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1 Introduction

In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely
studied and well characterized, see for example, Conley and Gardner [7], Fife and McLeod [11,12],
Gardner [14], Liang and Zhao [34], Mischaikow and Hutson [37], Tsai [51], and Volpert et al. [52]. In
high-dimensional spaces, however, because propagating wave fronts may change shape and evolve to
new nonplanar traveling waves, it is still interesting but extremely difficult and challenging to find and
characterize possible nonplanar traveling waves. From the dynamical point of view, the characterization
of nonplanar traveling waves is essential for a complete understanding of the structure of global attrac-
tors, which usually determine the long-time behavior of solutions of reaction-diffusion equations under
consideration.

Recently, the mathematical study of higher-dimensional traveling fronts has attracted a lot of attention
and many new types of nonplanar traveling waves have been observed for the following scalar reaction-
diffusion equation with various nonlinearities

%u(x, t) = dAu(x,t) + f(u(x,t)), x€R™, t>0. (1.1)
For the combustion nonlinearity, Bonnet and Hamel [2], Hamel et al. [21] and Wang and Bu [55] have
studied V-form curved fronts of (1.1) with m = 2. For the Fisher-KPP case, nonplanar traveling wave
solutions of (1.1) with m > 2 have been studied by Brazhnik and Tyson [3], Hamel and Roquejofire [24]
and Huang [29]. For the unbalanced bistable case (specially for Allen-Cahn equation), V-form front
solutions of (1.1) with m = 2 have been studied by Hamel et al. [22, 23], Ninomiya and Taniguchi
[39,40] and Gui [17], cylindrically symmetric traveling fronts of (1.1) with m > 3 have been studied
by Hamel et al. [22,23], and traveling fronts with pyramidal shapes of (1.1) with m > 3 have been
studied by Taniguchi [47-50] and Kurokawa and Taniguchi [32]. Wang and Wu [57] and Sheng et al. [45]
extended the arguments of Ninomiya and Taniguchi [39,40] and Taniguchi [47,48] and established two-
dimensional V-shaped traveling fronts and pyramidal traveling wave fronts, respectively, for bistable
reaction-diffusion equations with time-periodic nonlinearity; namely, (1.1) with a nonlinearity f(u,t) such
that f(-,-) = f(-,-+T) for some T' > 0. In particular, Sheng et al. [46] have studied the multidimensional
stability of V-form traveling fronts in the Allen-Cahn equation. Multidimensional stability of planar
traveling waves in reaction-diffusion equations has been studied in Xin [58], Levermore and Xin [33],
Kapitula [31], and Zeng [59,60].

Note that the nonplanar traveling waves obtained in the above mentioned studies are connected and
convex. It needs to be pointed out that the balanced bistable case (specially f(u) = u(1 — u?)), which
is more interesting and complex, has been studied by Chen et al. [6] and del Pino et al. [42,43]. Chen
et al. [6] have studied the existence and qualitative properties of cylindrically symmetric traveling waves
with paraboloid like interfaces of (1.1), which are also connected and convex. In [42], del Pino, Kowalczyk
and Wei have showed a new stationary wave when dimension m > 9, which is a counterexample to De
Giorgi’s conjecture. In [43] they have proved that there exist traveling wave solutions whose traveling
fronts are non-connected, multi-component surfaces, and that there are solutions whose fronts are non-
convex when m > 3. Other related studies can be found in Bu and Wang [4], Chapuisat [5], El Smaily et
al. [9], Fife [10], Hamel [20], Hamel and Roquejoffre [25], Morita and Ninomiya [38], Wang [54].

In contrast to the scalar equations, the study on nonplanar traveling waves of systems of reaction-
diffusion equations mainly focuses on two-dimensional V-form curved fronts. Haragus and Scheel [26-28]
have studied almost planar waves (V-form waves) in reaction-diffusion systems by using bifurcation
theory. Here “almost planar” means that the interface region is close to the hyperplanes (the angle of the
interface is close to 7). By developing the arguments of Ninomiya and Taniguchi [39,40], Wang [53] has
established the existence and stability of two-dimensional V-form curved fronts for the following systems
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with m = 2 9
%ZDAU+F(U(X?t))7 XeRma t>07 u(X7t) GRN7 N> 1’ (12)

under the following hypotheses:
(H1) D =diag (D1, D2, ,Dy) is a diagonal matrix of order N with D; > 0.

(H2) F has two stable equilibrium points E~ < E¥, i.e., F(E*) = 0 where 0 = {0,---,0}, and all
eigenvalues of F/ (ET) have negative real parts.

(H3) There exist two vectors R* = (rli, e ,r]j\t,) with rii >0(i=1,---,N) and two positive numbers
A* such that F/ (EY)RT < —ATRT and F/ (ET)R™ < -\"R".

(H4) The reaction term F (u) = (F*! (u),---, F~ (u)) is defined on an open domain Q C R”, is of class
C' in u, and satisfies the following conditions:

OF!

8uj

(u)>0forallue [E-,ET] cQandforall 1 <i#j<N.

Furthermore, there exist nonnegative constants L;; and L;; such that

oF

o (W + L {ui — Ef } + LE{ES —wi} >0, i#}j,

foru e {E_, E"'} C Q, where E- < E- < Et < E* and for any a € R,

_ 0 if a>0,
{a} ={

—a if a<O.

(H5) System (1.2) admits a planar traveling wave front
U(e-x+ct)=U(e-x+ct),--- ,Un(e-x+ct))
satisfying the following ordinary differential equations

DUY — Ul + Fi (U) = 0,
U (+00) = limg_, 400 U (§) = EF,
U/>0onRfori=1,---,N,

where { = e-x + ¢t with e € R™ and |e| = 1, ¢ > 0 is the wave speed.

Here the real vector-valued function u (x,t) = (uy (x,t),--- ,uy (x,t)) is unknown and F’ (E) denotes
the Jacobian matrix of F at E € RY. For two vectors ¢ = (c1,- -+ ,cn) and d = (dy, -+ ,dy), the symbol
¢ < d means ¢; < d; for each i € {1,--- N} and ¢ < d means ¢; < d; for each i € {1,--- ,N}. The

interval [c, d] denotes the set of ¢ €RY with ¢ < q < d. For some comments on assumptions (H1)-(H5) we
refer to Wang [53]. In general, assumptions (H1)-(H4) do not ensure that system (1.2) admits a traveling
planar wave front connecting the equilibria E~ and E*. Therefore, the assumption on the existence of
planar traveling wave solutions in (H5) is standard. A further assumption is that the wave speed ¢ > 0.
It should be pointed out that to determine the sign of the wave speed c¢ for a given reaction-diffusion
system is a very difficult job. Nevertheless, some sufficient conditions can be given for the positivity of
the wave speed ¢ for some particular cases, see Wang [53] and Alcahrani et al. [1] for some examples.
It follows from Volpert et al. [52, Chapter 3] that there exist positive constants C; and (; such that

Ui (£8) = BF| + U] (£&)| + U] (£8)| < Cre Bl for ¢ > 0andi=1,--- N (1.3)
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Contrasting to the results of Haragus and Scheel [26-28] which are valid only for sufficiently small s—¢ > 0
(namely, when the curved wave speed s is sufficiently close to the planar wave speed c¢), the results of
Wang [53] hold for any s > ¢ > 0. In particular, the results are applicable to some important biological
models with m = 2 (see [53, Section 5] for details), such as Lotka-Volterra competition-diffusion systems
with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.

Recently, Ni and Taniguchi [41] have established the existence of pyramidal traveling wave solutions
for competition-diffusion systems in R™ (m > 3), which covers the classical Lotka-Volterra competition-
diffusion system with two components. Note that such pyramidal traveling wave solutions in R? are
indeed three-dimensional traveling wave solutions with pyramidal structures and are neither cylindrically
symmetric nor reducible to two-dimensional traveling wave solutions. Also notice that traveling wave
solutions with pyramidal shape for the Allen-Cahn equation (a single equation) are first constructed by
Taniguchi [47] in x € R3. His method is to use the super- and subsolutions technique and the comparison
principle, which is similar to that of Ninomiya and Taniguchi [39]. To construct a suitable supersolution,
a key technique is to construct an appropriate mollified pyramid above a pyramid in R?. Kurokawa and
Taniguchi [32] have extended the argument of Taniguchi [47] and established pyramidal traveling fronts
for the Allen-Cahn equation in R™ (m > 4). Taniguchi [48] has studied the uniqueness and asymptotic
stability of pyramidal traveling fronts established in Taniguchi [47]. For a given admissible pyramid it
has been proved that a pyramidal traveling front is uniquely determined and that it is asymptotically
stable under the condition that given perturbations decay at infinity. Furthermore, the pyramidal trav-
eling front is characterized as a combination of planar traveling fronts on the lateral surfaces and as a
combination of two-dimensional V-form traveling fronts on the edges, respectively. Recently, Sheng et
al. [45] have developed the arguments of Taniguchi [47,48] and studied periodic pyramidal traveling fronts
for bistable reaction-diffusion equations with time-periodic nonlinearity. More recently, Taniguchi [49,50]
has constructed generalized pyramidal traveling fronts with convex polyhedral shapes.

Though the existence of pyramidal traveling fronts for competition-diffusion systems has been estab-
lished by Ni and Taniguchi [41], the uniqueness and stability of pyramidal traveling fronts still remain
open. The purpose of this paper is to extend the arguments of Taniguchi [47,48] for a scalar equation
to study the existence, uniqueness and stability of traveling waves of pyramidal shapes for the reaction-
diffusion system (1.2) in R under assumptions (H1)-(H5). The main method is also to use the super-
and subsolution technique and the comparison principle. We would like to point out that even though
the main strategy of the current paper is similar to that in Taniguchi [47,48], it needs new techniques
and many modifications to obtain the expected results due to the presence of nonlinear coupling in the
system which is a nontrivial work. First, because we are treating a coupled system of reaction-diffusion
equations (not a single equation), we have to use the planar traveling wave fronts of the system to modify
the super- and subsolutions of Taniguchi [47,48] so that they can be applied to the system. To reach
this aim, we define two monotone vector-valued functions P(-) and Q(-) and incorporate them into the
resulting super- and subsolutions. Of course, the functions P(-) and Q(-) have been used by the first
author in [53]. Second, as seen in the following, the super- and subsolutions constructed later cannot
be bounded from above by E' and from below by E~, which results in the comparison principle on
[E~,ET]| (see the first part of the condition (H4)) being invalid for the supersolutions and subsolutions.
This is very different from the case for a single equation. Therefore, we construct an auxiliary system
(2.1) to help our analysis for the below (1.4), which is the traveling wave system corresponding to the
original reaction-diffusion system (1.2). The auxiliary system (2.1) with nonlinearity G(u), which has
been constructed by Wang [53], admits the comparison principle on an interval Eﬂﬁ*} larger than
[E-,ET]. In particular, G(u) = F(u) for u € [E",E"], and a solution of system (2.1) with nonlinearity
G(u) bounded in [E~, E*] is also a solution of system (1.2) with nonlinearity F(u). Third, we prove the
asymptotic stability of the pyramidal traveling front established in Section 3 by considering two cases,
u’ > v~ and u® < v, respectively. See below for the definitions of u® and v—. Note that we prove for
the later case by using an argument similar to that in Wang [53] and Ninomiya and Taniguchi [40], which
is different from that in Taniguchi [48], where an estimate from below for the solutions of the initial value
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problem is required.
In the following we state our main result in this paper. Throughout this paper, we always assume that

assumptions (H1)-(H5) hold and let m = 3 and ¢ > 0. For any ej, e, -- ,ex € RY, define
/\§=1ej = | min ej, -, min e;y | and \/;?:1 e; = | max ej1, -+, max e;y |,
1<j<k 1<j<k 1<j<k 1<j<k

where k € N. For ¢ = (¢1,--- , en), denote || = /32N | ¢2. For any bounded u € C (R?,RY), define

(]
[ull¢gs) = sup [u(x)].
x€R3
Fix s > ¢. We assume that solutions travel towards the —z3 direction without loss of generality. Take
u(x,t) =v,z3+stt), X' =(x1,22), x=(x,23).

