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Abstract

This paper deals with the existence of travelling wave fronts in reaction–diffusion systems
with spatio-temporal delays. Our approach is to use monotone iterations and a nonstandard
ordering for the set of profiles of the corresponding wave system. New iterative techniques are
established for a class of integral operators when the reaction term satisfies different monotonicity
conditions. Following this, the existence of travelling wave fronts for reaction–diffusion systems
with spatio-temporal delays is established. Finally, we apply the main results to a single-species
diffusive model with spatio-temporal delay and obtain some existence criteria of travelling wave
fronts by choosing different kernels.
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1. Introduction

The theory of travelling wave solutions of parabolic differential equations is one of
the fastest developing areas of modern mathematics and has attracted much attention
due to its significant nature in biology, chemistry, epidemiology and physics, (see
[4,8,23,27,31,32,34]). Travelling wave solutions are solutions of special type and can be
usually characterized as solutions invariant with respect to transition in space. From the
physical point of view, travelling waves describe transition processes. These transition
processes (from one equilibrium to another) usually “forget” their initial conditions and
the properties of the medium itself.

Among the basic questions in the theory of travelling waves, the existence of travel-
ling wave solutions is an important objective. The case of a scalar reaction–diffusion
equation has been rather well studied, basically due to applicability of comparison
theorems of a special kind for parabolic equations and of phase space analysis for
the ordinary differential equations, see [4,8,23,31,34]. For systems of reaction–diffusion
equations modeling various biological phenomena, many results have been established
in [23,27,31]. Since comparison theorems are, in general, not applicable for reaction–
diffusion systems and the phase space analysis becomes more complicated, some new
approaches, such as the Conley index and degree theory methods, have been developed
in [23,27,31].

Recently, many researchers have paid attention to travelling wave solutions for
reaction–diffusion equations with time delays, for example, see [1,11,17–19,22,26,29,32,
33,36]. In a pioneering work, Schaaf [26] systematically studied two scalar reaction–
diffusion equations with a single discrete delay for the so-called Huxley nonlinearity as
well as Fisher nonlinearity by using the phase space analysis, the maximum principle
for parabolic functional differential equations and the general theory for ordinary func-
tional differential equations. For reaction–diffusion systems with quasimonotonicity and
a single discrete delay, Zou and Wu [36] established the existence of travelling wave
fronts by first truncating the unbounded domain and then passing to a limit. Wu and
Zou [33] further considered more general reaction–diffusion systems with a single delay
and obtained some results on the existence of travelling wave fronts, where the well-
known monotone iteration techniques for elliptic systems with advanced arguments in
[20,24] are used. The results are applicable to delayed Fisher-KPP equation, Belousov–
Zhabotinskii model with delay, and some other models, see [11,1,17,29], etc. Following
Wu and Zou [33], Ma [22] employed the Schauder’s fixed point theorem to an operator
used [33] in a properly chosen subset of the Banach space C(R, Rn) equipped with
the so-called exponential decay norm. The subset is constructed in terms of a pair of
upper-lower solutions, which is less restrictive than the upper-lower solutions required
in [33]. This makes the searching for the pair of upper-lower solutions slightly easier.
Since Ma [22] only considered delayed systems with quasimonotone reaction terms,
Huang and Zou [18] extended the results of Ma [22] to a class of delayed systems
with nonquasimonotone reaction terms.

In ecology, since populations take time to move in space and usually were not at the
same position in space at previous times, sometimes it is not sufficient only to include
a discrete delay or a finite delay in a population model. Motivated by this, Britton
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[5,6] considered comprehensively the two factors and introduced the so-called spatio-
temporal delay or nonlocal delay, that is, the delay term involves a weighted spatio-
temporal average over the whole of the infinite spatial domain and the whole of the
previous times. Since then, great progress has been made on the existence of travelling
wave fronts in reaction–diffusion equations with spatio-temporal delays, see [1–3,9,10,
12–16,21,25,28,30,35]. There are three methods which have been used to prove the
existence of travelling wave solutions in these works. The first one is the perturbation
theory of ordinary differential equations coupled with Fredholm alterative, see [1] for
an age-structured reaction–diffusion model with nonlocal delay and Gourley [9] for a
nonlocal Fisher equation. The second one is the geometric singular perturbation theory
of Fenichel [7], see [2,10,16,25,30]. More precisely, if the corresponding undelayed
system under consideration has a travelling wave solution, then, by choosing special
kernels and applying the geometric singular perturbation theory, the reaction–diffusion
system with spatio-temporal delay also has a travelling wave solution when the delay
is sufficiently small. The third one is the monotone iteration approach of Wu and
Zou [33], we refer to [21,28,35] for several special reaction–diffusion models with
distributed delay or spatio-temporal delay, where the quasimonotonicity condition is
required. However, as pointed out by Al-Omari and Gourley [1], the approach of Wu
and Zou [33] cannot be applied directly to reaction–diffusion systems with distributed
delay or spatio-temporal delay since it requires that the delayed term remains local in
space.

It is natural to ask if the above results of Lan and Wu [19] and Wu and Zou [33]
can be extended to general reaction–diffusion equations with distributed delays and
spatio-temporal delays. A prototype of such equations takes the form

�u(t, x)

�t
= D

�2
u(t, x)

�x2
+ f (u(t, x), (g ∗ u)(t, x)) , (1.1)

where t �0, x ∈ R, D = diag (d1, . . . , dn) , di > 0, i = 1, . . . n, n ∈ N; u (t, x) =
(u1 (t, x) , . . . , un (t, x))T , f ∈ C

(
R2n, Rn

)
, and

(g ∗ u) (t, x) =
∫ t

−∞

∫ +∞

−∞
g (t − s, x − y) u (s, y) dy ds (1.2)

or

(g ∗ u) (t, x) =
∫ t

−∞
g (t − s) u (s, x) ds. (1.3)

The purpose of this paper is to establish the existence of travelling wave fronts of
(1.1). A travelling wave front is a solution u(t, x) = �(x + ct), where c > 0 is a given
constant and � ∈ BC2(R, Rn) (see Section 2) is an increasing function satisfying the
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following functional differential system:

−D�′′ (t) + c�′ (t) = f (� (t) , (g ∗ �) (t)) , t ∈ R, (1.4)

and the conditions

� (−∞) = 0 and � (+∞) = K with 0 <s K, (1.5)

where the notation <s is defined in Section 2 and

(g ∗ �) (t) =
∫ +∞

0

∫ +∞

−∞
g (s, y) � (t − y − cs) dy ds (1.6)

or

(g ∗ �) (t) =
∫ +∞

0
g (s) � (t − cs) ds. (1.7)

Our main idea is to change the existence problem for the functional differential system
(1.4) into a fixed point problem for an integral operator of the form

A� (t) ≡
∫ +∞

−∞
k (t, s) ((F�) (s) + �� (s)) ds = � (t) , t ∈ R, (1.8)

where F : BC[0, K] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is a suitable map. (The symbols and

the precise definitions of conceptions mentioned in this section will be given later in
this paper.) New iterative techniques are established for the map A, which can be used
to treat the existence of travelling waves for (1.1). The main difficulty in establishing
the theory is that the map A may not be continuous and it is not clear if A(E) is
compact in BC(R, Rn) for all bounded sets E in BC[0, K]. This idea was first used
by Lan and Wu [19] to study the existence of travelling wave solutions of the scalar
reaction–diffusion equation with and without delay of the form

�u(t, x)

�t
= D

�2
u(t, x)

�x2
+ f (u(t, x), u(t − r1, x), . . . , u(t − rn, x)) . (1.9)

Since the approach of Lan and Wu [19] is only applicable to scalar reaction–diffusion
equations without and with discrete delays, we must search for new techniques for
our reaction–diffusion systems with spatio-temporal delays. To overcome the difficulty,
we introduce and employ the so-called M-continuity for F and show that the closure
of P b

a A(E) is compact in C
([a, b], Rn

)
for each bounded subset E, where P b

a maps
each element in BC(R, Rn) to its restriction to [a, b], which are extensions of Lan and
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Wu [19]. In order to describe the monotonicity of reaction nonlinear terms, in addition
to �-increasing introduced in [19], we also introduce two new concepts: �∗-increasing
and �∗∗-increasing, which include the cases that the reaction terms do not satisfy the
quasimonotonicity condition, in particular, the later is new since it was not considered
[19,33]. These, together with Lebesgue’s dominated convergence theorem and uniform
convergence of the integral

∫∞
−∞ g(t, x) dx in t ∈ [0, a], where a > 0, enable us to

prove that the iterative sequences involved are convergent in some sense. Thus, we can
apply the monotone iteration technique coupled with the upper-lower solutions and a
nonstandard ordering in the profile set to deal with the existence of travelling wave
fronts of reaction–diffusion systems with spatio-temporal delays. Here we need to point
out that uniform convergence of the integral

∫∞
−∞ g(t, x) dx in t ∈ [0, a], a > 0, is not

a more restrictive condition. In fact, many known kernel functions g(t, x), such as

g (t, x) = 1

�
e− t

� � (x) , � > 0, (1.10)

g (t, x) = � (t)
1√
4��

e
− x2

4� , � > 0, (1.11)

and

g (t, x) = 1

�
e− t

�
1√
4�t

e− x2
4t , � > 0 (1.12)

satisfy this condition, which will be verified in Section 5.
The rest of this paper is organized as follows. Section 2 is devoted to some prelim-

inary discussions. We introduce a class of maps, which are bounded, M-continuous,
�-increasing, �∗-increasing and �∗∗-increasing, respectively, and provide some basic
properties. In Section 3, we develop a monotone iteration scheme and apply it to
establish the existence of solutions for the second-order system of functional differen-
tial equations if the nonlinear term satisfies one of the �-increasing, �∗-increasing or
�∗∗-increasing conditions. Following this, we establish the existence of travelling wave
fronts in Section 4. In the last section, we apply our results to a diffusive single-species
model with spatio-temporal delay. By constructing a pair of the upper and lower solu-
tions, the existence of travelling wave front are obtained by choosing different kernel
functions, such as (1.10)–(1.12).

2. Preliminaries

In this section, we introduce some definitions and lemmas, which will be needed in
the sequel.

We denote by C(R, Rn), C((−∞, b], Rn) and C([a, b] , Rn) the space of all contin-
uous vector functions defined on R, (−∞, b] and [a, b] with sup-norm, respectively.
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Let

BC(R, Rn) =
{

x ∈ C(R, Rn) : x = (x1 (t) , . . . , xn (t))T , xi (t) ∈ C(R),

max1� i �n sup{|xi (t)| : t ∈ R} < ∞
}

and

BC2(R, Rn) =
{

x ∈ BC(R, Rn) : x′, x′′ ∈ BC(R, Rn),

x′ = (x′
1 (t) , . . . , x′

n (t))T , x′′ = (x1
′′ (t) , . . . , xn

′′ (t))T
}

.

Obviously, BC(R, Rn) and BC2(R, Rn) are Banach spaces with the norms

‖x‖BC(R,Rn) = max
1� i �n

sup {|xi (t)| : t ∈ R}

and

‖x‖BC2(R,Rn) = max
{‖x‖BC(R,Rn), ‖x′‖BC(R,Rn), ‖x′′‖BC(R,Rn)

}
,

respectively. For simplicity, we write ‖ · ‖ = ‖ · ‖BC(R,Rn). We also denote by

L∞ (
R, Rn

) = L∞ (R) × · · · × L∞ (R)

with the norm

‖x‖L∞(R,Rn) = max
1� i �n

‖xi‖L∞(R).

The following lemma provides relations between BC(R, Rn) and C([a, b] , Rn),
which is an extension of Lemma 2.1 in [19]. Its proof is straightforward and omitted.

Lemma 2.1. Let {xm} be a sequence in the Banach space BC(R, Rn), where m ∈ N.

(i) ‖x‖ = sup
{‖x‖C([a,b],Rn) : −∞ < a < b < ∞}

for x ∈ (BC(R, Rn).
(ii) If {xm}∪{x} ⊂ BC(R, Rn) and ‖xm −x‖ → 0 (m → ∞), then ‖xm −x‖C([a,b],Rn)

→ 0 (m → ∞) for a, b ∈ R with a < b.
(iii) If {xm} ∪ {x} ⊂ BC(R, Rn) and ‖xm − x‖C([a,b],Rn) → 0 (m → ∞) for a, b ∈ R

with a < b, then xm (t) → x (t) (m → ∞) for each t ∈ R.

