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Abstract

Based on the invasion of the Aedes albopictus mosquitoes and the competition between Ae. albopictus
and Ae. aegypti mosquitoes in the United States, we consider an advection–reaction–diffusion competition 
system with two free boundaries consisting of an invasive species (Ae. albopictus) with density u and a lo-
cal species (Ae. aegypti) with density v in which u invades the environment with leftward front x = g(t)

and rightward front x = h(t). In the case that the competition between the two species is strong-weak 
and species v wins over species u, the solution (u, v) converges uniformly to the semi-positive equilib-
rium (0, 1), while the two fronts satisfy that limt→∞(g(t), h(t)) = (g∞, h∞) ⊂ R. In the case that the 
competition between the two species is weak, we show that when the advection coefficients are less than 
fixed thresholds there are two scenarios for the long time behavior of solutions: (i) when the initial habitat 
h0 < π

(√
4 − ν2

1

)−1 and the initial value of u is sufficiently small, the solution (u, v) converges uniformly 
to the semi-positive equilibrium (0, 1) with the two fronts (g∞, h∞) ⊂ R; (ii) when the initial habitat 
h0 ≥ π

(√
4 − ν2

1

)−1, the solution (u, v) converges locally uniformly to the interior equilibrium with the 
two fronts (g∞, h∞) = R. In addition, we propose an upper bound and a lower bound for the asymptotic 
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spreading speeds of the leftward and rightward fronts. Numerical simulations are also provided to confirm 
our theoretical results.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Aedes aegypti and Aedes albopictus are two prominent mosquito species which transmit the 
viruses that cause dengue fever, yellow fever, West Nile fever, chikungunya, and Zika, along with 
many other diseases. Ae. aegypti mosquito is a species with tropical and subtropical worldwide 
distribution and is an insect closely associated with humans and their dwellings. Ae. albopictus, 
a mosquito native to the tropical and subtropical areas of Southeast Asia and a most invasive 
species, has spread recently to many countries (including the U.S.) through the transport of goods 
and international travel. Inter-specific competition among mosquito larvae on larval, adult, and 
life-table traits exists between Ae. aegypti and Ae. albopictus and affects primarily larva-to-adult 
survivorship and the larval development time (Noden et al. [36]).

Before the arrival of Ae. albopictus, Ae. aegypti was a common mosquito in artificial contain-
ers throughout Florida (Morlan and Tinker [35], Frank [17]). Ae. albopictus was found for the 
first time in northern counties in Florida in 1986 (Peacock et al. [39]). Over the next six years, 
Ae. albopictus spread slowly but steadily southward, and by the summer of 1994 it had spread 
to all 67 counties of the state (O’Meara et al. [37]). Meanwhile, major declines in Ae. aegypti
abundance were associated with the invasion and expansion of Ae. albopictus populations, not 
only in Florida, but elsewhere in the southern part of the continental United States (Hobbs et 
al. [26], O’Meara et al. [38]). By 2008, Ae. albopictus had spread to 36 states and continued to 
expand its range (Enserink [16]). In 2013, Rochlin et al. [42] predicted that North American land 
favoring the environmental conditions of the Ae. albopictus mosquito is expected to more than 
triple in size in the next 20 years, especially in urban areas. By the estimates of CDC [6] in 2016, 
Ae. albopictus not only has spread to all states where Ae. aegypti presents but also has reached 
habitats beyond Ae. aegypti’s boundaries (see Fig. 1).

Taking into account the effect of wind on the movement of mosquitoes, Takahashi et al. [44]
proposed an advection–reaction–diffusion equation model to investigate the dispersal dynamics 
of A. aegypti and predicted the existence of stable traveling waves in several situations. Although 
Takahashi et al. gave an estimation of the speed of traveling waves of A. aegypti, it is the asymp-
totic wave speed that usually gives an approximation of the progressive spreading speed of A. 
aegypti, and it does not really show the spread of A. aegypti in the early stage of spatial ex-
panding to larger areas. To describe the spatial spreading of A. aegypti, we (Tian and Ruan [46]) 
generalized the model of Takahashi et al. [44] to an advection–reaction–diffusion equation model 
with free boundary, where the population of the vector mosquitoes is described by a system for 
the two life stages: the winged form (mature female mosquitoes) and an aquatic population (eggs, 
larvae and pupae), the expanding front is expressed by a free boundary which models the spatial 
expanding of the source area. The female mosquitoes are initially located at a habitat, then spread 
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Fig. 1. Estimated range of Ae. aegypti and Ae. albopictus in the U.S., 2016 (CDC [6]).

to other places owing to their dispersal ability, which includes the long distance dispersal as well 
as the short distance dispersal. The long distance dispersal of A. aegypti is caused by wind and 
described by the advection, while the short dispersal is due to the random walk of each individual 
mosquito and described by the classical Laplacian diffusion. The free boundary theory was used 
to show the existence and uniqueness of the global solution to an advection–reaction–diffusion 
equation model and the boundedness of moving speed of the free boundary was also estimated.

To model the invasion of Ae. albopictus species and the competition between A. aegypti and 
Ae. albopictus and take into account the effect of wind, we consider the following advection–
reaction–diffusion system with two free boundaries:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ut = D1Uxx − ν̃1Ux + r1U(1 − U

K1
) − ã1UV, t > 0, g̃(t) < x < h̃(t),

U(t, x) ≡ 0, t > 0, x /∈ (g̃(t), h̃(t)),

Vt = D2Vxx − ν̃2Vx + r2V (1 − V

K2
) − ã2UV, t > 0, x ∈ R,

U = 0, g̃′(t) = −μ̃Ux(t, g̃(t)), t ≥ 0, x = g̃(t),

U = 0, h̃′(t) = −μ̃Ux(t, h̃(t)), t ≥ 0, x = h̃(t),

g̃(0) = −h̃0, h̃(0) = h̃0,

U(0, x) = U0(x), x ∈ [−h̃0, h̃0];
V (0, x) = V0(x), x ∈ R.

(1.1)

The biological meanings of (1.1) are described as follows: V (t, x) represents the density of 
the local species (A. aegypti) and U(t, x) represents the density of the invasive species (Ae. 
albopictus) at time t and space location x, respectively. These two species have a competi-
tion relation. The invasive species, initially limited to a specific part of the domain [−h̃0, h̃0], 
spreads over the space with the leftward front x = g̃(t) and rightward front x = h̃(t) (i.e. free 
boundaries). The boundaries are assumed to evolve according to the Stefan boundary conditions 
g̃′(t) = −μ̃Ux(t, g̃(t)) and h̃′(t) = −μ̃Ux(t, h̃(t)) (Hilhorst et al. [24,25]), which are a kind of 
free boundary conditions. D1 and D2 are the diffusion rates of the two species respectively; 
ν̃1 and ν̃2 are the advection speeds of the two species respectively; r1 and r2 are the intrinsic 
growth rates of the two species respectively; K1 and K2 are the carrying capacities of the two 



C. Tian, S. Ruan / J. Differential Equations 265 (2018) 4016–4051 4019
species respectively; ã1 and ã2 are the interspecific competition rates. Free boundary problems 
have been extensively studied in the literature including realistic biological problems with free 
boundaries, see for example, Bounting and Du [3], Cao et al. [5], Chen and Friedman [7], Du and 
Lin [8], Du and Lou [10], Du et al. [13,14,11], Lin and Zhu [31], Liu and Lou [32], and the ref-
erences cited therein.

In order to minimize the number of parameters involved in the model, we introduce the di-
mensionless variables. Set

u = 1

K1
U, v = 1

K2
V, t̄ = r1t, x̄ =

√
1

K1D1
x. (1.2)

Then the free boundaries become 
√

r1
D1

g̃( t̄
r1

) and 
√

r1
D1

h̃( t̄
r1

). Denote by g(t̄) ≡
√

r1
D1

g̃( t̄
r1

) and 

h(t̄) ≡
√

r1
D1

h̃( t̄
r1

), respectively. For the sake of simplicity, we omit the caps of t and x. Rewrite 

the problem (1.1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx − ν1ux + u(1 − u − a1v), t > 0, g(t) < x < h(t),

u(t, x) ≡ 0, t > 0, x /∈ (g(t), h(t)),

vt = Dvxx − ν2vx + v(r − a2u − rv), t > 0, x ∈ R,

u = 0, g′(t) = −μux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x), x ∈ [−h0, h0];
v(0, x) = v0(x), x ∈R,

(1.3)

where ν1 = ν̃1
r1

√
1

K1D1
, a1 = K2ã1

r1
, D = D2

r1K1D1
, a2 = K1ã2

r1
, μ = K1μ̃

r1

√
1

K1D1
, h0 =

√
r1
D1

h̃0, 

u0(x) = 1
K1

U0(
√

K1D1x), and v0(x) = 1
K2

V0(
√

K1D1x). Moreover, we assume that u0 and v0

satisfy

u0 ∈ C2([−h0, h0]), u0(±h0) = 0, u0(x) > 0 in (−h0, h0),

v0 ∈ C(R) ∩ L∞(R), v0(x) > 0 in R. (1.4)

Two special cases of problem (1.3) have been studied in the literature.
(a) In absence of the local species, named v ≡ 0, problem (1.3) reduces to the following 

single-species advection–reaction–diffusion equation with free boundary:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx − ν1ux + u(1 − u), t > 0, g(t) < x < h(t),

u = 0, g′(t) = −μux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u (x), x ∈ [−h ,h ].

(1.5)
0 0 0
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Problem (1.5) was first studied by Gu et al. [19] who showed that if 0 < ν1 < 2, then the behavior 
is characterized by a spreading-vanishing dichotomy, namely, one of the following alternatives 
occurs:

• Spreading: limt→∞(g(t), h(t)) = R, limt→∞ u(t, x) = 1 locally uniformly in R.
• Vanishing: limt→∞(g(t), h(t)) = (g∞, h∞), limt→∞ ‖u(t, ·)‖C([g(t),h(t)]) = 0, here g∞ and 

h∞ are finite constants.

In [20], Gu et al. also showed that the leftward and rightward asymptotic spreading speeds c∗
l and 

c∗
r exist and satisfy c∗

l < c∗ < c∗
r , here c∗

l = limt→∞ −g(t)
t

, c∗
r = limt→∞ h(t)

t
, c∗ is the minimal 

speed of traveling wave speed connecting 0 and 1. In [21], they further proved that when ν1 is 
large the solution of problem (1.5) has an asymptotic behavior more complicated than spreading 
and vanishing.

