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Pattern Formation and Synchronism in an Allelopathic Plankton Model
with Delay in a Network∗

Canrong Tian† and Shigui Ruan‡

Abstract. A network is introduced to describe the spatiotemporal dynamics of two-species competitive and
allelopathic plankton models, where the network structure represents the movement directions be-
tween every two patches. Time delay is also incorporated to describe the time required to produce
stimulatory effect of one species on the growth of the other species. The model is described by a
system of discrete-space and continuous-time equations with time delay in a network. Using the
time delay as a bifurcation parameter, it is shown that a Hopf bifurcation occurs in the system. The
stability of the Hopf bifurcation is also considered by applying the center manifold theory. Numerical
simulations reveal that the stability of Hopf bifurcation leads to the emergence of planktonic blooms.
Moreover, it is found that the network structure can switch the types of spatiotemporal patterns, a
new feature observed only in delay differential equations with network structure.
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1. Introduction. Plankton refer to floating organisms of different sorts of phyla living
in pelagic sea, freshwater lakes, or large rivers (Sommer [39], Baretta-Bekker, Duursma, and
Kuipers [4], Fasham [11]). Plankton is one of the most important components of marine
ecosystems. They not only compose the basis of all aquatic food chains but also carry out
very useful services by providing oxygen and absorbing carbohydrates to human life (Duinker
and Wefer [9]). Seasonal succession phenomenon is widely observed because the increased
population of one species might affect the population growth of another species by producing
allelopathic toxin stimulators (Rice [30]). There have been many examples for two plankton
species competing over resources and stimulating each other’s growth at the same time. For
instance, Berglund [5] noted that the green alga, Enteromorpha linza, produces substances
stimulatory to the growth of Enteromorpha species; Monahan and Trainor [25] also found that
the green alga Hormotila blemista stimulated its own growth and also stimulated one strain of
Scenedesmus. Folt and Goldman [12] reported that the filting rate of the copepod Diaptomus
tyrrelli is reduced in the presence of its potential competitor, Epischura nevadensis, by as
much as 60% caused by a chemical released into the water by Epischura.
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532 CANRONG TIAN AND SHIGUI RUAN

Since the production of allelopathic substance is not instantaneous but mediated by some
time lag required for maturity, it is reasonable to take account of the effect of time delay when
the interplay between the two allelopathic substances is investigated. By incorporating the
allelopathic interaction into the classical Lotka–Volterra competition model, Mukhopadhyay,
Chattopadhyay, and Tapaswi [26] proposed the following delay differential equations (DDEs),

du

dt
= u(t)(a1 − b11u(t)− b12v(t) + e1u(t)v(t)),

dv

dt
= v(t)(a2 − b21u(t)− b22v(t) + e2u(t− τ)v(t)),(1.1)

where u(t) and v(t) are the densities of the two competitive and allelopathic plankton pop-
ulations at time t; a1 and a2 are the proliferation rates, b11 and b22 are the intraspecific
competition rates, b12 and b21 are the interspecific competition rates of these two species,
respectively; ei(i = 1, 2) is the stimulatory rate of species i by the other species; τ is the time
required to produce stimulatory effect of the first species on the growth of the second species.
It was shown in [26] that system (1.1) has a stable limit cycle when the time delay takes
some critical value. The periodicity of limit cycles gives rise to an regular pattern, which can
interprete the scenario of seasonal succession in nature.

In addition to inducing seasonal successions, the allelopathic interaction can also cause
planktonic blooms (Smetacek [37]). Planktonic blooms are the occurrence of a rapid increase
or accumulation in the population, which cause the large amounts of carbon in the oceans. In
view of the field observations in Abbott [1] and Fasham [11], the bloom phenomenon can be
seen as a spatially heterogeneous solution where the population evolve with space and time.
Spatial heterogeneity of plankton densities is called “patchiness” (for a review, see Malchow
et al. [22], Medvinsky et al. [23], and Okubo and Levin [27]). In the marine environment,
owing to strong water current, plankton populations move both horizontally and vertically.
Therefore, diffusion plays an important role in the modeling of aquatic ecosystems. Steele [41]
and Sjoberge [36] studied the effects of diffusion on plankton dynamics. Taking the diffusion
of the plankton populations into consideration, Tian [43] generalized (1.1) to the following
reaction-diffusion equations with delay:

∂u

∂t
−Du∆u = u(t, x)(a1 − b11u(t, x)− b12v(t, x) + e1u(t, x)v(t, x)),

∂v

∂t
−Dv∆v = v(t, x)(a2 − b21u(t, x)− b22v(t, x) + e2u(t− τ, x)v(t, x)),(1.2)

where u(t, x) and v(t, x) are the densities of the two competitive and allelopathic plankton
populations at time t and location x ∈ Ω, ∆ denotes the Laplacian operator, which describes
the diffusion of the plankton population under the assumption that individuals of the plankton
population are performing a Brownian random walk. It is easy to see that the population flux
is proportional to the gradient concentration. Du and Dv are the diffusive coefficients of the
two plankton species, respectively. System (1.2) has been shown to have a Hopf bifurcation
when the time delay is chosen as a bifurcation parameter. Owing to the onset of Hopf bifur-
cation, if the initial data is an inhomogeneous perturbation, system (1.2) admits a spatially
inhomogeneous and temporally quasiperiodic solution. This solution has been shown (Tian
and Zhang [44]) to induce regular spiral waves.D
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PLANKTON MODEL WITH DELAY IN A NETWORK 533

The diffusion in system (1.2) is a depiction of the standard Brownian motion; i.e., nearest
jumps for individuals of the plankton population are characterized by the fact that both
waiting time distribution and jump size distribution must have finite moments. However, the
individuals of the plankton population do not necessarily always execute the nearest jumps,
but instead they can wait between successive jumps and perform long jumps (Viswanathan
et al. [46]). When the conditions of finite moments in the distributions of waiting time and
jump size are not met, plankton undergoes anomalous diffusion. In order to take account of the
anomalous diffusion of plankton, we propose a network structured type of plankton movement
to study an analogous system in discrete space and continuous time, where each node of
network owns the homogeneous densities of a small plankton community. The motion between
different nodes depends upon the topological network structure, because instead of moving
to the nearby regions some marine organisms may move directly to faraway regions owing to
the affection of ocean currents (Schmitt and Seuront [33], Toner, Tu, and Ramaswamy [45],
Viswanathan et al. [46]).

For a classical Lotka–Volterra competition model, Liao and Lou [21] investigated the
long time behavior of the solutions for two different connected habitats. In a similar way
for a mosquito population model, Gourley and Ruan [14] divided the whole mosquito com-
munity into several patches where in each patch the mosquitoes form a small community,
and each small community has completely different competitive interactions. Inspired by
these approaches, we introduce a network into the plankton population dynamics, where each
node of the network owns the homogeneous densities of a small plankton community. Thus,
we propose the following two-species competitive and allelopathic plankton model with time
delay in a network:

u̇i(t) = ui(t)(a1 − b11ui(t)− b12vi(t) + e1ui(t)vi(t− τ)) +Du

n∑
j=1

Lijuj(t),

v̇i(t) = vi(t)(a2 − b21ui(t)− b22vi(t) + e2ui(t)vi(t)) +Dv

n∑
j=1

Lijvj(t), ∀i = 1, 2 . . . , n.(1.3)

In system (1.3), we assume that the allelopathic interplay follows two principles. First the
toxin stimulator of one species is dependent on the density of the other species so that the
allelopathic effect is zero when either species is absent. Hence, we describe it by the term
e1ui(t)vi(t). Second the production of the toxin stimulator is not instantaneous but mediated
by some time lag required for maturity. Hence, the term is described by e2ui(t− τ)vi(t). Here
the time-dependent densities of the two competitive species locating in node i are denoted
by ui(t) and vi(t), respectively. a1 and a2 are the rates of cell proliferation per unit time of
the first and the second species, respectively, while b11 and b22 are the rates of intraspecific
competition among the first and the second species, respectively; b12 and b21 are the rates
of interspecific competition of the first and the second species, respectively; ai

bii
(i = 1, 2) are

environmental carrying capacities (representing the number of cells per liter); e1 and e2 are the
rates of allelopathic stimulation of the first species by the second and vice versa; τ is a positive
constant representing that the production of allelopathic substance by the competitive species
will not be instantaneous but mediated by some time lag required for maturity of the species.D
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534 CANRONG TIAN AND SHIGUI RUAN

In order to ensure the ecological meaning, we consider system (1.3) under the following initial
conditions:

0 ≤ vi(ζ) ≤ b11

e1
is continuous on − τ ≤ ζ ≤ 0, and vi(0) > 0,

0 < ui(0) ≤ b22

e2
.(1.4)

By using the existence theorem (Theorem 3.1 of [38]) of DDEs, we know that system (1.3) has
a global solution except for the blow-up case. By using the Method of Steps (section 3.1 of
[38]), the initial condition (1.4) ensures that the solution of system (1.3) has a uniform upper
bound. Thus no blow-up occurs.