In the rest of this paper, we use the usual notations for the standard ordering in Rn.
That is, for � = (�1, . . . , �n)

T ∈ Rn and � = (
�1, . . . , �n

)T ∈ Rn, we denote ��� if
�i ��i , i = 1, . . . , n and � < � if ��� but � �= �. In particular, we denote � <s �
if �i < �i , i = 1, . . . , n. For u, v ∈ L∞ (

R, Rn
)
, we denote u�v if ui (t) �vi (t),

i = 1, 2, . . . , n, a.e. on R and u < v if u �= v. For given �, � ∈ Rn with � <s �, let
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BC
[
�, �

] = {
x ∈ BC(R, Rn) : ��x(t)��, t ∈ R

}
. If T x�Ty for x, y ∈ BC

[
�, �

]
with x�y, we say the map T : BC

[
�, �

] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is increasing.

For any 	 ∈ Rn, let 	̂ denote a constant vector function on t ∈ R taking the vector 	.
Now, we introduce several concepts of �-increasing, �∗-increasing and �∗∗-increasing

maps, where the concept of a �-increasing map was introduced by Lan and Wu [19].

Definition 2.2. A map T : BC
[
�, �

] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is said to be �-

increasing if there exists a matrix � = diag
(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n, such

that Ty + �y�T x + �x for x, y ∈ BC
[
�, �

]
with x�y.

Definition 2.3. A map T : BC
[
�, �

] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is said to be �∗-

increasing if there exists a matrix � =diag
(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n, such

that Ty+�y�T x+�x, where x, y ∈ BC
[
�, �

]
with x�y satisfy that e�t [y (t) − x (t)]

is increasing in t ∈ R.

Definition 2.4. A map T : BC
[
�, �

] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is said to be �∗∗-

increasing if there exists a matrix � =diag
(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n, such

that Ty+�y�T x+�x, where x, y ∈ BC
[
�, �

]
with x�y satisfy that e�t [y (t) − x (t)]

is increasing in t ∈ R and e−�t [y (t) − x (t)] is decreasing in t ∈ R.

In order to establish our iterative techniques, we need the so-called M-continuity for
a map.

Definition 2.5. A map T : BC
[
�, �

] ⊂ BC(R, Rn) → L∞ (
R, Rn

)
is said to be

M-continuous on BC
[
�, �

]
if {xm} ∪ {x} ⊂ BC

[
�, �

]
and ‖xm − x‖C([a,b],Rn) → 0

(m → ∞) for a, b ∈ R with a < b imply (T xm) (t) → (T x) (t) (m → ∞) a.e. on R.

3. Systems of the second-order functional differential equations

In this section, we consider the existence of solutions for systems of the second-order
functional differential equations of the form

−D�′′ (t) + c�′ (t) = �
(
�t

)
a.e. on R, (3.1)

where D = diag (d1, d2, . . . , dn) , di > 0, i = 1, 2, . . . , n; c ∈ R, � : BC[�, �] ⊂
BC(R, Rn) → Rn is bounded and �t (·) ∈ BC[�, �] is defined by �t (s) = � (t + s),
� ∈ BC[�, �], s ∈ R; �, � ∈ Rn with � <s �.

Let

Y = {
x ∈ BC(R, Rn) : x′, x′′ ∈ L∞ (

R, Rn
)}

.

Then Y is a Banach space with the norm

‖x‖Y = max
{‖x‖, ‖x′‖L∞(R,Rn), ‖x′′‖L∞(R,Rn)

}
.
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In particular, if we set Y0 = {
x ∈ BC(R) : x′, x′′ ∈ L∞ (R)

}
, then Y = Y0 × · · · ×

Y0.

Now, by a solution to (3.1) we mean a function � ∈ Y and satisfies (3.1).
Let �i > 0, i = 1, 2, . . . , n. We write


i1 = c −√
c2 + 4�idi

2di

, 
i2 = c +√
c2 + 4�idi

2di

.

Then 
i1 < 0 < 
i2 and −di

2
ij + c
ij + �i = 0, where i = 1, 2, . . . , n; j = 1, 2. Let

�i = di (
i2 − 
i1). Define a matrix map k (t, s) by

k (t, s) = diag(k1 (t, s) , . . . , kn (t, s)),

where

ki (t, s) = �−1
i

{
e
i1(t−s) for s� t,

e
i2(t−s) for s� t,

and i = 1, 2, . . . , n.
We now consider the linear integral operator L : L∞ (

R, Rn
) → Y defined by

(L�) (t) =
∫ +∞

−∞
k (t, s) � (s) ds, (3.2)

where

(L�) (t) = ((
L1�1

)
(t) ,

(
L2�2

)
(t) , . . . ,

(
Ln�n

)
(t)
)T (3.3)

and

(
Li�i

)
(t) =

∫ +∞

−∞
ki (t, s) �i (s) ds.

By Lan and Wu [19, Theorem 3.1, p. 179], we know Li maps L∞ (R) onto Y0, so
we obtain the following theorem:

Theorem 3.1. The map L defined in (3.2) maps L∞ (
R, Rn

)
onto Y and is linear,

bounded, and one to one. Moreover, L maps BC(R, Rn) onto BC2(R, Rn) and is
linear, bounded, and one to one.

Similar to that of [19], we now introduce the concept of G-compactness and show
that the map L is G-compact. The concept of G-compactness is sufficient for us to
establish our iterative scheme.
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We define a map P b
a : BC(R, Rn) → C([a, b] , Rn) by P b

a x (t) = x (t) |[a,b], where
x (t) |[a,b] denotes the restriction of x (t) to [a, b] .

Definition 3.2. A map T : L∞ (
R, Rn

) → BC(R, Rn) is said to be G-compact if

P b
a T (E) is compact in C([a, b] , Rn) for all a, b ∈ R with a < b and every bounded

subset E ⊂ L∞ (
R, Rn

)
.

Lemma 3.3. Assume Ti : L∞ (R) → BC(R) is G-compact, i = 1, 2, . . . , n, then the
map T : L∞ (

R, Rn
) → BC(R, Rn) defined by

(T x) (t) = ((T1x1) (t) , (T2x2) (t) , . . . , (Tnxn) (t))T

is G-compact.

Proof. Let E ⊂ L∞ (
R, Rn

)
be a bounded subset and Pi : x (t) → xi (t) be a project

operator. Let Ei = PiE. Then E ⊂ E1 × · · · × En and Ei is a bounded subset in
L∞ (R) . For x (t) ∈ E, we have

(T x) (t) = ((T1x1) (t) , (T2x2) (t) , . . . , (Tnxn) (t))T

∈ T1 (E1) × T2 (E2) × · · · × Tn (En)

and

P b
a (T x) (t) =

(
P b

a (T1x1) (t) , P b
a (T2x2) (t) , . . . , P b

a (Tnxn) (t)
)T

∈ P b
a T1 (E1) × P b

a T2 (E2) × · · · × P b
a Tn (En) .

Thus,

P b
a T (E) ⊂ P b

a T1 (E1) × P b
a T2 (E2) × · · · × P b

a Tn (En)

and

P b
a T (E) ⊂ P b

a T1 (E1) × P b
a T2 (E2) × · · · × P b

a Tn (En).

Since Ti : L∞ (R) → BC(R) is G-compact, P b
a Ti (Ei) is compact in C([a, b] , R),

then

P b
a T1 (E1) × P b

a T2 (E2) × · · · × P b
a Tn (En)

is compact in C([a, b] , Rn) and P b
a T (E) is compact in C([a, b] , Rn) too. By Defi-

nition 3.2, we know that T : L∞ (
R, Rn

) → BC(R, Rn) is G-compact. The proof is
complete. �
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Theorem 3.4. The map L defined in (3.2) maps L∞ (
R, Rn

)
into BC(R, Rn) and is

G-compact.

Proof. By Lan and Wu [19, Theorem 3.2, p. 179], we know that Li : L∞ (R) →
BC(R) is G-compact. Following (3.3) and Lemma 3.3, L is G-compact. The proof is
complete. �

Now we define an integral operator A by

(A�) (t) ≡
∫ +∞

−∞
k (t, s) ((F�) (s) + �� (s)) ds, t ∈ R,

where F : BC[�, �] → L∞ (
R, Rn

)
is defined by (F�)(t) = �(�t ). Then we have the

following result:

Lemma 3.5. (i) Let � ∈ Y and � ∈ BC[�, �]. Then � = A� if and only if −D�′′ +
c�′ + �� = F� + ��.

(ii) � is a solution of (3.1) if and only if � ∈ Y and � = A�.

Proof. We only prove (i), the proof of part (ii) is similar and omitted. Suppose that

−D�′′ + c�′ + �� = F� + ��

for � ∈ Y and � ∈ BC[�, �]. In view of

−D (A�) ′′ (t) + c (A�)′ (t) + � (A�) (t) = (F�) (t) + �� (t) ,

we have

−D (� − A�) ′′ (t) + c (� − A�)′ (t) + � (� − A�) (t) = 0.

Let

(� − A�) (t) = w (t) = (w1 (t) , . . . , wn (t))T .

Then

−diwi
′′ (t) + cw′

i (t) + �iwi (t) = 0.

Thus,

wi (t) = ai1e

i1t + ai2e


i2t .



Z.-C. Wang et al. / J. Differential Equations 222 (2006) 185–232 195

Since wi (t) ∈ BC(R), it follows that ai1 = ai2 = 0, i = 1, . . . , n. Hence, w (t) = 0
for t ∈ R, that is, � = A�. The converse is obvious. The proof is complete. �

Lemma 3.6. (i) Assume that F : BC[�, �] → L∞ (
R, Rn

)
is �-increasing and bounded.

If � (t) ∈ BC[�, �] is increasing, then (A�) (t) is also increasing.
(ii) Assume that F : BC[�, �] → L∞ (

R, Rn
)

is �∗-increasing and bounded. If � (t) ∈
BC[�, �] is increasing such that e�t [� (t + s) − � (t)

]
is increasing in t ∈ R for every

s > 0, then (A�) (t) is also increasing in t ∈ R and for c > 1−min
{
�idi; i = 1, . . . , n

}
,

e�t [(A�) (t + s) − (A�) (t)
]

is increasing in t ∈ R for every s > 0.
(iii) Assume that F : BC[�, �] → L∞ (

R, Rn
)

is �∗∗-increasing and bounded, where
� satisfies min

{
�idi; i = 1, . . . , n

}− 1 > 0. If � (t) ∈ BC[�, �] is increasing such that
e�t [� (t + s) − � (t)

]
is increasing in t ∈ R and e−�t [� (t + s) − � (t)

]
is decreasing

in t ∈ R for every s > 0, then (A�) (t) is increasing in t ∈ R and for c with

1 − min
{
�idi; i = 1, . . . , n

}
< c < min

{
�idi; i = 1, . . . , n

}− 1, (3.4)

e�t [(A�) (t + s) − (A�) (t)
]

is increasing and e−�t [(A�) (t + s) − (A�) (t)
]

is de-
creasing in t ∈ R for every s > 0.

Proof. We only show (iii), the proofs of (i) and (ii) are similar. Let �t > 0. Noting that
(F�) (s + �t) = (F��t ) (s) and employing a change of variable, for t ∈ R, we have

(A�) (t + �t) − (A�) (t)

=
∫ t

−∞
k (t, s) ((F�) (s + �t) + �� (s + �t)) ds

+
∫ ∞

t

k (t, s) ((F�) (s + �t) + �� (s + �t)) ds

−
∫ t

−∞
k (t, s) ((F�) (s) + �� (s)) ds −

∫ ∞

t

k (t, s) ((F�) (s) + �� (s)) ds

=
∫ ∞

−∞
k (t, s) [((F�) (s + �t) + �� (s + �t)) − ((F�) (s) + �� (s))] ds

=
∫ ∞

−∞
k (t, s)

[(
(F��t ) (s) + ���t (s)

)− ((F�) (s) + �� (s))
]

ds.

Since � (t) ∈ BC[�, �] is increasing and satisfies that e�t [� (t + �t) − � (t)
]

is in-
creasing and e−�t [� (t + �t) − � (t)

]
in t ∈ R, then e�t [��t (t) − � (t)

]
is increasing,

e−�t [��t (t) − � (t)
]

is decreasing and ��t (t) �� (t) in t ∈ R. Note that F is �∗∗-
increasing, it follows that(

(F��t ) (s) + ���t (s)
)− ((F�) (s) + �� (s)) �0.

Hence, (A�) (t + �t) − (A�) (t) �0, which implies that (A�) (t) is also increasing.
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Let s > 0 and

Hi (�) (t) = (Fi�) (t) + �i�i (t) , i ∈ {1, . . . , n} .