(b) When ν1 = ν2 = 0, that is, there is no advection in the environment, many researchers 
studied the qualitative properties of problem (1.3) under one or two free boundaries, see for 
example, Du and Lin [9], Guo and Wu [22], Lin [30], Wang and Zhao [49], Wu [51], and Zhao 
and Wang [53]. These researchers extended the asymptotic stability and traveling wave solutions 
to the corresponding Cauchy problem of system (1.3), which can be listed in details as follows:

(i) If a1 > 1 and a2 < r , then the semi-positive equilibrium (0, 1) is globally asymptotically 
stable, and there exists a traveling wave solution connecting the two semi-positive equilibria 
(1, 0) and (0, 1) (cf. Kan-On [27]);

(ii) If a1 < 1 and a2 < r , then the interior equilibrium 
(

r(1−a1)
r−a1a2

, r−a2
r−a1a2

)
is globally asymptot-

ically stable, and there exists a traveling wave solution connecting the trivial equilibrium 
(0, 0) and the interior equilibrium 

(
r(1−a1)
r−a1a2

, r−a2
r−a1a2

)
(cf. Tang and Fife [45]);

(iii) If a1 < 1 and a2 > r , then the semi-positive equilibrium (1, 0) is globally asymptotically 
stable, and there exists a traveling wave solution connecting the two semi-positive equilibria 
(0, 1) and (1, 0) (cf. Kan-On [27]).

The competition in cases (i) and (iii) is called weak-strong since one species wins the competition 
in the long run, whereas the competition in case (ii) is called weak since the two species coexist 
with no one winning or losing the competition. Recently, Du et al. [15] found the exact spreading 
speed in the case of spreading.

The current studies show that when the size of the initial habitat is big, the solutions of the 
free boundary problem (without advection) have the same asymptotic convergence with the cor-
responding Cauchy problem, and the asymptotic spreading speed of the front is no more than the 
minimal speed of the traveling wave solution. However, when the initial habitat is small, the free 
boundary problem (without advection) cannot spread over the whole space, which is different 
from the Cauchy problem where the traveling wave solution exists.

Our main purpose in this paper is to study the influence of the advection terms on the 
asymptotic behavior of the competition system (1.3). We will extend the results of asymptotic 
convergence of Cauchy problem with cases (i) and (ii) to the free boundary problem (with advec-
tion). Moreover, we will estimate an upper and lower bounded asymptotic spreading speeds of 
the front to improve the previous results of competition system (1.3). We would like to mention 
that the advection coefficients in problem (1.3) cause substantial technical difficulties, studying 
the asymptotic stability and traveling wave solutions for reaction–diffusion systems to advection–
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reaction–diffusion systems is far from trivial, even for regular boundary value problems (Zhao 
and Ruan [52]).

The rest of the article is organized as follows. In section 2 we prove the global existence and 
uniqueness of solutions to the free boundary problem (1.3). Moreover, we give a priori estimate of 
the derivative of boundary. In section 3, we investigate the weak-strong competition case in which 
u will vanish. In section 4, we investigate the weak competition case that u and v will coexist and 
the boundary will spread. Section 5 deals with the asymptotic spreading speed when the boundary 
spreads. In section 6 we carry out numerical simulations to confirm our analytical findings. In 
section 7 we use our conclusions to interpret the invasion of Ae. albopictus mosquitoes and the 
competition between A. aegypti and Ae. albopictus as an example of biological applications.

2. Existence and uniqueness

In this section, we first present the following local existence and uniqueness result by using 
the contraction mapping theorem.

Theorem 2.1. For any given (u0, v0) satisfying (1.4) and any α ∈ (0, 1), there is a T > 0 such 
that problem (1.3) admits a unique bounded solution

(u, v, g,h) ∈ C
1+α

2 ,1+α(DT ) × (
C

1+ α
2 ,2+α

loc (D∞
T ) ∩ C(D

∞
T )

) × [
C1+ α

2 ([0, T ])]2
.

Moreover,

‖u‖
C

1+α
2 ,1+α

(DT )
+ ‖v‖

L∞(D
∞
T )

+ ‖g‖
C

1+ α
2 ([0,T ]) + ‖h‖

C
1+ α

2 ([0,T ]) ≤ C, (2.1)

where

DT = {(t, x) ∈ R
2 : 0 < t ≤ T ,g(t) < x < h(t)},

D∞
T = {(t, x) ∈R

2 : 0 < t ≤ T ,x ∈ R},
here positive constants C and T depend only on h0, α, ‖u0‖C2([−h0,h0]) and ‖v0‖L∞(R).

Proof. We introduce an auxiliary function ζ(y) satisfying |ζ ′(y)| < 6
h0

for y ∈ [0, ∞), and

ζ(y) =
{

1, if |y − h0| < h0
4 ,

0, if |y − h0| > h0
2 ,

it is obvious that such a C3
([0, ∞)

)
function ζ(y) exists. As in Wang and Zhao [50], we perform 

the following coordinate transformation

x = y + ζ(y)(h(t) − h0) + ξ(y)(g(t) + h0), y ∈R, (2.2)

here ξ(y) = −ζ(−y). When t is confined to

|h(t) − h0| + |g(t) + h0| ≤ h0
,

16
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the transformation (2.2) implies that x → y is a diffeomorphism from R onto R, meanwhile, 
the free boundaries x = g(t) and x = h(t) are transformed to the lines y = −h0 and y = h0, 
respectively. The rest of the proof is similar to that of Theorem 2.1 of Du and Lin [9]. See also 
Belgacem and Cosner [1], Friedman [18] and Ladyzenskaja et al. [28]. We omit the details. �

We extend the local solution obtained in Theorem 2.1 to the maximal time. To do so, we need 
the following priori estimate.

Lemma 2.2. Let (u, v, g, h) be a solution to problem (1.3) defined for t ∈ [0, T ) for some T ∈
(0, ∞). Then there exist constants M1, M2, and M2 independent of T such that

0 < u(t, x) ≤ M1, for 0 ≤ t ≤ T , g(t) < x < h(t), (2.3)

0 < v(t, x) ≤ M2, for 0 ≤ t ≤ T , x ∈R, (2.4)

−M3 ≤ g′(t) < 0, 0 < h′(t) ≤ M3, for 0 < t ≤ T . (2.5)

Proof. As g(t), h(t) are fixed, we use the strong maximum principle to get

u > 0 for (t, x) ∈ [0, T ] × (g(t), h(t)), and v > 0 for (t, x) ∈ [0, T ] ×R. (2.6)

Consequently, since v satisfies{
vt ≤ Dvxx − ν2vx + rv(1 − v), 0 < t ≤ T , x ∈ R,

v(0, x) = v0(x), x ∈R,

we as well obtain v ≤ max{‖v0‖L∞(R), 1} := M2. Similarly, u satisfies{
ut ≤ uxx − ν1ux + u(1 − u), 0 < t ≤ T , g(t) < x < h(t),

u(0, x) = u0(x), x ∈ [−h0, h0].
It is obvious that u ≤ max{‖u0‖C([−h0,h0]), 1} := M1.

It remains to prove (2.5). We only prove the boundedness of h′(t), since g′(t) can be treated 
in a similar way. Applying the Hopf Lemma (cf. Du and Lin [8]) to problem (1.3), we have 
ux(t, h(t)) < 0 for t ∈ (0, T ]. We thereby obtain h′(t) > 0 for t ∈ (0, T ]. In order to prove the 
upper bound of h′(t), we compare u with an auxiliary function. Define

� =: {(t, x) : 0 < t ≤ T , h(t) − 1

M
< x < h(t)}

and construct an auxiliary function

w(t, x) := M1[2M(h(t) − x) − M2(h(t) − x)2].
We choose M so that w(t, x) ≥ u(t, x) in �.

Owing to h′(t) > 0, for (t, x) ∈ � we calculate

wt = 2M1Mh′(t)(1 − M(h(t) − x)) > 0.
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Consequently,

wt − wxx + ν1wx > 2M1M
2 − 2ν1M1M for (t, x) ∈ �. (2.7)

As u, v > 0, we have

ut − uxx + ν1ux = u(1 − u − a1v)

< u(1 − u) < M1 for (t, x) ∈ �. (2.8)

In light of (2.7) and (2.8), setting z = w − u, we obtain

zt − zxx + ν1zx > M1(2M2 − 2ν1M − 1) ≥ 0, for (t, x) ∈ �, (2.9)

provided

M ≥
ν1 +

√
ν2

1 + 2

2
. (2.10)

On the other hand, we have

z(t, h(t) − 1

M
) = M1 − u(t, h(t) − 1

M
) ≥ 0 for t ∈ (0, T ),

z(t, h(t)) = 0 for t ∈ (0, T ).

(2.11)

Hence, we expect to find M such that

u0(x) ≤ w(0, x) for x ∈ [h0 − 1

M
,h0]. (2.12)

In view of (2.9), (2.11), and (2.12), we can apply the parabolic maximum principle to z over � to 
deduce that u(t, x) ≤ w(t, x) for (t, x) ∈ �. Consequently, ux(t, h(t)) ≥ wx(t, h(t)) = −2MM1, 
which leads to

h′(t) = −μvx(t, h(t)) ≤ 2MM1μ := M3. (2.13)

It remains to seek for some M independent of T such that (2.12) holds. We compute

wx(0, x) = −2M1M(1 − M(h0 − x)) ≤ −M1M for x ∈ [h0 − 1

2M
,h0].

In view of (2.10), choosing

M := max

⎧⎪⎨⎪⎩
ν1 +

√
ν2

1 + 2

2
,

4‖u0‖C1([−h0,h0])
3M1

⎫⎪⎬⎪⎭ , (2.14)

we have
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wx(0, x) ≤ −MM1 ≤ −4

3
‖u0‖C1([−h0,h0]) ≤ u′

0(x) for x ∈ [h0 − (2M)−1, h0].

As w(0, h0) = u0(h0) = 0, the above inequality implies that

w(0, x) ≥ u0(x) for x ∈ [h0 − 1

2M
,h0].

Moreover, in term of M ≥ 4
3M1

‖u0‖C1([−h0,h0]) for x ∈ [h0 − 1
M

, h0 − 1
2M

], we obtain

w(0, x) ≥ 3

4
M1, u0(x) ≤ 1

M
‖u0‖C1([−h0,h0]) ≤ 3

4
M1, for x ∈ [h0 − 1

M
,h0 − 1

2M
].

Therefore, u0(x) ≤ w(0, x) for x ∈ [h0 − 1
M

, h0], which means that (2.13) is valid. The proof is 
complete. �
Theorem 2.3. For any given (u0, v0) satisfying (1.4), the solution of problem (1.3) exists and is 
unique for all t ∈ [0, ∞).

Proof. It follows from the uniqueness of solutions (Theorem 2.1) that there is a fixed T such 
that the solution (u, v, g, h) is confined to [0, T ). We now fix δ ∈ (0, T ). By Lp estimates, the 
Sobolev’s embedding theorem, and the Hölder estimates for parabolic equations, we can find 
M4 > 0 depending on δ, T , Mi(i = 1, 2, 3) such that

‖u(t, ·)‖C2([g(t),h(t)]),‖v(t, ·)‖C2(R) ≤ M4 for t ∈ [δ, T ].