This plankton model is defined on an undirected network with n nodes and no self-loops.
The direction motion of every patch is described by the adjacent matrix of the network, G,
and ki = Σn

j=1Gij denotes the degree of the ith node. The Laplacian matrix L of the network
is defined by Lij = Gij − kiδij , where δij is a Dirac delta function. Hence, Lij (i 6= j) means
the interspecific dispersal direction: when Lij = 1, it means that there exists a routine such
that species moves from patch i to patch j, where the disperse speeds of the two species are
positive constants Du and Dv, respectively; when Lij = 0, it means that there exists no such
routine from patch i to patch j.

We would like to mention that patch or lattice structure has been used to model compe-
tition for resource, including the effect of allelopathy. For example, Atkinson and Shorrocks
[3] and Ives and May [19] studied models for two species competing for use of a patchy
and ephemeral resource and found that an inferior competitor may persist if the superior
competitor clumps or aggregates. Durrett and Levin [10] showed that in a spatially struc-
tured population of Escherichia coli, both colincin-producing and colicin-sensitive strains can
coexist and the competition outcome is determined by the effectiveness of allelopathy. Iwasa,
Nakumaru, and Levin [20] analyzed a lattice version of the Durrett–Levin model based on
pair approximation (forming a system of ODEs of global and local densities) and found that
there is a relatively narrow parameter region of bistability which disappears when the model
is considered on a lattice of infinitely large size. Our network population dynamical model
can be regarded as a generalization of the patch structure models, but there are some differ-
ences. Most analytic studies on patch structure models focus on only two patches (see for
example Liao and Lou [21]), while in our network structure model (1.3) there are more than
two habitats described by the nodes of the species. Most patch structure models deal with
neighborhood patches (see for example Durrett and Levin [10]), while in our network struc-
ture model (1.3) each two nodes do not necessarily have the edges of direct connection where
the mechanism of connection is dependent on the probability. Hence the network structure
belongs to the complex network, just as the examples of numerical simulations on the small-
world network and free-scale network in section 4 show. Moreover, the network structure
plays an important role in the pattern formation of spatial-temporal solutions. Our examples
in section 4 illustrate that when the average degree is small (i.e., the number of edges is small)
the steady state solution is spatially inhomogeneous; when the average degree is large (i.e., the
number of edges is large) the steady state solution is spatially homogeneous, which is similar
to the behavior of ODEs. Finally, in a finite patch model the long distance movement is lessD
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PLANKTON MODEL WITH DELAY IN A NETWORK 535

important, in particular if the primary goal is to understand the long term effects of local
dispersal and patch geometry on population dynamics, while the network model (1.3) involves
both long and local dispersals. Furthermore, patch models treat local population dynamics
implicitly in terms of presence or absence of populations, while we will study the nonlinear
dynamics of the network model (1.3).

Our main goal is to study Hopf bifurcation of the model caused by the instability of
the positive equilibrium, which consequently induces self-organized spatiotemporal patterns.
The effects of time delay were first considered in predator-prey systems by Volterra [47] who
showed that under certain conditions the spatial distributions possess a certain oscillatory
behavior. Recently there are some investigations about the delay-driven spatial patterns in
various systems (Bertram and Mikhailov [6], Beta et al. [7], Boccaletti et al. [8], Mikhailov
and Showalter [24], Sen et al. [34], Yan and Li [50], Shi, Shi, and Song [35], Song et al. [40]).
Moreover, experimentally delayed feedback has been introduced in Grill, Zykov, and Müller
[15] to induce spiral waves. In this paper, a profound distinction from the above studies lies
in that our system evolves on a discrete domain, i.e., a network. That is, all the interactions
between the plankton take place in every discrete node with all the nodes linked up with no
self-loops and directions. Delayed network has been recently investigated by Petit et al. [29]
who studied a delayed reaction-diffusion equation on a complex network and showed that,
even with one single species, Turing-like traveling waves can emerge but never stationary
patterns. This result improves the classical ones by Turing mechanism where at least two
species are necessary to generate Turing patterns. Petit et al. [28] further showed that the
complex network composed with a two-component delayed reaction-diffusion system can also
generate Turing patterns due to the interaction between the time delay and the diffusion.
The joint effects of diffusion and time delay on the nonlinear dynamics of reaction-diffusion
equations with delay were studied in Hadeler and Ruan [17]. For the fundamental, stability,
and bifurcation theories of partial differential equations with delay, we refer to the monograph
of Wu [49].

We will study how many types of regular spatiotemporal patterns there are when system
(1.3) generates self-organization patterns, and which factors can shift the pattern transition
between different patterns. Note that the DDE model (1.1) possesses periodic solutions, which
means that it has synchronism, and the PDE model (1.2) possesses spatially inhomogeneous
and temporally quasiperiodic solutions, which means that it loses synchronism when the dif-
fusion is included. Thus, we also aim to study whether the network system has synchronism;
namely, temporally periodic solutions. Hopf bifurcation analysis is an effective approach to
achieve this goal. But quasiperiodic solutions driven by the loss of stability for periodic
solutions usually occur in codimension-two Hopf bifurcations. We think that the network
structure may induce quasiperiodic solutions corresponding to the loss of synchronism and
apply the method of numerical computation to study the effect of network structure on syn-
chronism. The Hopf bifurcation analysis in such a discrete-space and continuous-time model
with time delay is new, and the temporally oscillatory modes in the competitive plankton
species can be used to explain the plankton bloom phenomenon. We also find that system
(1.3) has both temporally homogeneous periodic solutions and spatially inhomogeneous and
temporally quasiperiodic solutions, a new feature that the DDE model (1.1) and the delay
reaction-diffusion equation model (1.2) do not have.D
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536 CANRONG TIAN AND SHIGUI RUAN

The paper is structured as follows. In section 2 we first carry out the linear analysis for
the two-component discrete-space and continuous-time system with time delay in a network,
then study local stability of the coexistent equilibrium and the existence of Hopf bifurcation.
In section 3, the center manifold theory is applied to study the stability and direction of the
Hopf bifurcation. In section 4 we perform some numerical simulations to illustrate that the
effect of network structure can switch the pattern transition and synchronism. The paper
ends with some ecological explanations of our analytical findings and numerical simulations.

2. Spatiotemporal pattern induced by Hopf bifurcation. In this section we show that
system (1.3) without time delay does not generate any spatial pattern but can create spatial
patterns when time delay is present.

The problem (1.3) has four homogeneous equilibria: three boundary equilibria (0, 0),
( a1b11 , 0), (0, a2b22 ) and an interior equilibrium (û, v̂) (coexistent equilibrium), where

û =

(
−q12 −

√
q2

12 − 4p12r12/2p12

)
, v̂ =

(
−q21 −

√
q2

21 − 4p21r21/2p21

)
,

pij = −bijei + biiej , qij = −aiej + ajei − biibjj + bijbji, rij = aibjj − ajbij .
The interior equilibrium (û, v̂) exists if and only if

e1

e2
<
b12

b22
<
a1

a2
<
b11

b21
and a2e1 + b12b21 < a1e2 + b11b22,(2.1)

or
b12

b22
<
a1

a2
<
b11

b21
<
e1

e2
and a1e2 + b12b21 < a2e1 + b11b22.(2.2)

The above conditions ensure that (û, v̂) is in the biologically meaningful region ui > 0, vi > 0.
It is easy to see that the equilibrium of total extinction (0, 0) is a saddle point. The

boundary equilibrium ( a1b11 , 0) is a saddle point if a1
a2
≥ b11

b21
and a stable node otherwise. The

other boundary equilibrium (0, a2b22 ) is a saddle point if a2
a1
≥ b22

b12
and a stable node otherwise.