Then we have

ov ov
— = DAv-s—+F R3¢ 1.4
T v 88x3+ (v), xeR’t>0, (1.4)
v(x,0) = v'(x), xR (1.5)
We seek for V (x) with
A% 3
L[V]:= DAV 57— ~F(V)=0, xR’ (1.6)
3
Let n > 3 be a given integer and
52 _ o2
My = .

c
Let {A; = (4, Bj)}?zl be a set of unit vectors in R? such that

Aij+1 — Aj+1Bj >0,5=12,---,n—1; A,By — A1B,, > 0.
Now (m.A;,1) € R? is the normal vector of {x € R3| — z3 = m, (A;,x')}. Set

. N . / AN . AN . /
hy () = m. (Aj,x') and h(x) = max h; (x') =m. max (A;,x')

for x' € R%. We can obtain that h(x’) > 0 for x' € R? and limp_,o infjx|>g h (x') = c0. We call
{x=(x,z3) € R?” — a3 =h(x)} a three-dimensional pyramid in R3. Letting

Q; = {x' eR*|h(x') = h; (x)}
for j=1,---,n, we have R? = U;’lej. Denote the boundary of 2; by 0€;. Let
E=U;_,09;.
Now we set
S;={xeR® —z3=h;(x) forx' € Q;}
for j=1,---,n,and call U}_; S; C R3 the lateral surface of a pyramid. Denote
ry=5n084+,In=5nN085,j=1,---,n—-1

Then I' := U7_, I'; represents the set of all edges of a pyramid. Define
-x)=U /(€ ") = ¢ (x!
V00 = U (S (et h(x))) = max U (£ (2 +h ()
and
D(y)={xc¢€ ]R3| dist (x,U5_,T;) > v}
for v > 0. We note that the above setting on a pyramid comes from Taniguchi [47]. The following
theorem is the main result of this paper.
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Theorem 1.1. Assume that (H1)-(H5) hold. Then for each s > ¢ > 0, there exists a solution u(x,t) =
V(x',z3 + st) of (1.2) satisfying (1.6), V(x) > v~ (x) and

lim sup |V(x)—v (x)|=0. (1.7)

Y7 xeD(v)
Furthermore, for any u® € C (R*RY) with u’(x) € [E~,E*] for x € R® and

lim sup |u’(x) - V(x)| =0, (1.8)
Y7 xeD(v)

the solution u(x,t;u’) of (1.2) with initial value u® satisfies

tliglo u(,- tu’) = V(- + st)HC(Rg) =0. (1.9)

Following Theorem 1.1, we can see that the function V satisfying (1.6) and (1.7) is unique. Following
(1.7), we know that the nonplanar traveling wave V has pyramidal structures and is characterized as a
combination of planar traveling fronts on the lateral surface. In the following, we call V(x/,z3 + st) a
pyramidal traveling front of (1.2). In the end of section 4 (see Corollary 4.18), we further characterize
the pyramidal traveling fronts as a combination of two-dimensional V-form waves on the edges of the
pyramid. Note that when N = 1, namely, when system (1.2) reduces to a scalar equation, the result of
Theorem 1.1 has been obtained by Taniguchi [47,48].

The rest of this paper is organized as follows: In next section, we give some preliminaries which are
needed in the followng sections. Theorem 1.1 will be proved in sections 3 and 4. More specifically, we
show the existence of a pyramidal traveling front V of (1.2) in section 3 and prove the asymptotic stability
of the front V in section 4. In section 5, we apply Theorem 1.1 to three important models in biology,
namely, a two-soecies Lotka-Volterra reaction-diffusion competition system, a two-species competition
system with spatio-temporal delays, and a reaction-diffusion systems of multiple obligate mutualists.

2 Preliminaries

Associated with system (1.4)-(1.5), consider the following initial value problem:

Ou ou 3
5 = DAu—sa—%—&—G(u(x,t))7 x€eR? t>0, (2.1)
u(0) = u’eC(R*RY)NL>®(R*RY), (2.2)

where G (u) = (G* (u),---,G" (u)) with G*(u) = F'(u) + H’ (u) + H' (u) and

HU(w) = > Ly{wi— B} (u— Ef),

1SN, j#i

Hi(w = > LE{ES -l (v - E)
1<j<N, j#i
fori=1,---,N. It is obvious that G(u) = F(u) for u € [E7,E*].
In this section we establish a comparison theorem for the auxiliary system (2.1) and give the relationship
between solutions of (1.4)-(1.5) and solutions of (2.1)-(2.2). Then we obtain a mollified pyramid which
was constructed by Taniguchi [47].

Definition 2.1. A continuous vector-valued function u is called a supersolution (subsolution) of (2.1)
on R? x Ry if u; (-, t) € C? (R?) for ¢ € (0,00), u; (x,-) € C' (0, 400) for x € R?, and u satisfies that

ou ou
= + o 20 (<
Nu] r DAu+s ; G(u)>0(<0)

for all x € R? and t € (0, 0).
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Following Wang [53], we have the following theorem and corollaries.
Theorem 2.2. Assume that (H1)-(H4) hold. Suppose that u™ and u~ are supersolution and subsolution
of (2.1) on R® x R, respectively, and satisfy u*(x,t) € [E_, E‘*‘} and u~(x,0) < u'(x,0) for any
x €R3 and t > 0. Then one has u™(x,t) < ut(x,t) for any x € R® and t > 0.
Corollary 2.3. Assume that (H1)-(H4) hold. Suppose that u™ and u™ are supersolution and subsolution
of (2.1) on R® x R, respectively, and satisfy u*(x,t) € {Eﬂﬁ"’} ,u (x,t) € {E_,E"’} and u~ (x,0) <
ut(x,0) for any x € R® andt > 0. Then for any v° € X with v°(x) € [E7,ET] and u™(x,0) < v¥(x) <
ut(x,0) for any x € R3, the solution v(x,t;vY) of (1.4)-(1.5) satisfies u™(x,t) < v(x,t;v¥) < ut(x,t)
and E- < v(x,t;vY) < ET for any x € R3 and t > 0.
Corollary 2.4. Assume that (H1)-(H4) hold. If vi and va are a pair of supersolution and subsolution
of (1.4) on R3 x Ry with EY > vy (-,0) = va(-,0) = E~ on R3, then vy (x,t) = va (x,t) on R® x R*.
The following lemma can be proved as in Wang [53, Theorem 2.2] via using the results of Martin and
Smith [36].

Lemma 2.5. Assume that u* € C (R3 x [0, oo),RN) solve the following linear system

9 + _ + 9 4 + +
Y = DAu S@xg ut + H*(x,t)u™ (x,t),
uf(0) = u*’eC (R%LRY)NL> (R RY),

where HE (x,t) = (h?[j(x, t))NxN, in which hiij(x7 t) € C(R3 xRy, R) N L>® (R? x Ry, R) are matriz-
valued functions and satisfy hf; (x,t) 20 on R® x Ry fori# j. If HT(x,t) > H™(x,t) and u™%(x) >
u=%(x) = 0 for any x € R® and t > 0, then ut(x,t) > u (x,t) forx € R3 and t > 0.

Let p(r) € C*[0,00) be a function with the following properties:

(
p(r)y=1 if r > 0 is small enough,
( if » > 0 is large enough, say r > Ry,

Assume Ry > 1 without loss of generality. We have [5, p(|x/|) dx' =2 [~ rp (r)dr.

Put p(x’) = p(|x']). Then p : R? — R belongs to C* (R?) and satisfies [5, p(x')dx’ = 1 and
(pxhj)(x')=h; (%) for x’ € R? and j = 1,--- ,n. Here the convolution p* h; of p and h; is defined by
(ph) (<) = [ pl¥) s (< = ¥')dy'

R

For all nonnegative integers j; and 7o with 0 < j1 + j2 < 3, we have

|D§;}1Dj2p(xl)| < Mip(x')  forall X' € R?

2

where DJi = aj;, , My > 0 is a constant.
1 6$1l
Define ¢ = p * h, namely,

6) = [ o =¥y = [ ) =y dy (23)

for x’ € R2. We call —x3 = ¢ (x') a mollified pyramid for a pyramid —x3 = h (x). Set

S

S(x') = —— (2.4)
1+ [V (x')]

where Vi (x') = ( g;i , g—i). The following lemmas come from Taniguchi [47,48].
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Lemma 2.6. Let ¢ and S be given by (2.3) and (2.4), respectively. For any pair of fized integers j; = 0
and jy > 0, one has Supyeps | DI D32 (x')| < 0o. In addition, one has
oo
h(x')<e(x)<hEx)+ 27rm*/ 25 (r) dr,
0
Vo (x)] <my, 0<SEx)<s—c¢, Vx eR?
and

lim sup { S(x')|x’ € R?, dist(x/, E)
A—00

)=

> A
lim sup{ap(x') — h(x')|x' € R?, dist(x, E) > )\} = 0.
A—00
Lemma 2.7. There exist positive constants vy and vy such that

0<1/1:inf<'0 = 1y < 00.

In addition, for every pair of integers j1 = 0 and jo > 0 with 2 < j1 + j2 < 3, one has

oy DLDIS60)
x/€R? S (X/)

< 0.

3 Existence of Pyramidal Traveling Fronts

In this section we establish the existence of pyramidal traveling fronts for system (1.2) in R3. The main
method is to construct a suitable supersolution v* of (2.1) with v¥ > v~ and then take a limit for the
solution v (x,t;v™) of (1.4)-(1.5) with v¥ = v~ as t — +oco. The limit function is just the desired front
V. By Corollary 2.3, we have v~ (x) < V (x) < vT (x) on R3. The construction of the supersolution
vT is a combination of the arguments in Taniguchi [47] and Wang [53]. In addition, we construct a
subsolution v(x) of (2.1), which will be used to establish the stability of the pyramidal traveling front V
in next section.
For a € (0,1), set Lh (ax’) = h(x'). Define z3 = axs, 2 = ax/, z = ax, and

3+ ge(ex) 1 zte(d)

u(x) = = .
L+ [V (ax)? @ 14|V ()

=0, and

Then we have p,, = m’ Haszs

-1
pa = (VIHI90@F) = Xi (), o = 0¥ ) = ).

where

o
pa
N\
~—
I

9]
L4V @) o (V1+19p @)F

>1
Vi) = o (( Ve @) ) <P>—X|v()()|w
¢ 14+ |V (2

and i = 1,2. Set
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where € and « are positive constants, which will be determined later. Then we have
0s, (X') = 0eS., (2) and 04, (X) =a%eS,,., (), j=1,2.

Take n* > 0 small enough so that "R~ < Rt and "Rt < R™. Let P~ := n”R~, P := R™,
Q =R~ and Q" :=n*TR*. The assumptions (H2) and (H3) imply that there exist constant matrixes
A% = (u7;) such that g% (BE) < pg; foralli,j=1,--- N, A*PT < —{ATPH, ATQT < —1XTQ*,
ATP" < —1A"P7, A"Q" < —3A"Q". Define
¢

w(() = % (1+tanh2

) , CeR.
Let P+ = (pli, e ,pﬁ) and Qt = (qli, e 7q]j\[,). Define positive vector-valued functions

P(C):(Pl(é-)aaPN(C)) and Q(C):(Ql(C)aaQN(C))

by P (¢() =w()pf + (1 —w(¢))p; and Q; (¢) =w (¢) g +(1 —w ({)) q; , where i = 1,--- , N. It is easy
to see that P (¢) and Q (¢) satisfy the following:

<P ()< p /(. 0. + — mi -
p; SP()<p; and P;(-)>0onR, p [max pi” >0, po = min p; >0,

[P (£() — P*| + [P/ ()| + [P" (£¢)| < Kye™¢ for ¢ > 0 and some K; > 0,

and
T <Q, () <q” (. 0 .= = := min ¢
¢ <Qi()<g and Q;() <0onR, ¢":= max g >0, go:= min ¢ >0,
1Q(£0) — QF| +1Q ()] + Q" ()| < Kae™ for ( > 0 and some K > 0.
Recall that v~ (x) is a subsolution of (1.4). In particular, 8%31}[ (x) >0foranyx e R3,i=1,--- N.

Lemma 3.1. Assume that (H1)-(H5) hold. There exist a positive constant e < 1 and a positive function
a' () such that for 0 <e <et and 0 < a < at (&),

vH(xie,0) = U (u(x) + P (1 (x)) o (x))

is a supersolution of (1.6). Furthermore,

lim sup |v'(x;e,a) — v (x)| < pl, (3.2)
Y7 xeD(y)
v (x) < v (x;6,0) forx € R3, (3.3)
ivj'(x;z?,oz)>0 forx €R3 i=1,2,--- N. (3.4)
83:3

Proof. Firstly, we show that v is a supersolution of (1.6). Note that v* (x';e,a) := U (u(x)) +
P (p(x))o(x') >E~ and {vj — E; } = 0. Therefore, H. (v) = 0. Consequently, we have

NV = —Didet + sa%vj _F () - (v

2
= DY (U pa,),, + (0 () g0 () 4 i () 0, (X)),
j=1

Dy (UL (1) + 9 (W) 0 (<)) | s (UL (1) +} (1) 0 (x'))
NGl 1+ [ (ax')
—F' (U () + P (1) o (x')) = H} (U() + P()o(x))

2

2 _; " 4 o (x'
= D 1—];;;1]_ T Ve o) (Ui () +pi () o (x7))
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/
—D; E M:I:ij i +pz( )o ) —2D; E pz /‘wJo':vJ x')

+ ;2 —c| U (n)+ LG (1o (x)
1+ |p (ax')| L+ | (ax)|

+F (U () = F* (U () + P () 0 (x)) = HL (U () + P (1) 0 (x')).