Then for i ∈ {1, . . . , n},

d

dt

{
e−�i t

∫ +∞

−∞
ki (t, �)

[(
(Fi�) (� + s) + �i�i (� + s)

)− (
(Fi�) (�) + �i�i (�)

)]
d�

}

= d

dt

{
�−1

i e(−�i+
i1)t
∫ t

−∞
e−
i1�

[
Hi (�) (� + s) − Hi (�) (�)

]
d�

}

+ d

dt

{
�−1

i e(−�i+
i2)t
∫ +∞

t

e−
i2�
[
Hi (�) (� + s) − Hi (�) (�)

]
d�

}

= (−�i + 
i1
)
�−1

i e(−�i+
i1)t
∫ t

−∞
e−
i1�

[
Hi (�) (� + s) − Hi (�) (�)

]
d�

+�−1
i e(−�i+
i1)t e−
i1t

[
Hi (�) (t + s) − Hi (�) (t)

]
+ (−�i + 
i2

)
�−1

i e(−�i+
i2)t
∫ +∞

t

e−
i2�
[
Hi (�) (� + s) − Hi (�) (�)

]
d�

−�−1
i e(−�i+
i2)t e−
i2t

[
Hi (�) (t + s) − Hi (�) (t)

]
= (−�i + 
i1

)
�−1

i e(−�i+
i1)t
∫ t

−∞
e−
i1�

[
Hi (�) (� + s) − Hi (�) (�)

]
d�

+ (−�i + 
i2
)
�−1

i e(−�i+
i2)t
∫ +∞

t

e−
i2�
[
Hi (�) (� + s) − Hi (�) (�)

]
d�.

Noting that for c < min
{
�idi; i = 1, . . . , n

}− 1 and each i ∈ {1, . . . , n},

−�i + 
i1 = −�i + c −√
c2 + 4�idi

2di

< 0,

−�i + 
i2 = −�i + c +√
c2 + 4�idi

2di

= − �i

(
�idi − c − 1

)
2di�i − c +√

c2 + 4�idi

< 0,

and

Hi (�) (� + s) − Hi (�) (�) = (
(Fi�s) (�) + �i�is (�)

)− (
(Fi�) (�) + �i�i (�)

)
�0,
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we have that e−�t [(A�) (t + s) − (A�) (t)
]

is decreasing in t ∈ R for every s > 0.

Similarly, we can show that for c > 1− min
{
�idi ; i = 1, . . . , n

}
, e�t [(A�) (t + s) −

(A�) (t)] is increasing in t ∈ R for every s > 0. The proof is complete. �

Lemma 3.7. Assume that F : BC[�, �] → L∞ (
R, Rn

)
is bounded and that �,  ∈

BC[�, �] ∩ Y satisfy:

(C0) −D�′′ + c�′ �F� and −D′′ + c′ �F.

Then,
(i) ��A� and A�;

(ii) for c < min
{
�idi; i = 1, . . . , n

}−1, e−�t [ (t) − (A) (t)
]

and e−�t [(A�) (t) −
� (t)] are decreasing in t ∈ R;

(iii) for c > 1− min
{
�idi; i=1, . . . , n

}
, e�t [ (t) − (A) (t)

]
and e�t [(A�) (t) −� (t)

]
are increasing in t ∈ R.

Proof. (i) Let w = A� − � and −Dw′′ + cw′ + �w = r (t). In view of

−D�′′ + c�′ + ���F� + ��

and

−D (A�) ′′ + c (A�)′ + � (A�) = F� + ��,

we know r (t) �0 a.e. on R. From

−Dw′′ + cw′ + �w = r (t) ,

we get

wi (t) = ai1e

i1t + ai2e


i2t +
∫ +∞

−∞
ki (t, s) ri (s) ds.

Since wi (t) is bounded, we have ai1 = ai2 = 0. Consequently,

wi (t) =
∫ +∞

−∞
ki (t, s) ri (s) ds�0, t ∈ R, i = 1, . . . , n.

Thus, we proved that ��A�. Similarly, we can prove that �A.
(ii) By the proof of (i), (A�) (t) − � (t) = w (t) �0, then

d

dt

{
e−�i t

[∫ +∞

−∞
ki (t, �) ri (�) d�

]}

= d

dt

{
�−1

i e(−�i+
i1)t
∫ t

−∞
e−
i1�ri (�) d�

}
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+ d

dt

{
�−1

i e(−�i+
i2)t
∫ +∞

t

e−
i2�ri (�) d�

}

= (−�i + 
i1
)
�−1

i e(−�i+
i1)t
∫ t

−∞
e−
i1�ri (�) d�

+ (−�i + 
i2
)
�−1

i e(−�i+
i2)t
∫ +∞

t

e−
i2�ri (�) d�

�0, i = 1, . . . , n.

This implies that e−�t [(A�) (t) − � (t)
]

is decreasing in t ∈ R.
The other cases are similar and omitted. The proof is complete. �

Lemma 3.8. Assume that F : BC[�, �]→L∞ (
R, Rn

)
is bounded and �, ∈BC[�, �]

with ��.

(i) If F is �-increasing, then (A) (t) � (A�) (t) in t ∈ R;
(ii) If F is �∗-increasing and e�t [ (t) − � (t)

]
is increasing in t ∈ R, then for c >

1 − min
{
�idi; i = 1, . . . , n

}
, (A) (t) � (A�) (t) and e�t [(A) (t) − (A�) (t)

]
is

increasing in t ∈ R;
(iii) If F is �∗∗-increasing, e�t [ (t) − � (t)

]
is increasing and e−�t [ (t) − � (t)

]
is

decreasing in t ∈ R, where � satisfies min
{
�idi; i = 1, . . . , n

} − 1 > 0, then
(A) (t) � (A�) (t), e�t [(A) (t) − (A�) (t)

]
is increasing and e−�t [(A) (t) −

(A�) (t)] is decreasing in t ∈ R, where c satisfies (3.4).

Proof. We only show that (iii) holds. Let

w (t) = (A) (t) − (A�) (t) , t ∈ R.

Then we have

−Dw′′ (t) + cw′ (t) + �w (t) = (F) (t) + � (t) − (F�) (t) − �� (t) �0 on R.

Denote

g (t) = −Dw′′ (t) + cw′ (t) + �w (t) .

Then g (t) �0 a.e. on R and g (t) ∈ L∞ (
R, Rn

)
. By an argument similar to that of

Lemma 3.7, we get (A) (t) � (A�) (t) and

d

dt

{
e−�t [(A) (t) − (A�) (t)

]}
�0 on R for c < min

{
�idi; i = 1, . . . , n

}− 1.
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This implies that e−�t [(A) (t) − (A�) (t)
]

is decreasing in t ∈ R. Similarly, we have
that e�t [(A) (t) − (A�) (t)

]
is increasing in t ∈ R. The proof is complete. �

By Lemma 3.5, we see that a solution of (3.1) is a fixed point of A. Hence, we
have the following main results in this section.

Theorem 3.9. Assume that F : BC[�, �] → L∞ (
R, Rn

)
is bounded and M-continuous.

Assume further that �,  ∈ Y ∩ BC[�, �] with �� satisfy (C0).

(i) If F is �-increasing, then (3.1) has two solutions �∗, ∗ ∈ BC[�, �] with ���∗ �
∗ �. If � and  are increasing, then �∗ and ∗ are increasing. Moreover, for
a, b ∈ R with a < b,

‖�m − �∗‖C([a,b],Rn) → 0 and ‖m − ∗‖C([a,b],Rn) → 0, (3.5)

where �m = A�m−1 , m = Am−1 and

� = �0 ��1 � · · · ��m � · · · �m � · · · �1 �0 = . (3.6)

(ii) If F is �∗-increasing and e�t [ (t) − � (t)
]

is increasing in t ∈ R, then for
c > 1 − min

{
�idi; i = 1, . . . , n

}
, (3.1) has two solutions �∗, ∗ ∈ BC[�, �] with

���∗ �∗ �, which satisfy (3.5) and (3.6). Furthermore, if � and  are in-
creasing such that e�t [ (t + s) −  (t)

]
and e�t [� (t + s) − � (t)

]
are increasing

in t ∈ R for every s > 0, then �∗ and ∗ are increasing.
(iii) If F is �∗∗-increasing, e�t [ (t) − � (t)

]
is increasing and e−�t [ (t) − � (t)

]
is

decreasing in t ∈ R, where � satisfies min
{
�idi; i = 1, . . . , n

}− 1 > 0, then for c

satisfying (3.4), (3.1) has two solutions �∗, ∗ ∈ BC[�, �] with ���∗ �∗ �,
which satisfy (3.5) and (3.6). Furthermore, if � and  are increasing in t ∈ R,
e�t [ (t + s) −  (t)

]
and e�t [� (t + s) − � (t)

]
are increasing in t ∈ R for every

s > 0 and e−�t [ (t + s) −  (t)
]

and e−�t [� (t + s) − � (t)
]

are decreasing in
t ∈ R for every s > 0, then �∗ and ∗ are increasing.

Proof. (i) By Theorem 3.4 and Lemma 3.8(i), A maps BC[�, �] into BC
(
R, Rn

)
and

is increasing, so Lemma 3.7 and condition (C0) imply that (3.6) holds. Then there exist
�∗, ∗ ∈ L∞ (

R, Rn
)

such that

�m (t) → �∗ (t) and m (t) → ∗ (t) for each t ∈ R.

Obviously, ���∗ �∗ � follow from (3.6). By Theorem 3.4, P b
a LH

{
�m

}=
P b

a A
{
�m

}
is compact in C([a, b] , Rn) for a, b ∈ R with a < b. It follows that

there exists y ∈ C([a, b] , Rn) such that ‖A�m − y‖C([a,b],Rn) → 0. Hence, we have
�∗ (t) = y (t) for t ∈ [a, b] and thus, �∗ ∈ BC(R, Rn). Since F is bounded and
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M-continuous, it follows that for each t ∈ R,

ki (t, s)
((

Fi�
m
)
(s) + �i�

m
i (s)

) → ki (t, s)
((

Fi�∗
)
(s) + �i�∗i (s)

)
for s ∈ R,

∣∣ki (t, s)
((

Fi�
m
)
(s) + �i�

m
i (s)

)∣∣ ��ki (t, s) for s ∈ R and some � > 0.

It follows from Lebesgue’s dominated convergence theorem that

Li

((
Fi�

m
)
(t) + �i�

m
i (t)

) → Li

((
Fi�∗

)
(t) + �i�∗i (t)

)
for each t ∈ R and

�∗i = Li

((
Fi�∗

)
(t) + �i�∗i (t)

)
, i = 1, 2, . . . , n.

Hence,

�∗ = L
((

F�∗
)
(t) + ��∗ (t)

) = A�∗.

A similar argument shows that ∗ = A∗. If � and  are increasing, by Lemma 3.6(i),
�m and m are increasing, m ∈ N. Consequently, �∗ and ∗ are increasing. The proof
of (i) is complete.

(ii) Fix c > 1 − min
{
�idi; i = 1, . . . , n

}
. Let m = Am−1 and �m = A�m−1,

m ∈ N. By Lemmas 3.7 and 3.8, 1 = A0 = A and �1 = A�0 = A� satisfy

(I) � (t) �
(
�1
)

(t) �
(
1
)

(t) � (t) for t ∈ R;

(II) e�t
[(

�1
)

(t) − � (t)
]

is increasing in t ∈ R;

(III) e�t
[(

1
)

(t) −
(
�1
)

(t)
]

is increasing in t ∈ R;

(IV) e�t
[
 (t) −

(
1
)

(t)
]

is increasing in t ∈ R.

By induction and the above lemmas, we obtain two sequences of vector functions{
m

}∞
m=1 and

{
�m

}∞
m=1 with the following properties:

(a) � (t) �
(
�m

)
(t) �

(
�m+1

)
(t) �

(
m+1

)
(t) �

(
m

)
(t) � (t) for t ∈ R and m ∈

N;
(b) for m ∈ N, e�t

[(
�m+1

)
(t) − (

�m
)
(t)
]

is increasing in t ∈ R;

(c) for m ∈ N, e�t [(m
)
(t) − (

�m
)
(t)
]

is increasing in t ∈ R;

(d) for m ∈ N, e�t
[(

m
)
(t) −

(
m+1

)
(t)
]

is increasing in t ∈ R.
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By Lemma 3.5, we have

−D
(
m

) ′′ + c
(
m

)′ + �m = F
(
m−1

)
+ �m−1 (m ∈ N) ,

−D
(
�m

) ′′ + c
(
�m

)′ + ��m = F
(
�m−1

)
+ ��m−1 (m ∈ N)

and

� = �0 ��1 � · · · ��m � · · · �m � · · · �1 �0 = .