The interior equilibrium (û, v̂) exists if and only if (2.1) or (2.2) holds. From the biological
perspective, we are interested in studying the stability behavior of the coexistent equilibrium,
i.e., the interior equilibrium (û, v̂).

Now, we conduct the linear stability analysis of (1.3) with respect to the homogeneous
equilibrium. Let us denote by (ui, vi)1≤i≤n = (û, v̂) the homogeneous equilibrium. In order to
determine its stability we translate the equilibrium (û, v̂) to the origin via defining the small
perturbations δui = ui− û, δvi = vi− v̂. The linearized system of (1.3) around the equilibrium
can be therefore expressed by(

˙δui
˙δvi

)
= J1

(
δui

δvi

)
+ J2

(
δui,τ

δvi

)
+ D

( ∑n
j=1 Lijδuj∑n
j=1 Lijδvj

)
,(2.3)

where δui,τ = δui(t− τ), and

J1 =

(
a11 a12

a21 a22

)
, J2 =

(
0 a13

0 0

)
, D =

(
Du 0

0 Dv

)
.(2.4)

Here a11 = −û(b11− e1v̂), a12 = −b12û, a21 = v̂(−b21 + e2v̂), a22 = −v̂(b22− e2û), a13 = û2e1.
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For the diffusional network system (2.3), we use the same notation as that in Petit at al.
[28] to deal with the Laplacian matrix. Let 0 = Λ1 > Λ2 > · · ·Λn be the eigenvalues of the
Laplacian matrix L, and the eigenbasis {Φα : α = 1, 2, . . . , n} being each eigenvector associ-
ated to a topological eigenvalue Λα. For any small perturbation (δui(t), δvi(t))

T (T denotes
the transpose) from the equilibrium, we have the following basis decomposition:(

δui(t)

δvi(t)

)
=

n∑
α=1

(
cα1

cα2

)
eλαtΦα

i , (i = 1, 2, . . . , n).(2.5)

Inserting (2.5) into (2.3), noticing that
∑n

j=1 LijΦ
α
j = ΛαΦα

i , and using the orthogonality
of the eigenvectors, we get for each mode α (α = 1, . . . , n) that

λα

(
cα1

cα2

)
eλαt = J1

(
cα1

cα2

)
eλαt + J2

(
c1

c2

)
eλα(t−τ) + ΛαD

(
cα1

cα2

)
eλαt.

Hence we obtain the characteristic equation:

∆(λα, τ) = 0, where ∆(λα, τ) = det
(
λαI−

(
J1 + e−λατJ2 + ΛαD

))
.(2.6)

Substituting (2.4) into (2.6), the characteristic equation of (1.3) becomes

λα
2+(−a11 − a22 −DuΛα −DvΛ

α)λα

+(a11 +DuΛα)(a22 +DvΛ
α)− a21(a12 + a13e

−λατ ) = 0.
(2.7)

After some direct computation, the characteristic equation of (1.3) is reduced to

λα
2 +A1λα +A2 +A3e

−λατ = 0,(2.8)

where A1 = −a11−a22−DuΛα−DvΛ
α, A2 = a11a22−a12a21+DuDvΛ

2α+(a11Dv+a22Du)Λα,
A3 = −a21a13.

By analyzing the characteristic equation (2.6) (Ruan [31]), we have the following results
on the stability of the homogeneous steady state of system (1.3).

Lemma 2.1. Suppose that (2.1) or (2.2) holds, and

a11 + a22 < 0, a21a13 < a11a22 − a12a21 < −a21a13,(2.9)

where a11 = −û(b11−e1v̂), a12 = −û(b12−e1û), a21 = −v̂b21, a22 = −v̂(b22−e2û), a13 = û2e1.
Then

(i) if the delay is absent, that is, τ = 0, then all characteristic roots of (2.8) have negative
real parts;

(ii) if the delay is present, that is, τ > 0, then the characteristic equation (2.8) has a pair
of purely imaginary roots ±iω∗ at τ = τj , where

ω∗2 =
1

2

(
2A2 −A2

1 +
√
A4

1 − 4A2
1A2 + 4A2

3

)
(2.10)
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and

τj =
1

ω∗

(
2jπ + arccos

(ω∗2 −A2

A3

))
, j = 0, 1, 2 . . . .(2.11)

Here A1 = −a11 − a22 −DuΛα −DvΛ
α, A2 = a11a22 − a12a21 +DuDvΛ

2α + (a11Dv +
a22Du)Λα, A3 = −a21a13.

Proof. (i) We first consider the case τ = 0. The characteristic equation (2.8) is reduced to

λα
2 + (−a11 − a22 −DuΛα −DvΛ

α)λα +A2 +A3 = 0.

In view of (2.9), we deduce that −a11 − a22 −DuΛα −DvΛ
α > 0 and A2 + A3 > 0. Hence,

the roots of characteristic equation (2.6) have negative real parts.
(ii) We let ±iω be a pair of pure imaginary roots. Substituting ±iω into characteristic

equation (2.8) and separating real and imaginary parts, we have

−ω2 +A2 +A3 cosωτ = 0,

A1ω −A3 sinωτ = 0,(2.12)

which lead to

ω4 + (A2
1 − 2A2)ω2 +A2

2 −A2
3 = 0.

The above equation has a unique positive real root ω∗2 if and only if A2 < A3, which is
guaranteed by condition (2.9). Moreover, by solving the above equation, the expression of ω∗

is written in the form of (2.10). Hence, the corresponding τj in (2.11) can be obtained by
substituting (2.10) into (2.12).

Theorem 2.2. Suppose that (2.1) or (2.2) is satisfied. If (2.9) holds, then system (1.3)
is locally stable at equilibrium (û, v̂) for τ ∈ [0, τ0) and unstable for τ ∈ [τ0,∞); here τ0 is
given in (2.11). Moreover, system (1.3) undergoes a Hopf bifurcation at τ = τ0. There exist
a constant σ > 0 and a smooth curve λ(τ) : (τ0 − σ, τ0 + σ) → C such that λ(τ0) = iω∗ and
∆(iω∗, τ0) = 0 for all τ ∈ (τ0 − σ, τ0 + σ).

Proof. We use the similar argument as Theorem 3.6 in Ruan [31]. Since τ0 is the smallest
value such that characteristic equation (2.8) has a root with zero real part, we apply G.J.
Butler’s Lemma (see Appendix 2 in Freedman and Rao [13]) to obtain that the real parts
of the characteristic roots are all negative for t ∈ [0, τ0). Hence (û, v̂) is locally stable for
τ ∈ [0, τ0). We need to show the following transversality condition

d

dτ
Reλ(τ)|τ=τ0 > 0.(2.13)

Substituting a complex eigenvalue λα = µ+iω into (2.8) and separating real and imaginary
parts, we have

µ2 − ω2 +A1µ+A2 +A3e
−µτ cosωτ = 0,

2µω +A1ω −A3e
−µτ sinωτ = 0.(2.14)D
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PLANKTON MODEL WITH DELAY IN A NETWORK 539

Differentiating (2.14) with respect τ , we get

(2µ+A1 −A3τe
−µτ cosωτ)

dµ

dτ
− (2ω +A3τe

−µτ sinωτ)
dω

dτ
= A3e

−µτ (µ cosωτ + ω sinωτ),

(2ω +A3τe
−µτ sinωτ)

dµ

dτ
+ (2µ+A1 −A3τe

−µτ cosωτ)
dω

dτ
= A3e

−µτ (µ sinωτ + ω cosωτ).