Let
1
In = Di[1—p2 —p2 ————— (U () +p/ () o (X
1 ( Iz, — Ha, 1+|V<p(ax')|2>( (1) +pi (B o (x))
20D (X105, + X290,
= PP X0u) 2 (3 4 x3) | (W2 )+ 0l ()0 (X)),
1+ |V (ax)|
2 2
Iy = =Di (U] (1) +p; (1) o (x') D ttaye, — 2D (1) Y pha; 0, (X))
j=1 j=1
2 2
= —aD; (U] (1) +p; (w) o (X)) |D_Yi(z) —ap)_ Z;(z)
j=1 j=1
2
—2aeD;p; (p Z —apX;( S
j=1 1+\V<p |2
, sp x , espl (1) S (2
Ls = Dl (o) + —2WTCD) stMS(zHL”Z,
1+ |V (ax')| L+ |Ve (z)|
2
Ii4 = _D sz O..L].LJ ) :_042€Dipi (M)ZSZ]'Z]'7
j=1
Is = | ————=—c|Ulw=5EU®w.
1+ | (ax')|
Lis = F'(U(p)—F (U(p)+P(p)o ),
and

Lip = HY (U(p) + P(p)o(x)).
By Lemmas 2.5-2.6 and direct calculations, we have

Iﬂ (X/)
S (ax’)

L;Q (X/)
S (ax’)

Ii4 (X’)

<2
S (ax’) < Cua

< Cipa and  sup
X/ERQ

< Cia, sup
X’ER2

sup
x/ E]RQ

for 0 < @ < 1and 0 < € < 1, where C;1, C;5 and Cj4 are positive constants independent of o and ¢,
i=1,--- N.

For v GRN and r > 0, we define B, = {u ERYN i jlu—v|< r} Now by the definition of u , there
exist a sufficiently small positive constant

Po (JO 1 . + -
eo<mln{4 1 41<L<N(E- E)}
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and a positive constant k such that

oF (u) < pi for all u € By, (EF) C [E‘,E‘*} and for all 4,5 =1,---, N,

Oouj v
Z;’VZI /‘z:‘tjrj < —rrg forr = (r1,--- ,ry) € RY N By, (PF) o
orr=(r, - ,ry) € RY N By, (QF).
Take D — maxicicn Di, L~ — maxicijon Li_j and LT = maxi< j<n L;; Using the fact that

U (z) — E* as 2 — +oo and the properties of P (x) and Q (), there exists a sufficiently large constant
M > 0 such that
r)—ET|<¢ and |U(z)—-Et| < % for x > M,

(x)
U (z) — B[ < e and [U () = B7| < gty for o < —M,

< e and |P(a:)—P+|<“(p°7_E°)forx>M,

() | SPON(LF+1))
[P(z) =P | <e¢ forz < —M, |Q(z) — QT| < ¢ for z > M, (3.6)
Q) — Q7| < gindy; and |Q () — Q7| < € for z < —M,
|P! (x)] < 8—2&(]30 —€9) and |P/ (x)] < %H(po — €g) for |z| > M,
Q% (z)| < é/@ (g0 — €0) and |QY (z)] < S%H(qo — ¢) for |z| > M.

For e € (0, €g/ (Np°s)), we have v (x;¢,0) € []/E\J’, E*} for x € R3. Furthermore, take

. 1 . K (po — €o)
— Ef —U(M . 3.7
£ { 205N 2, VB — UM}, (L+ + 1) (p0) (3.7)
For |u(x)| > M and z' € R?, we have

, 1
[lia| < eDilpi ()] S (2) + es[pi (u)] S (2) < Jer(po = €0)S (7).

Since
N
Lie = — (Z 0L (U(n) +0cP (1) S (2")pj (1) | €S (2')
N
> - (Z piipi (1) | o (2') > kpi(p)es (2)
> k(pf —e0)eS(2)
and
Ly = Y. LH{E" —Uiw) —epi(w)S(@)} (Uj(p) +epi(m)S(2') — Ef)
j=1,...,N;j#i
< Y SLpiwp (S
j=1,...,N;j#i
< é/f (po — €0) €S (2)

for 4 > M and z' € R? due to (3.5), (3.6) and (3.7). We have

Ni[vf] = Ln+TLo+ILis+ Liu+ Lis + Lig — Iz

WV

1
S (z') |-Cia — Cipa — 1" (po —€0) e
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1
- i4042+/€(pj*€0)€ 8”(10060)5}

1
> |:— (Cﬂ +C¢2+O¢C¢4)O¢+§Ii (p:— —60) E] S(Z/) >0

for u(x) > M and z’ € R? provided that

a < min " (pj _ 60) €
1<KN | 2(Cip + Cio+ Cig) |

By (3.7), we have that I;7 (x) = 0 when p (x) < M. Then using an argument similar to that for u(x) > M,
we have A; [vT] > 0 for u(x) < —M and 2z’ € R? provided that

a < min i (p; _ 60) €
1IN | 2(Cip + Cin+Cig) |

Mij =

Let

sup

swp |2 F (u)
ue[E-,Ef]

6Uj

(3.8)

and Cjg = Zf;l Mijpj, i,j=1,---,N. Then |I;4| < CiseS(2’) for all z’ € R%. Take a constant C;3 > 0
such that |I;3] < Ci3eS(2) for allz’ € R? i =1,--- ,N. Let

*

p* = min U/ (x) > 0.
|2 <M, I<i<N

For |u(x)| < M and z' € R?, we have

(2

Ni [”ﬂ I+ Tio+ Iis+ Iy + Iis + I

> S (Z/) [7011104 — CZ‘QO[ — 01'36 — Oz’4052 +p* — 1'66] > 0.
Up to now, we have showed that v™ is a supersolution of (1.6) provided that

: p* - min{p*, K (po —€0) e}
€< min ———————— and a < min

1<6<N 2 (Cyi3 + Cig) 1<GEN 2(Cip 4 Cia + Ciy)
Now we prove the inequality (3.3). It suffices to prove

U; (S(.Z‘g-f—hj (x’))) <v (x;6,a) foralli=1,--- Nandj=1,---,n

When g (x) > £ (z3 + hj(x')), it is easy to get

U; (S (563 + hj (X/))) <U; (:u (X)) < U;r (X;E’a) :
Assume that

px) < <

(x5 + hj (x')).
By the definition of u, we have

1 /
(g + by (x)) > 22 a?(0x)

¢ ag+hy (3) + L (ax') — hy (x))
i 1+ Ve (ax') 2

1+ |V (ax')|”

It follows that

(23 + hy (x')) 5 o) < 3hi(Z) = o(2)

1+ |V (2] Y1+ Ve (@)
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namely,
1 h N !
x5+ hy (x) < = J(Z;(/)‘p(z)
L+ Ve () i
By the definition of 1, we have
1 X Iy _ /
2y + by () < > hj(2) = ¢(2) _ an

Viewp S e

Since
hi () =~y () < Sh(#) < o (),
we have
vl (xie,0) = U (£ (@ + by ()
- ( 23 + 3¢ (ax) ) . ( s+ e () ) S (o)
1+ |V (ax')| 1+ |V (ax')]”
U (5 s+ hy ()
> U ( l’3+hj (X/) ) +epi ( 3+E(P(Oéx/) ) S(QX/)
1+ |V (ax')] 1+ |V (ax')|”
s (£ s + by ()
Since
U, ( x3 + hj (x') ) U, (C (25 + h; (x’)))
1+ |V (ax)?
— (st hy (%) -8 (ax)
. /1 Ui ((xs +hj (X)) ( ’ +o1- 9)) ) e,
0 1+ Ve (ax)
we have
o (xi2.0) = Ui (£ (e + by ()
> epoS (o) + (s + hy (x) 1S (o)
x/l U/ ((xg-i-hj (x)) ( o +c(1—9))) do.
0 1+ Ve (ax) *
Note that
§< 0 +§(1—9)<1andx3+hj(x')<0.

1+ |V (ax')|”

Consequently, we have
v (x;6,0) = U; (E (z3+ hj (X')))
s

> epoS(ax’) + (z3 + hj (X)) %S (ax”)

13
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1
0
></ Ul | (w5 + by (x)) +0—0)| | s
0 1+ Vg (ax)*°
S ! c '
> (Oéx) |:($3 + hj (X/)) Cle_ L:l ‘x3+hj(x )l + 85p0:|
s
!
N S(ax) | sCi sup el 4+ Sgp()]
S Cﬁl c2vq 81
L $>T
> S(ox) | —ﬁ ) e 62:3131 + 85p0:|
s | B s«
S(ax!) [ Cy _np
_ (ax’) ey - w16 N S€p0:|
s | a
> 0
provided that v < a*(e), where 0 < a*(e) < 7, satisfies
c2u1
SEPy) — Gy e~ S0 fora< a*(g).
Now we prove (3.2). It is sufficient to show that
c
lim sup |U;(u(x))—U; (f (x3+ h(x’)))‘ =0
770 xeD(y) $
for all j =1,---, N. Assume the contrary for some [ € {1,--- , N}. Then there exist a positive constant
¢ and sequences {7V} oy C R and {x},cy C R? such that
lim 9, =00, X € D (k) (3.9)
k—oo
and .
U0 (i) = U (£ (s + R (4))) | > ¢, (3.10)

where x), = (21, %k2). It follows that

1 zes+o(z) zrsHh(xp) + 5 (0(z;) = h(z)

,LL(Xk) = a 5 - 2
1+ |V (2,)| 1+ [V (2,)]

If limy,, o0 dist (x],, ) = oo, by Lemma 2.6 we have limy_,o |¢ (x},) — h (x},)] = 0 and limy_,o S (x},) = 0.
If further x5 + h(x},) — £oo as k — 400, then u(x,) — oo, which again contradicts (3.10). If
x,3 + h (x},) are bounded for k € N, we have

lim (s (o) = = (s + b (1)) = 0.
This contradicts (3.10) once more. If dist (x},, E) keeps finite uniformly in k, then (3.9) implies that
limy, oo (Tg,3 + h (x},)) = o0 and limy_, oo pt (x5) = o0, respectively. This contradicts (3.10). Thus, we
have proved (3.2).

Finally, we take

€+ =min< 1 670 min L min E;" — U’L(M) Ii(po - 60)
" NpPs’1<isn 2 (Ciz + Cig) "1<i<N - 2NpPs " 8sN (L+ + 1) (p°)?

and

+ . . min {p*7 Ii(po - 60)8} *
at (e) = mm{l,lglgn]v 3 (Cii 5 Cra + Cot) ,ak(e) p.

This completes the proof. O
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Take ¢ (V) := _m*152 In (1 + exp (—f529)) . There exist some constants C, > 0 (i = 2, 3,4) such that
maX{W(ﬂ) — 2 () - mi‘} < Chsech (B29) for 9 <0,
max {[¢ (D)], [ (9)[} < Cy sech (529) for ¥ > 0,
max {|¢" (9)], |"" (9)|} < Cbsech (B20) for ¥ € R, (3.11)
I CO > O mi
T JrrwwrE © C3min {1, exp (520} for ¥ € R,
-5 AN
g 1+w/(19)2 CIMy g C4 min {17 €xp (BQ,&)} for ¥ S R.

We notice that (3.11) follows directly from Ninomiya and Taniguchi [40], see also Wang [53].
To establish the existence of pyramidal traveling fronts for system (1.2), we still need the following
lemma which was proved in Wang [53].

Lemma 3.2. Assume that (H1)-(H5) hold. There exist a positive constant €~ and a positive function
a~ (&) so that, for0<e<e” and 0 < a < a™ (g),

G mea) = | 2EYD @) o zEveR/e) o sa
1+ (az)’ 1+ (az)?

is a subsolution to the following system

Ju 0? 0? 0

i D <8x2u+ 82211) - s&quG(u(;r,z,t))7
where x,z € R. In addition, we have %i}} >0,i=1,---,N.

We note that
%, 5 mimicicn {Ui(=M) — By}, el

€~ = min Clp* i
. p . min{1,exp(9¥)}
ming <N 2(C433+Cf,) infyep sech(9)

and

a” (g) :==min{ 1, min Cap” in min {1, exp (9)} min rldo — €o)e
' 1K<V 2 (C; + Cly) wer  sech (9)  T1<isv 2(CL + Cly) |

where €9, q°, go, M are defined as before, C/;, Cly, Cls, Cls, C} are positive constants. Thus, it is obvious
that

4 hi) | w(azs) hi) | dlaws)
v (xje,0) =0 —2——2— | —cQ | —2—-2—| sech (Brax3)
1+ (axs)? 1+ (ams)?

is a subsolution of (2.1) on ¢ > 0 and x € R®. Consequently, we have that

h(x")/ mys + ¥ (axs3)/ «
1+ (ax3)2

v(x;e, a) == \/;?lej (x;6,0) = U

h(x')/ ms + ¥ (axs)/ a
1+ (ax3)2

—eQ

sech (Baazx3)

is a subsolution of (2.1) on ¢ > 0.

In the following we show the existence of pyramidal traveling fronts of (1.2). By the parabolic estimate,
we know that there exists K > 0 such that solutions v(x,¢;v?) of (1.4)-(1.5) with v’(x) € [E7,ET]
satisfy ||v (-,t;v0)||C3(R3) < K for any t > 1. Since v~ is a subsolution of (1.6), we have v(x,t1;v™) <
v(x,ta;v7) for all x € R? and 0 < t; < t5. Consequently, define

V (x):= lim v (x,t;v") (3.12)

t—o0
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for all x € R3. It follows that v (-, ; v) converges monotonically to V (-) under the norm ”ch2 (R%) 88
t — 00. Since V(x) < vt (x;¢,a) for any x € R3, by the arbitrariness of € and «, we have

lim sup |V(x)—v (x)|=0. (3.13)

Y7 xeD(v)

Furthermore, following an argument in Sattinger [44] we know that V(-) defined by (3.12) satisfies (1.6).
We thus have proved the following theorem on the existence of pyramidal traveling fronts for system
(1.2).