Again it follows from the proof of Theorem 2.1 that there exists a τ > 0 depending on Mi(i =
1, 2, 3) but not on t such that the solution of problem (1.3) with initial time T − τ

2 can be extended 
uniquely to the time T + τ

2 . This means that the solution of (1.3) can be extended as long as u
and v remain bounded. Therefore, the solution of problem (1.3) can be extended to the infinite 
time interval [0, ∞). �
3. Weak-strong competition

In view of Lemma 2.2, we can observe that x = g(t) is monotone decreasing and x = h(t)

is monotone increasing. Therefore, there exist g∞ ∈ [−∞, 0) and h∞ ∈ (0, ∞] such that 
limt→∞ g(t) = g∞ and limt→∞ h(t) = h∞. In this section, we try to extend the long time behav-
ior to solutions of Cauchy problem corresponding to (1.3) in the case of weak-strong competition 
and v winning.

Theorem 3.1. Suppose that

a1 > 1 and a2 < r. (3.1)

If δ is an arbitrary small positive constant such that v0(x) ≥ δ for x ∈R, then

lim
t→∞(u(t, x), v(t, x)) = (0,1) uniformly in any compact subset of R.



C. Tian, S. Ruan / J. Differential Equations 265 (2018) 4016–4051 4025
Proof. Consider the following ordinary differential equation:{
U ′ = U(1 − U), t > 0,

U(0) = ‖u0‖L∞([−h0,h0]).

We solve the equation and find

U = et
(
et − 1 + 1

U(0)

)−1
.

By the comparison principle, we see that u(t, x) ≤ U(t) for t > 0 and x ∈ [g(t), h(t)]. Since 
limt→∞ U(t) = 1, we have

lim sup
t→∞

u(t, x) ≤ 1 uniformly in R. (3.2)

Similarly, we can deduce that

lim sup
t→∞

v(t, x) ≤ 1 uniformly in R. (3.3)

Therefore, for ε1 = 1
2 ( r

a2
− 1), there exists t1 > 0 such that u(t, x) ≤ 1 + ε1 for t ≥ t1, x ∈ R. 

Thus, v satisfies {
vt − Dvxx + ν2vx ≥ v(ε1 − rv), t > t1, x ∈ R,

v(t1, x) > 0, x ∈ R.

Let V (t) be the unique solution to{
V ′ = V (ε1 − rV ), t > t1,

V (t1) = infx∈R v(t1, x).

Since v0(x) ≥ δ, we have V (t1) > 0. By using the comparison principle, we have v(t, x) ≥ V (t)

for t ≥ t1 and x ∈ R. Since limt→∞ V (t) = ε1
r

, for any L > 0, there exists tL > t1 such that

v(t, x) ≥ V (t) ≥ ε1

2r
for t ≥ tL, − L ≤ x ≤ L.

We obtain that (u, v) satisfies⎧⎨⎩
ut = uxx − ν1ux + u(1 − u − a1v), t > tL, g(t) < x < h(t),

vt = Dvxx − ν2vx + v(r − a2u − rv), t > tL, x ∈R,

u(t, x) ≤ 1 + ε1, v(t, x) ≥ ε1
2r

, t ≥ tL, x ∈ R.

(3.4)

Consider (u, v) as a unique solution to the following equations⎧⎪⎪⎨⎪⎪⎩
ut = uxx − ν1ux + u(1 − u − a1v), t > tL, − L < x < L,

vt = Dvxx − ν2vx + v(r − a2u − rv), t > tL, − L < x < L,

u(t,±L) = 1 + ε1, v(t,±L) = ε1
2r

, t > tL,

u(t , x) = 1 + ε , v(t , x) = ε1 , −L < x < L.

(3.5)
L 1 L 2r
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Since u ≡ 0 for t > tL and x /∈ (g(t), h(t)), no matter whether or not (g(t), h(t)) ⊂ (−L, L), the 
comparison principle implies that u ≤ u and v ≥ v in [tL, ∞) × [−L, L]. Thanks to the fact that 
system (3.5) is quasimonotone nonincreasing, the theory of monotone dynamical systems (see, 
e.g. Smith [43, Corollary 7.3.6]) yields that

lim
t→∞u(t, x) = uL(x), lim

t→∞v(t, x) = vL(x) uniformly in [−L,L], (3.6)

where (uL(x), vL(x)) is the solution to

⎧⎨⎩
uLxx − ν1uLx + uL(1 − uL − a1vL) = 0, −L < x < L,

DvLxx − ν2vLx + vL(r − a2uL − rvL) = 0, −L < x < L,

uL(±L) = 1 + ε1, vL(±L) = ε1
2r

.

(3.7)

Note that if 0 < L1 < L2, by employing the comparison principle to system (3.5) with the 
corresponding boundary conditions, we discover that uL1(x) ≥ uL2(x) and vL1

(x) ≥ vL2
(x) in 

[−L1, L1]. Letting L → ∞, by classical elliptic regularity theory and a diagonal procedure, we 
obtain that (uL(x), vL(x)) converges uniformly on any compact subset of R to (u∞(x), v∞(x)), 
which satisfies ⎧⎨⎩

u∞xx − ν1u∞x + u∞(1 − u∞ − a1v∞) = 0, x ∈R,

Dv∞xx − ν2v∞x + v∞(r − a2u∞ − rv∞) = 0, x ∈R,

u∞(x) ≤ 1 + ε1, v∞(x) ≥ ε1
2r

, x ∈R.

(3.8)

Recalling (3.1), we shall illustrate that (u∞, v∞) = (0, 1). Let us consider the following ordinary 
differential equations:

⎧⎨⎩
z′ = z(1 − z − a1w), t > 0,

w′ = w(r − a2z − rw), t > 0,

z(0) = 1 + ε1, w(0) = ε1
2r

.

By (3.1), it follows that (z, w) → (0, 1) as t → ∞ (see, e.g. Morita and Tachibana [34]). If 
(Z, W) is the solution to

⎧⎨⎩
Zt = Zxx − ν1Zx + Z(1 − Z − a1W), t > 0, x ∈R,

Wt = DWxx − ν2Wx + W(r − a2Z − rW), t > 0, x ∈R,

Z(0, x) = 1 + ε1, W(0, x) = ε1
2r

, x ∈R,

(3.9)

then (Z, W) → (0, 1) as t → ∞ uniformly in R. By utilizing the comparison principle to (3.8)
and (3.9), we have u∞(x) ≤ Z(t, x) and v∞(x) ≥ W(t, x) for t > 0, which immediately gives 
that u∞(x) = 0 and v∞(x) = 1.

Thanks to (3.6), u(t, x) ≤ u(t, x) → uL(x) and v(t, x) ≥ v(t, x) → vL(x). Letting L →
∞, we obtain that lim supt→∞ u(t, x) ≤ 0 and lim inft→∞ v(t, x) ≥ 1 uniformly in any com-
pact subset of R. Taking into account (3.3) and lim inft→∞ u(t, x) ≥ 0, we can deduce that 
limt→∞(u(t, x), v(t, x)) = (0, 1) uniformly in any compact subset of R. �
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Remark 3.2. Consider the Cauchy problem corresponding to (1.3):⎧⎨⎩
ut = uxx − ν1ux + u(1 − u − a1v), t > 0, x ∈R,

vt = Dvxx − ν2vx + v(r − a2u − rv), t > 0, x ∈R,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈R,

(3.10)

where u0(x) and v0(x) are nonnegative and bounded. Note that the proof of Theorem 3.1 is valid. 
In addition, the solution (u, v) of (3.10) converges to (0, 1) locally uniformly in R as t → ∞.

In the above theorem, we only give the long time behavior of (u(t, x), v(t, x)). The next 
theorem addresses the long time behavior of the double boundaries x = g(t) and x = h(t).

Theorem 3.3. Suppose that (3.1) holds. If δ is an arbitrary small positive constant such that 
v0(x) ≥ δ for x ∈R, then −g∞, h∞ < ∞ and

lim
t→∞u(t, x) = 0 and lim

t→∞v(t, x) = 1 uniformly in R.

Proof. In view of (3.2), for any given ε1 = 1
2 ( r

a2
− 1), there exists t1 > 0 such that u(t, x) ≤

1 + ε1 for t ≥ t1, x ∈ R. In addition, it follows from Lemma 2.2 that 0 < u(t, x) < M1 :=
max{1, ‖u0‖C([−h0,h0])} and 0 < v(t, x) < M2 := max{1, ‖v0‖L∞(R)} for t ≥ 0 and x ∈ R. 
Hence, v satisfies{

vt − Dvxx + ν2vx ≥ v(r − a2M1 − rM2), t > 0, x ∈ R,

v(0, x) ≥ δ, x ∈ R.

Therefore, we obtain that v(t, x) ≥ δe(−a2M1−rM2)t for t > 0 and x ∈R.
We now consider the following problem:⎧⎨⎩

z′ = z(1 − z − a1w), t > t1,

w′ = w(r − a2z − rw), t > t1,

z(t1) = 1 + ε1, w(t1) = δe(−a2M1−rM2)t1 .

By employing the comparison principle, we obtain that u(t, x) ≤ z(t) and v(t, x) ≥ w(t) for 
t ≥ t1 and x ∈R. Owing to the assumption (3.1) that a1 > 1 and a2 < r , it follows that (z, w) →
(0, 1) as t → ∞. Thus we have

lim
t→∞u(t, x) = 0 uniformly in R.

Next we claim that limt→∞ v(t, x) = 1 uniformly in R. Since limt→∞ u(t, x) = 0 uniformly 
in R, for any ε > 0 there exists t2 > 0 such that 0 < u(t, x) ≤ ε for t ≥ t2 and x ∈ R. Recalling 
that v(t, x) ≥ δe(−a2M1−rM2)t2 , we thereby obtain{

vt − Dvxx + ν2vx ≥ v(r − a2ε − rv), t > t2, x ∈ R,

v(t2, x) ≥ δe(−a2M1−rM2)t2, x ∈ R.

Let us consider the following ordinary differential equation:
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{
ṽ′ = ṽ(r − a2ε − rṽ), t > 0,

ṽ(t2) = δe(−a2M1−rM2)t2 .

