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a b s t r a c t

This paper is concerned with the qualitative analysis of two models [S. Bonhoeffer, M. Lipsitch, B.R. Levin,
Evaluating treatment protocols to prevent antibiotic resistance, Proc. Natl. Acad. Sci. USA 94 (1997)
12106] for different treatment protocols to prevent antibiotic resistance. Detailed qualitative analysis
about the local or global stability of the equilibria of both models is carried out in term of the basic repro-
duction number R0. For the model with a single antibiotic therapy, we show that if R0 < 1, then the dis-
ease-free equilibrium is globally asymptotically stable; if R0 > 1, then the disease-endemic equilibrium is
globally asymptotically stable. For the model with multiple antibiotic therapies, stabilities of various
equilibria are analyzed and combining treatment is shown better than cycling treatment. Numerical sim-
ulations are performed to show that the dynamical properties depend intimately upon the parameters.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Infections caused by antibiotic-resistant bacteria, such as
methicillin-resistant Staphylococcus aureus (MRSA) and Vancomy-
cin-resistant enterococci (VRE), are increasing rapidly throughout
the world and pose a serious threat to public health [19,15,21].
The transmission dynamics of antibiotic-resistant bacteria in hos-
pitals are complex which involve the patients, health-care workers,
and their interactions. Antibiotic exposure is crucial to the emer-
gence and spread of these resistant bacteria [12]. Compared to
infections caused by antimicrobial-susceptible bacteria, infections
with antimicrobial-resistant bacteria cause higher mortality rates,
longer hospital stays and greater hospital costs [14]. It was
estimated that in 2005 the deaths in patients with invasive meth-
icillin-resistant S. aureus in the United Sates exceeded the total
number of deaths due to HIV/AIDS in the same year [17].

Recently, mathematical models have been extensively used to
simulate the spread of the antibiotic-resistant bacteria, to identify
various factors responsible for the prevalence of the antibiotic-
resistant bacteria, to examine different antibiotic treatments, and
to help design effective control programs [2–7,12,24]. We refer to

the survey papers of Grundmann and Hellriegel [16] and Temime
et al. [23] for more details and references on this topic.

To generate predictions concerning the effects of various pat-
terns of antibiotic treatment at the population level, Bonhoeffer
et al. [6] proposed two mathematical models. In the first model,
patients with bacterial infections may be treated with a single anti-
biotic. The model consists of three ordinary differential equations:

dx
dt ¼ K� dx� bxðyw þ yrÞ þ rwyw þ rryr þ fhð1� sÞyw;

dyw
dt ¼ ðbx� c � rw � fhÞyw;

dyr
dt ¼ ðbx� c � rrÞyr þ fhsyw;

8>><
>>: ð1:1Þ

where x(t), yw(t), and yr(t) denote the density of uninfected patients,
infected by sensitive (wild type) bacteria to the treating antibiotic,
and infected by resistant bacteria to the treating antibiotic at time
t, respectively. We refer to Fig. 1A in [6] for a chart diagram for
the three compartment model. K is the recruitment rate of the
population, d is the per capita removal rate from the population, b
is the transmission rate parameter, c is the death rate of the infected
host, which includes natural and disease-associated mortality. rw

and rr are the rates of patients infected with wild type and resistant
bacteria recover from the infection in the absence of treatment.
Patients infected with wild type bacteria are removed from the
wild type infected compartment at a rate fh, where f is a scaling
parameter (between 0 and 1) reflecting the fraction of patients trea-
ted and h is the maximum rate when all patients are treated. A frac-
tion s of treated wt-infected develops resistance during treatment.
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Bonhoeffer et al. [6] considered treatment with a single antibiotic
and resistance to that antibiotic and analyzed the model to predict
the consequences of different usage patterns.

In the second model, two antibiotics A and B are used. The mod-
el takes the following form:

dx
dt ¼ K� dx� bxðyw þ ya þ yb þ yabÞ þ rwyw þ raya þ rbyb þ rabyab

þhð1� qÞfabyw þ hð1� sÞððfa þ fbÞyw þ fayb þ fbya þ fabðya þ ybÞÞ;
dyw
dt ¼ ðbx� c � rw � hðfa þ fb þ fabÞÞyw;

dya
dt ¼ ðbx� c � ra � hðfb þ fabÞÞya þ hsfayw;

dyb
dt ¼ ðbx � c � rb � hðfa þ fabÞÞyb þ hsfbyw;

dyab
dt ¼ ðbx� c � rabÞyab þ hsðfabðya þ ybÞ þ fayb þ fbyaÞ þ qhfabyw;

8>>>>>>>>>><
>>>>>>>>>>:

ð1:2Þ

where the variables are x(t) for the susceptible, yw(t), ya(t), yb(t) and
yab(t) for patients infected with wild type (wt), A-resistant (A-res),
B-resistant (B-res), and AB-resistant (AB-res) bacteria, respectively
(see Fig. 1B in [6] for a chart diagram for the model). K is the
recruitment rate of the population, d is the per capita removal rate
from the population, b is the transmission rate parameter, c is the
death rate of the infected host, which includes natural and dis-
ease-associated mortality. rw, ra, rb and rab are the recovery rates
of wt, A-res, B-res and AB-res infected, respectively; fa, fb and fab re-
flect the fraction of patients treated with antibiotic A, B, or AB, they
fulfill the relation 0 6 fa, fb, fab 6 1, and fa + fb + fab 6 1.h is the maxi-
mum rate when all patients are treated. A fraction s or q of treated
wt-infected develop resistance with single antibiotic treatment or
two antibiotics treatment. Bonhoeffer et al. [6] analyzed the popu-
lation-level consequences of different usage patterns of the two
antibiotics and made various conclusions based on numerical anal-
ysis of their models. In this paper we provide detailed qualitative
analysis of the two mathematical models (1.1) and (1.2), including
the existence and stability of all possible equilibria, and numerical
simulations to support these conclusions.