Theorem 3.3. Assume that (H1)-(H5) hold. For any s > ¢, (1.2) admits a pyramidal traveling front
V satisfying (1.6), (3.13) and v=(x) < V (x) < vT(x;¢,a) for any x € R3, where 0 < ¢ < e and
0 < a<at(e). Moreover, one has %Vi(x) >0 forxeR? i=1,---,N.

In view of the monotonicity of v~ (x) in the variable x3, we conclude that a—ig%(x) > 0 for all x € R3.
Then the strong maximum principle implies the strict inequality.

4 Stability and Uniqueness of Traveling Curved Fronts

In this section we develop the arguments of Taniguchi [48] and Wang [53] to establish the stability and

uniqueness of the pyramidal traveling front V obtained in section 3. We first prove that (1.9) holds for

ug > v~ and ug < v, respectively. See Theorems 4.13 and 4.17. We then characterize the pyramidal

traveling front as a combination of two-dimensional V-form fronts on the edges of the pyramid.
Consider the following Cauchy problem

{gwgm¢>1x$wgm¢>Iwiwmmw+§$W@mwF@0m
W(£,,0) = WO(€,m),

where (£,7) €ER%,t>0,i=1,--- ,N; W(&,n,t) = (Wi (&,n,1),--+ ,Wn (&,1,1)). The following theorem
was established by Wang [53].

Theorem 4.1. Assume that (H1)-(H5) hold. Then for each 3 > c, there exists a steady state ®(£,7;3)
of (4.1) satisfying ®(£,m;8) >V (&,n) and

lim  sup [®(&n) -V (&) =0,

R—00 g2 p2s ge
/52 _ 2
V@ﬂﬂIJ< <n+5ﬂjc|ﬂ>>-

Moreover, for any w° € C (R%,RY) with w°(¢,n) € [E7,ET] for (&n) € R? and

(4.1)

where

®l o

lim  sup |[WY(&,m) -V (&,n)| =0,
R—00 ¢24 25 R2

the solution W(&,n,t; W°) of (4.1) with initial value W° satisfies

lim {|w(, 6 W) = ()¢ gay = 0

t— o0
For any subset D C R3 we denote the characteristic function of D by xp, namely, yp(x) = 1 for x € D
and xp(x) = 0 for x ¢ D. Let hy;(x,t) € C (R* xRy) (i,j = 1,--- ,N) be given continuous functions
satisfying

0 < hij(x,t) < My;, i# j; sup |hij(x,t)| < My;, i=7, (4.2)
xER3,t>0

where M;; are defined by (3.8). Consider the following linear system

3 o2 N
{ Zwi —Di Yy aaTiwiJrS%wi =i hip (x,)w; =0, x €R% ¢ >0, (43)

w;(x,0) = wl(x) € C (R3,RY)NL> (R3,RY), xeR3 i=1,---,N.
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Lemma 4.2. Let w(x,t) := (w1(x,t), - ,wn(x,t)) be a solution of (4.3). Then there exist positive
constants A, B and \g such that

max sup w;(x,t) < e’ max <0, max sup w)(x)s, Vt>0,
1<I<N yeps 1<I<N yeps

e min {0 min  inf wo(x)} < min  inf w;(x,t), V>0,
1<i<N x€R3 1<i<N x€R3

t)] < et 9 s, Vt>0
1@1&2@\%& )l < e max Jlwi]lze ms), >

and for any v > 0,

3rA "
sup  sup |wi(x,t)] < erot 272 exp (—Br2> dr max sup {w?(x)‘ (4.4)
1<i<N x€D(27) B Vo 1SISN xeD(v)e
A
—|-77T~\/7>r~ et sup  sup ’w x)|, Vit>0,
BV B 1<6<N x€D(v)
where D(7)¢ = {X‘X eER3,x ¢ D( )} In particular, one has
3rA [t
sup |w;(Xo,t)| < e)\otL/ exp( )dr max sup |wy(x)|[, V>0 (4.5)
1<i<N B £ 1SN g g3

for any x¢o € R® and R > 0, provided that w)(x) = 0 for any i = 1,--- ,N and x € B (xo,\/gR) =
{XER3’|X—XO\ <\/§R}.

Proof. Define W(x,t) = (@1 (x,1), - , @y (x,1)) by wi(x,t) = eXotd;(x,t), where Ny := 1 S| M;;
and M;; is defined by (3.8). Then we have

~ ~ N ~
{ aiw Zk 1 312 w; + Sa Wi + (A — hai (x, 1)) Wi — Zj:l,j;éi hij (x,t) w; = 0, (4.6)
w ( ) - w?( )7
where x € R, t > 0,47 = 1,---,N. It is easy to show that the constant-valued function W(x,t) =

(W1 (x,t), -, Wx(x,t)) defined by

w;(x,t) = max{(), max_ sup w?(x)} ,XERY t>0

1IN w3

is a supersolution of (4.6). Similarly, the function w(x,t) = (w;(x,?), - ,wy(x,t)) defined by

wi(x,t)Emin{O min  inf w?(x )}, xeR3 t>0
1<i<N xeR3

is a subsolution of (4.6). By Lemma 2.5, we have

. . 0
min {0 1<111<nN xlgﬂggw (x )} < W;(x,t) < max {O, 122235\[55% w; (X)}

forx €R3,t>0andi=1,---,N. Therefore, for any x € R? and ¢ > 0 we have

Aot i Apt 0
efmin {0, min inf w?(x)r < w;i(x,t) < e*'max <0, max sup wd(x)p,
1<i<N x€eR? 1<<N ycps

where ¢ = 1,--- | N. We have proved the first three inequalities in the lemma for any \g > Aj. We will
determine an exact A\g > 0 below.
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Now we prove inequality (4.4). Consider initial-value problems

Swf—-D; >, Ww + 2w + (N — hai (x, 1)) wi — YN g (x, ) w] =0,
w; (x,0) = max {0, w; (x)}
and
- N
at - D, Zk 16JLQw +s —w; + (NG — has (%, 1)) w; *Zj:l,j;eihij (x, ) w; =0,
w; (X,O) = mm{O,wi( )} ,
where x € R3 ¢t > 0 and i = 1,---,N. It is easy to show that w; (x,t) > 0, w; (x,t) < 0 and
w; (x,t) < W;(x,t) < w) (x,t) for x ER3, ¢t >0andi=1,---,N. Consider
- 2 -
aath —D; 22:1 %ﬁwi + Sa%gwl (Ao — Mi;) w; — Z;V:Lj;éi Mijw; =0, xeR3t>0, @)
wi(x,0) = [wl(x)|, xeR3. .
By Virtue of w;(x,0) > w (x,0), it follows from Lemma 2.5 that w;(x,t) > w; (x,t) for x € R3, ¢t > 0
and 1 <4 < N. Similarly, we have w;(x,t) > —w; (x,t) for x € R3, ¢ > 0 and 1 < i < N. Consequently,
we obtaln

| (x,t)| < wi(x,t), VxeR3 t+>0, 1<i<N.

Following Theorems 2 and 3 of Friedman [13, Chapter 9], we know that there exists a smooth N x N
matrix-valued function W (x,y,t,s) for x,y € R® and 0 < s < ¢ < 2 such that

w(x,t)= [ ¥(x,y,t,0)w(y,0)dy.
RS

Since the coefficients in (4.7) are constants, the matrix-valued function ¥ (x,y,t, s) can be rewritten into
¥ (x —y,t —s), see [13, Section 9.2]. It follows that

W(X’ t) = RS \II(X -y t)‘%}(Ya O)dy

for x € R3 and 0 < t < 2. Consequently, by the uniqueness of solutions we have

Wit) = [ Wexoyidv [ Wl ya Dy
RS RS
(oo~ v Diye | Wl - y.t - Ky, 0)dy

RS RS
for any ¢ > 0, where k = max{[t — 1],0} and [s] = max{n : n € Z,n < s} for any s € R. Therefore, we
have

wi(x,t) = ¥;(x —y1, 1)d)’1/ ¥(y1 —y2, )dys - / U(yk—1— Yk )dy
RS RS RS

/W U(yr —y,t—k) (X)) )W (¥, 0) + xD(m)e (¥)W(y, 0)) dy

for any t > 0 and i € {1,2,--- , N}. Consequently, we have

/dz“pm X — yla |d}’1/ Z |\Ijlj Y2a1)|d}’2
R?

l,j=1

/ Z |91 (Yr—1 = Y&, 1] dys
R3,

J=1
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/ Z | (y ,t — k)| Xp() (y)dy max sup ’wjo(y)|

=1 1<J<NyED(’y)

/me yibldy: | S [0y — yo. )] dys

l,j=1
N
/ > W (yr-1 — yi 1)l dys
RSZ] 1
Ui(yr —y,t — k)| x c(y)dy max sup [|wl(y)]. 4.8
/. Z| ; ot )iy max s [uf(y) (18)

By Friedman [13, Chapter 9], there exist positive numbers A >1and B <1 such that

~ ‘ o
S W(x -y, t— )| <At —s)72 exp <_BXY|>

: t—s
1<l,j<N
for any 0 < s < 2. Since v < |dist(x,T') — dist(y,T")| < |x — y| for any x € D(2v) and y € D(v)¢, we
have that
N N
/ Z|\Pij(x—}’1,1)|dY1/ > Wi(y1 — y2.1)| dys
R3 A_ R3l i=1
/Rs Z 1W1;(Ye—1 — Y& 1 |dyk/ Z 915k =¥t = B)IXD)- (v)dy
1j=1
R3 R3
2
- _3 5IYE—Y
/ exp (—B|Yk—1 — Yk|2) dYk/ (t — k) 5 exp <—B|Izk|> XD(v)e (Y)dy
R3 R? B
. B B
= Ak“/ exp <—2|x - }’1|2> dY1/ exp <—2|Y1 - y2|2> dy2
R3 R3
B
/ exp <2|Yk—1 - Yy|2> dyk
R3
. B =y — yl?
/ (t—k) 5 exp <2|X - Y1|2> ©rreXp (B“;k| XD(y)-(y)dy
R3 -
5 . k
_ t\? Blz|? s =1x — vyl
k
(1) (Lo ) o (A
Blz2) . \" 2
et (o E)o) L ten (0
R3 R3
k
2
< M AR 2V2my/m / 7% exp (—BM) dy
B\/> R3\ B(x,7) t
o (22 5 1yl
< 302t Ak+1 M / t_% exp (—BY|> dy
Bf YER3 [y1|> \/§a, t

— 32t

(2\/37%‘4) %;0 exp (—Br2> dr

for x € D(2v), where we have used the facts that k¥ = 0 for ¢ € (0,2), t — k < 2, and k < t and
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(1+1)3 < €2 for t > 0. In addition, we have

N N
/ Z\‘I’ij(xfyl,mdyl/ Z W (y1 = y2,1)| dy2
R3 j=1 R3 j=1
/RZWNM yuDldyi [ S 05— 3.t — )] X3y

l,j=1 l,j=1

- k
B _ 3 ~ | X — 2
</ exp <—2|z2> dz) / t72 exp (—B7jY|> XD(y) (¥)dy
R3 R3

k
T (W) [ rten (827 uy
BV B R3

o QtAﬂf (2ﬁ7rﬁ/~1>t
BB\ BVB )

Thus, letting Ag := A\j+2+1n <QI%A> yields the inequality (4.4). Note that the constants A and B
B

VA
>
Ea
s
_
+
=
lw

N

are independent of ~.
To prove the inequality (4.5), we need only to replace x and D(y) with xq and B(xg, V3R) in (4.8).
This completes the proof. O

Remark 4.3. The positive constants A, B and )¢ in Lemma 4.2 are independent of the functions
hij(z,t) € C (R®* x Ry) (i,j =1,---, N) satisfying (4.2).

As in Taniguchi [48], in the following we show that the pyramidal traveling front 'V converges to two-
dimensional V-form fronts on edges of the pyramid at infinity. For each j (1 < j < n) we consider a plane
perpendicular to an edge I'; = S; N S;41. Then the cross section of —z3 = max{h;(x’), h;j41(x’)} in this
plane has a V-form front. Let V7 be the two-dimensional V-form front as in Theorem 4.1 corresponding
to the cross section —x3 = max{h;(x’), hj41(x’)}. We first determine the exact formulation of V7.

Let An+1 = A1 and Bn—i—l = Bl. Define

pj = Aij+1 — Aj+1Bj > 0, qj = \/(Aj+1 — Aj)2 + (Bj+1 — Bj)2 >0, 1<7<n.