Then the existence of �∗ and ∗ follow from a similar argument to that in (i).
If � and  are increasing and satisfy that

e�t [ (t + s) −  (t)
]

and e�t [� (t + s) − � (t)
]

are increasing in t ∈ R for every s > 0, then from Lemma 3.6(ii) and by induction,
we see that for m ∈ N, m and �m are increasing in t ∈ R and

e�t [(m
)
(t + s) − (

m
)
(t)
]

and e�t [(�m
)
(t + s) − (

�m
)
(t)
]

are increasing in t ∈ R for every s > 0. Therefore, �∗ and ∗ are increasing. The
proof of (ii) is complete.

(iii) Fix c with (3.4). Let m = Am−1 and �m = A�m−1, m ∈ N. By Lemmas 3.7
and 3.8, 1 = A0 = A and �1 = A�0 = A� satisfy

(I) � (t) �
(
�1
)

(t) �
(
1
)

(t) � (t) for t ∈ R;

(II) e�t
[(

�1
)

(t) − � (t)
]

is increasing and e−�t
[(

�1
)

(t) − � (t)
]

is decreasing in

t ∈ R;

(III) e�t
[(

1
)

(t) −
(
�1
)

(t)
]

is increasing and e−�t
[(

1
)

(t) −
(
�1
)

(t)
]

is decreas-

ing in t ∈ R;

(IV) e�t
[
 (t) −

(
1
)

(t)
]

is increasing and e−�t
[
 (t) −

(
1
)

(t)
]

is decreasing in

t ∈ R.

By induction and the above lemmas, we obtain two sequences of vector functions{
m

}∞
m=1 and

{
�m

}∞
m=1 which satisfy that for m ∈ N,

(a) � (t) �
(
�m

)
(t) �

(
�m+1

)
(t) �

(
m+1

)
(t) �

(
m

)
(t) � (t) for t ∈ R;

(b) e�t
[(

�m+1
)

(t) − �m (t)
]

is increasing and e−�t
[(

�m+1
)

(t) − �m (t)
]

is decreas-

ing in t ∈ R;
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(c) e�t
[(

m+1
)

(t) −
(
�m+1

)
(t)
]

is increasing and e−�t
[(

m+1
)

(t) −
(
�m+1

)
(t)
]

is decreasing in t ∈ R;

(d) e�t
[(

m
)
(t) −

(
m+1

)
(t)
]

is increasing and e−�t
[(

m
)
(t) −

(
m+1

)
(t)
]

is de-

creasing in t ∈ R.

The remainder of the proof is similar to that of (ii) and is omitted. The proof of (iii)
is complete. �

4. Existence of travelling wave fronts

In this section, we shall consider the existence of travelling wave fronts in reaction–
diffusion systems with spatio-temporal delays of the form

�u (t, x)

�t
= D

�2
u (t, x)

�x2
+ f (u (t, x) , (g1 ∗ u) (t, x) , . . . , (gm ∗ u) (t, x)) , (4.1)

where t �0, x ∈ R, D = diag (d1, . . . , dn) , di > 0, i = 1, . . . n, n ∈ N; u (t, x) =
(u1 (t, x) , . . . , un (t, x))T , f ∈ C

(
R(m+1)n, Rn

)
, and

(
gj ∗ u

)
(t, x) =

∫ t

−∞

∫ +∞

−∞
gj (t − s, x − y) u (s, y) dy ds,

the kernel gj (t, x) is any integrable nonnegative function satisfying

gj (t, −x) = gj (t, x) and
∫ +∞

0

∫ +∞

−∞
gj (s, y) dy ds = 1, j = 1, . . . m, m ∈ N.

(4.2)

In the following, we shall apply our theory developed in Section 3 to establish the
existence of travelling wave fronts for system (4.1) and give an iterative scheme to
compute the travelling wave fronts.

Assume u (t, x) = � (x + ct) and replace x + ct with t , then we can write (4.1) in
the form

−D�′′ (t) + c�′ (t) = f (� (t) , (g1 ∗ �) (t) , . . . , (gm ∗ �) (t)) , t ∈ R, (4.3)

where

(
gj ∗ �

)
(t) =

∫ +∞

0

∫ +∞

−∞
gj (s, y) � (t − y − cs) dy ds, j = 1, . . . m.

By a travelling wave front with a wave speed c > 0 to (4.1), we mean an increasing
function � ∈ BC2(R, Rn) and a number c > 0 which satisfy (4.3) and the following
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boundary condition:

� (−∞) = 0 and � (+∞) = K = (K1, . . . , Kn)
T with 0 <s K. (4.4)

Now we make an assumption on the kernels gj (t, x) , j = 1, . . . m, and then list
several propositions of convolutions gj ∗�, j = 1, . . . m. The assumption is as follows:

(H0)
∫ +∞
−∞ gj (t, x) dx is uniformly convergent for t ∈ [0, a], a > 0, j = 1, . . . m. In

other word, if given ε > 0, then there exists M > 0 such that
∫ +∞
M

gj (t, x) dx <

ε for any t ∈ [0, a].
Proposition 4.1. Assume that � (t) ∈ BC(R, Rn) and satisfies

lim
t→−∞ � (t) = �0 and lim

t→+∞ � (t) = �0.

If gj (t, x) satisfies (H0), then

lim
t→−∞

(
gj ∗ �

)
(t) = �0 and lim

t→+∞
(
gj ∗ �

)
(t) = �0, j = 1, . . . , m.

Proof. Fix j ∈ {1, . . . , m}. Let

h (t) =
∫ +∞

−∞
gj (t, x) dx.

Then by (4.2), we have
∫∞

0 h (t) dt = 1. Given ε > 0, there exists A > 0 such that∫ ∞

A

h (t) dt < ε.

Note that (H0) holds, then there exists B > 0 such that for any t ∈ [0, A],∫ +∞

B

gj (t, x) dx <
ε

A
.

By limt→+∞ � (t) = �0, there exists T > 0 such that
∣∣� (t) − �0

∣∣ < ε for any t > T .
Consequently, we have for any t > T + B + cA that∣∣∣∣∫ A

0

∫ +B

−B

gj (s, y)
[
� (t − y − cs) − �0

]
dy ds

∣∣∣∣
�
∫ A

0

∫ +B

−B

gj (s, y)
∣∣� (t − y − cs) − �0

∣∣ dy ds

�ε

∫ A

0

∫ +B

−B

gj (s, y) dy ds�ε.
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In terms of gj (t, −x) = gj (t, x), it follows that

∣∣(gj ∗ �
)
(t) − �0

∣∣ =
∣∣∣∣∫ +∞

0

∫ +∞

−∞
gj (s, y)

[
� (t − y − cs) − �0

]
dy ds

∣∣∣∣
�

∫ +∞

A

∫ +∞

−∞
gj (s, y)

∣∣� (t − y − cs) − �0

∣∣ dy ds

+
∫ A

0

∫ B

−B

gj (s, y)
∣∣� (t − y − cs) − �0

∣∣ dy ds

+
∫ A

0

∫ +∞

B

gj (s, y)
∣∣� (t − y − cs) − �0

∣∣ dy ds

+
∫ A

0

∫ −B

−∞
gj (s, y)

∣∣� (t − y − cs) − �0

∣∣ dy ds

� (6 ‖�‖ + 1) ε,

which implies that limt→+∞
(
gj ∗ �

)
(t) = �0. Similarly, we can show the other. The

proof is complete. �

Proposition 4.2. Assume that
(
�k
)
(t) and � (t) ∈ BC(R, Rn) are uniformly bounded

for k ∈ N and satisfy limk→+∞
∥∥�k − �

∥∥
C([a,b],Rn)

= 0 for a, b ∈ R with a < b. If
gj (t, x) satisfies (H0), then

lim
k→+∞

(
gj ∗ �k

)
(t) = (

gj ∗ �
)
(t)

for each t ∈ R, j = 1, . . . , m.

Proof. Fix j ∈ {1, . . . , m} and t ∈ R, then there exists N > 0 such that t ∈ [−N, N ].
Let M > 0 satisfy

∥∥�k
∥∥ < M and ‖�‖ < M . By a similar argument to that of

Proposition 4.1, for given ε > 0, there exists A > 0 such that∫ ∞

A

h (t) dt < ε,

and there exists B > 0 such that for any t ∈ [0, A],∫ +∞

B

gj (t, x) dx <
ε

A
.

From

lim
k→+∞

∥∥∥�k − �
∥∥∥

C([a,b],Rn)
= 0 for any a, b ∈ R with a < b,
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we know that there exists K ∈ N such that

∥∥∥�k − �
∥∥∥

C([a,b],Rn)
< ε for any k > K,

where −a = b = N + B + cA. Consequently, for any k > K , we have

∣∣∣∣∫ A

0

∫ +B

−B

gj (s, y)
[(

�k
)

(t − y − cs) − � (t − y − cs)
]

dy ds

∣∣∣∣
�
∫ A

0

∫ +B

−B

gj (s, y)

∣∣∣(�k
)

(t − y − cs) − � (t − y − cs)

∣∣∣ dy ds�ε.

In view of gj (s, −x) = gj (s, x), we know that for any k > K ,

∣∣∣(gj ∗ �k
)

(t) − (
gj ∗ �

)
(t)

∣∣∣
=
∣∣∣∣∫ +∞

0

∫ +∞

−∞
gj (s, y)

[(
�k
)

(t − y − cs) − � (t − y − cs)
]

dy ds

∣∣∣∣
�
∫ +∞

A

∫ +∞

−∞
gj (s, y)

∣∣∣(�k
)

(t − y − cs) − � (t − y − cs)

∣∣∣ dy ds

+
∫ A

0

∫ B

−B

gj (s, y)

∣∣∣(�k
)

(t − y − cs) − � (t − y − cs)

∣∣∣ dy ds

+
∫ A

0

∫ +∞

B

gj (s, y)

∣∣∣(�k
)

(t − y − cs) − � (t − y − cs)

∣∣∣ dy ds

+
∫ A

0

∫ −B

−∞
gj (s, y)

∣∣∣(�k
)

(t − y − cs) − � (t − y − cs)

∣∣∣ dy ds

� (6M + 1) ε,

which implies that limk→+∞
(
gj ∗ �k

)
(t) = (

gj ∗ �
)
(t). Noting that t ∈ R and j ∈

{1, . . . , m} are arbitrary, so the conclusion follows. The proof is complete. �

Proposition 4.3. If � (t) ∈ BC(R, Rn) and (H0) holds, then
(
gj ∗ �

)
(t) ∈ BC(R, Rn),

j ∈ 1, . . . , m.
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Proof. Fix j ∈ {1, . . . , m} and t ∈ R. Then there exist N > 0 such that t ∈ [−N, N ].
Let M > 0 satisfy ‖�‖ < M . As above, for given ε > 0, there exists A > 0 such that

∫ ∞

A

h (t) dt < ε,

and there exists B > 0 such that for any s ∈ [0, A],
∫ +∞

B

gj (s, x) dx <
ε

A
.

Since � (s) is uniformly continuous in s ∈ [− (N + B + cA + 1) , N + B + cA + 1],
there exists � with 0 < � < 1 such that |� (s + �) − � (s)| < ε for any � ∈ (−�, �) and
any s ∈ [− (N + B + cA) , N + B + cA]. Following this, we have for any � ∈ (−�, �)

that

∣∣∣∣∫ A

0

∫ +B

−B

gj (s, y)
[
� (t + � − y − cs) − � (t − y − cs)

]
dy ds

∣∣∣∣
�
∫ A

0

∫ +B

−B

gj (s, y) |� (t + � − y − cs) − � (t − y − cs)| dy ds�ε.

Now, for any � ∈ (−�, �),

∣∣(gj ∗ �
)
(t + �) − (

gj ∗ �
)
(t)
∣∣

=
∣∣∣∣∫ +∞

0

∫ +∞

−∞
gj (s, y)

[
� (t + � − y − cs) − � (t − y − cs)

]
dy ds

∣∣∣∣
� (6M + 1) ε,

which implies that

lim
�→0

(
gj ∗ �

)
(t + �) = (

gj ∗ �
)
(t) .

Noting that t ∈ R and j ∈ {1, . . . , m} are arbitrary, we complete the proof. �

For the sake of convenience, we list some kernel functions which have been fre-
quently used in the references.

