := lim

t→∞
v
(
x, t; vδ−

)
satisfies L

[
Vδ
∗
]

= 0, vδ− 6 Vδ
∗ 6 V and Vδ

∗(x) > V(x′, x3 −m∗ρδ) on R3.

Proof. Take v∗−(x) = vδ−(x)∨v−(x). Then vδ− 6 v∗−. By the comparison principle, we have v
(
x, t; vδ−

)
6

v
(
x, t; v∗−

)
. It follows from Theorem 4.13 that

lim
t→∞

sup
x∈R3

∣∣v (·, t; v∗−)−V (·)
∣∣ = 0.

Since vδ− is a subsolution of (1.4), the solution v
(
x, t; vδ−

)
is increasing in t and the limiting function Vδ

∗
exists with

L
[
Vδ
∗
]

= 0 and vδ− 6 Vδ
∗ 6 V.

By (4.36), we get limR→∞ inf |x|>R
(
vδ−(x)− v− (x′, x3 −m∗ρδ)

)
> 0. Applying Proposition 4.5 we

further have

lim
R→∞

inf
|x|>R

(
Vδ
∗(x)−V (x′, x3 −m∗ρδ)

)
> 0. (4.38)

We prove Vδ
∗(x) > V(x′, x3 −m∗ρδ) for all x ∈ R3 by contradiction. Take

Λ∗ = min
{
λ > 0|Vδ

∗(x) > V(x′, x3 − λ) for x ∈ R3
}

and assume Λ∗ > m∗ρδ. By (4.38), we have Vi (·, · − Λ∗) 6≡ V δ∗,i (·, ·) for all i = 1, · · · , N . Furthermore,

the strong maximum principle implies that

V (x′, x3 − Λ∗)� Vδ
∗ (x) for x ∈ R3. (4.39)

Note that limR→∞ sup|x3+h(x′)|>R

∣∣∣ ∂
∂x3

V (x)
∣∣∣ = 0. Take R∗ > 0 large enough so that

2ρ sup
|x3+h(x′)|>R∗−ρδ∗

∣∣∣∣ ∂∂x3
V (x′, x3 − Λ∗)

∣∣∣∣ < q0.

By vδ−(x) 6 Vδ
∗(x) and V (x′, x3 − Λ∗) < V (x′, x3 −m∗ρδ) for x ∈ R3 and (4.38), we can choose a

0 < h∗ < min
{
δ∗
2 ,

Λ∗−m∗ρδ
2ρ

}
small enough such that

V (x′, x3 − Λ∗ + 2ρh∗) < Vδ
∗ (x) in D′, (4.40)

where

D′ := {(x) : |x3 + h(x′)| 6 R∗} .

In R3
∖
D′, we have

V (x′, x3 − Λ∗ + 2ρh∗)−V (x′, x3 − Λ∗)

= 2ρh∗
∫ 1

0

∂

∂x3
V (x′, x3 − Λ∗ + 2θρh∗) dθ 6 h∗Q+,

which implies that

W− (x′, x3 − Λ∗ + 2ρh∗, 0;h∗)

6 V (x′, x3 − Λ∗ + 2ρh∗)− h∗Q+ 6 V (x′, x3 − Λ∗) in R3
∖
D′. (4.41)

Combining (4.39), (4.40) and (4.41), we have W− (x′, x3 − Λ∗ + 2ρh∗, 0;h∗) 6 Vδ
∗ (x) in R3. Since

W− (x′, x3 − Λ∗ + 2ρh∗, t;h∗) is a subsolution of (2.1), Corollary 2.3 yields that

W− (x′, x3 − Λ∗ + 2ρh∗, t;h∗) 6 Vδ
∗ (x) in R3 × [0,∞) .

Letting t→∞ in the last inequality, we get V (x′, x3 − Λ∗ + ρh∗) 6 Vδ
∗ (x) in R3, which contradicts the

definition of Λ∗. This completes the proof.
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Theorem 4.17. Assume that (H1)-(H5) hold. If v0 (x) satisfies v0(x) 6 v−(x) and v0(x) ∈ [E−,E+]

for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

∣∣v0 (x)− v− (x)
∣∣ = 0,

then the solution v
(
x, t; v0

)
of (1.4)-(1.5) satisfies

lim
t→∞

∥∥v (·, t; v0
)
−V (·)

∥∥
C(R3)

= 0.

Proof. Give any δ < δ∗
4 , by v0(x) 6 v−(x) we have v

(
x, t; v0

)
6 V(x) for any x ∈ R3 and t > 0.