Take )
vi=———{m,A;,m.B;, 1 =1, n+ 1.
J \/ﬁ { J J } .7
The direction of I'; is given by
) Bj+1— B,
Vigl X Vj = —F——————— AJ—AJ+1 s

m2 2.+ 2
PTG ma(Aja By — A Bja)

and the traveling direction of the two-dimensional V-form wave V7 is given by
my(Bj1 — Bj)p;
Vit1 —Vj 1

(Vj+1 X v5) X ms(Aj — Aji1)pj
A R e p
J

Let s; be the speed of V7 and 26, (0 < 6; < /2) be the angle between S; and S;1. Then we get

—1 —1
sjsind; =c, Sinﬂjzw/m2p3+qj2 (qj'\/lers%) ) Sj:*qu(\/mzp?Jrqu) :
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The speed of V7 toward the z3-axis equals
m2pt +q? [ 4y = /T4 m? =5,

which coincides with the speed of V. Let

1 f 5 Ty
z2 | =R | 1 |, n | =Rl | o |,
3 ¢ ¢ T3

where RjT is the transposed matrix of R;. Here we take

Ajpi—A;  ma(Bj11—Bj)p; Bjt1—B;
‘e aj/mIp3+q? Vm2pi+q?
R, — Bjt1—=B;  m.(A;j—Aj11)p; Ai—Ajin
J N N T T
0 q; _ M Pj
Vmivi+a; Vmiri+a;

Define V7 as VJ(x) := ® (&, 7;s;). Direct calculations show that

—D-a—Q@-—D-a—QCI)-—ks-g(I)-—Fi(@)—0 V(&) eR? i=1 N
1852 % 7,8772 i ja'f] i =Y i y 0= 4y 54V
Hence, for each j (1 < j < n), V/(x) satisfies (1.6). We call V7 a planar V-form front corresponding to
an edge I';.
Set

Qj = {x € R3|dist(x7 I) = dist(x, Fj)}, 1<j<n.

Then we have R® = (J_, Q;. Define

V(X) = Vlgjgnvj (X)

We have that V(x) is strictly monotone increasing in x3 due to the strict monotonicity of V7 (x) in x3.
In addition, V(x) has the following properties.

)
Lemma 4.4. V(x) satisfies v=(x) < V(x) < V(x) for x € R? and

lim sup |V(x)— v_(x)’ =0. (4.9)

Y7 xeD(v)

Proof. By Theorem 4.1 we have

U (C (x5 + b (x’))) VU (g (23 + hj1 (x'))) < Vi(x), x € R®.

s
It follows that v~ (x) = U (£ (z3 + h (X)) < V(x) for x € R3. In addition, by
c c ,
U (; (23 + h; (x'))) VU (; (23 + hjs1 (x'))) < Vi(x),

we get VI(x) < V(x) for x € R?. Therefore, we have V(x) < V(x) for x € R3. Finally, (4.9) follows
from (3.13). This completes the proof. O

Assume that v¥ € [E~, ET] satisfies (1.8). Let
A% (x,t;vo) = (v1 (x,t;vo) , ot UN (x,t;vo))
be the solution of (1.4) and (1.5). By Lemma 4.2, we have

(%, t;v0) = V;
(25 2, I i)~ Vi)
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O -
< e)‘°t37r—~ exp (7BT2) dr max sup |oY(x) — Vi(x)] (4.10)
B % 1<7’<NXED("/)C
A
—|—7T\ﬁ~ et sup  sup ’v?(x) — Vi(x)‘

BVB  1<i<NxeD()
for any v > 0 and ¢ > 0. It follows that

nggo e xESlLl)l(D'y) |vi(x, t; v0) — Vi(x)| =0 for any fixed ¢ > 0,

which implies

lim sup |v(x,¢v") — v (x)| =0 for any fixed t > 0, (4.11)
Y7 xeD(v)

lim max sup v (x,t;vY) — VI(x)| =0 for any fixed t > 0 4.12
Yoo 1< j<n x€D(v),xEQ; | ( ) ( )| ( )

and

lim sup ‘V (x,t;v°) — V(x)‘ =0 for any fixed ¢ > 0. (4.13)
T xeD(y)

Now we state a proposition which plays a key role in the following estimates.
Proposition 4.5. Assume that v € [E~,E*] satisfies (1.8). For any given €1 > 0, one can choose
T* > 0 large enough such that

lim max sup |v(x,5v°) = VI(x)| <e1 for any fived t > T*. (4.14)
R=00 ISISP x> R x€Q;

Proof. Set

Aj+ A,
Ij::QjﬂQjH:{r( a J+1>‘7‘20},1<j<n—1,

Bj + Bj+1

A, +A
In::Qnﬂle r 4 r=>0;,.
B, + By

Then I; is the projection of I'; onto the xi-zo plane and U;-lzl I; is the projection of I' onto the z1-z2
plane.

Fix j € {1,--- ,n}. Without loss of generality we assume that x € Q; as |x| — oo. Since (9/0z1)* +
(0/0x2)?* is invariant under rotations on the z1-xo plane, we assume Q; N Q11 = {(0,22,0)| 22 > 0},
(4;,B;) = (A, B) and (Aj+1,Bj41) = (—A,B), where A > 0, B > 0 and A%? + B? = 1. Two planes
S;y1 and S; are —xg = m.(—Ax; + Bxg) and —x3 = m.(Az; + Bza), respectively. The common
line I'; of them is 1 = 0, —x3 = m,Bxzy. The projection of @); onto the xi-z5 plane is given by
{ze > al|z1|,z1 = 0} U {xs = b|a1],21 < 0} for some a > 0 and b > 0.

0

By the assumption on v, we have

lim sup ‘vo(x) -U (E (3 + m.Bxo + m*A|x1\))‘ =0.
YO xeD(7),xEQ; s

The unit normal vector of the common line T'; directing downwards and lying on the plane {z; = 0} is
given by
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Since 26; is the angle between S; and S;41 (0 < 6; < 7/2), we have that sin; = /1 + szQ/ V1+m2.
In this case we make a change of variables as follows

¢ -1 0 0

x1
0 my B 1
no| = Vi+m2B? \/1+mIB? 2
C 1 . m. B 2
\/1+m2B? \/14m2 B2 s
Then we have
2 _ 2
c s;i—c ¢
o2 (1 %)) <o (et i),
J

— S

where s; = \/ﬁ' It is obvious that

T3 + myBxo )
s,

V1+m2B?’

is a solution of (1.6). Let V~V(§,n,t) = (Wl (f,n,t;wo) oo W (§,n,t;W0)) be the solution of

VI(x) = @(&,1;55) = @ (-wh

n

% X (4.15)
W(E,n,0) =W n), (£,1) € R%

s 2 = 2 _~ ~ ~
{ AW -DZLW-DZLW+5,2W —F(W) =0, (1) €R%t >0,

Taking WO(x) = wWo (—xl, f}%), we have that W (x,t; W0) = W (&, 1, t; WO) satisfies

OW —DAW + 5,2 W — F(W) =0, x € Rt >0, (4.16)
W(x,0) = Wo(x), xeR3, .

0

Utilizing (4.9) and the assumption on v°, we have

lim  sup |[vP(x) - VI(x)| =0.
VT xeD(1)NQ;

Choose functions g;(-) € C(R)N L>*(R) (i =1,---,N) with

gi(n) = sup  |v)(x)— Vij (x)| fory>1,
x€D(v)NQ;

sup  [0d(x) = V()| < 9:;(7) S Ef —E; + 1+ ||o) — E{HLOO(RS) for 0 < v <1,
x€D(y)NQ;

gi(7) <0 for 0 <y <1,
gi(7) = gi(—y) fory € R.

It is obvious that g;() is monotone nonincreasing in v > 0 and satisfies lim~_, g;(7y) = 0. Since

V(1 +m2B2)2? + (z3 + m. Bxs)?

Ve

dist(x,I') = dist (x,T;) =

for x € Qy,

we have, for x € @)}, that

V(1 +m2B2)a? + (3 +m*B$2)2) . (4.17)

\v/1+ m2B2

[0(x) — V7 (x)] < g (dist(x,T)) = g, (
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We study (4.15) for WE0(¢,p) = (Wli’o(f,n), e 7I/Tfﬁ’o(f,n)) with

W0 m) = min {@ul¢,m5) + g (VE +02) B

and

W06, m) i= max { (& m:5) — g: (VE+P) BT}

which is equivalent to study (4.16) for W*9(x) = (le[’o(x)7 - 7W]f,[’o(x)) with

1
W) —mln{m )+ thmzm“ﬁmﬁ“)g) E+}

and

respectively. Then we have

lim sup
R—00 g2 pas g2

Wiip(gan) - q’z(&ﬁﬁg)‘ = 07 1= 17 e aN-
For s; = \/#W’ applying Theorem 4.1 we have

~ 5 o) _ e _
tll)rEoHW(g,n,t,W ) (I)(§7n’sj)“C(R2)

which implies that lim;_, [|[W (x,t; W) — VI (x) = 0. Taking 7; > 0 large enough such that

lees)

<L (4.18)

sup [W (-, ; W50) — Vj(')||c(R3) B

t=>T;

Put vi(x,t) = v(x,t;v®) — W(x,t; W), Then v satisfies

) o2 o2 N

+ Z (/ auk C(Ov(x,t) + (1 - W (x,t;wivo)) dg) vE(x,t) =0, x € R, ¢ > 0,

k=1
vE(x,0) = v (x) - W"(x), x € R?,

(3

respectively. In particular, from (4.17) we have v*(x,0) < 0 and v~ (x,0) > 0 for x € Q;. Let v*(x,t)
be defined by

o o2 2 9\ .
L/ )NARNY, N AR NN B0
(at 02~ Vo T Vion “axg) o t)

N 1
o . )
+) (/O aTkF (v(x,t) + (1 — O)W (x,t;Wi’O))dG) bE(x, 1) =0, x e R® ¢ >0,

;" (x,0) = max {v;" (x,0),0} and 9; (x,0) = max {—v; (x,0),0}, x € R®.

It is easy to see that v (x,0) > v*(x,0) and —v~(x,0) < v~ (x,0) for x € R3. By the comparison
principle we obtain

vi(x,t) <V (x,t), —Vv (x,t) <v (x,t), VxeR® t>0. (4.19)
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Notice that
Applying the inequality (4.5) to v*(x,t), one has

1<i<N

Vit

O -
0<E(x,t) < (2 max (Ej' —E7)+ 1) ertg%/ exp (—Br2
R

if x € Q; and V3R < dist(x,0Q,) for i = 1,--- , N. It follows that

lim sup oE(x,t)=0,i=1,---,

R—=00 xc@;, dist(x,0Q;)>R

ﬁf(x,0)| < 2(Ei+—EZ-_) 41 for x € R? and 05 (x,0) = 0 for x € Q;, where i = 1,---

25

N.

9

for any fixed t > 0. Applying this equality, (4.18) and (4.19) to v(x,t;v®) = v¥(x,t) + W(x,t; W), for

given ¢t > T; we can take a constant R; > 0 large enough such that

sup Iv(x,t;v°) — VI(x)| < e1.
x€Q;, dist(x,0Q;)2R;

Thus we have obtained the estimates on @; for given j.
Set

T :=max{Ty, -+ ,Tn}.

Fix t > T*. Let R := max{R1, Ra, -, R,}. From the definitions of I' and Q; we get

lim inf dist(x,T') =00 forall 1 <j < n.

R—00 |x|> R, dist(x,0Q,)< R

Using (4.12), we have

lim max sup [v(x,t;v) = VI (x)| = 0.

R=00 ISIST 15> RixeQ; dist(x,0Q,) <R

By this estimate and (4.20), we obtain (4.14). The proof is completed.

(4.20)

O

Lemma 4.6. Assume that v € [E~,ET] satisfies (1.8). Let V be as in Theorem 3.3. For any given

€1 > 0, one can choose T* > 0 large enough such that

lim sup |v(x,t;v0) — V(X)| <ey for any fized t > T*.

R—o0 ‘X‘}R

In particular, one has

lim sup }V(x) - V(x)’ =0.

R—o0 IX‘ZR
Proof. By taking v? = V in Proposition 4.5, for any £; > 0 we have

lim max sup |V(x)— V/(x)| <e.
R0 ISTST x|>R x€Q;

Due to the arbitrariness of €1 > 0, we obtain the equalities (4.22) and

lim max sup V(x) - Vix)| =0.
Rﬁ°°1<j<”|x\>R,erj| > >l

(4.21)

(4.22)

Furthermore, using the last equality and Proposition 4.5, we can obtain (4.21). This completes the

proof.