By the comparison principle, we have v(t, x) ≥ ṽ(t) for t > t2 and x ∈ R. Since limt→∞ ṽ(t) =
1 − a2ε

r
, we deduce that lim inft→∞ v(t, x) ≥ 1 − a2ε

r
uniformly in R. Due to the arbitrariness of 

ε, it follows that limt→∞ v(t, x) ≥ 1 uniformly in R.
It remains to show that −g∞ and h∞ < ∞. Since (u(t, x), v(t, x)) → (0, 1) as t → ∞ uni-

formly in R, for any ε > 0, there exists T > 0 such that u(t, x) < ε and v(t, x) > 1 − ε for t > T

and x ∈R. By setting ε = 1 − 1
a1

, we have

u(1 − u − a1v) ≤ u(1 − a1 + a1ε) ≤ 0 for t > T and x ∈ R. (3.11)

Owing to (3.11), it follows from the boundary condition of (1.3) that

d

dt

h(t)∫
g(t)

u(t, x)dx =
h(t)∫

g(t)

ut (t, x)dx + h′(t)u(t, h(t)) − g′(t)u(t, g(t))

=
h(t)∫

g(t)

(uxx − ν1ux)dx +
h(t)∫

g(t)

u(1 − u − a1v)dx

≤
h(t)∫

g(t)

(uxx − ν1ux)dx

≤ ux(h(t)) − ux(g(t)) − ν1u(h(t)) + ν1u(g(t))

= ux(h(t)) − ux(g(t))

= −h′(t) + g(t)

μ
.

(3.12)

Integrating (3.12) from T to t gives

h(t)∫
g(t)

u(t, x)dx −
h(T )∫

g(T )

u(T , x)dx ≤ −h(t) − g(t) − h(T ) + g(T )

μ
. (3.13)

It follows from (3.13) that

h(t) − g(t) ≤ h(T ) − g(T ) + μ

h(T )∫
g(T )

u(T , x)dx − μ

h(t)∫
g(t)

u(t, x)dx

≤ h(T ) − g(T ) + μ

h(T )∫
g(T )

u(T , x)dx.

(3.14)

By letting t → ∞ in (3.14), we have h∞ − g∞ ≤ h(T ) − g(T ) +μ 
∫ h(T )

g(T )
u(T , x)dx < ∞, which 

implies that h∞ and −g∞ < ∞. �
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4. Weak competition

In the section, we try to extend the long time behavior to solutions of Cauchy problem corre-
sponding to (1.3) in the case of weak competition. In order to do that, we give the following two 
lemmas. These lemmas without the advection terms were proved in Propositions 2.1 and 2.2 of 
Wang and Zhao [49] or in Propositions B1 and B2 of Wang and Zhao [50].

Lemma 4.1. Assume that ν, D, α and β are fixed positive constants. Suppose that

ν < 2
√

Dα. (4.1)

For any given ε > 0 and L > 0, there exist lε > max
{
L, 2Dπ

(√
4Dα − ν2

)−1}
and Tε > 0, 

such that when the continuous and non-negative function w(t, x) satisfies⎧⎨⎩
wt − Dwxx + νwx ≥ (≤)w(α − βw), t > 0, −lε < x < lε,

w(t,±lε) ≥ (=)0, t ≥ 0,

w(0, x) > 0, x ∈ (−lε, lε),

(4.2)

then

w(t, x) >
α

β
− ε (w(t, x) <

α

β
+ ε), for t ≥ Tε, x ∈ [−L,L]. (4.3)

Moreover, the above inequality implies that

lim inf
t→∞ w(t, x) >

α

β
− ε (lim sup

t→∞
w(t, x) <

α

β
+ ε) uniformly in [−L,L]. (4.4)

Proof. Consider the following eigenvalue problem with advection:

−D�′′ + ν�′ = λ� in(−l, l), �(±l) = 0. (4.5)

The first eigenvalue λ1 and eigenfunction �1 of (4.5) are

λ1 = ν2

4D
+ D

π2

l2 , �1(x) = e
ν

2D
x sin

⎛⎝√
λ1

D
− ν2

4D2 x

⎞⎠.

Let l > 2Dπ
(√

4Dα − ν2
)−1, we obtain λ1 < α. Thus, the problem{
−Dwxx + νwx = w(α − βw), −l < x < l,

w(±l) = 0
(4.6)

admits a unique positive solution 0 < w = wl < α
β

(Proposition 3.3 in Cantrell and Cosner [4]). 
By the comparison principle, wl(x) is monotone decreasing with respect to l. Letting l → ∞, by 
using the classical elliptic regularity theory and a diagonal procedure, the limit liml→∞ wl(x) =
w∗(x) exists and satisfies the following Cauchy equation:
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−Dwxx + νwx = w(α − βw), x ∈ R. (4.7)

In view of Liouville theorem, we have

lim
l→∞wl(x) = α

β
uniformly in any compact subset of R. (4.8)

Therefore, for any given L > 0 and ε > 0, there exists lε > 2Dπ
(√

4Dα − ν2
)−1 such that

α

β
− ε

2
< wl(x) <

α

β
+ ε

2
, for x ∈ [−L,L], l ≥ lε. (4.9)

Since the parabolic equation

⎧⎪⎨⎪⎩
wt − Dwxx + νwx = w(α − βw), t > 0, − lε < x < lε,

w(t,±lε) = 0, t ≥ 0,

w(0, x) = w0(x), x ∈ [−lε, lε].
(4.10)

is a gradient system, the solution w(t, x) of (4.10) converges to a solution wl(x) of the corre-
sponding stationary problem (4.6) as t → ∞ (see Brunovsky and Chow [2], Hale and Massatt 
[23]). By (4.9), there exists a Tε > 0 such that

α

β
− ε < w(t, x) <

α

β
+ ε, for t ≥ Tε, x ∈ [−L,L]. (4.11)

Combining (4.2) and (4.10), the comparison principle implies that (4.3) and (4.4) hold immedi-
ately. �
Lemma 4.2. Assume that ν, D, α and β are fixed positive constants and (4.1) holds. For any 
given ε > 0 and L > 0, there exist lε > max

{
L, 2Dπ

(√
4Dα − ν2

)−1}
and Tε > 0, such that 

when the continuous and non-negative function z(t, x) satisfies⎧⎨⎩
zt − Dzxx + νzx ≥ (≤)z(α − βz), t > 0, −lε < x < lε,

z(t,±lε) ≥ (≤)k, t ≥ 0,

z(0, x) > 0, x ∈ (−lε, lε),

(4.12)

then

z(t, x) >
α

β
− ε (z(t, x) <

α

β
+ ε), for t ≥ Tε, x ∈ [−L,L]. (4.13)

Moreover, the above inequality implies that

lim inf
t→∞ z(t, x) >

α

β
− ε (lim sup

t→∞
z(t, x) <

α

β
+ ε) uniformly in [−L,L]. (4.14)
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Proof. Let l > 2Dπ
(√

4Dα − ν2
)−1. By using a similar argument as in the proof of Lemma 4.1, 

we can show that the problem{
−Dzxx + νzx = z(α − βz), −l < x < l,

z(±l) = k
(4.15)

admits a unique positive solution z = zl . We claim that

lim
l→∞ zl(x) = α

β
uniformly in any compact subset of R. (4.16)

For the case k > α
β

, the strong maximum principle implies that α
β

≤ zl(x) ≤ k for x ∈ [−l, l]. 
Since zl(x) ≤ k, the comparison principle yields that zl(x) is monotone decreasing with respect 
to l. Hence, the limit liml→∞ zl(x) = z∗(x) exists and satisfies the following Cauchy equation:

−Dzxx + νzx = z(α − βz), x ∈ R. (4.17)

By Liouville theorem, liml→∞ zl(x) = α
β

uniformly in any compact subset of R. Thus (4.16)
holds.

For the case k ≤ α
β

, choose k0 > α
β

and let z0
l (x) be the unique solution of (4.15) with k = k0. 

By the comparison principle, wl(x) ≤ zl(x) ≤ z0
l (x) for x ∈ [−l, l], where wl(x) is the solution 

of (4.6). Since wl(x) and z0
l (x) converge to α

β
as l → ∞, we obtain (4.16) immediately.

By (4.16), for any given L > 0 and ε > 0, there exists lε > max
{
L, 2Dπ

(√
4Dα − ν2

)−1}
such that

α

β
− ε

2
< zl(x) <

α

β
+ ε

2
for x ∈ [−L,L], l ≥ lε. (4.18)

Let z0(x) ∈ C([−lε, lε]) be a positive function and z(t, x) be the solution of⎧⎪⎨⎪⎩
zt − Dzxx + νzx = z(α − βz), t > 0, − lε < x < lε,

z(t,±lε) = k, t ≥ 0,

z(0, x) = z0(x), x ∈ [−lε, lε].
(4.19)

In view of lε > max
{
L, 2Dπ

(√
4Dα − ν2

)−1}, we show that

lim
t→∞ z(t, x) = zl(x) uniformly in any compact subset of (−lε, lε). (4.20)

Fix a positive constant q and let ψq(t, x) be the unique solution of⎧⎪⎨⎪⎩
ψt − Dψxx + νψx = ψ(α − βψ), t > 0, − lε < x < lε,

ψ(t,±lε) = k, t ≥ 0,

ψ(0, x) = q, x ∈ [−lε, lε].
(4.21)

We choose M >> 1 and 0 < m << 1 such that M and m are the upper and lower solutions of 
(4.15). Then ψM(t, x) is monotone decreasing and ψm(t, x) is monotone increasing with respect 
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to t . Hence, the limits limt→∞ ψM(t, x) = ψM(x) and limt→∞ ψm(t, x) = ψm(x) exist. ψM(x)

and ψm(x) are both positive solutions of (4.15) with l = lε . Therefore,

ψM(x) = ψm(x) = zl(x), where zl(x) is the solution of (4.15) with l = lε. (4.22)

By comparing the equations (4.19) and (4.21), the comparison principle leads to ψm(t, x) ≤
z(t, x) ≤ ψM(t, x). Since (4.22) holds, limt→∞ z(t, x) = zl(x). By using the interior estimate, 
the limit limt→∞ z(t, x) = zl(x) is uniformly in any compact subset of (−lε, lε).

Owing to (4.14) and (4.20), there exists Tε >> 1 such that

α

β
− ε < z(t, x) <

α

β
+ ε, for t ≥ Tε, x ∈ [−L,L].

By comparing the two systems (4.12) and (4.19), we obtain that (4.13) and (4.14) hold immedi-
ately. �
4.1. Long term behavior of boundaries and convergence of solutions

In fact, whether the size of (g∞, h∞) is finite determines the asymptotic behavior of u and v. 
In the next two theorems, we give the relationship between the long term behavior of boundaries
and the convergence of u and v.

Theorem 4.3. Assume that h∞ = ∞ and g∞ = −∞. If

a1 < 1, a2 < r, ν1 < 2
√

1 − a1, ν2 < 2
√

D(r − a2), (4.23)

then the solution (u, v, g, h) to (1.3) satisfies

lim
t→∞(u(t, x), v(t, x))

= ( r(1 − a1)

r − a1a2
,

r − a2

r − a1a2

)
uniformly in any compact subset of R. (4.24)

Proof. By Lemma 2.2, 0 < u(t, x) ≤ M1 for t > 0 and x ∈ (g(t), h(t)), 0 < v(t, x) ≤ M2 for 
t > 0 and x ∈ R. Then we find that v satisfies{

vt − Dvxx − ν2vx ≤ v(r − rv), t > 0, x ∈R,

v(0, x) = v0(x), x ∈R.