(A) If gj (t, x) = � (t) � (x), then
(
gj ∗ u

)
(t, x) = u (t, x), which is a local version

without temporal delay, j ∈ {1, . . . , m} , where � (·) is the Dirac delta function.
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(B) If gj (t, x) = � (t) pj (x), then

(
gj ∗ u

)
(t, x) =

∫ +∞

−∞
pj (x − y) u (t, y) dy,

which is a nonlocal version without temporal delay, j ∈ {1, . . . , m}.
(C) If gj (t, x) = �

(
t − �j

)
� (x), then(

gj ∗ u
)
(t, x) = u

(
t − �j , x

)
,

which is a local version with a discrete temporal delay, j ∈ {1, . . . , m}.
(D) If gj (t, x) = �

(
t − �j

)
pj (x), then

(
gj ∗ u

)
(t, x) =

∫ +∞

−∞
pj (x − y) u

(
t − �j , y

)
dy,

which is a nonlocal version with a discrete temporal delay, j ∈ {1, . . . , m}.
(E) If gj (t, x) = qj (t) �(x), then

(
gj ∗ u

)
, (t, x) =

∫ t

−∞
qj (t − s) u (s, x) dx,

which is a local version with distributed temporal delay, j ∈ {1, . . . , m}.
Let

(F�) (t) = �
(
�t

) = f (� (t) , (g1 ∗ �) (t) , . . . , (gm ∗ �) (t)) , t ∈ R. (4.5)

Following the argument in Section 3, (4.3) can be changed into the following integral
equation

� (t) =
∫ +∞

−∞
k (t, s) ((F�) (s) + �� (s)) ds ≡ (A�) (t) , t ∈ R,

where k is the same as that in Section 3. Here we list some conditions, which will be
used in our results.

(H1) There exists a matrix � = diag
(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n such that

f
(
�2 (t) ,

(
g1 ∗ �2

)
(t) , . . . ,

(
gm ∗ �2

)
(t)
)+ ��2 (t)

�f
(
�1 (t) ,

(
g1 ∗ �1

)
(t) , . . . ,

(
gm ∗ �1

)
(t)
)+ ��1 (t) ,

where �1, �2 ∈ C(R, Rn) satisfy 0��1 (t) ��2 (t) �K in t ∈ R.
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(H∗
1) There exists a matrix � = diag

(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n such that

f
(
�2 (t) ,

(
g1 ∗ �2

)
(t) , . . . ,

(
gm ∗ �2

)
(t)
)+ ��2 (t)

�f
(
�1 (t) ,

(
g1 ∗ �1

)
(t) , . . . ,

(
gm ∗ �1

)
(t)
)+ ��1 (t) ,

where �1, �2∈C(R, Rn) satisfy

⎧⎨⎩
(i) 0��1 (t) ��2 (t) �K in t ∈ R;
(ii) e�t [�2 (t) −�1 (t)

]
is increasing in
t ∈ R.

(H∗∗
1 ) There exists a matrix � =diag

(
�1, . . . , �n

)
with �i > 0, i = 1, . . . n such that

f
(
�2 (t) ,

(
g1 ∗ �2

)
(t) , . . . ,

(
gm ∗ �2

)
(t)
)+ ��2 (t)

�f
(
�1 (t) ,

(
g1 ∗ �1

)
(t) , . . . ,

(
gm ∗ �1

)
(t)
)+ ��1 (t) ,

where �1, �2 ∈ C(R, Rn) satisfy

⎧⎨⎩
(i) 0��1 (t) ��2 (t) �K in t ∈ R;

(ii) e�t [�2 (t) − �1 (t)
]

is increasing and
e−�t [�2 (t) −�1 (t)

]
is decreasing in t∈R.

(H2) f (	, . . . , 	) �= 0 for 0 < 	 < K;
(H3) f (	, . . . , 	) = 0 when 	 = 0 or K.

Lemma 4.4. If (H0) holds and � (t) ∈ BC(R, Rn), then (F�) (t) ∈ BC(R, Rn), where
F is defined by (4.5).

Lemma 4.5. Assume that (H0) holds.

(i) If f satisfies (H1), then F : BC [0, K] → BC(R, Rn) is �-increasing, M-continuous
and bounded.

(ii) If f satisfies (H∗
1), then F : BC [0, K] → BC(R, Rn) is �∗-increasing, M-

continuous and bounded.
(iii) If f satisfies (H∗∗

1 ), then F : BC [0, K] → BC(R, Rn) is �∗∗-increasing, M-
continuous and bounded.

Lemma 4.6. Assume that (H0) holds and � ∈ BC2(R, Rn) is a solution of (4.3) satis-
fying limt→−∞ �(t)=�0 and limt→+∞ �(t)=�0. Then f (�0, . . . , �0) =f

(
�0, . . . , �0

)
= 0, that is, (F �̂0) (t) =

(
F �̂0

)
(t) = 0 for any t ∈ R.

We remark that Lemmas 4.4–4.6 are obvious. In fact, Lemmas 4.4 and 4.5 follow
from the continuity of f and Propositions 4.2 and 4.3. By Proposition 4.1 and a similar
argument to that of [33, Proposition 2.1], it is easy to see that Lemma 4.6 is also true.

Now we give definitions of the upper and lower solutions of (4.3) (see [33,
Definition 3.2]).

Definition 4.7. A continuous function � : R → Rn is called an upper solution of
(4.3) if �′ and �′′ exist almost everywhere and are essentially bounded on R, and �
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satisfies

−D�′′ (t) + c�′ (t) �f (� (t) , (g1 ∗ �) (t) , . . . , (gm ∗ �) (t)) , a.e. on R. (4.6)

A lower solution of (4.3) is defined in a similar way by reversing the inequality in
(4.6).

Obviously, if  and � are upper and lower solutions of (4.3), respectively, then 
and � satisfy (C0).

Now we are in a position to state our main results in this section. Let

� =
{
� ∈ Y : (i)� is increasing in R;

(ii) 0� limt→−∞ � (t) < K and limt→+∞ � (t) = K.

}
,

�∗ =

⎧⎪⎪⎨⎪⎪⎩� ∈ Y :
(i) � is increasing in R;
(ii) 0� limt→−∞ � (t) < K and limt→+∞ � (t) = K;
(iii) e�t [� (t + s) − � (t)

]
is increasing in t ∈ R

for every s > 0.

⎫⎪⎪⎬⎪⎪⎭ ,

and

�∗∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩� ∈ Y :

(i) � is increasing in R;
(ii) 0� limt→−∞ � (t) < K and limt→+∞ � (t) = K;
(iii) e�t [� (t + s) − � (t)

]
is increasing in t ∈ R and

e−�t [� (t + s) − � (t)
]

is decreasing in t ∈ R for
every s > 0.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Theorem 4.8. Assume that (H2), (H3) and (H0) hold. Assume further that � and ,

where � ∈ BC [0, K] ∩ Y with � �= 0̂, limt→−∞ � (t) = 0 and ��, are lower and
upper solutions of (4.3), respectively.

(i) If (H1) holds and  ∈ �, then (4.1) has a travelling wave front ∗ such that (4.4)
holds and for a, b ∈ R with a < b,

‖m − ∗‖C([a,b],Rn) → 0, (4.7)

where

−D
(
m

) ′′ + c
(
m

)′ + �m = Fm−1 + �m−1 (m ∈ N) (4.8)

and

��∗ � · · · �m � · · · �1 �0 = . (4.9)
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(ii) If (H∗
1) holds,  ∈ �∗ and e�t [ (t) − � (t)

]
is increasing in t ∈ R, then for

c > 1 − min
{
�idi; i = 1, . . . , n

}
, (4.1) has a travelling wave front ∗ such that

(4.4) holds and for a, b ∈ R with a < b, (4.7), (4.8) and (4.9) hold.
(iii) If (H∗∗

1 ) holds,  ∈ �∗∗, e�t [ (t) − � (t)] is increasing in t ∈ R and e−�t [ (t) −
� (t)] is decreasing in t ∈ R, where min

{
�idi; i = 1, . . . , n

} − 1 > 0, then for
0 < c < min

{
�idi; i = 1, . . . , n

} − 1, (4.1) has a travelling wave front ∗ such
that (4.4) holds and for a, b ∈ R with a < b, (4.7), (4.8) and (4.9) hold.

In particular, if limt→−∞  (t) = 0, then ‖m − ∗‖ → 0.

Proof. (i) Let F : BC [0, K] → BC(R, Rn) be defined by (4.5). It follows from Lemma
4.5 that F : BC [0, K] → BC(R, Rn) is bounded, M-continuous and �-increasing. By
the definitions of upper and lower solutions, we have

−D�′′ + c�′ �F� and − D′′ + c′ �F.

Then Theorem 3.9(i) implies that there exists ∗ ∈ BC [0, K] such that (4.7), (4.8) and
(4.9) hold. Since F∗ ∈ BC(R, Rn), it follows from Theorem 3.1 that

∗ = A∗ ∈ BC2(R, Rn),

that is,

−D
(
∗) ′′ + c

(
∗)′ = F∗.

Since  is increasing in R, ∗ is increasing. Let limt→−∞ ∗ (t) = �0
and limt→+∞ ∗ (t) = �0, then f (�0, . . . , �0) = f

(
�0, . . . , �0

) = 0 follows from
Lemma 4.6. So the conditions (H2) and (H3) mean that �0, �0 ∈ {0, K}. Since � �=
0̂ and ��∗, we have �0 > 0 and thus, �0 = K. Since  (t) ∈ � and ∗ �,
limt→−∞ ∗ (t) � limt→−∞  (t) < K. Hence, �0 = 0. Thus, we complete the proof
of (i).

(ii) It follows from Lemma 4.5(ii) that F : BC [0, K] → BC(R, Rn) is bounded,
M-continuous and �∗-increasing. By Theorem 3.9(ii), Lemmas 3.6(ii) and 4.5(ii), and
employing an argument similar to that of (i), we can complete the proof of (ii).

(iii) It follows from Lemma 4.5(iii) that F : BC [0, K] → BC(R, Rn) is bounded,
M-continuous and �∗∗-increasing. Noting that Theorem 3.9(iii), Lemmas 3.6(iii) and
4.5(iii), the conclusion can be proved following a similar argument to that of (i).

If limt→−∞  (t) = 0 and limt→∞  (t) = K, then for given ε > 0, there exists
M > 0 such that

max
1� i �n

sup
t �−M

∣∣i (t)
∣∣ <

ε

2
, max

1� i �n
sup
t �M

∣∣i (t) − Ki

∣∣ <
ε

2
,

max
1� i �n

sup
t �−M

∣∣∗
i (t)

∣∣ <
ε

2
, max

1� i �n
sup
t �M

∣∣∗
i (t) − Ki

∣∣ <
ε

2
,
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so for any m ∈ N,

max
1� i �n

sup
t �−M

∣∣m
i (t)

∣∣ <
ε

2
, max

1� i �n
sup
t �M

∣∣m
i (t) − Ki

∣∣ <
ε

2
.

Consequently,

max
1� i �n

sup
|t |�M

∣∣m
i (t) − ∗

i (t)
∣∣ < ε.

By (4.7), there exists N ∈ N such that

‖m − ∗‖C([−M,M],Rn) < ε for all m�N.

Thus, ‖m − ∗‖ < ε for all m�N . Therefore, ‖m − ∗‖ → 0.

The proof is complete. �

Corollary 4.9. Assume that (H3) and (H0) hold, and f (	, . . . , 	) �= 0 for 0 <��	 <

K, where � ∈ Rn. Also assume that � and , where � ∈ BC [0, K] ∩ Y with
supt∈R � (t) ��, �� and limt→−∞  (t) = 0, are lower and upper solutions of
(4.3), respectively. Then (i)–(iii) of Theorem 4.8 hold.

5. Applications

In [5], Britton proposed a model for a single biological population of the form

�u (t, x)

�t
= u (t, x) + u (t, x) [1 + au (t, x) − (1 + a) (g ⊕ u) (t, x)] ,

where a > 0, g is a given function and g ⊕ u represents a convolution in the spatial
variable. In this equation, the term au with a > 0 represents an advantage in local
aggregation, the term (1 + a) g⊕u represents a disadvantage in global population levels
being too high because of the resultant depletion of resources. Under recognizing that
animals take time to move, he proposed a spatio-temporal average model weighted
toward the current time and position of the form

�u (t, x)

�t
= u (t, x) + u (t, x) [1 + au (t, x) − (1 + a) (g ∗ u) (t, x)] , (5.1)

where

(g ∗ u) (t, x) =
∫ t

−∞

∫
�

g (t − �, x − y) u (�, y) dy d�,

g ∗ 1 = 1 and g (t, x) = g (t, −x) , x ∈ � ⊆ R.
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In [6], Britton considered three kinds of bifurcations from the uniform steady-state
solution u ≡ 1, that is, (i) steady spatially periodic structures, (ii) periodic standing
wave solutions, and (iii) periodic travelling wave solutions.