Eliminating terms involving dω
dτ from the above equations, we have[

(2µ+A1 −A3τe
−µτ cosωτ)2 + (2ω +A3τe

−µτ sinωτ)2
]dµ
dτ

= A3e
−µτ [(µ cosωτ + ω sinωτ)(2µ+A1 −A3τe

−µτ cosωτ)

+(µ sinωτ + ω cosωτ)(2ω + Cτe−µτ sinωτ)
]
.(2.15)

In view of some positive terms of (2.15), to show dµ
dτ > 0, it is sufficient to verify that

(µ cosωτ + ω sinωτ)(2µ+A1 −A3τe
−µτ cosωτ)

+(µ sinωτ + ω cosωτ)(2ω +A3τe
−µτ sinωτ) > 0.(2.16)

Now at τ = τ0, µ = 0, ω = ω∗, (2.14) becomes

−ω∗2 +A2 +A3 cosω∗τ0 = 0,

A1ω
∗ −A3 sinω∗τ0 = 0,(2.17)

ω∗4 + (A2
1 − 2A2)ω∗2 +A2

2 −A2
3 = 0,

and (2.16) becomes

ω∗ sinω∗τ0(A1 −A3τ0 cosω∗τ0) + ω∗ cosω∗τ0(2ω∗ +A3τ0 sinω∗τ0) > 0.

Simplifying the above inequality, we have to check

A1ω
∗ sinω∗τ0 + 2ω∗2 cosω∗τ0 > 0.(2.18)

Substituting the first and second equations of (2.17) into (2.18) yields

1

A3
A2

1ω
∗2 − 1

A3
[2ω∗2(A2 − 2ω∗2)] > 0.(2.19)

Since A3 > 0, we need only to verify that

2ω∗4 + (A2
1 − 2A2)ω∗2 > 0.(2.20)

Substituting the third equation of (2.17) into (3.3), we only need to verify that

ω∗4 −A2
2 +A2

3 > 0.(2.21)

The above inequality holds because 0 < A2 < A3, which can be immediately deduced by (2.9).
The conditions for Hopf bifurcation are then satisfied.

Moreover, by applying the implicit function theorem to ∆(λ, τ), there exist a constant
σ > 0 and a smooth curve λ(τ) : (τ0−σ, τ0 +σ)→ C such that λ(τ0) = iω∗ and ∆(iω∗, τ0) = 0.

Now by using Proposition 6.5 in [38], we obtain that (û, v̂) is locally unstable for
τ ∈ [τ0,∞).D
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Remark 2.3. Planktonic blooms are the phenomena of the instability of the planktonic
population. From Theorem 2.2, we can see that system (1.3) will undergo a Hopf bifurcation
for τ > τ0 when the parameter restrictions of (2.1), (2.2), and (2.9) are satisfied. Hence our
system (1.3) is able to exhibit the periodic nature of blooms. Hence, an increase of delay
may destabilize a planktonic allelopathic ecosystem which ultimately gives rise to the bloom
phenomenon.

3. The stability of the Hopf bifurcation. In Theorem 2.2, we obtained conditions under
which a family of periodic solutions bifurcated from the interior equilibrium (û, v̂) at critical
values τ0. As pointed out in Hassard, Kazarinoff, and Wan [16], it is interesting and important
to determine the direction, stability, and period of these periodic solutions. The method of
Hassard, Kazarinoff, and Wan [16] has been applied to study delayed population dynamics
(Ruan and Wolkowicz [32]), neural network dynamics (Wei and Ruan [48]), and has been
developed to partial functional differential equations (Wu [49]) with applications to delayed
reaction-diffusion population models (Su, Wei, and Shi [42], Yan and Li [50]). We will derive
explicit formulas determining these factors at the critical value τ0 using the center manifold
theory and the normal form theory in Hassard, Kazarinoff, and Wan [16]. In this section, we
always assume that (2.9) hold and ±iω are the only purely imaginary roots, where ω = ω∗.

For the sake of convenience, let τ = τ0 + ν. Then ν = 0 is the Hopf bifurcation value
for system (1.3). In order to simplify the Hopf bifurcation for (û, v̂), we can translate this
equilibrium at the origin by performing a coordinate shift. We perform the change of variables
ui − û = ūi, vi − v̂ = v̄i. For ease of notation, we omit the bars of ūi and v̄i. Thus we rewrite
system (1.3) around the interior equilibrium in the form

u̇i(t) = Du

n∑
j=1

Lijuj(t) + a11ui(t) + a12vi(t) + a13vi(t− τ) + (−b11 − e1v̂)u2
i (t)

+ (−b12)ui(t)vi(t) + (−2e1û)ui(t)vi(t− τ) + (−e1)u2
i (t)vi(t− τ),

v̇i(t) = Dv

n∑
j=1

Lijvj(t) + a21ui(t) + a22vi(t) + (−b21 − 2e2v̂)ui(t)vi(t)

+ (−b22 − e2û)v2
i (t) + (−e2)ui(t)v

2
i (t).

Since ±iω∗ are the only purely imaginary roots of the above linear operator, by using the
orthogonality of the eigenvectors of Lij , the above equations can be rewritten as

u̇i(t) = DuΛαui(t) + a11ui(t) + a12vi(t) + a13vi(t− τ) + (−b11 − e1v̂)u2
i (t)

+ (−b12)ui(t)vi(t) + (−2e1û)ui(t)vi(t− τ) + (−e1)u2
i (t)vi(t− τ),

v̇i(t) = DvΛ
αvi(t) + a21ui(t) + a22vi(t) + (−b21 − 2e2v̂)ui(t)vi(t)

+ (−b22 − e2û)v2
i (t) + (−e2)ui(t)v

2
i (t) ∀i = 1, 2 . . . , n.

(3.1)

We denote the solution of (3.1) as X(t) = (ui(t), vi(t))
T and set Xt(θ) = X(t + θ), θ ∈

[−τ, 0], where T denotes the transpose, Xt ∈ C([−τ, 0], R2) , C. It can be verified that system
(3.1) undergoes a Hopf bifurcation at the critical value τ = 0 in which the corresponding
eigenvalues are ±iω∗. We rewrite (3.1) as the following functional differential equation,

Ẋt = Lν(Xt) +Rν(Xt),(3.2)
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PLANKTON MODEL WITH DELAY IN A NETWORK 541

where Lν : C → R2, Rν : C → R2 are given by

Lν(φ) = M0

(
φ1(0)

φ2(0)

)
+M1

(
φ1(−τ)

φ2(−τ)

)
,

M0 =

(
a11 +DuΛα a12

a21 a22 +DvΛ
α

)
, M1 =

(
0 a13

0 0

)
,

Rν(φ)=

(
(−b11 − e1v̂)φ2

1(0)+(−b12)φ1(0)φ2(0)+(−2e1û)φ1(0)φ2(−τ)+(−e1)φ2
1(0)φ2(−τ)

(−b21 − 2e2v̂)φ1(0)φ2(0)+(−b22 − e2û)φ2
2(0)+(−e2)φ1(0)φ2

2(0)

)
.

We can choose

η(θ, ν) = M0δ(θ) +M1δ(θ + τ),(3.3)

where δ(·) is the Dirac function. By using Riesz representation theorem, we have

Lν(φ) =

∫ 0

−τ
φ(θ)dη(θ, ν) for φ ∈ C,(3.4)

where

dη(θ, ν) = M0δ(θ)dθ +M1δ(θ + τ)dθ.

Next, we define two operators Aν and Rν on C1([−τ, 0],R2) , C1 by

(
Aνφ

)
(θ) =

{
dφ
dθ , θ ∈ [−τ, 0),∫ 0
−τ φ(ξ)dη(ξ, ν), θ = 0;

(3.5)

(
Fνφ

)
(θ) =

{
0, θ ∈ [−τ, 0),

Rν(φ), θ = 0.
(3.6)

Then (3.2) is transformed into

Ẋt = Aν(Xt) + Fν(Xt).(3.7)

Note that the adjoint operator A∗ν of Aν is defined as

(A∗νψ)(θ∗) =

{
− dψ
dθ∗ , θ∗ ∈ (0, τ ],∫ 0
−τ ψ(−ξ)dηT (ξ, ν), θ∗ = 0,

(3.8)

where ψ ∈ C1([0, τ ],R2). We choose the solution space of (3.7) as the complex space C2

instead of merely R2. Define the following bilinear form

〈ψ(θ∗), φ(θ)〉 = ψ
T

(0)φ(0)−
∫ 0

θ=−τ

∫ θ

ξ=0
ψ
T

(ξ − θ)dη(θ)φ(ξ)dξ(3.9)
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542 CANRONG TIAN AND SHIGUI RUAN

for φ ∈ C([−τ, 0],C2), ψ ∈ C1([0, τ ],C2), where η(θ) = η(θ, 0), to determine the coordinates
of the center manifold near the origin of (3.2). Note that the overline stands for the complex
conjugate.