The comparison principle yields that

lim sup
t→∞

v(t, x) ≤ 1 := v1 uniformly in R.

For any 0 < ε1 << 1, there exists T1 > 0 such that

v(t, x) ≤ v1 + ε1 for t ≥ T1, x ∈ R. (4.25)
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(i) For any given L > 0, and 0 < ε << 1, let lε be given by Lemma 4.1. In view of h∞ = ∞
and g∞ = −∞, there exists T2 ≥ T1 such that

g(t) < −lε, h(t) > lε, for t ≥ T2.

Recalling (4.25), we see that u satisfies⎧⎨⎩
ut − uxx + ν1ux ≥ u(1 − u − a1(v1 + ε1)), t > T2, x ∈ (−lε, lε),

u(t,±lε) ≥ 0, t ≥ T2,

u(T2, x) > 0, x ∈ (−lε, lε).

In order to use Lemma 4.1, we need to verify condition (4.1), here it corresponds to ν1 <

2
√

1 − a1(v1 + ε1). Thus, we should choose ε1 <
4(1−a1v1)−ν2

1
4a1

. Due to ν1 < 2
√

1 − a1 of (4.23), 

we induce that 
4(1−a1v1)−ν2

1
4a1

= 4(1−a1)−ν2
1

4a1
> 0. Hence ε1 satisfying Lemma 4.1 exists. Applying 

Lemma 4.1, we have

lim inf
t→∞ u(t, x) > 1 − a1v1 − a1ε1 − ε uniformly in [−L,L].

Since 1 − a1 > 0, by the arbitrariness of L, ε and ε1, we have

lim inf
t→∞ u(t, x) ≥ 1 − a1v1 := u1 > 0 uniformly in any compact subset of R. (4.26)

(ii) For any given L > 0 and 0 < ε << 1, let lε be given by Lemma 4.2 with k = M2. Taking 
into account (4.26), there exists T3 ≥ T2 such that

u(t, x) ≥ u1 + ε2 for t ≥ T3, x ∈ [−lε, lε].
Then v satisfies⎧⎨⎩

vt − Dvxx − ν2vx ≤ v(r − a2(u1 + ε2) − rv), t > T3, x ∈ (−lε, lε),

v(t,±lε) ≤ M2, t ≥ T3,

v(T3, x) > 0, x ∈ (−lε, lε).

In order to use Lemma 4.2, we need to verify condition (4.1), here it corresponds to 

ν2 < 2
√

D(r − a2(u1 + ε2)). Thus we should choose ε2 <
4D(r−a2u1)−ν2

2
4Da2

. Since u1 < 1, 
4D(r−a2u1)−ν2

2
4Da2

>
4D(r−a2)−ν2

2
4Da2

. Consequently, in order to ensure ε2 existing, we only need to 

verify 
4D(r−a2)−ν2

2
4Da2

> 0, which can be induced by the condition ν2 < 2
√

D(r − a2) of (4.23). 
Applying Lemma 4.2, we have

lim sup
t→∞

v(t, x) < 1 − a2

r
(u1 + ε2) + ε uniformly in [−L,L].

By the arbitrariness of L, ε and ε2, we have

lim supv(t, x) ≤ 1 − a2
u1 := v2 uniformly in any compact subset of R. (4.27)
t→∞ r
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(iii) For any given L > 0 and 0 < ε << 1, let lε be given by Lemma 4.1. Taking into account 
(4.27), there exists T4 ≥ T3 such that

g(t) < −lε, h(t) > lε, v(t, x) ≤ v2 + ε1, for t ≥ T4, x ∈ [−lε, lε].

We see that u satisfies⎧⎨⎩
ut − uxx + ν1ux ≥ u(1 − u − a1(v2 + ε1)), t > T4, x ∈ (−lε, lε),

u(t,±lε) ≥ 0, t ≥ T4,

u(T4, x) > 0, x ∈ (−lε, lε).

Since v2 < v1, the above 
4(1−a1v1)−ν2

1
4a1

> 0 implies 
4(1−a1v2)−ν2

1
4a1

> 0. Thus, our choice ε1 satisfies 
the condition (4.1). Applying Lemma 4.1, we have

lim inf
t→∞ u(t, x) > 1 − a1v2 − a1ε1 − ε uniformly in [−L,L].

By the arbitrariness of L, ε and ε1, we have

lim inf
t→∞ u(t, x) ≥ 1 − a1v2 := u2 uniformly in any compact subset of R. (4.28)

(iv) For any given L > 0 and 0 < ε << 1, let lε be given by Lemma 4.2 with k = M2. Taking 
into account (4.28), there exists T5 ≥ T4 such that

u(t, x) ≥ u2 + ε2 for t ≥ T5, x ∈ [−lε, lε].

Then v satisfies⎧⎨⎩
vt − Dvxx − ν2vx ≤ v(r − a2(u2 + ε2) − rv), t > T5, x ∈ (−lε, lε),

v(t,±lε) ≤ M2, t ≥ T5,

v(T5, x) > 0, x ∈ (−lε, lε).

Since u2 < 1 still holds, the above 
4D(r−a2)−ν2

2
4Da2

> 0 implies 
4D(r−a2u2)−ν2

2
4Da2

> 0. Thus the chosen 
ε2 satisfies condition (4.1). Applying Lemma 4.2, we have

lim sup
t→∞

v(t, x) < 1 − a2

r
(u2 + ε2) + ε uniformly in [−L,L].

By the arbitrariness of L, ε and ε2, we have

lim sup
t→∞

v(t, x) ≤ 1 − a2

r
u2 := v3 uniformly in any compact subset of R. (4.29)

Therefore, as long as the sequence {un} is monotone increasing and the sequence {vn} is 
monotone decreasing, the condition (4.1) is naturally satisfied. We can apply Lemmas 4.1 and 
4.2 again. Repeating the above procedure such as (4.26), (4.27), (4.28) and (4.29), we obtain two 
sequences {u } and {vn}, which satisfy
n
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u1 = 1 − a1, v1 = 1, and un = 1 − a1vn, vn+1 = 1 − a2

r
un, for n = 1,2 · · · (4.30)

We now claim that {un} is monotone increasing and {vn} is monotone decreasing. We prove it by 
using an induction method. For the case n = 1, since a1 < 1, it is easy to see that

v2 − v1 = −a2

r
(1 − a1) < 0, u2 − u1 = −a1(v2 − v1) > 0.

Suppose that vn − vn−1 < 0, un − un−1 > 0. By (4.30), we compute

vn+1 − vn = 1 − a2

r
un − (1 − a2

r
un−1) = −a2

r
(un − un−1) < 0,

un+1 − un = −a1(vn+1 − vn) > 0.

Thus the induction principle implies the claim.
Since the sequences {un} is monotone increasing and {vn} is monotone decreasing, the limits 

limn→∞ un and limn→∞ vn exist, which satisfy

lim inf
t→∞ u(t, x) ≥ u = r(1 − a1)

r − a1a2
uniformly in any compact subset of R.

lim sup
t→∞

v(t, x) ≤ v = r − a2

r − a1a2
uniformly in any compact subset of R.

(4.31)

By using a similar argument, we can show

lim sup
t→∞

u(t, x) ≤ r(1 − a1)

r − a1a2
uniformly in any compact subset of R.

lim inf
t→∞ v(t, x) ≥ r − a2

r − a1a2
uniformly in any compact subset of R.

(4.32)

Combining (4.31) and (4.32), we conclude that (4.24) holds. �
Remark 4.4. For the Cauchy problem (3.10), the proof of Theorem 4.3 is valid. When (4.23)
holds, the solution (u, v) of (3.10) converges to the coexistence state ( r(1−a1)

r−a1a2
, r−a2

r−a1a2
) locally 

uniformly in R as t → ∞.

Theorem 4.5. Let (u, v, g, h) be a solution of (1.3). If h∞ − g∞ < ∞, then

lim
t→∞‖u(t, ·)‖C([g(t),h(t)]) = 0, (4.33)

lim
t→∞g′(t) = lim

t→∞h′(t) = 0, (4.34)

lim
t→∞v(t, x) = 1 uniformly in any compact subset of R. (4.35)

Proof. We first show that

‖u‖C1+α,(1+α)/2([1,∞)×[g(t),h(t)]) + ‖g‖C1+α/2([1,∞)) + ‖h‖C1+α/2([1,∞)) ≤ C (4.36)
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for any α ∈ (0, 1), where the constant C depends on α, h0, ‖u0‖C2([−h0,h0]), g∞ and h∞. We 
straighten the free boundaries by the following transformation

y = 2x

h(t) − g(t)
− h(t) + g(t)

h(t) − g(t)

such that x = h(t) and x = g(t) change to y = ±1. Some calculations show that

∂y

∂x
= 2

h(t) − g(t)
:= √

A(g(t), h(t), y),

∂2y

∂x2 = 4

(h(t) − g(t))2 := A(g(t), h(t), y),

∂y

∂t
= −2x(h′(t) − g′(t)) + 2(g(t)h′(t) + h(t)g′(t))

(h(t) − g(t))2 := B(g(t), g′(t), h(t), h′(t), y).

Our proof is motivated by Theorem 2.1 in Wang [47,48] (see also Theorem 4.1 in Lei et al. [29]
and Theorem 4.1 in Cao et al. [5]). Let w(t, y) = u(t, x) and z(t, y) = v(t, x), then we obtain 
that w(t, y) satisfies⎧⎨⎩

wt − Awyy − (A − B − ν1
√

A)wy = f1(w, z), t > 0,−1 < y < 1
w(t,±1) = 0, t > 0,

w(0, y) = u0(
y
h0

) ≥ 0, −1 ≤ y ≤ 1.