O

The equality (4.22) shows that the pyramidal traveling front V converges to two-dimensional V-form

fronts ® near the edges.
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Lemma 4.7. Let 'V be as in Theorem 3.3. Then it satisfies

0
lim sup —V(x)| =0.
R0 |4 1 h(x)| >R | 073
In addition, for any § € (0, ¢y) we have
9 .
min inf —V/(x)>0, 1<j<n,
ISISN B 4oV (x)<EF =6 0x3
and 9
min inf —Vi(x) > 0. (4.23)

ISSN B 46<V; (x)<E; —6 O3

Proof. Note that
9 V‘ . q;

8
) z‘J (X) = an (f 77,8;)
T3 / p] +q2 Ui

where § = ((4;j4+1 — Aj)z1 + (Bj1 — Bj)z2)/ g; and

1= (mu(Bjt1 — Bj)pjar +ma(Aj — Aj1)pjzs + q;as) /((Jj\/mfp? + q?) :

It follows from Wang [53, Lemma 4.2] that min;¢;<n minEi_Jr(KVij (x)<EF—5 a—isvj (x) > 0.
Now we show that (4.23) holds. Since a%vi > 0 in R3, 8%3‘/} has a positive minimum on any compact

subset of R®. Thus we need only to study %Vi as |x| = oco. Fixi € {1,---,N}. Let
Q= {xeR|E; +6<Vi(x) < Ef —46}.
By (4.22) and (3.13) we have

lim sup V(x) - V/(x)| =0,
Ro400 xeB(Q;,2).Ix|>R

where B (Q;,2) := {x € ]R?)’ dist (x, Q) < 2}, j€{1,---,n}. Then there exists Rj > 0 such that
1)

sup IV(x) - VI(x)| < <.
x€B(Q;,2),x|>R; 2

Consequently, we have E; + 2 < V;j(x) < Eff — 3 for x € B(Qj, 2)N €, with |x| > R;. For any x° € Q;,
we have

lim sup |F*(V(-) = F* (V7() =0,

R—+00 x0€Q,,[x°|>R : )HLP(B(xOyQ))
where p > 3, B(x’,7) := {x € R3||X -x% < r}. Applying the interior Schauder estimate of Gilbarg and
Trudinger [15, Theorem 9.11] to

—D;A (V;- - Vg’) + s% (v VJ) = Fi(V) = F' (V7) in B(x",2),vx° € Q;,

we obtain _
lim sup ‘Vi ) =VI( H
R—+o0 x0€Q;,|x0|>R ( ) ( )

W2 (B(x0,1))

Therefore, we have

lim sup ai Vi(x) — ﬂVj( )| =
3

Ro+00xeQ; Ix|>R

Thus, by virtue of the estimate on V/ there exists Rj > R]- such that
0

min —Vi(x) > 0.
x€0:NQ;,x|>R; 073
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Applying the above arguments to all j =1,--- ;nand i =1,--- , N, we obtain (4.23).
Obviously, the assumption |z3 + h(x")| — oo implies dist(x,I') — oco. It follows that

lim sup  |[V(x)—ET| -0 and lim sup [V(x) —E~| =0,
R—+00 z3+h(x)>R R—+00 z3+h(x)<—R

which yields imp— 0o SUP|4, 4 h(x/) >R |F{(V(x))| = 0. Applying the interior Schauder estimate to

—D;AV; + siVi = F'(V) in B(x,2),Vx € R?,

8183
we have
li . . {Vl p(B(% " ]Rg,* h(x' 2R}=0
R Gian T Villwz2s (s, X € R, [Z3 + h(X)]

for p > 3. Therefore, we have

9 y(x)

a. "Vt :0,1<<N
8x3 !

lim sup
R0 45 4 h(x’) | 2R

This completes the proof. O
Lemma 4.8. Assume that § € (0,¢q). For any x € R3 with

1<5<n
we have
) Vi(x', 25+ 0) — Vi(x . . ) 0 _ .
inf (X ) = Vi) > min min inf — V(%) >0,
0<e<00 Y 1<j<n I1<iKN E,;Jr%éViJ(X)éEj*% 8553

where oo 18 a positive constant depending on 0 and is independent of X.
Proof. Fix i € {1,---,N}. By the uniform continuity of V, there exists 00 > 0 such that

0 - 1
B + 5 Vil w3+0) < B — 5 for o € (0, 00)
if x satisfies B, + 6 < Vi(x) < Ef — 4. For any x° = (29,29, 23) € R? with E; 4+ < Vi(x°) < Ejf — 6,
there exists jo € {1,---,n} such that V;(x°) = V/°(x%). Then we have

‘71(:17(1)’ :E%,xg + 9) - ‘A/;(XO) = ‘};(I(l)vxgvxg + 9) - Vijo (XO)
0

> V7 (29,25 + 0) = V' (x") = 0 min AV (x)
B +3<V° (<B4 073
o
> 0 min min inf — V7 (x).
1G<n 1ISN By 48 <V (x)<Bf —§ 03
Finally, the arbitrariness of o and x° yields the expected result. This completes the proof. O
For M > 0 defined in Lemma 3.1, it is not difficult to show that
Ef > Ef = sup Vi(x) > U;(M)
$(ms+h(x)<M
and .
E7 <Ui(—M + -mg) < Ej := inf Vi(x
o <O S0 S B iy ae T
fori=1,---, N, where mg = 2mm, fooo r2p(r)dr. In particular, EvzjE are independent of € > 0 and a > 0.
By Lemmas 4.7 and 4.8, there exists $3 > 0 so that
b T4 ad min el () >
min in —Vi(x an min  inf —ov(x 3.
ISISN | (ag+h(x)| <M OT3 ’ 1SN [u(x)|<M O3 °
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Lemma 4.9. There exist a positive constant p sufficiently large and a positive constant 3 small enough
such that, for any 6 > 0 with

1 3 _
0 < 6% := min 6—00, min {O(E;F_Ef)}, % (po — €o) e
NpPasisy L 2p SN (L 1) ()

W defined by
W (x,t6) =V (x', 234 pé (1 - e_ﬁt)) + 6P (¢1) e Pt

is a supersolution of (2.1), and for any § > 0 with

) €0 ) 1 - K (g0 — €o)
0 <min{ ——, min  — (U;(-M) — E; , )
{Nqo 1<i<N { 2¢° (Ui(=) )} 8N (L~ +1) (¢°)° }

W™ defined by
W™ (x,40) =V (x, 23 — pd (L — e P")) —6Q (s7) e

is a subsolution of (2.1), where
L w3Epd (1—eP) + o (x)
= .
1+ |V (x)[’

Proof. Tt follows from Lemma 2.5 that h(x") < ¢(x') < mg + h(x') for all x’ € R%. It is easy to verify
that there exist constants C;" > 0 such that

1
P () (13, + 12,) + Pl (1) (Harz0 + Hagas) + By (1) ————— | < G, (4.24)
1+ Ve (ax’)]

1
— | <Cf (4.25)
1+ |V (ax')|

for any a € (0,1] and x € R3, where p is defined by (3.1) and i = 1,--- , N. In addition, we can take
M > 0 large enough in Lemma 3.1 so that

Q7 (1) (12, + 12,) + Qi (1) (ayay + Hasas) + QF (1)

P (1) 1
P’i// i + i + ‘P7,/ T1T1 + To2To + _— < —K — € 5 4.26
() (13, + 12,) + Pl () (u Hazza) + T o ad)E| < 1D (po — <o) (4.26)
" 2 2 ! Q;/ (:U')
i T + T2 + i T1X1 + ToXo +— — K — € 4.27
|Q, (1) (pa, + piz,) + @3 (1) (n Hazes) + Vo (ax)E| < 1D (40 — €0) (4.27)

for any o € (0,1] and p > M or o € (0,1] and p < =M + $mg <0,i=1,--- ,N.
We omit the rest of the proof, which is similar to that of Wang [53, Lemma 4.2]. This completes the
proof. O

Lemma 4.10. There ezists a positive constant p sufficiently large and a positive constant 8 small enough
such that, for any 6 > 0 with

6<6*<m1n 67007 min {1()(Ej—U,L<M))}7 H(pg_€0) )
NpO 1<i<n | 2p 8N (p°)” (LT +1)

wt defined by
wh(x,t;0) =v" (x',xg + pd (1 — e*Bt) | €, a) + 6P (1) e P

is a supersolution of (2.1), where
z3+p5 (1—e ) + ¢ (ax)/
1+ Ve (ax)?
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The proof of the lemma is similar to that of Lemma 4.9. Following Wang [53, Lemma 4.4], we obtain
the following lemma.

Lemma 4.11. There ezists a positive constant p sufficiently large and a positive constant 8 small enough

such that, for any 6 > 0 with

s<mint % wn { L @i - p) ), ol A
q° 7 1<i<n | 2¢ 8N (¢°)" (L~ +1)

W, (x,t;8) = U (9) — eQ (p) sech(ax3) — §Q () e 7
is subsolutions of (2.1), j=1,---  n, where

hi(x')/my —pd (1 — e P) + ¥ (ax3)/ o
14+ 972 (axs) .

w; defined by

0=
Following this lemma, we know that
W (x,1;0) 1= VI, W; (x,1;0) = U (2) — €Q (§) sech(axs) — 6Q () e
is also a subsolution of (2.1), where

5= h(x")/m. — p§ (1 — e P*) + 1 (axs)/ a
1+ 97 (axs) .

In the following we prove (1.9) for the case u® = v® with v¥ > v~. We further restrict that e <
min {s+, 4(;5;%} in Lemma 3.1. Then for ¢ € (0,£7) and a € (0,a™(€)), let v*(x;¢, @) be as in Lemma
3.1. Define

V*(x) := lim v(x,t;v]), VxeR3,

t—o0

where v (x;e,a) = vt (x;e,a) AET. Since v (x;e, ) is a supersolution of (2.1), v (x) is a supersolution
of (1.4). Consequently we have that v(x,t;v}) < vi(x) for any x € R? and ¢ > 0. Then proceeding the
similar argument as to V(x), we have that V*(x) is C? in x and satisfies (1.6). It is clearly that

V(x) < V*(x), x€R3.
Lemma 4.12. For x € R?, V*(x) = V(x) holds.

Proof. Assume the contrary. Namely, V*(x) # V(x). Take ¢ € (%, 5*). By the definition of V*(x),

there exists a sufficiently large A > 0 such that
z3 + A+ p(x')

vi(x) < V(X 23+ \) + 6P
L+ Ve (x)[*

*

, Vx € R3. (4.28)

Due to Lemma 4.9 we know that the function W (x/, z3 + A, t;6) is a supersolution of (2.1) on ¢ > 0.
Thus by Corollary 2.3 we have

v (x, t; vj) <WH (X' 23+ A\ 15 6) (4.29)
for x € R3 and t > 0. Letting t — co we get
V*(x) < V(X,23 + A+ pd) for x € R%. (4.30)
Here we first show that

lim sup [V*(x)—V(x)|=0. (4.31)

R—o ‘XlZR
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It follows from (4.30) that imp—co SUP |4, 1h(x/) >R ‘V* (x) — V(x)‘ = 0. For x € R3 with |23 + h(x')| <
R* for some sufficiently large R* > 0, there must be dist(x’, E) — oo if dist(x,I') — co. Then by
V* < vt and Lemmas 2.6 and 2.7 we have

lim sup |[V*(x) — v (x)| = 0.
V7 zs+h(x')|<R* x€D(y)
Combining the above arguments, we obtain limy_, 4 SUpye p(y) [V* —v~| = 0. Applying Proposition
4.5 to V*, we obtain (4.31).
Define

A:=inf {A € R[V*(x) <V (x/,z3+ A),Vx € R*}.

Then A > 0 and V*(x) < V(x/, 23+ A) for x € R3. The assumption V*(x) # V(x) yields A > 0. By the
strong maximum principle of elliptic equations we have that either V*(x) = V; (x', 23 + A) for all x € R3
and some i € {1,---,N} or V*(x) < V(x/,z3 + A) for any x € R®. We conclude that the former is
impossible. In fact, take a sequence {x/, € RQ} y satisfying h (x;,) — +oo and dist (x;,, ) — +oo,
then by v~ <V < V* < v™T, we have

lim V*(x,,—h(x],)) =U(0) and liminf V (x,,—h(x},)+A) >U (7A> )

m——+oo m——+oo

which contradicts V;*(x) = V; (x/, 23 + A).
Now we assume that
V*(x',z3) < V(x', 23 + A), Vx € R,

By Lemma 4.7 we can take R, > 0 sufficiently large satisfying

0
2p sup —V(x, :c;:,—l—A)‘ < po.
|zg+h(x')|>R.—ps* | OT3

Define

D= {x € R?||zs + h(x)| < R.}.

We choose a constant €; > 0 sufficiently small satisfying 0 < €; < min {% %} Utilizing Lemma 4.8,

for x € D we have

N A N A
‘/i (X/wr?) + 2) - ‘/Z (X/wr?) + 4)

. A o .
> min § go, — ¢ min min inf —V/(x) >0,
4 ) 1<G<n 1SN gy %0 qyi ()< % O

where

1<i<

; N R i (4 A J -
0o = m_lnNmm{2,Ei —1r£1ja<xnilelg‘/ (x,x3—|—2 ,1r<n]1£1m:1€1£v (x) —E ¢,

and gq is defined in Lemma 4.10 associated with dy. Thus, it follows that

inf (V(X z3+ A — 2per) — Vi(x ))

xeD

: A . : : 0 i
> min< gg, — p min min inf —VI(x) > 0.
4 J 1<5<n 1SN g1 %0 v ()< B - %0 0

Applying Lemma 4.7 and (4.31), we have that there exists Ry > 0 such that

A
V*(x) <V (X',xg + ) < V', 23+ A —2pep) for x € D with |x| > Ry.

2
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Since D N B(0; Ry) is compact, we have V*(x) < V(x', 23 + A — 2pe1) in D N B(0; Ry) for sufficiently
small €¢;. Thus,

V*(x) < V(x',23 + A — 2pe1) in D.