Since limt→+∞ v
(
x, t; vδ−

)
= Vδ

∗(x) > V (x′, x3 −m∗ρδ), there exists t̂ > 0 such that v
(
x, t; vδ−

)
>

V (x′, x3 −m∗ρδ)− δq0I for t > t̂. It follows from Lemma 4.14 that

v
(
x, T ′; v0

)
> v−(x)− δQ+.

Then by (4.36) there exists t′ > 0 so that

v
(
x, t+ T ′; v0

)
> vδ−(x)− δq0e

−λ0 t̂I for t > t′.

By Lemma 4.2, we have v
(
x, t̂+ t′ + T ′; v0

)
> v

(
x, t̂; vδ−

)
− δq0I. Therefore, we have

v
(
x, t̂+ t′ + T ′; v0

)
> V (x′, x3 −m∗ρδ)− 2δq0I

for x ∈ R3. By Lemma 4.11, we have

v
(
x, t+ t̂+ t′ + T ′; v0

)
> W− (x′, x3 −m∗ρδ, t; 2δ)

for t > 0. Then

V (x) > v
(
x, t+ t̂+ t′ + T ′; v0

)
> V (x′, x3 −m∗ρδ − 2ρδ)− 2δq0Ie−βt, t > 0.

It follows that for any t > Tδ := t̂+ t′ + T ′,

v
(
x, t; v0

)
> V (x)− 2δq0I− 2M ′′ρδI−M ′′m∗ρδI,

where M ′′ = supx∈R3

∣∣∣ ∂
∂x3

V(x)
∣∣∣. From the arbitrariness of δ > 0, we have that v

(
·, t; v0

)
converges to

V (·) as t→∞ in ‖·‖C(R3). The proof is completed.

Proof of Theorem 1.1. Take v0(x) = u0(x). Let

v0
+(x) = v−(x) ∨ v0(x) and v0

−(x) = v−(x) ∧ v0(x).

Then E− 6 v0
− 6 v− 6 v0

+ 6 E+, E− 6 v0
− 6 v0 6 v0

+ 6 E+ and

lim
γ→∞

sup
x∈D(γ)

∣∣v0
± (x)− v− (x)

∣∣ = 0.

Note that u
(
x, t; u0

)
= v

(
x′, x3 + st, t; v0

)
. By the comparison principle and using Theorems 4.13 and

4.17, we complete the proof.

The following corollary shows that a three-dimensional pyramidal traveling front is uniquely determined

as a combination of two-dimensional V-form fronts.

Corollary 4.18. Assume that (H1)-(H5) hold. Let V be the three-dimensional pyramidal traveling front

associated with the pyramid −x3 = h(x′). If (1.6) has a solution W with

lim
γ→∞

sup
x∈D(γ)

|W(x)− V̂(x)| = 0,

then W ≡ V.
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5 Applications

In this section we apply the results of this paper to three important models in biology.

5.1 Two Species Lotka-Volterra Competition-diffusion Systems

Consider a Lotka-Volterra competition-diffusion system with two components:{
∂
∂tu1 = ∆u1 + u1(x, t) [1− u1(x, t)− k1u2(x, t)] ,
∂
∂tu2 = d∆u2 + ru2(x, t) [1− u2(x, t)− k2u1(x, t)] ,

x ∈ R3, t > 0, (5.1)

where k1, k2, r and d are positive constants. The variables u1(x, t) and u2(x, t) stand for the population

densities of two competing species, respectively. Assume that k1 > 1 and k2 > 1. Note that system (5.1)

is normalized so that it has the equilibrium solutions (u1, u2) = (1, 0), (0, 1), denoted by Eu = (1, 0) and

Ev = (0, 1). It is well known that system (5.1) admits a planar traveling wave solution Φ(x · e + ct) :=

(φ1(x · e + ct), φ2(x · e + ct)) with wave speed c ∈ R, which connecting Eu = (1, 0) and Ev = (0, 1),

see [18, 19, 30] and the references therein, where e ∈ R3 and |e| = 1. In particular, the traveling wave

solution Φ(ξ) = (φ1(ξ), φ2(ξ)) is unique up to translation. It should be pointed out that to determine

the sign of the wave speed c for (5.1) is a difficult job. Recently, some sufficient conditions have been

obtained for the positivity of the wave speed c, see Alcahrani et al. [1] and Guo and Lin [18].