By the analysis in Lemma 2.1, we know that ±iω∗ are eigenvalues of (2.8). Accordingly,
±iω∗ are eigenvalues of A0 and A∗0, respectively. We first need to compute the eigenvectors
q(θ) and q∗(θ∗) of A0 and A∗0 corresponding to iω∗ and −iω∗, respectively; namely,

A0q(θ) = iω∗q(θ) and A∗0q
∗(θ∗) = −iω∗q∗(θ∗),(3.10)

which satisfy the normalized conditions 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0. Thus, we set

q(θ) = q(0)eiω
∗θ =

(
q1

q2

)
eiω
∗θ and q∗(θ∗) = q∗(0)eiω

∗θ∗ =

(
q∗1

q∗2

)
eiω
∗θ∗(3.11)

for θ ∈ [−τ, 0), θ∗ ∈ (0, τ ].
Noting that q(0) can also be solved by the characteristic equation (2.8), we have

q(θ) =

(
1

−a22+iω∗

a21

)
eiωθ.

Similarly substituting (3.11) into (3.10), we have

q∗(θ∗) = ρ

(
−a11−iω∗

a21

1

)
eiωθ

∗
.

In order to ensure 〈q∗, q〉 = 1, we need to determine the value of ρ. From (3.9), we have

〈q∗(s), q(θ)〉 = q̄∗(0)q(0)−
∫ 0

−τ

∫ θ

0
q̄∗(ξ − θ)dη(θ)q(ξ)dξ

= ρ̄(q̄∗1, q̄
∗
2)(q1, q2)T −

∫ 0

−τ

∫ θ

0
ρ̄(q̄∗1, q̄

∗
2)e−iω

∗(ξ−θ)dη(θ)(q1, q2)T eiω
∗ξdξ

= ρ̄
(
q̄∗1q1 + q̄∗2q2 + τ0e

−iω∗τ0a13q2

)
= ρ̄
(
q̄∗1 + q2 + τ0e

−iω∗τ0a13q2

)
.

Thus we can choose ρ as

ρ̄ = 1/
(
q̄∗1 + q2 + τ0e

−iω∗τ0a13q2

)
.

Next, by using q and q∗, we can construct a coordinate for the center manifold C0 at ν = 0
with the method of Hassard, Kazarinoff, and Wan [16]. Denote xt = xt(θ) as a solution of
(3.7) when ν = 0, and define

z(t) , 〈q∗, xt〉,(3.12)

W (t, θ) , xt(θ)− 2Re{z(t)q(θ)}.(3.13)
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In term of the center manifold reduction, we have W (t, θ) = W (z(t), z(t), θ) on C0. According
to the center eigenspace at the equilibrium, we further have

W (t, θ) = W (z(t), z(t), θ) ,W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · ,(3.14)

where z and z̄ are the local coordinates of the center manifold C0 in directions q and q∗,
respectively.

Note that W is real if X(t) is real. We are only concerned with real solutions. For a
solution X(t) ∈ C0 of (3.7) with ν = 0, (3.13) implies that

ż(t) = 〈q∗, ẋt〉
= iω∗z + q̄∗(0)F0

(
W (z, z̄, θ) + 2Re{z(t)q(θ)}

)
, iω∗z + q̄∗(0)F0(z, z̄).

(3.15)

We rewrite the above equation as

ż(t) = iω∗z + g(z, z̄),(3.16)

where

g(z, z̄) = q̄∗(0)F0(z, z̄)

,
g20

2
z2 + g11zz̄ +

g02

2
z̄2 +

g30

6
z3 +

g21

2
z2z̄ +

g12

2
zz̄2 +

g03

6
z̄3 + · · ·

(3.17)

Regarding (3.16), we need to give the explicit expressions of gij . We highlight this in the
following lemma.

Lemma 3.1. If we set

k1 = −b11 − e1v̂, k2 = −b12, k3 = −2e1û, k4 = −e1,

k5 = −b21 − 2e2v̂, k6 = −b22 − e2û, k7 = −e2,
(3.18)

then gij can be explicitly expressed by (3.21).

Proof. From (3.13) and (3.14), we obtain that

xt(θ) = W (t, θ) + 2Re{z(t)q(θ)}

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ zq + z̄q̄ + · · ·

= W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ (1, q2)T eiω

∗θz + (1, q̄2)T e−iω
∗θz̄ + · · ·

(3.19)

In view of (3.18), substituting (3.19) into (3.17) yields

g(z, z̄) = q̄∗(0)F0(z, z̄) = q̄∗(0)F0

(
xt(θ)

)
= ρ̄(q̄∗1, 1)

(
k1φ

2
1(0) + k2φ1(0)φ2(0) + k3φ1(0)φ2(−τ) + k4φ

2
1(0)φ2(−τ)

k5φ1(0)φ2(0) + k6φ
2
2(0) + k7φ1(0)φ2

2(0)

)
,
g20

2
z2 + g11zz̄ +

g02

2
z̄2 +

g30

6
z3 +

g21

2
z2z̄ +

g12

2
zz̄2 +

g03

6
z̄3 + h.o.t.,

(3.20)
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where h.o.t. stands for higher order terms, and

g20 = 2ρ̄
(
q̄∗1k1 + q̄∗1q2k2 + q̄∗1q2k3e

−iω∗τ0 + q2k5 + q2
2k6

)
,

g11 = 2ρ̄
(
q̄∗1k1 + q̄∗1Re(q2)k2 + q̄∗1Re(q2e

−iω∗τ0)k3 + Re(q2)k5 + |q2|2k6

)
,

g02 = 2ρ̄
(
q̄∗1k1 + q̄∗1 q̄2k2 + q̄∗1 q̄2k3e

iω∗τ0 + q̄2k5 + q̄2
2k6

)
,

g30 = 6ρ̄

[
q̄∗1k1W

(1)
20 (0) + q̄∗1k2

(
W

(1)
20 (0)q2

2
+
W

(2)
20 (0)

2

)
+ q̄∗1k3

(
W

(1)
20 (0)q2

2
+
W

(2)
20 (−τ)

2

)

+q̄∗1k4q2e
−iω∗τ0 + k5

(
W

(1)
20 (0)q2

2
+
W

(2)
20 (0)

2

)
+ q2k6W

(2)
20 (0) + k7q

2
2

]
,

g21 = 2ρ̄

[
q̄∗1k1

(
W

(1)
20 (0) + 2W

(1)
11 (0)

)
+ q̄∗1k2

(
W

(1)
20 (0)q2

2
+
W

(2)
20 (0)

2
+ q2W

(1)
11 (0) +W

(2)
11 (0)

)

+ q̄∗1k3

(
W

(1)
20 (0)q̄2e

iω∗τ0

2
+
W

(2)
20 (−τ)q̄2

2
+W

(1)
11 (0)q2e

−iω∗τ0 +W
(2)
11 (−τ)

)

+ q̄∗1k4

(
q̄2e

iω∗τ0 + 2q2e
−iω∗τ0

)
+ k5

(
W

(1)
20 (0)q̄2

2
+
W

(2)
20 (0)

2
+ q2W

(1)
11 (0) +W

(2)
11 (0)

)

+ k6

(
q̄2W

(2)
20 (0) + 2q2W

(2)
11 (0)

)
+ k7

(
q2

2 + 2|q2|2
) ]
,

g12 = 2ρ̄

[
q̄∗1k1

(
W

(1)
02 (0)+2W

(1)
11 (0)

)
+q̄∗1k2

(
q2
W

(1)
02 (0)

2
+
W

(2)
02 (0)q2

2
+ q̄2W

(1)
11 (0) +W

(2)
11 (0)

)

+ q̄∗1k3

(
W

(1)
02 (0)q2

2
+
W

(2)
02 (−τ)

2
+W

(1)
11 (0)q̄2e

iω∗τ0 +W
(2)
11 (−τ)

)

+ q̄∗1k4

(
q2e
−iω∗τ0 + 2q̄2e

iω∗τ0
)

+ k5

(
W

(1)
02 (0)q2

2
+
W

(2)
02 (0)

2
+ q̄2W

(1)
11 (0) +W

(2)
11 (0)

)