In R?\ D, we have
Lo
Vi(x', o3+ A) = Vi(x' 23 + A — 2pey) = 2p61/ ﬁ\/ﬁ- (x', w3 + A+ 20pe1) df < e1po
0 3

for i = 1,---,N. Combining both cases, we have V*(x) < V(x/',23 + A — 2pe;) + ¢,P~ in R3. By
Lemma 4.11 we know that WT(x',z3 + A — 2pey,t;€1) is a supersolution of (2.1). Thus V*(x) <
W (x/, 23 + A — 2peq, t;e1) for x € R3 and ¢ > 0. Letting t — oo yields V*(x) < V(x/, 23 + A — pey) for
x € R3. This contradicts the definition of A. Thus A = 0 follows and we have proved that V*(x) = V(x).
The proof is completed. O

Theorem 4.13. Assume that (H1)-(H5) hold. Let V(x',x3 + st) be a pyramidal traveling front of (1.2)
with speed s > c established in Section 3. Assume that v* € C (R*,RY) satisfying v°(x) € [E7,E*] for
x € R3, v0(x) > v (x) for x € R® and

lim sup |[v%(x)— V(x)|=0. (4.32)

Y7 xeD(v)
Then the solution v(x,t;vY) of (1.4) with the initial value v° satisfies

lim ||v(,tv°) - V(-)HC(Ra) =0. (4.33)

t—o0

Proof. Let § € (0,%) be given arbitrarily. Take ¢ € (O,min {aar, %}). Utilizing (4.21), we take
a € (0,at(g)) such that

v(x,1;v?) < vT(x;e,a) 4+ dpol for x € R3,

where I is the N x N identical matrix. By using an argument similar to that in Taniguchi [48], we have
that
; v — : Syt —
tli}{.loHv(thv ) 7V()HL°°(R3) - 0 and tli{goHV('at?V* ) 7V()||L°°(R3) _0
Take ¢ > 0 large enough such that
v(x,t;v7) < v(x,t;vi) < V(x) + 6pol for x € R® and ¢ > 1. (4.34)

Let p and 8 be as in Lemma 4.12 and note that p and 3 are independent of 6. We have that w*(x,;d)
is a supersolution of (1.3). Then there exists £ > 0 large enough so that

v(x,t+ 1;v) < v (X', 23 + pd) + R
for any ¢ > f. Let vi°(x) = vt (x', 25 + pd) AET. Then
vix,t+1;v0) < vIo(x) + e MolpoLL

Lemma 4.2 implies that v(x,7 +  + 1;v9) < v(x,£vi?) + dpol for x € R3. Using (4.34), we have
v(x, t+t+1;v0) < V(X/, 23+ p8)+25peI for x € R®. By Lemma 4.9, it follows that v(x, t+t+t+1;v") <
W (x/, x5 + pd, t; 28) for t > 0. Therefore, we have

V(x) < v(x, V%) <V (X', 23 4 pd + 2pd) 4 26p° < V(x) + M*01

for t > ts :=t +1t+ 1, where M* > 0 is a constant and is independent of §. Due to the arbitrariness of
6, we have completed the proof. O
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Now we consider the case that the initial value u® = v° satisfies v® < v—. Define

. €o ] 1 _ % (qo — €o)
0y =minq —5, min — (U;(-M) — E;), '
{Nqo 1<i<N 4¢° (Ui ) ) 8N (L~ +1) (¢°)° }

Take 0 < € < min {50_, %5*, 2?;3“)’2 } Define
V(1) = V(K zs— M) and v (x) =¥ (xi2,0) V (x).
where M’ > 0 is a constant specified later. Recall that w is defined in Lemma 4.11. Set
W (x,t;0) =W~ (x',23 — M',t;0) and w_ (x,t;0) =W (x,t;0) VW (x,t0).

Lemma 4.14. For any positive constant § and any initial function v° satisfying

lim sup ‘VO - v_‘ =0and v'(x) € [E7,E*] forx € R3,
Y7 xeD(v)

there exist positive constants € < min {s_, ié*, 22232 }, a<a (e), T and M’ such that

v_(x) —6QT < v (x,T;v") for x e R

Proof. Clearly E~ < v (X, t; VO) < E*. Applying Proposition 4.5 with ¢ = % and Lemma 4.7, we have

lim sup |v(x, 7"+ Lv0) — V (x)| < %40 (4.35)

)
R—o0 Ix|>R 4

where T™* is determined in Proposition 4.5. Fix T/ = T* + 1. By (4.35) we can choose a large constant
M’ such that

V(x)—6QT =V (x,25 — M) —6Q" < v (x,7;v°) for x € R®,

From (4.35) there exists a positive constant Ry such that

V (x) — ZQJF < v (x,T';vY) for |x| > Ry.

Note that
~ h(x’ "
V(x;e,a) <U <)/ m. + Plaws)/ @ — Q" sech (Braxs).
1+ ¢ (axs3)?
Since #(a%s) — — ;I (1 +exp (—fzaxs)) < 72, we have

3 + h(x)

may/ 1+ Y/ (az3)?
It is not difficult to show that there exists R} > 0 such that
h(x' )

U xr3 + (X) —*Q+§V7(X)
M/ 1+ (axs)? 2

for x € R? with |23 + h(x')| > R}. Since ———~—— — ¢ as axz — —oo, there exists Ry > 0 such

ma/ 149’ (axs)? s
that

T3 +h(X/) 0 _
: (m*\/l +w'(ow:3)2> A

V(x;e,0) <U ( ) —eQtsech (Braxs) .
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for x € R? with |73+ h(x’)| < R} and azz < —Rs. Note that Ry is independent of o € (0,1). For
— Ra/a < x3 < R} and |z3 + h(xX')| < R}, it follows from the definition of 1) that there exists a small
positive constant « such that

(Lo am) 4 on)
149/ (azs)? @ MM
1 (1‘3 1 . 1
=— — ———In (1 + %) 4 h(x’)>
144 (ax3)2 My amy o My
e L (B L)
144/ (a:c;;)z my  amyfSs

_ )

Take R} and Ry large enough so that
{xeR?||x| <R} C {x€R® — Ry/a < a3 <Ry, |zs+h(x)| <R }.

Therefore,
V(xje,a) —0Qt < v (x,T';v°) for x € R®.

Finally, it is clear that
v_(x) - 6Q" = (V(xe,a) —0Q1) v (V(x) — 6QT).
This completes the proof. O
Take 0 < 6 < §,. For x € R3, define

V0 (x) =% (x) V¥ (X, 23 — m.pd),

=
=
@
=
@
<
| &
%
Il
G
(D

(x)) — eQ (9(x)) sech(axs) with

@(X) — h(x/)/m* - p5 + 1/) (Oz"Eg)/Oé.
1+ (ax3)2

In view of w_ (x,¢;0) < v (x,t + T’;VO), taking ¢ — oo we have

1 < limi -vY) . .
v (x) < ltlgl_ﬁgjv (x,t;v") (4.36)
Lemma 4.15. We have
lim inf (v2(x)— v (x/,23 — m.pd)) > 0. (4.37)

R—oo x| >R

Proof. 1t is clear that ’Vi (x) = V (X', 23 — m,pd)| — 0 as x5 — +00 uniformly for x’ € R?. In addition,
one can show that

lim sup |V‘i(x) —V (x',z3 — m.pd)| = 0.

R=00 |2 +h(x) >R
It remains to consider |z3 + h(x')| < X3 for some X, > 0 sufficiently large and z3 < X;. To ensure that
|x| — 400, there must be 23 — —oo. By the definition of ¥ (x) we have

lim sup ‘V‘s (x) — v (x',23 — m*p6)| =0.

R0 |gy ph(x')|<X2,23<—R

Since v~ (X', 23 — m.pd) < V (x', 23 — m.pd), it follows that (4.37) holds. The proof is completed. O



34 Wang Z-C et al. Sci China Math April 2016 Vol. 59 No.4

Lemma 4.16. The limit of v (X,t;v‘i) as t — oo exists and the limit function
) 1 —
Vo (x) := thj&v (x,8;v2)

satisfies L[V3] =0, v2 < VI <V and Vi(x) > V(x', 23 — m.pd) on R3.
Proof. Take v* (x) = v® (x)Vv~(x). Then v® < v*. By the comparison principle, we have v (x, t; v‘i) <
v (x, t; v*_). It follows from Theorem 4.13 that

lim sup |v (-, v:) = V()| =0.

t—o0 x€R3

Since v&

exists with

is a subsolution of (1.4), the solution v (x7 t; v‘i) is increasing in t and the limiting function V¢

E[Vf]anndv‘iSV‘;gV.

*

By (4.36), we get limpg .o infjy>r (V(S_ (x) —v~ (x',23 — m*pé)) > 0. Applying Proposition 4.5 we
further have
lim inf (Vf(x) -V, z3— m*pé)) > 0. (4.38)

R=00 |x|>R
We prove V¢(x) > V(x/, 23 — m.,pd) for all x € R by contradiction. Take
A* =min {A > 0| VI(x) > V(x', x5 — ) for x € R%}

and assume A* > m,pd. By (4.38), we have V (-, — A*) # V*‘sﬂ- (-,) for all i = 1,--- , N. Furthermore,
the strong maximum principle implies that

V(x,z3 — A*) < VO (x) for x € R3. (4.39)

Note that limp_, o SUD gy +h(x')|> R %

x)‘ = 0. Take R, > 0 large enough so that

2p sup
|z3+h(x")|>R.—pds

9,
%V(x ,x3 — A%)| < qo.

By vo(x) < VI(x) and V (x/,23 — A*) < V (X', 23 — m,pd) for x € R? and (4.38), we can choose a
A=

0 < h* < min {5— *"5} small enough such that

V (¥, 23 — A* +2ph*) < VO (x) in D/, (4.40)
where
D' = {(x) : |23 + h(x)| < R.}.
In RS\D’ , we have
V (x' 23— A" +2ph*) =V (X', 23 — A¥)

= 2ph*/ —V (x', w3 — A* +20ph*)df < h*Q™,
8953

which implies that
W~ (x', 23 — A" + 2ph*,0; h")
<V (x,23 — A" +2ph") —h*QT < V(x/,z3—A*) in R¥\ D" (4.41)

Combining (4.39), (4.40) and (4.41), we have W~ (x/,x3 — A* +2ph*,0;h*) < VI (x) in R3. Since
W™ (%', 23 — A* 4+ 2ph*,t; h*) is a subsolution of (2.1), Corollary 2.3 yields that

W™ (%', 25 — A" 4+ 2ph*, t; ") < VO (x) in R3 x [0,00) .

Letting ¢t — oo in the last inequality, we get V (x, 23 — A* + ph*) < V¢ (x) in R3, which contradicts the
definition of A*. This completes the proof. O
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Theorem 4.17. Assume that (H1)-(H5) hold. If v° (x) satisfies v°(x) < v (x) and v°(x) € [E~,E¥]
for x € R® and

lim sup |v0 (x) = v~ (x)| =0,
Y7 xeD(y)

then the solution v (x,t;v°) of (1.4)-(1.5) satisfies
lim ||V (.’t;vo) -V (.)||C(R3) =0.

t—o00

Proof. Give any § < %*7 by v¥(x) < v~ (x) we have v (x,t;v?) < V(x) for any x € R® and ¢t > 0.

Since limy_s 1o v (x,t;v‘i) = Vi(x) > V (x/,x3 — m.pd), there exists £ > 0 such that v (x,t;v‘i) >
V (x', 23 — m.pd) — dqol for t > . Tt follows from Lemma 4.14 that
v (X7 T’;VO) >v_(x)—6QF.
Then by (4.36) there exists ¢’ > 0 so that
v (x,t + T';VO) > vo (x) — 6qoe_/\°£I for t >t
By Lemma 4.2, we have v (X7 t+t' +T; VO) >v (x,f; v‘i) — 0qol. Therefore, we have
v(x,t+t +Tv%) >V (x', 23 — m.pS) — 26go1
for x € R3. By Lemma 4.11, we have
v(x,t+t+t +T5v0) > W (%, 23 — m.pd, t;26)
for ¢ > 0. Then
V(x)>v(x,t+t+t'+Tv") >V (X, 23 — m.pd — 2pd) — 20¢°Te Pt t > 0.
It follows that for any t > Ts ==t +t' + 1",
v (x,t;v) > V (x) — 26¢°T — 2M" pdT — M"'m,, pdL,

where M" = sup,cps a%gV(x)‘. From the arbitrariness of § > 0, we have that v (-,t; VO) converges to

V (-) ast = 00 in ||[|g(gs)- The proof is completed. O
Proof of Theorem 1.1. Take v°(x) = u%(z). Let

vi(x) = v (x) Vv’(x) and v? (x) = v (x) A vO(x).
Then E- < v < v~ évg_éE"',E_ gvggv0<v3<E+ and

lim sup ‘vi (x)—v~ (X)’ =0.
TR xeD(r)
Note that u (x, t; uo) =v (x’, x3 + st, t; VO). By the comparison principle and using Theorems 4.13 and
4.17, we complete the proof.
The following corollary shows that a three-dimensional pyramidal traveling front is uniquely determined
as a combination of two-dimensional V-form fronts.