Put u∗2 = 1− u2, then system (5.1) reduces to (for the sake of simplicity, we drop the symbol ∗){
∂
∂tu1 = ∆u1 + u1(x, t) [1− k1 − u1(x, t) + k1u2(x, t)] ,
∂
∂tu2 = d∆u2 + r (1− u2(x, t)) [k2u1(x, t)− u2(x, t)] ,

x ∈ R3, t > 0. (5.2)

Correspondingly, the equilibria Eu = (1, 0) and Ev = (0, 1) become E1 = (1, 1) and E0 = (0, 0) ,

respectively. In addition, (5.2) admits a unique traveling wave solution

Ψ(x · e + ct) := (ψ1(x · e + ct), ψ2(x · e + ct))

connecting E0 = (0, 0) and E1 = (1, 1). It is easy to verify that (H1)-(H4) hold, see the arguments of

Example 1 in Wang [53, Section 5]. Furthermore, we assume that the planar wave speed c > 0. Then

(H5) holds.

Fix s > c > 0. Let hj(x
′) (j = 1, · · · , n), h(x′) and D(γ) be defined in Section 1. It follows from

Theorem 1.1 that there exists a solution u(x, t) = V(x′, x3 + st) = (V1(x′, x3 + st), V2(x′, x3 + st)) of

(5.2) satisfying V(x) > Ψ−(x) for x ∈ R3 and

lim
γ→∞

sup
x∈D(γ)

∣∣V(x)−Ψ−(x)
∣∣ = 0,

where

Ψ−(x) = Ψ
( c
s

(x3 + h(x′))
)

=
(
ψ1

( c
s

(x3 + h(x′))
)
, ψ2

( c
s

(x3 + h(x′))
))

.

Moreover, for any u0(x) ∈ C
(
R3, [E0,E1]

)
satisfying

lim
γ→∞

sup
x∈D(γ)

∣∣u0(x)−V(x)
∣∣ = 0,

the solution u(x, t; u0) of (5.2) with initial value u0 satisfies

lim
t→∞

∥∥u(·, ·, t; u0)−V(·, ·+ st)
∥∥
C(R2×R)

= 0.

Returning to system (5.1), we know that there exists a solution

u(x, t) = Ux′, x3 + st) = (U1(x′, x3 + st), U2(x′, x3 + st))
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of (5.2) satisfying U1(x) > φ−1 (x) and U2(x) < φ−2 (x) for x ∈ R3, and

lim
γ→∞

sup
x∈D(γ)

∣∣U(x)−Φ−(x)
∣∣ = 0,

where

Φ−(x) =
(
φ−1 (x) , φ−2 (x)

)
=
(
φ1

( c
s

(x3 + h(x′))
)
, φ2

( c
s

(x3 + h(x′))
))

.

Furthermore, for any u0(x) ∈ C
(
R3, [E0,E1]

)
satisfying

lim
γ→∞

sup
x∈D(γ)

∣∣u0(x)−U(x)
∣∣ = 0,

the solution u(x, t; u0) of (5.1) with initial value u0 satisfies

lim
t→∞

∥∥u(·, ·, t; u0)−U(·, ·+ st)
∥∥
C(R2×R)

= 0.

5.2 Lotka-Volterra Competition-diffusion Systems with Spatio-temporal Delays

Consider a Lotka-Volterra competition-diffusion system with spatio-temporal delays{
∂
∂tu1 = ∆u1 + u1(x, t) [1− u1(x, t)− k1 (g1 ∗ u2) (x, t)] ,
∂
∂tu2 = d∆u2 + ru2(x, t) [1− u2(x, t)− k2 (g2 ∗ u1) (x, t)] ,

(5.3)

where x ∈ R3, t > 0, g1(x, t) = 1
τ1
e−

1
τ1
t 1

(4πdt)
3
2
e−
|x|2
4dt , g2(x, t) = 1

τ2
e−

1
τ2
t 1

(4πt)
3
2
e−
|x|2
4t , τi > 0 and{

(g1 ∗ u2) (x, t) =
∫ t
−∞

∫
R3 g1 (x− y, t− s)u2 (y, s) dyds,

(g2 ∗ u1) (x, t) =
∫ t
−∞

∫
R3 g2 (x− y, t− s)u1 (y, s) dyds,

which has been studied by Gourley and Ruan [16] and Lin and Li [35]. The coefficients k1, k2, r and d

are assumed to be the same as in section 5.1. After changes of variables (see Example 2 in section 5 of

Wang [53]), system (5.3) reduces to the following system
∂
∂t û1 = ∆û1 + û1(x, t) [1− k1 − û1(x, t) + k1û3(x, t)] ,
∂
∂t û2 = d∆û2 + r (1− û2(x, t)) [k2û4(x, t)− û2(x, t)] ,
∂
∂t û3 = d∆û3 + γ1 (û2 − û3) ,
∂
∂t û4 = ∆û4 + γ2 (û1 − û4) .