In the following, we consider the existence of travelling wave fronts of (5.1), where
� = R. This system has two equilibria:

u ≡ 0 and u ≡ 1.

Obviously, the travelling wave equation of (5.1) corresponding to (4.3) is

−�′′ (t) + c�′ (t) = � (t)
[
1 + a� (t) − (1 + a) (g ∗ �) (t)

]
, t ∈ R, (5.2)

where

(g ∗ �) (t) =
∫ +∞

0

∫ +∞

−∞
g (�, y) � (t − c� − y) dy d�.

Let K = 1. Then the travelling wave front � of (5.1) satisfies the asymptotic boundary
condition

lim
t→−∞ � (t) = 0 and lim

t→+∞ � (t) = 1. (5.3)

Let


1 = c −√
c2 − 4 (1 + a)

2
and 
2 = c +√

c2 − 4 (1 + a)

2

be two real positive roots of the equation


2 − c
 + 1 + a = 0,

where c�2
√

1 + a. Let


3 = c + √
c2 + 4a

2
.

Then 
3 satisfies 
2 − c
 − a = 0. Now we let

 (t) = 1

1 + �e−
1t
and � (t) = min

{
εe
3t , ε

}
, 0 < ε <

1

1 + �
, (5.4)

where � is a positive constant.



Z.-C. Wang et al. / J. Differential Equations 222 (2006) 185–232 213

Lemma 5.1. (i)  (t) = 1/
(

1 + �e−
1t
)

is increasing in t ∈ R and satisfies the asymp-

totic boundary condition (5.3);
(ii)  (t) �� (t) for t ∈ R.

Proof. We only show (ii). For t �0,  (0) = 1/ (1 + �), � (t) = ε. Since  (t) =
1/
(

1 + �e−
1t
)

is increasing, then  (t) �1/ (1 + �) > ε = � (t) .

For t < 0,  (t) = 1/
(

1 + �e−
1t
)

, � (t) = εe
3t . Since 
3 > 
1 > 0, then e
3t < 1

and e(
3−
1)t < 1. Consequently,

 (t) − � (t) = 1

1 + �e−
1t
− εe
3t = 1 − εe
3t − ε�e(
3−
1)t

1 + �e−
1t

� 1 − ε − ε�

1 + �e−
1t
> 0.

The proof is complete. �

Lemma 5.2. Assume � > 
1. For sufficiently small � and ε, the following statements
hold:

(i) e�t [ (t) − � (t)
]

is increasing and e−�t [ (t) − � (t)
]

is decreasing in t ∈ R;

(ii) e�t [ (t + s) −  (t)
]

is increasing and e−�t [ (t + s) −  (t)
]

is decreasing in
t ∈ R for every s > 0.

Proof. (i) First, we show that e�t [ (t) − � (t)
]

is increasing in t ∈ R.
For t > 0, � (t) = ε and e−
1t �1, by a direct calculation, we have

d

dt

{
e�t

[
1

1 + �e−
1t
− ε

]}

=
e�t

[
(� − �ε) + �

(
−2�ε + � − �ε�e−
1t + 
1

)
e−
1t

]
(
1 + �e−
1t

)2

�
e�t

[
(� − �ε) + � (−2�ε + � − �ε� + 
1) e−
1t

]
(
1 + �e−
1t

)2
.

For t < 0, � (t) = εe
3t , e
3t �1 and e(
3−
1)t �1, a direct calculation yields

d

dt

{
e�t

[
1

1 + �e−
1t
− εe
3t

]}
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=
e�t

[
� − (� + 
3) εe
3t

]
(
1 + �e−
1t

)2

+
�e(�−
1)t

[
−2�εe
3t + � − �ε�e(
3−
1)t − 2
3εe


3t − 
3ε�e(
3−
1)t + 
1

]
(
1 + �e−
1t

)2

�
e�t

[
(� − �ε − 
3ε) + � (−2�ε + � − �ε� − 2
3ε − 
3ε� + 
1) e−
1t

]
(
1 + �e−
1t

)2
.

If let ε → 0 and � → 0, then we have

d

dt

{
e�t [ (t) − � (t)

]}
�0.

Second, we show that e−�t [ (t) − � (t)
]

is decreasing in t ∈ R.
For t > 0, � (t) = ε and e−
1t �1, by a direct calculation we have

d

dt

{
e−�t

[
1

1 + �e−
1t
− ε

]}

=
e−�t

[
(−� + �ε) + �

(
2�ε − � + �ε�e−
1t + 
1

)
e−
1t

]
(
1 + �e−
1t

)2

�
e�t

[
(−� + �ε) + � (2�ε − � + �ε� + 
1) e−
1t

]
(
1 + �e−
1t

)2
.

For t < 0, � (t) = εe
3t , e
3t �1 and e(
3−
1)t �1, a direct calculation implies that

d

dt

{
e−�t

[
1

1 + �e−
1t
− εe
3t

]}

=
e�t

[
−� + (� − 
3) εe
3t

]
(
1 + �e−
1t

)2

+
�e−(�+
1)t

(
2�εe
3t − � + �ε�e(
3−
1)t − 2
3εe


3t − 
3ε�e(
3−
1)t + 
1

)
(
1 + �e−
1t

)2

�
e�t

[
(−� + �ε) + � (2�ε − � + �ε� + 
1) e−
1t

]
(
1 + �e−
1t

)2
.



Z.-C. Wang et al. / J. Differential Equations 222 (2006) 185–232 215

In view of � > 
1, ε → 0 and � → 0, then we have

d

dt

{
e�t [ (t) − � (t)

]}
�0.

(ii) First, we show that e�t [ (t + s) −  (t)
]

is increasing in t ∈ R for every s > 0.
Fix s > 0. Since e−
1s < 1, by a direct calculation, it follows that

d

dt

{
e�t [ (t + s) −  (t)

]}
= d

dt

{
e�t

[
1

1 + �e−
1(t+s)
− 1

1 + �e−
1t

]}

=
� (� − 
1) e(�−
1)t

(
1 − e−
1s

) (
1 + �e−
1se−
1t

) (
1 + �e−
1t

)
(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2

+
�2
1e

−
1t e(�−
1)t
(

1 − e−
1s
) (

1 + e−
1s + 2�e−
1se−
1t
)

(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2

= �e(�−
1)t
(

1 − e−
1s
)

×
[
(� − 
1) + ��e−
1t

(
1 + e−
1s

)
+ (� + 
1) �2e−
1se−2
1t

]
(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2
.

Since � > 
1, we can see that

d

dt

{
e�t [ (t + s) −  (t)

]}
> 0.

Second, we show that e−�t [ (t + s) −  (t)
]

is decreasing in t ∈ R for every s > 0.
Fix s > 0. Since e−
1s < 1, we have

d

dt

{
e−�t [ (t + s) −  (t)

]}
= d

dt

{
e−�t

[
1

1 + �e−
1(t+s)
− 1

1 + �e−
1t

]}
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=
−� (� + 
1) e−(�+
1)t

(
1 − e−
1s

) (
1 + �e−
1se−
1t

) (
1 + �e−
1t

)
(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2

+
�2
1e

−
1t e−(�+
1)t
(

1 − e−
1s
) (

1 + e−
1s + 2�e−
1se−
1t
)

(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2

= −�e−(�+
1)t
(

1 − e−
1s
)

×
[
(� + 
1) + ��e−
1t

(
1 + e−
1s

)
+ (� − 
1) �2e−
1se−2
1t

]
(
1 + �e−
1(t+s)

)2 (
1 + �e−
1t

)2
.

Taking into account that � > 
1, we have

d

dt

{
e−�t [ (t + s) −  (t)

]}
< 0.

The proof is complete. �

Lemmas 5.1 and 5.2 imply that  (t) ∈ �,  (t) ∈ �∗,  (t) ∈ �∗∗ and 0 <

supt∈R � (t) = ε.

Lemma 5.3. � (t) defined by (5.4) is a lower solution of (5.2).

Proof. For t > 0, � (t) = ε, �′ (t) = 0, �′′ (t) = 0, we have

−�′′ (t) + c�′ (t) − f (� (t) , (g ∗ �) (t))

= −�′′ (t) + c�′ (t) − � (t)
[
1 + a� (t) − (1 + a) (g ∗ �) (t)

]
= −� (t) − a�2 (t) + (1 + a) � (t) (g ∗ �) (t)

� − ε − aε2 + (1 + a) ε2 = −ε (1 − ε) < 0.

For t < 0, � (t) = εe
3t , �′ (t) = ε
3e

3t , �′′ (t) = ε
2

3e

3t , we have

−�′′ (t) + c�′ (t) − f (� (t) , (g ∗ �) (t))

= −�′′ (t) + c�′ (t) − � (t)
[
1 + a� (t) − (1 + a) (g ∗ �) (t)

]
= −�′′ (t) + c�′ (t) − � (t) − a�2 (t) + (1 + a) � (t) (g ∗ �) (t)

� − �′′ (t) + c�′ (t) − � (t) − a�2 (t) + (1 + a) � (t)

� − �′′ (t) + c�′ (t) + a� (t) = ε
(
−
2

3 + c
3 + a
)

e
3t = 0.

This implies that �(t) is a lower solution of (5.2). �
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Now we show that  (t) is an upper solution of (5.2) by choosing different kernel
functions g. Here we consider three cases:

(i) g (t, x) = 1
� e− t

� � (x) , � > 0;

(ii) g (t, x) = � (t) 1√
4��

e
− x2

4� , � > 0;

(iii) g (t, x) = 1
� e− t

� 1√
4�t

e− x2
4t , � > 0.

5.1. The case g (t, x) = 1
� e− t

� � (x) , � > 0

In this case, Eq. (5.1) becomes a reaction–diffusion model with temporal delay.
Obviously, g (t, x) = 1

� e− t
� � (x) satisfies (H0). Then

(g ∗ �) (t) =
∫ +∞

0

1

�
e− �

� � (t − c�) d�

and

f (� (t) , (g ∗ �) (t)) = � (t)

[
1 + a� (t) − (1 + a)

∫ +∞

0

1

�
e− �

� � (t − c�) d�

]
.

Lemma 5.4. For sufficiently small � > 0, f (� (t) , (g ∗ �) (t)) satisfies (H∗
1).

Proof. Let �1, �2 ∈ C (R, R) with 0��1 (t) ��2 (t) �K = 1 so that e�t [�2 (t) − �1
(t)] is increasing in t ∈ R. It is easy to see that for any s ∈ R, e�t [�2 (s + t)−�1 (s + t)]
is increasing in t ∈ R, then for � > 3a + 2 and sufficiently small � > 0 satisfying
1 − �c��1/2,

f
(
�2 (t) ,

(
g ∗ �2

)
(t)
)− f

(
�1 (t) ,

(
g ∗ �1

)
(t)
)

= �2 (t)
[
1 + a�2 (t) − (1 + a)

(
g ∗ �2

)
(t)
]

−�1 (t)
[
1 + a�1 (t) − (1 + a)

(
g ∗ �1

)
(t)
]

= [
�2 (t) − �1 (t)

]+ a
[
�2

2 (t) − �2
1 (t)

]
− (1 + a)

[
�2 (t)

(
g ∗ �2

)
(t) − �1 (t)

(
g ∗ �1

)
(t)
]

= [
�2 (t) − �1 (t)

] [
1 + a�2 (t) + a�1 (t)

]
− (1 + a)

[
�2 (t) − �1 (t)

] (
g ∗ �2

)
(t)

− (1 + a) �1 (t)
[(

g ∗ �2
)
(t) − (

g ∗ �1
)
(t)
]

� − a
[
�2 (t) − �1 (t)

]− (1 + a)
[(

g ∗ �2
)
(t) − (

g ∗ �1
)
(t)
]



218 Z.-C. Wang et al. / J. Differential Equations 222 (2006) 185–232

= −a
[
�2 (t) − �1 (t)

]− (1 + a)

∫ +∞

0

1

�
e− �

�
[
�2 (t − c�) − �1 (t − c�)

]
d�

= −a
[
�2 (t) − �1 (t)

]
− (1 + a)

∫ +∞

0

1

�
e− �

� e�c�
{
e−�c� [�2 (t − c�) − �1 (t − c�)

]}
d�

� − a
[
�2 (t) − �1 (t)

]− (1 + a)

∫ +∞

0

1

�
e− �

� e�c� [�2 (t) − �1 (t)
]
d�

= −
[
a + (1 + a)

∫ +∞

0

1

�
e− �

� e�c�d�

] [
�2 (t) − �1 (t)

]
= −

(
a + 1 + a

1 − �c�

) [
�2 (t) − �1 (t)

]
� − (3a + 2)

[
�2 (t) − �1 (t)

]
� − �

[
�2 (t) − �1 (t)

]
.