+ k6

(
q2W

(2)
02 (0) + 2q̄2W

(2)
11 (0)

)
+ k7

(
q̄2

2 + 2|q2|2
) ]
,

g03 = 6ρ̄

[
q̄∗1k1W

(1)
02 (0)+q̄∗1k2

(
W

(1)
02 (0)q̄2

2
+
W

(2)
02 (0)

2

)
+ q̄∗1k3

(
W

(1)
02 (0)q̄2e

iω∗τ0

2
+|W

(2)
02 (−τ)

2

)

+ q̄∗1k4q̄2e
iω∗τ0 + k5

(
W

(1)
02 (0)q̄2

2
+
W

(2)
02 (0)

2

)
+ q̄2k6W

(2)
02 (0) + k7q̄

2
2

]
,

(3.21)

where W
(k)
20 , W

(k)
11 , and W

(k)
02 are the kth components of W20, W11, and W02, respectively, for

−τ ≤ θ ≤ 0.D
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Since g21 depends on W20(θ) and W11(θ), we need to find the values of W20(θ) and W11(θ).
From (3.7) and (3.13), we have

Ẇ = ẋt − żq − ˙̄zq̄

=

{
A0W − 2Re

{
q̄∗(0)F0q(θ)

}
, −τ ≤ θ < 0,

A0W − 2Re
{
q̄∗(0)F0q(θ)

}
+ F0, θ = 0

, A0W +H(z, z̄, θ),

(3.22)

where

H(z, z̄, θ) = H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · · .(3.23)

From (3.14), we have

Ẇ = Ẇz ż(t) + Ẇz̄ ˙̄z(t)

= (W20(θ)z +W11(θ)z̄ + · · · )(iω∗z(t) + g(z, z̄))

+ (W11(θ)z +W02(θ)z̄ + · · · )(−iω∗z̄(t) + ḡ(z, z̄)).

(3.24)

Substituting (3.14) to (3.22) yields that

Ẇ = A0(W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · ) +H20(θ)

z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · ·

= (A0W20(θ) +H20(θ))
z2

2
+ (A0W11(θ) +H11(θ))zz̄ + (A0W02(θ) +H02(θ))

z̄2

2
+ · · · .(3.25)

Comparing the coefficients of z2 and zz̄ from (3.24) and (3.25), we get

(A0 − 2iω∗I)W20(θ) = −H20(θ),

A0W11(θ) = −H11(θ).
(3.26)

For θ ∈ [0, τ ], it follows from (3.13), (3.14), (3.23), and (3.24) that

H(z, z̄, θ) = −2Re
{
q̄∗(0)F0q(θ)

}
= −q̄∗(0)F0q(θ)− q∗(0)F̄0q̄(θ)

= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −
(
g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)
q(θ)−

(
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)
q̄(θ).

(3.27)

Comparing the coefficients of z2 and zz̄ between (3.23) and (3.27), we get

H20(θ) = −g20q(θ)− ḡ20q̄(θ),

H11(θ) = −g11q(θ)− ḡ11q̄(θ).
(3.28)

From the definition of Aν(θ) and (3.26) and (3.28), we have

Ẇ20(θ) = 2iω∗W20(θ) + g20q(θ) + ḡ02q̄(θ).(3.29)D
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Since q(θ) = (q1, q2)T eiω
∗θ, we obtain

W20(θ) =
ig20

ω∗
q(0)eiω

∗θ +
iḡ02

3ω∗
q̄(0)e−iω

∗θ +G1e
2iω∗θ,(3.30)

where G1 = (G
(1)
1 , G

(2)
1 )T is a constant vector. Similarly, we have

W11(θ) =
−ig11

ω∗
q(0)eiω

∗θ +
iḡ11

ω∗
q̄(0)e−iω

∗θ +G2,(3.31)

where G2 = (G
(1)
2 , G

(2)
2 )T is a constant vector. Now, we shall find the values of G1 and G2.

From the definition of A0 and (3.26), we have∫ 0

−τ
dη(θ)W20(θ) = 2iω∗W20(0)−H20(0)(3.32)

and ∫ 0

−τ
dη(θ)W11(θ) = −H11(0),(3.33)

where η(θ) = η(θ, 0). In view of (3.22), we deduce that when θ = 0,

H(z, z̄, 0)− 2Re{q̄∗(0)F0q(0)}+ F0 = −g(z, z̄)q(0)− ḡ(z, z̄)q̄(0) + F0.(3.34)

Then we have

H20
z2

2
+H11zz̄ +H02

z̄2

2
+ · · · = −

(
g20

z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)
q(0)

−
(
ḡ20

z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)
q̄(0) + F0.

(3.35)

Comparing both sides of (3.35), we obtain

H20 = −g20q(0)− ḡ02q̄(0) + 2

(
k1 + k2q2 + k3q2e

−iω∗τ

k5q2 + k6q
2
2

)
(3.36)

and

H11 = −g11q(0)− ḡ11q̄(0) +

(
2k1 + 2k2Re(q2) + 2k3Re(q2e

−iω∗τ )

2k5Re(q2) + 2k6|q2|2

)
.(3.37)

Since iω∗ is the eigenvalue of A0 and q(0) is the corresponding eigenvector, we get(
iω∗I −

∫ 0

−τ
eiω
∗θdη(θ)

)
q(0) = 0(3.38)
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PLANKTON MODEL WITH DELAY IN A NETWORK 547

and (
−iω∗I −

∫ 0

−τ
e−iω

∗θdη(θ)

)
q̄(0) = 0.(3.39)

Therefore, substituting (3.30) and (3.32) into (3.36), we have(
2iω∗I −

∫ 0

−τ
e2iω∗θdη(θ)

)
G1 = 2

(
k1 + k2q2 + k3q2e

−iω∗τ

k5q2 + k6q
2
2

)
,(3.40)

that is,

H∗G1 = 2

(
k1 + k2q2 + k3q2e

−iω∗τ

k5q2 + k6q
2
2

)
,(3.41)

where

H∗ =

(
2iω∗ − a11 −DuΛα −a12 − a13e

−2iω∗τ

−a21 2iω∗ − a22 −DvΛ
α

)
.(3.42)

Thus,

G
(1)
1 =

Det

(
2(k1 + k2q2 + k3q2e

−iω∗τ ) −a12 − a13e
−2iω∗τ

2(k5q2 + k6q
2
2) 2iω∗ − a22 −DvΛ

α

)
Det(H∗)

,

G
(2)
1 =

Det

(
2iω∗ − a11 −DuΛα 2(k1 + k2q2 + k3q2e

−iω∗τ )

−a21 2(k5q2 + k6q
2
2)

)
Det(H∗)

.

(3.43)

In a similar way, substituting (3.31) and (3.33) into (3.37), we have

P ∗G2 =

(
2k1 + 2k2Re(q2) + 2k3Re(q2e

−iω∗τ )

2k5Re(q2) + 2k6|q2|2

)
,(3.44)

where

P ∗ =

(
−a11 −DuΛα −a12 − a13

−a12 −a22 −DvΛ
α

)
.(3.45)

Thus,

G
(1)
2 =

Det

(
2k1 + 2k2Re(q2) + 2k3Re(q2e

−iω∗τ ) −a12 − a13

2k5Re(q2) + 2k6|q2|2 −a22 −DvΛ
α

)
Det(P ∗)

,

G
(2)
2 =

Det

(
−a11 −DuΛα 2k1 + 2k2Re(q2) + 2k3Re(q2e

−iω∗τ )

−a12 2k5Re(q2) + 2k6|q2|2

)
Det(P ∗)

.