(5.4)

The equilibria of (5.4) corresponding to Eu = (1, 0) and Ev = (0, 1) of (5.3) are E1 = (1, 1, 1, 1)

and E0 = (0, 0, 0, 0). It is not difficult to show that (H1)-(H4) hold for system (5.4), see also Wang

[53]. Following Lin and Li [35], we know that system (5.4) admits a traveling wave front Ψ (ξ) =

(ψ1 (ξ) , ψ2 (ξ) , ψ3 (ξ) , ψ4 (ξ)) with ξ = x · e + ct satisfying ψ′i (ξ) > 0 for ξ ∈ R, Ψ (ξ)→ E0 as ξ → −∞
and Ψ (ξ)→ E1 as ξ → +∞, where e ∈ R3 and |e| = 1.

Assume c > 0. Then (H5) holds. For any s > c > 0, let hj(x
′) (j = 1, · · · , n), h(x′) and D(γ) be

defined in section 5.1. Denote

Ψ−(x) = Ψ
( c
s

(x3 + h(x′))
)

=
(
ψ1

( c
s

(x3 + h(x′))
)
, · · · , ψ4

( c
s

(x3 + h(x′))
))

.

By Theorem 1.1, for any s > c system (5.4) admits a pyramidal traveling front

V (x′, x3 + st) := (V1 (x′, x3 + st) , · · · , V4 (x′, x3 + st))

satisfying 
∆V1(x)− s ∂

∂x3
V1(x) + V1(x) [1− k1 − V1(x) + k1V3(x)] = 0,

d∆V2(x)− s ∂
∂x3

V2(x) + r (1− V2 (x)) [k2V4(x)− V2(x)] = 0,

d∆V3(x)− s ∂
∂x3

V3(x) + γ1 [V2(x)− V3(x)] = 0,

∆V4(x)− s ∂
∂x3

V4(x) + γ2 [V1(x)− V4(x)] = 0
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for any x ∈ R3 and limγ→∞ supx∈D(γ) |V(x)−Ψ− (x)| = 0. Moreover, for any

û0 (x) :=
(
û0

1 (x) , · · · , û0
4 (x)

)
with û0

i ∈ C
(
R3, [0, 1]

)
and

lim
γ→∞

sup
x∈D(γ)

∣∣û0(x)−Ψ− (x)
∣∣ = 0,

the solution û
(
x, t; û0

)
of (5.4) with initial value û0 satisfies

lim
t→∞

∥∥û (·, ·, t; û0
)
−V (·, ·+ st)

∥∥
C(R2×R)

= 0.

It is not difficult to find that Φ(ξ) = (φ1(ξ), φ2(ξ)) with φ1(ξ) = ψ1(ξ) and φ2(ξ) = 1 − ψ2(ξ) is a

planar traveling wave front of (5.3), see [35,53]. In addition,

U (x′, x3 + st) := (U1 (x′, x3 + st) , U2 (x′, x3 + st))

with U1 (x′, x3 + st) = V1 (x′, x3 + st) and U2 (x′, x3 + st) = 1− V2 (x′, x3 + st) is a pyramidal traveling

front of (5.3) satisfying{
∆U1(x)− s ∂

∂x3
U1(x) + U1(x) [1− U1(x)− k1 (g1 � U2) (x)] = 0,

d∆U2(x)− s ∂
∂x3

U2(x) + rU2(x) [1− U2(x)− k2 (g2 � U1) (x)] = 0,

and limγ→∞ supx∈D(γ) |U(x)−Φ− (x)| = 0, where

Φ−(x) = Φ
( c
s

(x3 + h(x′))
)

=
(
φ1

( c
s

(x3 + h(x′))
)
, φ2

( c
s

(x3 + h(x′))
))

,

(g1 � U2) (x) =

∫ ∞
0

∫
R3

1

τ1
e−

s
τ1

1

(4πds)
3
2

e−
x2+y2+z2

4ds U2 (x1 − x, x2 − y, x3 − z − cs) dxdydz,

(g2 � U1) (x) =

∫ ∞
0

∫
R2

1

τ2
e−

s
τ2

1

(4πs)
3
2

e−
x2+y2+z2

4s U1 (x1 − x, x2 − y, x3 − z − cs) dxdydz.

For system (5.3), give an initial value u0(x, θ) =
(
u0

1(x, θ), u0
2(x, θ)

)
with

u0
i (x, θ) ∈ C

(
R3 × (−∞, 0] , [0, 1]

)
and lim

γ→∞
sup

x∈D(γ)

∣∣u0(x)−Φ− (x)
∣∣ = 0.