The proof is complete. �

Lemma 5.5. For sufficiently small � > 0,  (t) defined by (5.4) is an upper solution
of (5.2).

Proof. Since

′ (t) = �
1e
−
1t(

1 + �e−
1t
)2

, ′′ (t) = −�
2
1e

−
1t + �2
2
1e

−2
1t(
1 + �e−
1t

)3
,

and for � > 0 such that 1 − 2c
1� > 0,

(g ∗ ) (t) =
∫ ∞

0

1

�
e− �

�
1

1 + �e−
1(t−c�)
d� = −

∫ ∞

0

1

1 + �e−
1(t−c�)
de− �

�

=
[
− e− �

�

1 + �e−
1(t−c�)

]+∞

0

+
∫ ∞

0
e− �

� d

(
1

1 + �e−
1(t−c�)

)

= 1

1 + �e−
1t
− c�
1e

−
1t

∫ ∞

0

e

(
c
1− 1

�

)
�[

1 + �e−
1(t−c�)
]2

d�

= 1

1 + �e−
1t
+ c�
1�e−
1t

1 − c
1�
·
⎡⎢⎣ e

(
c
1− 1

�

)
�[

1 + �e−
1(t−c�)
]2

⎤⎥⎦
+∞

0



Z.-C. Wang et al. / J. Differential Equations 222 (2006) 185–232 219

−c�
1�e−
1t

1 − c
1�

∫ ∞

0
e

(
c
1− 1

�

)
�
d

⎛⎜⎝ 1[
1 + �e−
1(t−c�)

]2

⎞⎟⎠
= 1

1 + �e−
1t
− c�
1�e−
1t

(1 − c
1�)
(
1 + �e−
1t

)2

+2c2�2
2
1�e

−2
1t

1 − c
1�

∫ ∞

0

e

(
2c
1− 1

�

)
�[

1 + �e−
1(t−c�)
]3

d�

� 1

1 + �e−
1t
− c�
1�e−
1t

(1 − c
1�)
(
1 + �e−
1t

)2
,

we have

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t))

= −′′ (t) + c′ (t) −  (t)
[
1 + a (t) − (1 + a) (g ∗ ) (t)

]
� − ′′ (t) + c′ (t) − (1 + a)  (t) + (1 + a)  (t) (g ∗ ) (t)

� − −�
2
1e

−
1t + �2
2
1e

−2
1t(
1 + �e−
1t

)3
+ c�
1e

−
1t(
1 + �e−
1t

)2
− 1 + a

1 + �e−
1t

+ 1 + a(
1 + �e−
1t

)2
− (1 + a) c�
1�e−
1t

(1 − c
1�)
(
1 + �e−
1t

)3
.

Let the right part of the last inequality be C/
(

1 + �e−
1t
)3

. Then

C = �
2
1e

−
1t − �2
2
1e

−2
1t + c�
1e
−
1t + c�2
1e

−2
1t

−2 (1 + a) �e−
1t − (1 + a) �2e−2
1t + (1 + a) �e−
1t

− (1 + a) c�
1�

1 − c
1�
e−
1t

= �2
[
−
2

1 + c
1 − (1 + a)
]
e−2
1t

+�

[

2

1 + c
1 − (1 + a) − (1 + a) c
1�

1 − c
1�

]
e−
1t

= �

[
2
2

1 − (1 + a) c
1�

1 − c
1�

]
e−
1t .
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Obviously, for sufficiently small �,

2
2
1 − (1 + a) c
1�

1 − c
1�
> 0,

which implies that C > 0. Thus

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t)) �0.

The proof is complete. �

Now by Theorem 4.8(ii), the following result is true.

Theorem 5.6. For any c�2
√

1 + a, there exists �∗ (c) > 0 such that for any � < �∗ (c),
system (5.1) has a travelling wave front which satisfies (5.3).

5.2. The case g (t, x) = � (t) 1√
4��

e
− x2

4� , � > 0

In this case, Eq. (5.1) becomes a reaction–diffusion model with a nonlocal (spatial)
delay. It is easy to see that the kernel g satisfies (H0),

(g ∗ �) (t) =
∫ +∞

−∞
1√
4��

e
− y2

4� � (t − y) dy

and

f (� (t) , (g ∗ �) (t)) = � (t)

[
1 + a� (t) − (1 + a)

∫ +∞

−∞
1√
4��

e
− y2

4� � (t − y) dy

]
.

Lemma 5.7. Assume that � > a + 2 (1 + a) e��2
. Then f (� (t) , (g ∗ �) (t)) satisfies

(H∗∗
1 ).

Proof. Assume that �1, �2 ∈ C (R, R) and satisfy that 0��1 (t) ��2 (t) �K = 1,
e�t [�2 (t) − �1 (t)

]
is increasing in t ∈ R and e−�t [�2 (t) − �1 (t)

]
is decreasing in

t ∈ R. Then

f
(
�2 (t) ,

(
g ∗ �2

)
(t)
)− f

(
�1 (t) ,

(
g ∗ �1

)
(t)
)

� − a
[
�2 (t) − �1 (t)

]− (1 + a)
[(

g ∗ �2
)
(t) − (

g ∗ �1
)
(t)
]

= −a
[
�2 (t) − �1 (t)

]
− (1 + a)

∫ +∞

−∞
1√
4��

e
− y2

4�
[
�2 (t − y) − �1 (t − y)

]
dy
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= −a
[
�2 (t) − �1 (t)

]
− (1 + a)

∫ +∞

0

1√
4��

e
− y2

4� e�y {e−�y [�2 (t − y) − �1 (t − y)
]}

dy

− (1 + a)

∫ 0

−∞
1√
4��

e
− y2

4� e−�y {e�y [�2 (t − y) − �1 (t − y)
]}

dy

� − a
[
�2 (t) − �1 (t)

]− (1 + a)

∫ +∞

0

1√
4��

e
− y2

4� e�y [�2 (t) − �1 (t)
]
dy

− (1 + a)

∫ 0

−∞
1√
4��

e
− y2

4� e−�y [�2 (t) − �1 (t)
]
dy

= −a
[
�2 (t) − �1 (t)

]− (1 + a)

∫ +∞

0

1√
4��

e
− (y−2��)2

4� e��2 [
�2 (t) − �1 (t)

]
dy

− (1 + a)

∫ 0

−∞
1√
4��

e
− (y+2��)2

4� e��2 [
�2 (t) − �1 (t)

]
dy

� − a
[
�2 (t) − �1 (t)

]− (1 + a) e��2 [
�2 (t) − �1 (t)

] ∫ +∞

−∞
1√
4��

e
− (y−2��)2

4� dy

− (1 + a) e��2 [
�2 (t) − �1 (t)

] ∫ +∞

−∞
1√
4��

e
− (y+2��)2

4� dy

= −
[
a + 2 (1 + a) e��2

] [
�2 (t) − �1 (t)

]
� − �

[
�2 (t) − �1 (t)

]
,

The proof is complete. �

Lemma 5.8. For sufficiently small � > 0,  (t) defined by (5.4) is an upper solution
of (5.2).

Proof. Let

F (y, �) =
∫ y

−∞
1√
4��

e
− �2

4� d�.

Then

�
�y

F (y, �) = 1√
4��

e
− y2

4� , F (−∞, �) = 0, F (0, �) = 1

2
.
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Since limy→−∞ e−
1yF (y, �) = 0, we have∫ 0

−∞
e−
1yF (y, �) dy

= − 1


1

∫ 0

−∞
F (y, �) de−
1y

= − 1


1

[
e−
1yF (y, �)

]0

−∞ + 1


1

∫ 0

−∞
1√
4��

e
− y2

4� −
1ydy

= − 1

2
1
+ 1


1
e�
2

1

∫ 0

−∞
1√
4��

e
− (y+2�
1)

2

4� dy

= − 1

2
1
+ 1


1
e�
2

1

∫ 2�
1

−∞
1√
4��

e
− y2

4� dy

= − 1

2
1
+ 1

2
1
e�
2

1 + 1


1
e�
2

1

∫ 2�
1

0

1√
4��

e
− y2

4� dy

= − 1

2
1
+ 1

2
1
e�
2

1 + 1


1
√

�
e�
2

1

∫ √
�
1

0
e−y2

dy.

Now define

G− (y, �) =
∫ y

−∞
e−
1�F (�, �) d�.

Then

G− (0, �) = − 1

2
1
+ 1

2
1
e�
2

1 + 1


1
√

�
e�
2

1

∫ √
�
1

0
e−y2

dy,

G− (−∞, �) = 0.

Similarly, we can define

G+ (y, �) =
∫ y

−∞
e
1�F (�, �) d�

and obtain

G+ (0, �) = 1

2
1
− 1

2
1
e�
2

1 + 1


1
√

�
e�
2

1

∫ √
�
1

0
e−y2

dy,

G+ (−∞, �) = 0.
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Furthermore,

∫ 0

−∞
e−
1yG− (y, �) dy < ∞ and

∫ 0

−∞
e
1yG+ (y, �) dy < ∞.

Consequently, it follows that

(g ∗ ) (t) =
∫ ∞

0

1√
4��

e
− y2

4�
1

1 + �e−
1(t−y)
dy

+
∫ 0

−∞
1√
4��

e
− y2

4�
1

1 + �e−
1(t−y)
dy

=
∫ 0

−∞
1√
4��

e
− y2

4�
1

1 + �e−
1(t+y)
dy

+
∫ 0

−∞
1√
4��

e
− y2

4�
1

1 + �e−
1(t−y)
dy

=
∫ 0

−∞
1

1 + �e−
1(t+y)
dF (y, �) +

∫ 0

−∞
1

1 + �e−
1(t−y)
dF (y, �)

=
[

F (y, �)

1 + �e−
1(t+y)

]0

−∞
− �
1e

−
1t

∫ 0

−∞
e−
1yF (y, �)[

1 + �e−
1(t+y)
]2

dy

+
[

F (y, �)

1 + �e−
1(t−y)

]0

−∞
+ �
1e

−
1t

∫ 0

−∞
e
1yF (y, �)[

1 + �e−
1(t−y)
]2

dy

= 1

2
(
1 + �e−
1t

) − �
1e
−
1t

∫ 0

−∞
1[

1 + �e−
1(t+y)
]2

dG− (y, �)

+ 1

2
(
1 + �e−
1t

) + �
1e
−
1t

∫ 0

−∞
1[

1 + �e−
1(t−y)
]2

dG+ (y, �)

= 1

1 + �e−
1t
−
[
�
1e

−
1t
G− (y, �)[

1 + �e−
1(t+y)
]2

]0

−∞

+2�2
2
1e

−2
1t

∫ 0

−∞
e−
1yG− (y, �)[
1 + �e−
1(t+y)

]3
dy

+
[
�
1e

−
1t
G+ (y, �)[

1 + �e−
1(t+y)
]2

]0

−∞
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+2�2
2
1e

−2
1t

∫ 0

−∞
e
1yG+ (y, �)[

1 + �e−
1(t−y)
]3

dy

� 1

1 + �e−
1t
+ �
1e

−
1t[
1 + �e−
1t

]2

[
G+ (0, �) − G− (0, �)

]

= 1

1 + �e−
1t
+

�e−
1t
(

1 − e�
2
1

)
[
1 + �e−
1t

]2
.

Therefore, we have

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t))

� − ′′ (t) + c′ (t) − (1 + a)  (t) + (1 + a)  (t) (g ∗ ) (t)

� − −�
2
1e

−
1t + �2
2
1e

−2
1t(
1 + �e−
1t

)3
+ c�
1e

−
1t(
1 + �e−
1t

)2
− 1 + a

1 + �e−
1t

+ 1 + a(
1 + �e−
1t

)2
+

� (1 + a) e−
1t
(

1 − e�
2
1

)
(
1 + �e−
1t

)3

=
−�2

[

2

1 − c
1 + (1 + a)
]
e−2
1t(

1 + �e−
1t
)3

+
�
[

2

1 + c
1 − (1 + a) e�
2
1

]
e−
1t(

1 + �e−
1t
)3

=
�
[

2

1 + c
1 − (1 + a) e�
2
1

]
e−
1t(

1 + �e−
1t
)3

=
�
[
2
2

1 + (1 + a)
(

1 − e�
2
1

)]
e−
1t(

1 + �e−
1t
)3

.