For any integer n ≥ 0, define

wn(t, y) = w(t + n,y), zn(t, y) = z(t + n,y),

then wn(t, y) satisfies⎧⎨⎩
wn

t − Anwn
yy − (An − Bn − ν1

√
An)wn

y = f1(w
n, zn), t ∈ (0,3],−1 < y < 1,

wn(t,±1) = 0, t ∈ (0,3],
wn(0, y) = u(n,

y(h(n)−g(n))+h(n)+g(n)
2 ) ≥ 0, −1 ≤ y ≤ 1,

where An = A(t + n) and Bn = B(t + n). In view of Lemma 2.2, it follows that wn, zn, An and 
Bn are bounded uniformly on n, and

max
0≤t1<t2≤3,|t1−t2|≤τ

|An(t1) − An(t2)| ≤ 8(hn(t) − gn(t))′

(hn(t) − gn(t))3 ≤ 2M3τ

h3
0

→ 0 as τ → 0

with gn(t) = g(t + n), hn(t) = h(t + n). Moreover, we have An ≥ 4
(h∞−g∞)2 for all n ≥ 0 and 

0 < t ≤ 3 as h∞ − g∞ < ∞.
If we choose the integer p sufficiently large, applying the interior Lp estimate yields that 

there exists a positive constant C independent of n such that ‖un‖
W

1,2
p ([1,3]×[−1,1]) ≤ C1 for all 

n > 0. By Sobolev’s imbedding theorem, we therefore have ‖un‖C(1+α)/2,1+α([1,3]×[−1,1]) ≤ C1 for 
all n > 0, which implies that ‖u‖C(1+α)/2,1+α([n+1,n+3]×[−1,1]) ≤ C1. Since
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g′(t) = −μux(t, g(t)), ux(t, g(t)) = 2

h(t) − g(t)
uy(−1, t),

h′(t) = −μux(t, h(t)), ux(t, h(t)) = 2

h(t) − g(t)
uy(1, t),

hold in [n + 1, n + 3] × [−1, 1] and 0 < −g′(t), h(t) ≤ M3, we have

‖g‖C1+α/2([n+1,n+3]) + ‖h‖C1+α/2([n+1,n+3]) ≤ C2.

Since the intervals [n + 1, n + 3] × [−1, 1] overlap and the above constants C1 and C2 are 
independent of n, it follows that (4.36) holds. Noting that h(t) is bounded and ‖h‖C1+α/2([0,∞)) ≤
M , we have h′(t) → 0 as t → +∞. Analogously, g′(t) → 0 as t → +∞. Thus (4.34) is proved.

We then show (4.33). Assume that

lim sup
t→+∞

‖u(t, ·)‖C([g(t),h(t)]) = δ > 0

by contradiction. Then there exists a sequence {(tk, xk)} in (−∞, ∞) × (g(t), h(t)) such that 
u(tk, xk) ≥ δ/2 for all k ∈ N, and tk → ∞ as k → ∞.

It follows from Theorem 2.1 that there exists a constant C̃ depending on α, h0, (u0, v0) and 
h∞ such that

‖u‖C(1+α)/2,1+α(G) + ‖v‖C(1+α)/2,1+α(G) + ‖h‖C1+α/2([0,∞)) + ‖g‖C1+α/2([0,∞)) ≤ C̃, (4.37)

where G = {(t, x) ∈ R : t ≥ 0, x ∈ [g(t), h(t)]}. Combining u(t, h(t)) = u(t, g(t)) = 0 and 
(4.37), we have |ux(t, h(t))| and |ux(t, g(t))| are uniformly bounded for t ∈ [0, ∞). There ex-
ists σ > 0 such that xk ≤ h(tk) − σ for all k ≥ 1. Therefore there exists a subsequence of {xk}
converging to x0 ∈ (g∞, h∞ − σ ]. Without loss of generality, we assume xk → x0 as k → ∞.

Define

Uk(t, x) = u(tk + t, x) and Vk(t, x) = v(tk + t, x) for (t, x) ∈ Gk

with

Gk = {(t, x) ∈R : t ∈ (−tk,∞), x ∈ [g(tk + t), h(tk + t)]}.

It follows from (4.37) that {(Uk, Vk)} has a subsequence {(Ukn, Vkn)} such that

‖(Ukn,Vkn) − (Û , V̂ )‖C1,2(Gkn )×C1,2(Gkn ) → 0 as n → ∞,

and (Û , V̂ ) satisfies{
Ût = Ûxx − ν1Ûx + Û(1 − Û − a1V̂ ), −∞ < t < ∞, g∞ < x < h∞,

V̂t = DV̂xx − ν2V̂x + V̂ (r − a2Û − rV̂ ), −∞ < t < ∞, g∞ < x < h∞,

with
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Û (t, h∞) = 0 for t ∈ (−∞,∞).

Since Û(0, x0) ≥ δ/2, we have Û > 0 in (−∞, ∞) × (g∞, h∞) by the strong comparison prin-
ciple. Let M = ‖1 − Û − a1V̂ ‖L∞([0,∞)), then Ût − Ûxx + ν1Ûx + MÛ ≥ 0. Using the Hopf 
Lemma at the point (0, h∞), we get Ûx(0, h∞) := σ0 < 0. It follows that

ux(tkn , h(tkn)) = ∂ukn(0, h(tkn)) ≤ σ0/2 < 0 (4.38)

for all large n. Hence, h′(tkn) ≥ −μσ0/2 > 0 for all large n.
On the other hand, since ‖h‖C1+α/2([0,∞)) ≤ C̃, h′(t) > 0 and h(t) ≤ h∞, we have h′(t) → 0

as t → ∞. We obtain a contradiction, thus (4.33) is true.
It remains to show (4.35). Let v(t) solve the following ordinary differential equation:{

v′ = rv(1 − v), t > 0,

v(0) = ‖v0‖L∞(R),

where

v = ert
(
ert − 1 + 1

v(0)

)−1
.

Applying the comparison principle yields that v(t, x) ≤ v(t) for (t, x) ∈ [0, T ) × R. Since 
limt→∞ v(t) = 1, we have

lim sup
t→∞

v(t, x) ≤ 1 uniformly for x ∈ R. (4.39)

On the other hand, we have (4.33) and u(t, x) ≡ 0 for x /∈ (g(t), h(t)). Hence, for any given 
positive σ , there exists Tσ > 0 such that u(t, x) < σ for (t, x) ∈ [Tσ , ∞) × R. Consequently, v
satisfies {

vt − Dvxx + ν2vx ≥ v(r − a2σ − rv), t > Tσ , x ∈R,

v(Tσ , x) > 0, x ∈R.
(4.40)

Considering the corresponding Cauchy problem of (4.40),{
wt − Dwxx + ν2wx = w(r − a2σ − rw), t > Tσ , x ∈R,

w(0, x) > 0, x ∈ R,
(4.41)

invoking Theorem 5.4 of Du and Ma [12] shows that

lim
t→∞w(t, x) = r − a2σ

r

uniformly in any compact subset of R. By applying the comparison principle to u and w, we 
deduce that

lim infu(t, x) ≥ r − a2σ uniformly in any compact subset of R. (4.42)

t→∞ r
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Letting σ → 0, (4.42) implies lim inft→∞ u(t, x) ≥ 1 uniformly in any compact subset of R. 
Recalling (4.24), (4.33) is proved. The proof is complete. �
4.2. Sufficient conditions for spreading and vanishing

By Theorems 4.3 and 4.5, the boundaries determine the asymptotic behavior of u and v. 
Hence, we only need to study the asymptotic behavior of the free boundaries h∞ and g∞. In order 
to do that, we give the spreading-vanishing alternative for the following single free boundary 
problem: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = uxx − νux + u(α − βu), t > 0, g(t) < x < h(t),

u = 0, g′(t) = −μux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x) = σφ(x), x ∈ [−h0, h0],

(4.43)

where φ(x) ∈ C2([−h0, h0]), φ(±h0) = 0, φ′(−h0) > 0, φ′(h0) < 0, φ0(x) > 0 in (−h0, h0). 
Note that the global existence of solutions and boundedness to problem (4.43) are valid by a 
similar argument in Theorem 2.3 and Lemma 2.2. Gu et al. [19,21] have used the zero number ar-
gument method to show that when ν < 2

√
α the problem (4.43) possesses a spreading-vanishing 

dichotomy; that is, the solution converges either to 1 locally uniformly in R or to 0 uniformly 
into a finite domain.

Lemma 4.6 (Theorem 1.1 in [19] or Theorem 2.1 in [21]). Assume that ν < 2
√

α and (u, g, h)

is a global solution of (4.43). Then either

(i) Spreading: (g∞, h∞) = R and limt→∞ u(t, x) = α
β

uniformly in any compact subset of R;

or

(ii) Vanishing: (g∞, h∞) is a finite interval with h∞ − g∞ ≤ 2π
(√

4α − ν2
)−1

and
limt→∞ ‖u(t, ·)‖C([g(t),h(t)]) = 0.

Moreover, in the case h0 ≥ π
(√

4α − ν2
)−1

, spreading happens; In the case h0 <

π
(√

4α − ν2
)−1

, there exists σ ∗ = σ ∗(h0, φ) ∈ (0, ∞] such that vanishing happens when 
0 < σ ≤ σ ∗, and spreading happens when σ > σ ∗.

Next we give the comparison principle for the single free boundary problem (4.43).

Lemma 4.7. Let T ∈ (0, ∞), g, h ∈ C1([0, T ]). Assume that D∗
T := {(t, x) ∈ R

2 : 0 < t ≤
T , g(t) < x < h(t)} and

u ∈ C(D∗
T ) ∩ C1,2(D∗

T ), and u(t, x) > 0 in D∗
T ,

and (u, g, h) satisfies
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut − uxx + νux ≥ u(α − βu), 0 < t ≤ T , g(t) < x < h(t),

u(t, g(t)) = 0, g′(t) ≤ −μux(t, g(t)), 0 < t ≤ T ,

u(t, h(t)) = 0, h
′
(t) ≥ −μux(t, h(t)), 0 < t ≤ T ,

g(0) ≤ −h0, h(0) ≥ h0,

u(0, x) ≥ u0(x), x ∈ [−h0, h0].

(4.44)

Then (u, g, h) is called an upper solution of (4.43). Moreover, the solution (u, g, h) of the free 
boundary problem (4.43) satisfies

g(t) ≥ g(t), h(t) ≤ h(t) for t ∈ [0, T ], (4.45)

u(t, x) ≤ u(t, x) for (t, x) ∈ [0, T ] × [g(t), h(t)]. (4.46)

By reversing all the inequalities in (4.44), we can define a lower solution (u, g, h), which satisfies

g(t) ≤ g(t), h(t) ≥ h(t) for t ∈ [0, T ], (4.47)

u(t, x) ≥ u(t, x) for (t, x) ∈ [0, T ] × [g(t), h(t)]. (4.48)

Proof. We first prove the case of g(0) < −h0 and h(0) > h0. We claim that g(t) < g(t) and 
h(t) > h(t) on (0, T ]. Clearly, this is true for small t > 0. If our claim is not true, without loss 
of generality, there exists a T0 > 0 such that h(T0) = h(T0), and g(t) < g(t), h(t) > h(t) for all 
t ∈ (0, T0). Thus,

h′(T0) ≥ h
′
(T0). (4.49)

We now show that u ≤ u in [0, T0] ×[g(t), h(t)]. Letting U = (u−u)e−Kt , taking the difference 
of the equations for (4.43) and (4.44) implies that⎧⎨⎩

Ut − Uxx + νUx ≥ −KU + αU − βU(u + u), 0 < t ≤ T0, g(t) < x < h(t),

U(t, g(t)) ≥ 0, U(t, h(t)) ≥ 0, 0 < t ≤ T0,

U(0, x) ≥ 0, x ∈ [−h0, h0].
(4.50)

Since u ∈ C(D∗
T ), by setting M = ‖u‖

L∞(D∗
T )

+‖u‖
L∞(D∗

T )
, the first inequality of (4.50) implies 

that

Ut − Uxx + νUx ≥ −KU + αU − βMU, 0 < t ≤ T0, g(t) < x < h(t).