(3.46)

Therefore, we can determine W20(θ) and W11(θ) from (3.30) and (3.31).D
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Theorem 3.2. Suppose that Re{λ′(0)} and Im{λ′(0)} are solutions of (3.49). If Re{C1(0)}
6= 0, then system (1.3) has a branch of Hopf bifurcating solutions for τ = τ0 + ν with ν
satisfying νRe{λ′(0)}B(τ0, ν) < 0, where C1(0) and B(τ0, ν) will be defined in (3.48) and
(3.52). Also the bifurcating periodic solutions have the following properties:

(i) Re{C1(0)} determines the stability of the bifurcating periodic solutions: the bifurcat-
ing periodic solutions are orbitally stable (resp., unstable) if Re{C1(0)} < 0 (resp.,
Re{C1(0)} > 0);

(ii) −Re{C1(0)}
Re{λ′(0)} determines the direction of the Hopf bifurcation: if −Re{C1(0)}

Re{λ′(0)} > 0 (resp.,

−Re{C1(0)}
Re{λ′(0)} < 0), the bifurcating periodic solutions exist for ν > 0 (resp., ν < 0), which

is also called a supercritical (resp., subcritical) Hopf bifurcation;
(iii) the period of the bifurcating periodic solution is 2π

ω∗τ0
as ν = 0, the period T (τ0, ν) is

increasing in parameter ν (resp., decreasing) if N(τ0) > 0 (resp., N(τ0) < 0). Here
T (τ0, ν) and N(τ0) are defined in (3.55).

Proof. By a standard normal form method, we can perform nonlinear (complex) coordinate
transform to (3.16) such as all quadratic terms and fourth order terms are eliminated, namely,
(3.16) becomes

z′(t) = λ(ν)z +
1

2
C1(ν)z2z + (o|z|3),(3.47)

where λ(ν) = iω∗τ0 + νλ′(0) + (o|ν|3) with λ(ν) being a smooth function defined by Theorem
2.2 and

C1(0) =
i

2ω∗
(g20g11 − 2|g11|2 −

1

3
|g02|2) +

1

2
g21.(3.48)

In view of (2.15), we have

(A1 −A3τ0 cosω∗τ0)Reλ′(0)− (2ω +A3τ0 sinω∗τ0)Imλ′(0) = A3ω
∗ sinω∗τ0,

(2ω∗ +A3τ0 sinω∗τ0)Reλ′(0) + (A1 −A3τ0 cosω∗τ0)Imλ′(0) = A3ω
∗ cosω∗τ0.

(3.49)

Letting z = reiθ, then (3.47) can be written as

dr

dt
= νrReλ′(0) +

1

2
r3Re{C1(0)}+ h.o.t.,

dθ

dt
= ω∗τ0 + νImλ′(0) +

1

2
r2Im{C1(0)}+ h.o.t.

(3.50)

Hence

dr

dθ
=

νrRe{λ′(0)}+ 1
2r

3Re{C1(0)}+ h.o.t.

ω∗τ0 + νIm{λ′(0)}+ 1
2r

2Im{C1(0)}+ h.o.t.

=
1

A(τ0, ν)

(
νRe{λ′(0)}r +B(τ0, ν)r3

)
+ h.o.t.,

(3.51)

where

A(τ0, ν) = ω∗τ0 + νIm{λ′(0)},

B(τ0, ν) =
1

2
Re{C1(0)} − Im{C1(0)}Re{λ′(0)}ν

2A(τ0, ν)
.

(3.52)
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PLANKTON MODEL WITH DELAY IN A NETWORK 549

Let

r(θ, r0) = r1(θ)r0 + r2(θ)r2
0 + r3(θ)r3

0 +O(r4
0)

be a solution of (3.51) satisfying r(0, r0) = r0. Then r1(0) = 1, ri(0) = 0 for i ≥ 2. Inserting
the above into (3.51), we have

r′1(θ)r0 + r′2(θ)r2
0 + r′3(θ)r3

0 +O(r4
0) =

1

A(τ0, ν)

(
νRe{λ′(0)}r +B(τ0, ν)r3

)
+ h.o.t.

Thus,

r′1(θ) =
νRe{λ′(0)}
A(τ0, ν)

, r′2(θ) = 0, r′3(θ) =
B(τ0, ν)

A(τ0, ν)
.

Hence,

r1(θ) =
νRe{λ′(0)}
A(τ0, ν)

θ + 1, r2(θ) = 0, r3(θ) =
B(τ0, ν)

A(τ0, ν)
θ.

Then the Poincaré map P (r0) = r(2π, r0) has the form

P (r0) =

(
2νRe{λ′(0)}π
A(τ0, ν)

+ 1

)
r0 +

2πB(τ0, ν)

A(τ0, ν)
r3

0 +O(r5
0).(3.53)

Near r0 = 0, the map has a unique fixed point

r∗0 =

√
−νRe{λ′(0)}
B(τ0, ν)

(1 +O(|ν|)).(3.54)

We can compute the period of the bifurcated periodic solution as follows:

T (τ0, ν) =

∫ 2π

0

dθ

A(τ0, ν) + 1
2 Im{C1(0)}r2 + h.o.t.

=
1

A(τ0, ν)

∫ 2π

0

(
1 +

Im{C1(0)}Re{λ′(0)}ν
2A(τ0, ν)B(τ0, ν)

)
dθ + o(|ν|)

=
2π

ω∗τ0
(1 +N(τ0)ν + o(|ν|)) ,

(3.55)

where

N(τ0) =
Im{C1(0)}Re{λ′(0)} − Re{C1(0)}Im{λ′(0)}

ω∗τ0Re{C1(0)}
.

By applying the method of Hassard, Kazarinoff, and Wan [16], we obtain all the
conclusions.

4. Numerical simulations. In this section, we carry out numerical simulations to confirm
our analytical findings. By choosing the type of the adjacent matrix D, we obtain different
types of networks, such as Watts–Strogatz network and Barabási–Albert network. In term of
D, we thus have the Laplacian matrix L. By putting L into system (1.3), we perform the
numerical simulations via the DDEs. We consider the following set of parameters:
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550 CANRONG TIAN AND SHIGUI RUAN

a1 = 1, a2 = 2, b11 = 0.08, b12 = 0.015, b21 = 0.05, b22 = 0.07,

e1 = 0.003, e2 = 0.0008, τ = 0.3, Du = 0.05, Dv = 0.05.
(4.1)

For this particular choice, the positive uniform equilibrium is (û, v̂) = (23.6972, 15.9699). In
Theorem 3.2 we showed that the network can generate spatial patterns if the delay is beyond
a threshold. For the given parameters in (4.1), condition (2.11) yields the threshold τ0 = 2.45.
Here, taking the delay τ = 3 such that spatial patterns appear, we notice that these parameters
(the original data were given in Mukhopadhyay, Chattopadhyay, and Tapaswi [26] and Tian
and Zhang [43]) are not the actual values from experimental observations. However, they make
biological senses: a1 = 1 and a2 = 2 mean that the two species reproduce 1 and 2 cell divisions
per hour, respectively. The carrying capacities a1

b11
= 12.5 and a2

b22
= 28.5714 are reasonable

because the theoretical maximum densities of the two species are approximately 6, 000 and
14, 000 units per liter, respectively. Other parameters such as the intraspecies competition
coefficients bii, interspecies competition coefficients bij , and allelopathic coefficients ei are also
appropriate to the plankton allelopathy model.

Firstly, we assume that the network is a Watts–Strogatz one made by 100 nodes, with an
average degree of 4 and the probability to rewire a link of 0.15. From a mathematical point of
view, a Watts–Strogatz network is an undirected graph, and some of the connections between
the nodes are determined, and some of them are random. It possesses the homogeneous degree
distribution. If the average degree is 4, each node is connected with 2 nodes adjacent to each
other on the left and right. If the probability to rewire a link is 0.15, the probability that each
node is connected to any node in the graph is 0.15. The role of the rewired edge is to introduce
some stochastic routine between two patches in model (1.3), because the individual population
movement is usually subject to the random walk. On the left-top panel in Figure 4.1, we
illustrate the initial density of the first species in the network, which is taken as a uniformly
distributed random perturbation around the equilibrium and in fact does not affect on the
regular spatiotemporal structure of pattern formation mechanism. Using a Runge–Kutta
scheme for the time integration, we can depict the spatial densities of the first plankton
population on the network for times t = 400, 800, 1200 in the second, third, and fourth panels
of Figure 4.1. This figure shows that the network exhibits a spatially inhomogeneous behavior
for different times. But we cannot see the asymptotic behavior of the plankton population
in each node. In order to do it, we depict the temporal solution of (1.3), where we did not
consider the network structure and just arranged the nodes in a vertical column. From the
right panel of Figure 4.2, we see that the solution for each node exhibits temporally periodic
oscillatory behavior. One the other hand, if the delay is absent, the solution is asymptotically
stable in the left panel of Figure 4.2. Hence, we found that system (1.3) evolves a regular
spatiotemporal pattern because the delay induces Hopf bifurcation.