Since

2
2
1 > 0 and lim

�→0

(
1 − e�
2

1

)
= 0

for sufficiently small � > 0, we finally have

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t)) �0.

This completes the proof. �
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We remark that if � is sufficiently small, then we can choose a � > 
1 such that
� > a + 2 (1 + a) e�2� > 1 and � > c + 1. Thus, by Theorem 4.8(iii), we have the
following result.

Theorem 5.9. For any c�2
√

1 + a, there exists �∗ (c) > 0 such that for any � <

�∗ (c), system (5.1) has a travelling wave front which satisfies (5.3).

5.3. The case g (t, x) = 1
� e− t

� 1√
4�t

e− x2
4t , � > 0

With this choice of kernel, Eq. (5.1) has a nonlocal spatio-temporal delay. We have

(g ∗ �) (t) =
∫ +∞

0

∫ +∞

−∞
1

�
e− �

�
1√
4��

e− y2

4� � (t − y − c�) dy d�

and

f (� (t) , (g ∗ �) (t)) = � (t) + a�2 (t) − (1 + a) � (t)

×
∫ +∞

0

∫ +∞

−∞
1

�
e− �

�
1√
4��

e− y2

4� � (t − y − c�) dy d�.

We now show that the kernel g satisfies (H0). Since

lim
t→0+ e− 1

8t
1√
4�t

= 0,

there exists M > 0 such that

e− 1
8t

1√
4�t

< M for t ∈ [0, A] .

Furthermore, for t ∈ [0, A]∫ +∞

1

1

�
e− t

�
1√
4�t

e− y2

4t dy �
∫ +∞

1

1

�
e− t

�
1√
4�t

e− 1
8t e− y2

8t dy

� M

�

∫ +∞

1
e− y2

8t dy� M

�

∫ +∞

1
e− y2

8A dy,

which implies that g (t, x) = 1
� e− t

� 1√
4�t

e− x2
4t satisfies (H0).

Lemma 5.10. For sufficiently small � > 0, f (� (t) , (g ∗ �) (t)) satisfies (H∗∗
1 ).
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Proof. Let �1, �2 ∈ C (R, R) such that 0��1 (t) ��2 (t) �K=1, e�t [�2 (t) − �1 (t)
]

is increasing in t ∈ R and e−�t [�2 (t) − �1 (t)
]

is decreasing in t ∈ R. Then

(
g ∗ �2

)
(t) − (

g ∗ �1
)
(t)

=
∫ +∞

0

∫ +∞

−∞
1

�
e− �

�
1√
4��

e− y2

4�
[
�2 (t − y − c�) − �1 (t − y − c�)

]
dy d�

=
∫ +∞

0

∫ +∞

−∞
1

�
e− �

�
1√
4��

e− y2

4� e�c�
{
e−�c� [�2 (t−y−c�) −�1 (t−y−c�)

]}
dy d�

�
∫ +∞

0

∫ +∞

−∞
1

�
e− �

�
1√
4��

e− y2

4� e�c� [�2 (t − y) − �1 (t − y)
]
dy d�

=
∫ +∞

0

∫ +∞

0

1

�
e− �

�
1√
4��

e− y2

4� e�c�e�y {e−�y [�2 (t − y) − �1 (t − y)
]}

dy d�

+
∫ +∞

0

∫ 0

−∞
1

�
e− �

�
1√
4��

e− y2

4� e�c�e−�y {e�y [�2 (t − y) − �1 (t − y)
]}

dy d�

�
∫ +∞

0

∫ +∞

0

1

�
e− �

�
1√
4��

e− y2

4� e�c�e�y [�2 (t) − �1 (t)
]
dy d�

+
∫ +∞

0

∫ 0

−∞
1

�
e− �

�
1√
4��

e− y2

4� e�c�e−�y [�2 (t) − �1 (t)
]
dy d�

=
∫ +∞

0

∫ +∞

0

1

�
e− �

�
1√
4��

e− (y−2��)2

4� e�c�e�2� [�2 (t) − �1 (t)
]
dy d�

+
∫ +∞

0

∫ 0

−∞
1

�
e− �

�
1√
4��

e− (y+2��)2

4� e�c�e�2� [�2 (t) − �1 (t)
]
dy d�

�2
[
�2 (t) − �1 (t)

] ∫ +∞

0

1

�
e− �

� e�c�e�2�
∫ +∞

−∞
1√
4��

e− y2

4� dy d�

= 2
[
�2 (t) − �1 (t)

] ∫ +∞

0

1

�
e− �

� e�c�e�2�d�

= 2

1 − c�� − ��2

[
�2 (t) − �1 (t)

]
.

Since there exists � > max {c + 1, 5a + 4} satisfying 1−c��−��2 �1/2 for sufficiently
small � > 0, it follows that

f
(
�2 (t) ,

(
g ∗ �2

)
(t)
)− f

(
�1 (t) ,

(
g ∗ �1

)
(t)
)

� − a
[
�2 (t) − �1 (t)

]− (1 + a)
[(

g ∗ �2
)
(t) − (

g ∗ �1
)
(t)
]
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� − a
[
�2 (t) − �1 (t)

]− (1 + a)
2

1 − c�� − ��2

[
�2 (t) − �1 (t)

]
= −

[
a + 2 (1 + a)

1 − c�� − ��2

] [
�2 (t) − �1 (t)

]
� − (5a + 4)

[
�2 (t) − �1 (t)

]
� − �

[
�2 (t) − �1 (t)

]
.

The proof is complete. �

Lemma 5.11. For sufficiently small � > 0,  (t) defined by (5.4) is an upper solution
of (5.2).

Proof. Applying the estimates in Lemmas 5.5 and 5.8, for sufficiently small � > 0, we
have 1 − 2c
1� − 
2

1� > 0 and

(g ∗ ) (t)

=
∫ +∞

0

1

�
e− �

�

∫ +∞

−∞
1√
4��

e− y2

4�
1

1 + �e−
1(t−y−c�)
dy d�

�
∫ +∞

0

1

�
e− �

�

⎧⎪⎨⎪⎩ 1

1 + �e−
1(t−c�)
+

�e−
1(t−c�)
(

1 − e
2
1�
)

[
1 + �e−
1(t−c�)

]2

⎫⎪⎬⎪⎭ d�

� 1

1 + �e−
1t
− c�
1�

1 − c
1�
· e−
1t(

1 + �e−
1t
)2

+
∫ +∞

0

�
� e−
1(t−c�)e− �

�[
1 + �e−
1(t−c�)

]2
d� −

∫ +∞

0

�
� e−
1(t−c�)e
2

1�e− �
�[

1 + �e−
1(t−c�)
]2

d�

� 1

1 + �e−
1t
− c�
1�

1 − c
1�
· e−
1t(

1 + �e−
1t
)2

+ �

1 − c
1�
· e−
1t(

1 + �e−
1t
)2

−2c�2
1e
−2
1t

1 − c
1�

∫ +∞

0

e

(
2c
1− 1

�

)
�[

1 + �e−
1(t−c�)
]3

d�

− �

1 − c
1� − 
2
1�

· e−
1t(
1 + �e−
1t

)2
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+ 2c�2
1e
−2
1t

1 − c
1� − 
2
1�

∫ +∞

0

e

(
2c
1− 1

�

)
�
e
2

1�[
1 + �e−
1(t−c�)

]3
d�

� 1

1 + �e−
1t
− c�
1�

1 − c
1�
· e−
1t(

1 + �e−
1t
)2

− �
2
1�

(1 − c
1�)
(

1 − c
1� − 
2
1�
) · e−
1t(

1 + �e−
1t
)2

.

Therefore, we have

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t))

� − ′′ (t) + c′ (t) − (1 + a)  (t) + (1 + a)  (t) (g ∗ ) (t)

= −−�
2
1e

−
1t + �2
2
1e

−2
1t(
1 + �e−
1t

)3
+ c�
1e

−
1t(
1 + �e−
1t

)2
− 1 + a

1 + �e−
1t

+ 1 + a(
1 + �e−
1t

)2
− c�
1� (1 + a)

1 − c
1�
· e−
1t(

1 + �e−
1t
)3

− �
2
1� (1 + a)

(1 − c
1�)
(

1 − c
1� − 
2
1�
) · e−
1t(

1 + �e−
1t
)3

=
−�2

[

2

1 − c
1 + (1 + a)
]
e−2
1t(

1 + �e−
1t
)3

+
�

[

2

1 + c
1 − (1 + a) − c
1�(1+a)
1−c
1�

− 
2
1�(1+a)

(1−c
1�)
(

1−c
1�−
2
1�
)
]

e−
1t

(
1 + �e−
1t

)3

=
�

[
2
2

1 − c
1�(1+a)
1−c
1�

− 
2
1�(1+a)

(1−c
1�)
(

1−c
1�−
2
1�
)
]

e−
1t

(
1 + �e−
1t

)3
.

Since

2
2
1 > 0, lim

�→0

c
1� (1 + a)

1 − c
1�
= 0 and lim

�→0


2
1� (1 + a)

(1 − c
1�)
(

1 − c
1� − 
2
1�
) = 0
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for sufficiently small � > 0, it follows that

−′′ (t) + c′ (t) − f ( (t) , (g ∗ ) (t)) �0.

The proof is complete. �

By Theorem 4.8(iii), we have the following result on the existence of a travelling
wave front for Eq. (5.1) with a spatio-temporal delay.

Theorem 5.12. For any c�2
√

1 + a, there exists �∗ (c) > 0 such that for any � <

�∗ (c), system (5.1) has a travelling wave front which satisfies (5.3).

Remark 5.13. We remark that if a = 0, then (5.1) reduces to the famous Fisher-KPP
equation with spatio-temporal delay of the form

�u (t, x)

�t
= �u (t, x) + u (t, x) [1 − (g ∗ u) (t, x)] , (5.5)

and our results still hold. This equation has been studied by many researchers, for
example, see [2,9,33] and the references therein.

Remark 5.14. If g (t, x) = � (t) � (x), then (5.5) is a local Fisher-KPP equation without
time delay

�u (t, x)

�t
= �u (t, x) + u (t, x) [1 − u (t, x)] .

It is well-known [4,8] that it has a travelling wave front for each wave speed c�2.

Remark 5.15. If g (t, x) = � (t − �) � (x), then (5.5) reduces to

�u (t, x)

�t
= �u (t, x) + u (t, x) [1 − u (t − �, x)] ,

which has been considered by Wu and Zou [33] who obtained that for any c > 2,
there exists �∗ (c) > 0 such that for any � < �∗ (c), Eq. (5.5) has a travelling wave
front which satisfies (5.3). However, using our upper and lower solutions defined by
(5.4) (our lower solution is different from that in [33]), it follows that for any c�2,
there exists �∗ (c) > 0 such that for any � < �∗ (c), Eq. (5.5) has a travelling wave
front which satisfies (5.3). Obviously, our result improves that in [33].
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Remark 5.16. To the best of our knowledge, it seems that little has been done for the
case g (t, x) = p (t) � (x). However, by letting

p (t) = 1

�
e− t

� , � > 0,

we can show that Eq. (5.5) has a travelling wave front for any c�2. Similarly, if we
let

p (t) = t

�2
e− t

� , � > 0,

then a similar result still holds.

Remark 5.17. If g (t, x) = � (t) q (x), then (5.5) becomes

�u (t, x)

�t
= �u (t, x) + u (t, x)

[
1 −

∫ ∞

−∞
q(x − y)u (t, y) dy

]
,

which is a nonlocal Fisher-KPP equation without time delay and has been studied by
Gourley [9] and Billingham [3]. By a further restriction for the kernel g, for example,

q (x) = 1

2�
e
− |x|

� (� > 0) ,

and applying the perturbation theory of ordinary differential equations, Gourley [9]
showed that for sufficiently small � > 0 and any fixed c�2, (5.5) has a travelling
wave front satisfying (5.3). By a careful observation, we can find that by using our
method, we can also show that for any c�2, there exists �∗ (c) > 0 such that for any
� < �∗ (c), system (5.5) with a kernel satisfying the restriction in [9] has a travelling
wave front which satisfies (5.3), as what we did in Case 2. Thus, we can improve the
results in [9] by using our method.

Remark 5.18. Ashwin et al. [2] considered the same case as that we consider in Case
3. By using the geometric singular perturbation theory of Fenichel [7], they showed
that for sufficiently small � > 0 and any fixed c�2, (5.5) has a travelling wave front
satisfying (5.3) for

g (t, x) = 1

�
e− t

�
1√
4�t

e− x2
4t , � > 0.

Undoubtedly, our Theorem 5.12 improves the results of Ashwin et al. [2]. In addition,
our method depends on the kernel less than that in [2].
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