Upon choosing

K ≥ α − βM (4.51)

and applying the maximum principle directly to (4.50), we obtain U ≥ 0 in [0, T0] ×[g(t), h(t)]. 
Therefore, u ≤ u in [0, T0] × [g(t), h(t)]. Since u(T0, h(T0)) = u(T0, h(T0)), utilizing Hopf 
Lemma to U shows Ux(T0, h(T0)) < 0; that is, ux(T0, h(T0)) < ux(T0, h(T0)). Thus, we ob-
tain that h′(T0) < h

′
(T0), which is a contradiction to (4.49). Hence, we proved our claim that 

h(t) > h(t) and g(t) < g(t) on all [0, T ]. We can obtain the equation (4.50) for t ∈ (0, T ]. By 
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applying the maximum principle again, we conclude that u ≥ u in [0, T ] × [g(t), h(t)]. Hence, 
(4.45) and (4.46) hold in the case of g(0) < −h0 and h(0) > h0.

It remains to prove the general case that g(0) = −h0 and h(0) = h0. We set hε
0 = (1 − ε)h0, 

με = (1 − ε)μ for small ε > 0, and (uε, gε, hε) solves the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx − νux + u(α − βu), t > 0, g(t) < x < h(t),

u = 0, g′(t) = −μεux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μεux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −hε
0, h(0) = hε

0,

u(0, x) = uε
0(x), x ∈ [−hε

0, h
ε
0].

(4.52)

here uε
0(x) ∈ C2([−hε

0, h
ε
0]), which also satisfies

0 < uε
0(x) ≤ u0(x) for x ∈ [−hε

0, h
ε
0].

Moreover, as ε → 0,

uε
0

(h0

hε
0
x
) → u0(x) in C2([−h0, h0]).

Thus, (uε, gε, hε) satisfies the first case. Consequently we have

gε(t) ≥ g(t), hε(t) ≤ h(t) for t ∈ [0, T ],
uε(t, x) ≤ u(t, x) for t ∈ [0, T ], x ∈ [−hε

0, h
ε
0]. (4.53)

Since the unique solution of (4.43) depends continuously on the parameters in problem (4.52), as 
ε → 0, (uε, gε, hε) converges to (u, g, h) the unique solution of (4.43). Then (4.45) and (4.46)
are true by taking ε → 0. �

We now give a sufficient condition for spreading in (1.3).

Theorem 4.8. Assume that (4.23) holds and (u, v, g, h) is a global solution of (1.3).

If h∞ − g∞ < ∞, then h∞ − g∞ ≤ 2π
(√

4 − ν2
1

)−1
. (4.54)

If h0 ≥ π
(√

4 − ν2
1

)−1
, then (g∞, h∞) =R. (4.55)

Moreover, when (g∞, h∞) = R, spreading happens, and the solution (u, v, g, h) to (1.3) satisfies

lim
t→∞(u(t, x), v(t, x)) = ( r(1 − a1)

r − a1a2
,

r − a2

r − a1a2

)
uniformly in any compact subset of R.

Proof. In order to prove (4.54), we assume h∞ − g∞ > 2π
(√

4 − ν2
1

)−1 to get a contradiction. 
By Theorem 4.5, if h∞ − g∞ < ∞, then ‖u(t, ·)‖C([g(t),h(t)]) = 0, limt→∞ v(t, x) = 1 uniformly 
in any compact subset of R. For any small 0 < ε1 << 1 and any ε2 > 0, there exists T1 > 0 such 
that
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v(t, x) < 1 + ε1, for t > T1, x ∈ [g∞, h∞].
h(T1) − g(T1) > max{2h0,2π

(√
4 − ν2

1 − ε1
)−1}.

Set l1 = g(T1) and l2 = h(T1), then l2 − l1 > 2π
(√

4 − ν2
1 − ε1

)−1. Consider the following 
initial boundary value problem:

⎧⎨⎩
wt − wxx + ν1wx = w(1 − w − a1(1 + ε2)), t > T1, l1 < x < l2,

w(t, l1) = w(t, l2) = 0, t > T1,

w(T1, x) = u(T1, x) > 0, x ∈ (l1, l2).

(4.56)

By the comparison principle, we have

w(t, x) ≤ u(t, x) for t ≥ T1, x ∈ [l1, l2]. (4.57)

By choosing ε2 < ε1
4a1

, we verify that the first eigenvalue of (4.56) λ1 = ν2
1
4 + π2

l2
< 1 −a1 −a1ε2. 

Since (4.56) is a gradient system (see [2,23]), as t → ∞, the solution w(t, x) converges to a 
solution θ(x) of the following stationary problem:

{
θxx + ν1θx = θ(1 − θ − a1(1 + ε2)), l1 < x < l2,

θ(l1) = θ(l2) = 0.

Thus, it follows from (4.57) that lim inft→∞ u(t, x) ≥ limt→ w(t, x) = θ(x) > 0 in (l1, l2), which 
is a contradiction to ‖u(t, ·)‖C([g(t),h(t)]) = 0. Hence (4.54) is true.

In addition, if h0 ≥ π
(√

4 − ν2
1

)−1, the monotone properties of g(t) and h(t) yield that 

h∞ − g∞ > 2π
(√

4 − ν2
1

)−1, which leads to (4.55) immediately. Since (4.23) holds, applying 
Theorem 4.3, the proof is completed. �

In the next, we discuss the case of h0 < π
(√

4 − ν2
1

)−1. We give a sufficient condition for 
vanishing in (1.3).

Theorem 4.9. Assume that (4.23) holds and h0 < π
(√

4 − ν2
1

)−1
. The initial condition of (1.3)

satisfies u(0, x) = u0(x) = σφ(x) for x ∈ [−h0, h0], where φ(x) ∈ C2([−h0, h0]), φ(±h0) =
0, φ′(−h0) > 0, φ′(h0) < 0, φ0(x) > 0 in (−h0, h0). Then there exists σ ∗ = σ ∗(h0, φ) ∈
(0, ∞) such that when 0 < σ ≤ σ ∗, h∞ − g∞ < ∞. Moreover, when h∞ − g∞ < ∞, vanishing 
happens, and the solution (u, v, g, h) to (1.3) satisfies

lim
t→∞‖u(t, ·)‖C([g(t),h(t)]) = 0,

lim
t→∞v(t, x) = 1 uniformly in any compact subset of R.
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Proof. Since v(t, x) > 0 in (0, ∞) ×R, the problem (1.3) implies that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut ≤ uxx − ν1ux + u(1 − u), t > 0, g(t) < x < h(t),

u = 0, g′(t) = −μux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x) = σφ(x), x ∈ [−h0, h0].

(4.58)

Applying Lemma 4.7 directly, we know that (u, g, h) is a lower solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx − ν1ux + u(1 − u), t > 0, g̃(t) < x < h̃(t),

u = 0, g̃′(t) = −μux(t, g̃(t)), t ≥ 0, x = g̃(t),

u = 0, h̃′(t) = −μux(t, h̃(t)), t ≥ 0, x = h̃(t),

g̃(0) = −h0, h̃(0) = h0,

u(0, x) = u0(x) = σφ(x), x ∈ [−h0, h0].

(4.59)

Thus,

g(t) ≥ g̃(t), h(t) ≤ h̃(t), for t > 0. (4.60)

By using Lemma 4.6 to (4.59) with α = 1 and ν = ν1, there exists σ ∗ = σ ∗(h0, φ) ∈ (0, ∞] such 
that when 0 < σ ≤ σ ∗, h̃∞ − g̃∞ < ∞. In view of (4.60), by choosing σ ∗ = σ ∗(h0, φ), we obtain 
that when 0 < σ ≤ σ ∗, h∞ − g∞ < ∞. Since (4.23) holds, applying Theorem 4.5, the proof is 
completed. �
5. Asymptotic spreading speed

In term of Theorem 4.8, we obtain sufficient conditions for spreading. Our aim is to show that 
when spreading happens, the leftward front g(t) and the rightward front h(t) move at different 
speeds for large time. To do so, we recall the asymptotic spreading speed for the scalar free 
boundary problem (4.43). Gu et al. [20] used the phase plane analysis to show that when ν < 2

√
α

the problem (4.43) possesses the fixed leftward and rightward asymptotic spreading speeds.

Lemma 5.1 (Theorems 1.1 and 1.2 in [20]). Assume that ν < 2
√

α and (u, g, h) is a global 
solution of (4.43). Then there exist positive constants c∗

l and c∗
r such that

0 < c∗
l := lim

t→∞
−g(t)

t
< c∗ < c∗

r := lim
t→∞

h(t)

t
,

where c∗
l and c∗

r depend on μ, ν, α and β; c∗ is the asymptotic spreading speed of the logistic 
free boundary problem without the advection, which is given as k0 in Proposition 4.1 of Du and 
Lin [8] or c∗ in Theorem 1.10 of Du and Lou [10]. If μ, ν, and β are fixed, then c∗

l , c∗ and c∗
r

are strictly increasing in α. Moreover,

(i) If ν ∈ (0, 2
√

α) is fixed, then c∗
l , c∗ and c∗

r are strictly increasing in μ, and

lim c∗
l = 0, lim

μ→∞ c∗
l = 2

√
α − ν,
μ→0
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lim
μ→0

c∗ = 0, lim
μ→∞ c∗ = 2

√
α,

lim
μ→0

c∗
r = 0, lim

μ→∞ c∗
r = 2

√
α + ν.

(ii) If μ is fixed, then −c∗
l and c∗

r are strictly increasing in ν, and

lim
ν→0

c∗
l = lim

ν→0
c∗
r = c∗, lim

ν→2
√

α
c∗
l = 0.

Theorem 5.2. Assume that (4.23) and h0 ≥ π
(√

4 − ν2
1

)−1
. (u, v, g, h) is a global solution of 

(1.3). Then there exist positive constants c∗
l , c∗

r , c∗∗
l , and c∗∗

r such that

0 < c∗∗
r ≤ lim inf

t→∞
h(t)

t
≤ lim sup

t→∞
h(t)

t
≤ c∗

r ,

0 < c∗∗
l ≤ lim inf

t→∞
−g(t)

t
≤ lim sup

t→∞
−g(t)

t
≤ c∗

l .