Furthermore, let u0
3(x) =

(
g1 ∗ u0

2

)
(x, 0), u0

4(x) =
(
g2 ∗ u0

1

)
(x, 0) and

ũ0(x) =
(
u0

1(x, 0), u0
2(x, 0), u0

3(x), u0
4(x)

)
.

Let û
(
x, t; ũ0

)
be the solution of (5.4) with initial value ũ0. Then by Lin and Li [35, Theorem 3.3], we

have that u
(
x, t; u0

)
=
(
u1

(
x, t; u0

)
, u2

(
x, t; u0

))
defined by

u1

(
x, t; u0

)
= û1

(
x, t; ũ0

)
, u2

(
x, t; u0

)
= 1− û2

(
x, t; ũ0

)
for t > 0,

and

ui
(
x, θ; u0

)
= u0

i (x, θ) for θ 6 0, i = 1, 2,

is a classical solution of (5.3) with initial u0. Following the previous arguments, we have

lim
t→∞

∥∥u (·, ·, t; u0
)
−U(·, ·+ st)

∥∥
C(R2×R)

= 0.
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5.3 Reaction-Diffusion Systems with Multiple Obligate Mutualists

Consider a system of m obligate mutualists:

∂

∂t
ui (x, y, t) = Di∆ui + ui

(
−(m− 2)− ui +

(1 + (m− 1)β)
∑

16j6m,j 6=i uj

1 + β
∑

16j6m,j 6=i uj

)
, (5.5)

where Di > 0, β > m−2
m−1 , i = 1, 2, · · · ,m and m > 3. This system has been studied by Mischaikow and

Hutson [37], see also the references therein. The system exactly admits three equilibria E0 = (0, · · · , 0),

Eθ = m−2
(m−1)β (1, · · · , 1), E1 = (1, · · · , 1). As showed by Wang [53], system (5.5) satisfies (H1)-(H4)

by replacing E− and E+ with E0 and E1, respectively. It follows from [37] that system (5.5) admits a

traveling wave front Φ (ξ) = (φ1(ξ), · · · , φn(ξ)) connecting E0 and E1, where ξ = x · e + ct, e ∈ R3 and

|e| = 1. In addition, the traveling wave front is unique up to translation and satisfies φ′i(ξ) > 0 for ξ ∈ R.

Assume that c > 0 (in fact, when D1 = · · · = Dn and 1
6 + 1

2β −
m

β2(m−1) + m
β3(m−1)2 ln (1 + β(m− 1)) > 0,

there holds c > 0). Then Theorem 1.1 is applicable to system (5.5).

6 Discussion

In the last a few years, great attention has been paid to the study of multidimensional traveling fronts

for scalar reaction-diffusion equations and various new types of nonplanar traveling waves have been

observed, such as V-formed curved fronts for two-dimensional spaces (Bonnet and Hamel [2], Hamel et

al. [21–23], Ninomiya and Taniguchi [39,40] and Gui [17], Wang and Bu [55], Wang and Wu [57], Sheng et

al. [46]), cylindrically symmetric traveling fronts (Hamel et al. [22,23]) and traveling fronts with pyramidal

shapes (Taniguchi [47–50], Kurokawa and Taniguchi [32], Sheng et al. [45]) in higher dimensional spaces.

For systems of reaction-diffusion equations, most results are on two-dimensional V-form curved fronts

(Haragus and Scheel [26–28], Wang [53]). For Lotka-Volterra competition-diffusion systems in higher

dimensional spaces, Ni and Taniguchi [41] established the existence of pyramidal traveling wave solutions.

In this article, by extending the arguments of Taniguchi [47, 48] for a scalar equation and using the

aproaches of Wang [53] for a system, we studied the existence, uniqueness and stability of traveling

waves of pyramidal shapes for reaction-diffusion systems in the three dimensional space R3 and applied

the theoretical results to some biological models, such as competition-diffusion systems with or without

spatio-temporal delays and reaction-diffusion systems of multiple obligate mutualists.

Recently, we (Wang, Niu and Ruan [56]) have established the existence of axisymmetric traveling fronts

in Lotka-Volterra competition-diffusion systems in the three dimensional space R3, that is, traveling fronts

which are axially symmetric with respect to the x3-axis. However, we were unable to prove the uniqueness

and stability of such axisymmetric traveling fronts. It will be interesting to study the existence, uniqueness

and stability of axisymmetric traveling fronts and other types of nonplanar traveling fronts for reaction-

diffusion systems in higher dimensional spaces.
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