Corollary 4.18. Assume that (H1)-(H5) hold. Let V be the three-dimensional pyramidal traveling front
associated with the pyramid —xs = h(x’). If (1.6) has a solution W with

lim sup |W(x)— V(x)| =0,

Y7 xeD(v)

then W =V.
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5 Applications
In this section we apply the results of this paper to three important models in biology.

5.1 Two Species Lotka-Volterra Competition-diffusion Systems

Consider a Lotka-Volterra competition-diffusion system with two components:

1o}
{ ortn = Aumule ) [L—wot) —kwot], pe o (5.1)

%UQ = dAUQ + TUQ(X, t) [1 — UQ(X, t) — k2u1 (X, t)} s

where ki, ko, r and d are positive constants. The variables u;(x,t) and us(x,t) stand for the population
densities of two competing species, respectively. Assume that k1 > 1 and ko > 1. Note that system (5.1)
is normalized so that it has the equilibrium solutions (u,us2) = (1,0), (0, 1), denoted by E, = (1,0) and
E, = (0,1). It is well known that system (5.1) admits a planar traveling wave solution ®(x - e + ct) :=
(p1(x-e+ct), p2(x - € + ct)) with wave speed ¢ € R, which connecting E,, = (1,0) and E, = (0,1),
see [18,19,30] and the references therein, where e € R? and |e| = 1. In particular, the traveling wave
solution ®(&) = (¢1(€), #2(£)) is unique up to translation. It should be pointed out that to determine
the sign of the wave speed ¢ for (5.1) is a difficult job. Recently, some sufficient conditions have been
obtained for the positivity of the wave speed ¢, see Alcahrani et al. [1] and Guo and Lin [18].
Put u3 =1 — ug, then system (5.1) reduces to (for the sake of simplicity, we drop the symbol )

o, _
{ sru1r = Auy +ur(x,8) [1 — k1 — ui(x, 1) + krug(x,1)] xeR3 t>0. (5.2)

%ug = dAug + 1 (1 — ua(x,t)) [kau1 (x,t) — u2(x,t)],

Correspondingly, the equilibria E, = (1,0) and E, = (0,1) become E! = (1,1) and E° = (0,0),
respectively. In addition, (5.2) admits a unique traveling wave solution

U(x-e+ct):=(1(x-e+ct),Pa(x-e+ct))

connecting E® = (0,0) and E! = (1,1). It is easy to verify that (H1)-(H4) hold, see the arguments of
Example 1 in Wang [53, Section 5]. Furthermore, we assume that the planar wave speed ¢ > 0. Then
(H5) holds.

Fix s > ¢ > 0. Let h;(x') (j = 1,---,n), h(x') and D(vy) be defined in Section 1. It follows from
Theorem 1.1 that there exists a solution u(x,t) = V(x',z3 + st) = (Vi1(x',x3 + st), Vo(x', 23 + st)) of
(5.2) satisfying V(x) > ¥~ (x) for x € R® and

lim sup ’V(x) - ‘I’_(X)‘ =0,
Y7 xeD(v)

where
T () = @ (S (s +h)) = (n (S s+ 0 2 ( (s +0x)) ).
Moreover, for any u’(x) € C (R?,[E®, E']) satisfying

lim sup ’uo(x) - V(x)| =0,
YO xeD(y)

the solution u(x,t;u’) of (5.2) with initial value u® satisfies

lim ||u(~, Stu) = V(- 4 st

P )HC(RZXIR) =0.

Returning to system (5.1), we know that there exists a solution

u(x,t) = Ux' 23 + st) = (Uy(x', 23 + st), Us(x', 23 + st))
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of (5.2) satisfying Uy (x) > ¢ (x) and Uz (x) < ¢ (x) for x € R3, and
lim sup |U(x)— @ (x)| =0,

Y7 xeD(v)
where
O (x) = (67 ()63 () = (@1 (£ (@3 + h(x))) 02 ( (w5 + h(x))) ).
Furthermore, for any u’(x) € C (R?, [E°, E']) satisfying

lim sup ’uo(x) - U(x)| =0,
Y70 xeD(y)

the solution u(x,t;u") of (5.1) with initial value u° satisfies

lim [lu(-,-,t;u’) — U(

S 5t St)||C(R2><R) =0.

5.2 Lotka-Volterra Competition-diffusion Systems with Spatio-temporal Delays

Consider a Lotka-Volterra competition-diffusion system with spatio-temporal delays

{ i1 = Aug 4+ ur(x, ) [1 = ui(x,t) — k1 (91 % u2) (x,1)],

(5.3)
EUQ = dAug + rug(x,t) [1 — u2(x,t) — ka2 (g2 * u1) (x,1)],

where x € R3, ¢ > 0, g1(x,t) = %eiﬁtme_ i s g2(x,t) = e Tth(Mlt)% 6_%7 7; > 0 and
(91 % ug) =[" Jas g1 (x =yt —8)us (y,s) dyds,
(92 * ul f_ fRS 92 -y, t— S) u1 (y7 S) dyd&

which has been studied by Gourley and Ruan [16] and Lin and Li [35]. The coefficients ki, k2, r and d
are assumed to be the same as in section 5.1. After changes of variables (see Example 2 in section 5 of
Wang [53]), system (5.3) reduces to the following system

atul Adq + ul(x t) [1 — k1 — al(X, t) + k‘lﬂg(x, t)] s
EUQ = dAUQ +r (1 — UQ(X, t)) [k2ﬂ4(X, t) — ﬂQ(X’ t)] , (5 4)
Lig = dAiz + 71 (4o — 13),
Ly = Adig + 2 (g — 0a) -
The equilibria of (5.4) corresponding to E, = (1,0) and E, = (0,1) of (5.3) are E; = (1,1,1,1)
and Eq = (0,0,0,0). It is not difficult to show that (H1)-(H4) hold for system (5.4), see also Wang
[53]. Following Lin and Li [35], we know that system (5.4) admits a traveling wave front W (¢) =

(161 (€) s (€) , s (€) 161 (€)) with € = x - e + cf satisfying 1/ (€) > 0 for € € R, W (€) — Bo as £ — —oc
and ¥ (£) — E; as £ — 400, where e € R? and |e| = 1.

Assume ¢ > 0. Then (H5) holds. For any s > ¢ > 0, let h;(x') (j = 1,--- ,n), h(x") and D(y) be
defined in section 5.1. Denote

U(00) = @ (£ (@A) = (w1 (5 (w5 + b)) oo v (S (25 +h(x))) ) -
By Theorem 1.1, for any s > ¢ system (5.4) admits a pyramidal traveling front
V (x',z3+ st) := (Vi (x' 23+ st), -+, Vi (X', 23 + st))

satisfying

AVy(x) — 58%3‘/1(3() + Vi(x)[1 =k — Vi(x) + k1 Va(x)] =0,

dAVy(x) — s52=Va(x) + 7 (1 = Vo (x)) [kaVa(x) — Va(x)] =0,

AAVA(x) — 552 Va(x) + 71 [Va(x) — Va(x)] = 0.

AV(x) = s550-Va(x) + 72 [Vi(x) = Va(x)] = 0
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for any x € R? and lim,, o Supy¢ p(,) [V(x) — ¥~ (x)| = 0. Moreover, for any

° (x) := (4] (%), , 4 (x))
with @ € C (R3,[0,1]) and
lim sup |ﬁ0(x) - ¥~ (x)’ =0,

T xeD(v)

the solution 1 (x,¢;0°) of (5.4) with initial value 4 satisfies

tlggo Hﬁ ('7 Sl ﬁo) -V ('7 -+ St)HC(R2><R) =0.

It is not difficult to find that ®(&) = (¢1(£), 2(§)) with ¢1(€) = ¥1(€) and ¢P2(§) = 1 — ¥a(€) is a

planar traveling wave front of (5.3), see [35,53]. In addition,
U (x', 23+ st) := (Uy (x',z3 + st) ,Us (X', x5 + st))

with Uy (x/, 23 + st) = Vi (%', 23 + st) and Us (X', x5 + st) = 1 — Vo (x/, 23 + st) is a pyramidal traveling
front of (5.3) satisfying

{ AU, (%) = s52-U1 (%) + Ur (%) [1 = Ur(x) = k1 (91 © Ua) (x)] = 0,
dAUs(x) — SB%BUQ(X) +1rUs(x) [1 — Ua(x) — k2 (92 © U1) (x)] = 0,

and lim.— co SUPxe p(4) |U(X) — €7 (x)| = 0, where

@ (x) = @ ( (@5 + h(x))) = (&1 (£ (23 +hx)) 62 ( (@3 + h(x)) ) .

S S S

& 1 _ s 1 _a?4y?422
(1 ©Us) (x) = ?16 = (4md );6 ads Uy (21 — w, 02 — y, 73 — z — cs) dvdydz,
0 R3 Tas)?
° 1 _ s 1 _12+y2+22
(g2 0 0) (x) = —e a )é e = Uy (v — 2,20 — y,x3 — 2 — cs) dzdydz.
0 RZ 12 TSs)?2

For system (5.3), give an initial value u’(x,6) = (uf(x, ), u(x,6)) with

u)(x,0) € C (R® x (=00,0],[0,1]) and lim sup |u’(x)— @~ (x)| =0.

Y7 xeD(v)
Furthermore, let ud(x) = (g1 * u3) (x,0), ul(x) = (g2 * uf) (x,0) and
@°(x) = (uf(x,0), uy(x, 0), u3(x), ug(x)) -

Let @ (x, t; ﬁo) be the solution of (5.4) with initial value 1°. Then by Lin and Li [35, Theorem 3.3], we
have that u (x7t; uo) = (u1 (X,t; uo) , Us (x,t; uo)) defined by

U1 (x,t;uo) =1 (x,t;ﬁo) , Usg (x,t;uo) =1-—15 (X,t;ﬁo) for t > 0,

and
u; (X,H;uo) =u? (x,0) for 6 <0, i =1,2,

is a classical solution of (5.3) with initial u®. Following the previous arguments, we have

Jim [l (s t500) = UG 58| oy = 0
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5.3 Reaction-Diffusion Systems with Multiple Obligate Mutualists

Consider a system of m obligate mutualists:

(5.5)

1+ -1 : s U
%Ui (x, Y, t) = D;Au; + u; <_(m — 2) —u; + ( (m )6) Zlg]gm’ﬁéz uj) s

L+ B2 igicmgri Wi
where D; > 0, 8 > %7 t=1,2,--- ;m and m > 3. This system has been studied by Mischaikow and
Hutson [37], see also the references therein. The system exactly admits three equilibria Eg = (0,--- ,0),
Ey = ﬁ (1,---,1), E; = (1,---,1). As showed by Wang [53], system (5.5) satisfies (H1)-(H4)
by replacing E~ and Et with Eq and Eq, respectively. It follows from [37] that system (5.5) admits a
traveling wave front ® (&) = (¢1(£),- -+, ¢n(€)) connecting Eq and E1, where ¢ = x-e + ct, e € R? and
le| = 1. In addition, the traveling wave front is unique up to translation and satisfies ¢;(£) > 0 for £ € R.
Assume that ¢ > 0 (in fact, when Dy = --- = D,, and § + % — oo T e I (14 B8(m—1)) >0,
there holds ¢ > 0). Then Theorem 1.1 is applicable to system (5.5).

6 Discussion

In the last a few years, great attention has been paid to the study of multidimensional traveling fronts
for scalar reaction-diffusion equations and various new types of nonplanar traveling waves have been
observed, such as V-formed curved fronts for two-dimensional spaces (Bonnet and Hamel [2], Hamel et
al. [21-23], Ninomiya and Taniguchi [39,40] and Gui [17], Wang and Bu [55], Wang and Wu [57], Sheng et
al. [46]), cylindrically symmetric traveling fronts (Hamel et al. [22,23]) and traveling fronts with pyramidal
shapes (Taniguchi [47-50], Kurokawa and Taniguchi [32], Sheng et al. [45]) in higher dimensional spaces.

For systems of reaction-diffusion equations, most results are on two-dimensional V-form curved fronts
(Haragus and Scheel [26-28], Wang [53]). For Lotka-Volterra competition-diffusion systems in higher
dimensional spaces, Ni and Taniguchi [41] established the existence of pyramidal traveling wave solutions.
In this article, by extending the arguments of Taniguchi [47, 48] for a scalar equation and using the
aproaches of Wang [53] for a system, we studied the existence, uniqueness and stability of traveling
waves of pyramidal shapes for reaction-diffusion systems in the three dimensional space R? and applied
the theoretical results to some biological models, such as competition-diffusion systems with or without
spatio-temporal delays and reaction-diffusion systems of multiple obligate mutualists.

Recently, we (Wang, Niu and Ruan [56]) have established the existence of axisymmetric traveling fronts
in Lotka-Volterra competition-diffusion systems in the three dimensional space R3, that is, traveling fronts
which are axially symmetric with respect to the x3-axis. However, we were unable to prove the uniqueness
and stability of such axisymmetric traveling fronts. It will be interesting to study the existence, uniqueness
and stability of axisymmetric traveling fronts and other types of nonplanar traveling fronts for reaction-
diffusion systems in higher dimensional spaces.
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