Although our analytical result in Theorem 3.2 predicts temporally periodic oscillatory
solutions, it has not considered the structure of the network. Next, we perform numeri-
cal simulations to see when we increase the average degree in the Watts–Strogatz network,
whether the spatiotemporal patterns of system (1.3) will change. We can see three types of
spatiotemporal patterns in the left column panels of Figure 4.3. The left-top panel presents
sloping stripes when the system evolves in the terminal state, in the left-bottom panel the
terminal state is in vertical stripes, and in the left-middle panel, however, the transient stateD
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Figure 4.1. Solutions of u at time instants t = 0, 400, 800, 1200 in the Watts–Strogatz network. The node
size corresponds to node degree. Here τ = 0.3. Other parameters are given in (4.1).
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Figure 4.2. Spatiotemporal patterns of u in the Watts–Strogatz network for different delay. Here every grid
of the vertical coordinate represents a node. Left panel (τ = 0): In the absence of delay it is the asymptotically
stable solution. Right panel (τ = 0.3): In the presence of delay it is the temporally periodic oscillatory solution.
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Figure 4.3. A comparison of spatiotemporal patterns of u between different average degrees: 4 (top panels),
6 (middle panels), and 8 (bottom panels). The right panels are the corresponding phase portraits of the left
patterns.
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is in sloping stripes (t < 1000) while the terminal state is in vertical stripes (t > 1000). Hence,
the left-middle panel shows a mixed spatiotemporal pattern with sloping stripes and vertical
stripes. From the diffusion point of view, when the average degree is small, the effect of the
single node cannot diffuse to the whole network, the sloping stripes are spatially inhomoge-
neous but temporally oscillatory. When the average degree is large, the effect of the single
node can diffuse to the whole network, the vertical stripes are spatially homogeneously and
temporally oscillatory. When the average degree is moderate, the effect of the single node
cannot diffuse to the whole network in the transient state, but it can diffuse to the whole
network in the terminal state. The right panels show the phase trajectories at fixed nodes.
The right-bottom phase portrait is a limit cycle, where the terminal trajectory is periodic.
In the right-top phase portrait the whole domain inside the limit cycle is densely packed,
where the terminal trajectory is quasiperiodic.

Finally, we choose our network as a Barabási–Albert free scale network, which consists of
100 nodes, with 3 initial nodes. Similar to the Watts–Strogatz network, Barabási–Albert free
scale network is an undirected graph possessing both determined paths and random paths.
Different from the Watts–Strogatz network, Barabási–Albert network possesses a scale-free
degree distribution. In the left panel of Figure 4.4 the terminal state is the regular vertical
striped spatiotemporal pattern, while the right phase portrait is the corresponding limit cycle.
By comparing the spatiotemporal patterns between Watts–Strogatz network and Barabási–
Albert free scale network, we find that the latter is more likely to generate vertical stripes
instead of sloping stripes. Hence it has a faster diffusion speed to spread over the whole
network.
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Figure 4.4. Spatiotemporal pattern of u in the Barabási-Albert free scale network. The left panel is the
vertical striped pattern. The right panel is the corresponding phase portrait.

In ecological meaning, the temporal periodic solutions describe the bloom phenomenon.
From Figure 4.2, we can see that when delay τ > τ0, system (1.3) exhibits a bloom phe-
nomenon. Even if the same delay drives the bloom phenomenon, the structure of the network
plays an important role on the spatial heterogeneity of system (1.3). In Figure 4.3, we see
three different spatial distributions of bloom phenomena. In the left-top panel of Figure 4.3,D

ow
nl

oa
de

d 
03

/2
5/

19
 to

 1
29

.1
71

.6
.1

76
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

554 CANRONG TIAN AND SHIGUI RUAN

the spatial distribution is heterogeneous, which is also called “patchiness.” In the left-middle
panel of Figure 4.3, the spatial distribution is heterogeneous in short-time but homogeneous in
long-time. In the left-bottom panel of Figure 4.3, the spatial distribution is homogeneous. Fig-
ure 4.4 indicates that Barabási–Albert free scale network induces the spatially homogeneous
bloom.

5. Discussions. Planktonic blooms have important implications for marine ecosystems
(Abbott [1], Fasham [11], Smetacek [37]). Though the process by which the bloom phe-
nomenon forms is not well understood, researchers have been trying to explain it by different
population dynamical models (Malchow et al. [22], Medvinsky et al. [23], Mukhopadhyay,
Chattopadhyay, and Tapaswi [26]) in which the causes of the bloom phenomenon are the
interplay of planktonic competition and allelopathic toxins. Many experimental findings have
provided evidence to indicate that allelopathic stimulatory interaction maintains a balanced
phytoplankton ecology (Berglund [5], Hellebust [18], Monahan and Trainor [25], Rice [30]).
Allelopathy has been described as one of the factors that control blooms, pulses, and succes-
sions in the abundance of phytoplankton species in all kinds of bodies of water. In this paper
we have aimed to study allelopathic stimulatory plankton communities by using a Lotka–
Volterra type competition model with anomalous diffusion. Allelopathic stimulatory effect in
the model has been incorporated by introducing the production of an allelopathic substance
by each of the species. The newly born plankton takes some time to mature before it can
produce effective allelochemicals, which induces a delay effect in the model. The interplay of
multipatch inhabit has been investigated by introducing a network to describe the dispersal
directions of plankton species in different inhabitants. Plankton species in each node share no
relationship with the geometrical distance among nodes but are dependent on the topological
structure of the network instead. To our knowledge, there is no population dynamical model
taking into account the network structure to describe the bloom phenomenon in the literature.

It is shown that the time delay destabilizes the system and leads to a limit cycle through
Hopf bifurcation. Applying a linear stability analysis and a center manifold theory, we investi-
gated stability of the Hopf bifurcation. It is worth mentioning that owing to the introduction
of a network, our numerical simulations have brought out some dynamical features that the
analytical theorems cannot attain. For the Watts–Strogatz network containing 100 nodes, we
have obtained three dynamical pattern features:

(i) When the average degree is 4, the system possesses temporally quasiperiodic solutions.
The population distribution is the spatially heterogeneous regular pattern.

(ii) When the average degree is 8, the system possesses temporally periodic solutions. The
population distribution is the spatially homogeneous regular pattern.

(iii) When the average degree is 6, the system possesses temporally periodic solutions with
a quasiperiodic transient solution. The population distribution is a mixed pattern
which is both spatially heterogeneous and spatially homogeneous.

Moreover, we have observed that the network with Barabási–Albert free scale type admits
temporally periodic solutions. The population distribution is the spatially homogeneous reg-
ular pattern. Hence, our model has temporally periodic solutions, which is in good agreement
with the periodic nature of blooms (Abbott [1], Abraham [2], Rice [30]).
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In model (1.3), it was assumed that only species ui has a time delay for maturity. If we
assume that the species vi also has a time delay, then the model takes the following form
(i = 1, 2, . . . , n):

u̇i(t) = ui(t)(a1 − b11ui(t)− b12vi(t) + e1ui(t)vi(t− τ1)) +Du

n∑
j=1

Lijuj(t),

v̇i(t) = vi(t)(a2 − b21ui(t)− b22vi(t) + e2ui(t− τ2)vi(t)) +Dv

n∑
j=1

Lijvj(t).(5.1)

Then the technique of Wei and Ruan [48] can be applied to discuss the stability and bifurcation
of the two-delay model (5.1). Following the procedure in section 2, we can find a critical value
τ1,0 of the first delay such that the steady state of system (1.3) (with τ1 only) is asymptotically
stable when τ1 < τ1,0 and unstable when τ1 > τ1,0. Now consider the two-delay model (5.1) and
let τ1 ∈ (0, τ1,0) be fixed. Using a similar argument we can find a critical value τ2,0(τ1) of the
second delay such that the steady state of system (5.1) (with both τ1 and τ2) is asymptotically
stable when τ2 < τ2,0(τ1). Thus, when (τ1, τ2) ∈ [0, τ1,0)× [0, τ2,0(τ1)), the steady state of the
two-delay model (5.1) is asymptotically stable. (Note that the actual stability region could
be larger than [0, τ1,0)× [0, τ2,0(τ1)).)
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