(5.1)

where c∗
l , c∗

r , c∗∗
l , and c∗∗

r depend on μ, ν1 and a1. Moreover, c∗
l and c∗

r are the leftward and 
rightward asymptotic spreading speeds of the scalar free boundary problem (5.2); c∗∗

l and c∗∗
r

are the leftward and rightward asymptotic spreading speeds of the scalar free boundary problem 
(5.6).

Proof. We first estimate the upper bound of the asymptotic spreading speed. Similar as in The-
orem 4.9, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut ≤ uxx − ν1ux + u(1 − u), t > 0, g(t) < x < h(t),

u = 0, g′(t) = −μux(t, g(t)), t ≥ 0, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ 0, x = h(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x) > 0, x ∈ [−h0, h0].

Let (u, g̃, h̃) be a solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx − ν1ux + u(1 − u), t > 0, g̃(t) < x < h̃(t),

u = 0, g̃′(t) = −μux(t, g̃(t)), t ≥ 0, x = g̃(t),

u = 0, h̃′(t) = −μux(t, h̃(t)), t ≥ 0, x = h̃(t),

g̃(0) = −h0, h̃(0) = h0,

u(0, x) = u0(x), x ∈ [−h0, h0].

(5.2)

By Lemma 4.7, we obtain

g(t) ≥ g̃(t), h(t) ≤ h̃(t), for t > 0.

Due to (4.23), ν1 < 2
√

1 − a1 implies that ν1 < 2. Applying Lemma 5.1 to (5.2) yields that there 
exist positive constants c∗ and c∗

r such that
l
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0 < c∗
l = lim

t→∞
−g̃(t)

t
< c∗

r = lim
t→∞

h̃(t)

t
.

Hence, we deduce that

lim sup
t→∞

−g(t)

t
≤ c∗

l , lim sup
t→∞

h(t)

t
≤ c∗

r . (5.3)

We next deal with the estimate of the lower bound of the asymptotic spreading speed. Ap-
plying the comparison principle directly to (1.3), we have lim supt→∞ v(t, x) ≤ 1 in R. Thus for 
any given 0 < ε << 1, there exists Tε > 0 such that

v(t, x) ≤ 1 + ε, for t ≥ Tε, x ∈ R.

We find that u satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut ≥ uxx − ν1ux + u(1 − u − a1 − a1ε), t > Tε, g(t) < x < h(t),

u = 0, g′(t) = −μux(t, g(t)), t ≥ Tε, x = g(t),

u = 0, h′(t) = −μux(t, h(t)), t ≥ Tε, x = h(t),

g(0) := g(Tε) < −h0, h(0) := h(Tε) > h0,

u(Tε, x) > 0, x ∈ [g(Tε), h(Tε)].

Due to (4.23), ν1 < 2
√

1 − a1 leads to 
4(1−a1)−ν2

1
a1

> 0. By choosing ε <
4(1−a1)−ν2

1
a1

, we can 
verify that ν1 < 2

√
1 − a1 − a1ε. Applying Lemma 5.1 to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut = uxx − ν1ux + u(1 − u − a1 − a1ε), t > 0, ĝ(t) < x < ĥ(t),

u = 0, ĝ′(t) = −μux(t, ĝ(t)), t ≥ 0, x = ĝ(t),

u = 0, ĥ′(t) = −μux(t, ĥ(t)), t ≥ 0, x = ĥ(t),

ĝ(0) = −h0, ĥ(0) = h0,

u(0, x) = u0(x), x ∈ [−h0, h0],

(5.4)

we know that there exist positive constants cε
l and cε

r such that

0 < cε
l := lim

t→∞
−ĝ(t)

t
< cε

r := lim
t→∞

ĥ(t)

t
.

In order to ensure that (5.4) is a lower solution, we need to choose the initial condition u0(x) ≤
u(Tε, x). Hence, using Lemma 4.7, we have

g(t) ≤ ĝ(t), h(t) ≥ ĥ(t), for t > 0.

Hence, we deduce that

lim inf
−g(t) ≥ cε

l > 0, lim inf
h(t) ≥ cε

r > 0. (5.5)

t→∞ t t→∞ t
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In term of Lemma 5.1, cε
l and cε

r are monotonic decreasing in ε. By letting ε → 0, we have 
cε
l → c∗∗

l and cε
r → c∗∗

r , here c∗∗
l and c∗∗

r are the leftward and rightward asymptotic spreading 
speeds of the following free boundary problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut = uxx − ν1ux + u(1 − u − a1), t > 0, ĝ(t) < x < ĥ(t),

u = 0, ĝ′(t) = −μux(t, ĝ(t)), t ≥ 0, x = ĝ(t),

u = 0, ĥ′(t) = −μux(t, ĥ(t)), t ≥ 0, x = ĥ(t),

g(0) = −h0, h(0) = h0,

u(0, x) = u0(x), x ∈ [−h0, h0].

(5.6)

Therefore, we obtain

lim inf
t→∞

−g(t)

t
≥ c∗∗

l > 0, lim inf
t→∞

h(t)

t
≥ c∗∗

r > 0. (5.7)

Combining (5.3) and (5.7), we get (5.1), which completes the proof. �
6. Numerical simulations

In this section, we provide numerical computations of problem (1.3) by means of an im-
plicit finite difference scheme [40], using Crank–Nicholson method for time integration and 
Adams–Bashforth scheme for the nonlinear operator. We take the advection coefficients as 
ν1 = ν2 = 0.08164, which means that both two mosquito species move 0.08164 km per day 
(see more biological interpretations in [44]). Consider initial functions as follows:

u0(x) =
{

0.1 cos πx
2h0

, x ∈ [−h0, h0],
0, x /∈ [−h0, h0], v0(x) = 0.1 + 0.05 cos

πx

2h0
, x ∈R. (6.1)

We give three examples to explain the three possible competitive interactions between the two 
mosquito species.

(i) Weak-strong competition. Theorem 3.3 indicates that in the case of weak-strong compe-
tition the free boundaries will vanish. We take the following parameter values of model (1.3):

r = 1, a1 = 1.2, a2 = 0.05,μ = 2. (6.2)

It is easy to see from Fig. 2 that the density u of the invasive Ae. albopictus mosquitoes disappears 
gradually and the density v of the local Ae. aegypti mosquitoes converges to a homogeneous 
steady state. Moreover, the two free boundaries of u are limited in a bounded interval when the 
time increases.

(ii) Weak competition with big initial habitat. Theorem 4.8 implies that in the case of weak 
competition the free boundaries will spread if the initial habitat is big. We take the following 
parameter values of model (1.3):

r = 1, a1 = 0.08, a2 = 0.05,μ = 2. (6.3)

In view of Theorem 4.8, we compute the threshold size of the initial habitat as h0 =
2π

(√
4 − ν2

)−1 = 0.7867. Take h0 = 100 > 0.7867 such that the initial habitat is so big that 
1
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Fig. 2. The long time behaviors of u and v for the weak-strong competition case. Here h0 = 100, and other parameters 
are given in (6.2). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. The long time behaviors of u and v for the weak competition with big initial habitat case. Here h0 = 100, and 
other parameters are given in (6.3).

the free boundaries spread while (u, v) converges locally uniformly to ( r(1−a1)
r−a1a2

, r−a2
r−a1a2

) =
(0.9237, 0.9538). We can see from Fig. 3 that the density u of the invasive Ae. albopictus species 
converges locally uniformly to a homogeneous steady state 0.9237 and the density v of the local 
Ae. aegypti species converges to a homogeneous steady state 0.9538. Moreover, the two free 
boundaries of u increase slowly and tend to some finite values in a long run.

(iii) Weak competition with small initial habitat. Theorem 4.9 shows that in the case of 
weak competition the free boundaries will vanish if the initial habitat is small. We take the same 
parameters as in (6.3). According to Theorem 4.9, if h0 < 0.7867 the free boundaries vanish 
while the long time behavior of (u, v) is local uniform convergence to (0, 1). Take h0 = 0.75. 
We can see from Fig. 4 that the density u of the invasive Ae. albopictus mosquitoes disappears 
gradually and the density v of the local Ae. aegypti mosquitoes converges to a homogeneous 
steady state 1. Moreover, the two free boundaries of u are limited in a bounded interval with the 
time increasing.
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Fig. 4. The long time behaviors of u and v for the weak competition with small initial habitat case. Here h0 = 0.75, and 
other parameters are given in (6.3).

7. Discussions

Invasions by insect vectors of human diseases such as mosquitoes have profound effects on 
global public health (Lounibos [33]). Ae. aegypti and Ae. albopictus mosquitoes are two promi-
nent transmitters of dengue fever virus, chikungunya virus, yellow fever virus, Zika virus, etc. 
Understanding the dispersal and invasive behavior of Aedes mosquitoes is essential in imple-
menting vector control strategies and preventing and controlling mosquito-borne diseases. Ae. 
aegypti mosquito is an invasive domestic species with tropical and subtropical worldwide dis-
tribution and Ae. albopictus is a most recent invasive species that has spread recently to many 
countries. After arriving the U.S. in 1983 (Reiter and Darsie [41]), Ae. albopictus mosquitoes 
have been competing with Ae. aegypti mosquitoes, coexisting with Ae. aegypti where Ae. aegypti
present, and spreading beyond the boundaries of Ae. aegypti’s habitats (see Fig. 1). Our compe-
tition model with free boundary (1.3) can be applied to model the invasion of Ae. albopictus and 
the competition between Ae. aegypti and Ae. albopictus.

In view of Theorem 3.3, in the case of weak-strong competition when the local Ae. aegypti
wins, the invasive Ae. albopictus will eventually vanish and the habitat of Ae. albopictus is con-
fined to a finite region. By Theorems 4.8 and 4.9, we see that in the case of weak competition, 
when the two advection coefficients are less than some fixed constants (satisfying (4.23)), the 
invasive Ae. albopictus may spread over the whole space or vanish. When the size of initial habi-

tat is larger than a fixed constant (satisfying h0 ≥ π
(√

4 − ν2
1

)−1), the invasive Ae. albopictus
will spread over the whole space, and the two subspecies of mosquitoes will locally uniformly 
converge to the interior equilibrium. When the size of initial habitat is less than a fixed constant 

(satisfying h0 < π
(√

4 − ν2
1

)−1) and if the initial value is small, the invasive Ae. albopictus will 
vanish and the local Ae. aegypti will uniformly converge to 1. In term of Theorem 5.2, in the case 
of spread occurring with weak competition, we find that the asymptotic spreading speed of the 
leftward front is confined to a finite interval and as well the rightward front.

It is known that temperature, humidity and rainfall impact adult Aedes mosquito survival and 
availability of oviposition sites. It will be interesting to study the effect of climate change on the 
dynamics of advection–reaction–diffusion competition models with free boundary.
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