We would like to make some remarks about the comparisons of
models (1.1) and (1.2) with the competition models of resources
(see, for example, [1,22]) and the multi-strain models in epidemiol-
ogy (see [9,25]). Firstly models (1.1) and (1.2) are not competition
models since the two strains of bacteria, sensitive and resistant,
are not competitors. Secondly, patients infected with the sensitive
strain can be infected with the resistant strain due to the treatment
of antibiotics or the interaction from the contaminated health-care
workers, and patients infected with the resistant strain can be
cleaned due to treatment. So models (1.1) and (1.2) are different
from the multi-strain models in epidemiology (see [9]) and the
two-resistant strains model studied by Webb et al. [25]. Moreover,
our results are not about which strain will win, it is about how the
resistant strains establish in the patients and how to control that.

The paper is organized as follows. In Section 2, we consider the
compartment model (1.1) with a single antibiotic therapy and
evaluate a threshold, the basic reproduction number R0 [8], for
two cases: (i) in the absence of treatment fh = 0 and (ii) with treat-
ment fh > 0. The disease-free equilibrium always exists and is glob-
ally stable if R0 < 1 and the disease-endemic equilibrium exists and
is globally stable if R0 > 1. Section 3 is devoted to discussing the
existence and stability of equilibria of the model (1.2) with multi-
ple antibiotic therapies. In order to understand how antibiotic
usage patterns may be optimized to preserve or restore antibiotic
effectiveness, we consider four different modes of antibiotic ther-
apy, namely, (i) in the absence of treatment fa = fb = fab = 0; (ii) cy-
cling treatment fa = 1,fb = fab = 0 or fb = 1,fa = fab = 0; (iii) 50–50
treatment fa ¼ fb ¼ 1

2 ; f ab ¼ 0; and (iv) combination treatment
fa = fb = 0, fab = 1. We present stability results for all different cases.
In Section 4, we present some numerical simulations to illustrate
the obtained results and present a brief discussion.

2. The model with a single antibiotic therapy

In this section, we discuss the existence and stability of equilib-
ria of the compartment model (1.1). In this model, we assume that
the fitness cost associated with resistance is manifest by a higher
rate of clearance of the infection (recovery) of hosts infected with
resistant bacteria relative to those infected with sensitive (rr > rw)
and the death rate of infected patients is higher than that of sus-
ceptible one, that is c > d [6].

Because of the biological meaning of the components (x(t),yw(-
t),yr(t)), we focus on the model in the first octant of R3. We first
consider the existence of equilibria of system (1.1). By some calcu-
lation, we find that system (1.1) has at most three equilibria:

E0 ¼ ðK=d;0;0Þ; Er ¼
c þ rr

b
;0;

K
c
� d

b
� drr

bc

� �
;

and

eE ¼ c þ rw þ fh
b

;
ðrr � rw � fhÞðK� dðc þ rw þ fhÞ=bÞ

cðrr � rw � fhð1� sÞÞ ;

�
fhsðK� dðc þ rw þ fhÞ=bÞ

cðrr � rw � fhð1� sÞÞ

�
;

under certain conditions (to be specified later).
We define the basic reproduction number as follows:

R0 ¼max
bK

dðc þ rw þ fhÞ ;
bK

dðc þ rrÞ

� �
:

First we determine the stability of the disease-free equilibrium
E0. The Jacobian matrix of system (1.1) at E0 is given by

JE0
¼
�d � bK

d þ rw þ fhð1� sÞ � bK
d þ rr

0 bK
d � c � rw � fh 0

0 fhs bK
d � d� rr

2
64

3
75:

We can see that E0 is locally stable if R0 < 1.
In the following, we shall study the existence and stability prop-

erty of other equilibria of model (1.1). We consider two cases.

2.1. In the absence of treatment: fh = 0

We first consider the case of absence of therapy, that is fh = 0. To
deduce the threshold for the antibiotic resistance in the patient, we
analyze the existence of equilibria and their stability for model
(1.1). Now the basic reproduction number is R0 ¼ br

dðcþrwÞ : By exam-
ining the linearized form of system (1.1) at the equilibrium, we ob-
tain the following result.

Theorem 2.1. Assume fh = 0, then R0 ¼ bK
dðcþrwÞ.

(i) If R0 < 1, then system (1.1) has a disease-free equilibrium
E0 = (K/d,0,0), which is locally asymptotically stable.

(ii) If R0 > 1, then system (1.1) has two or three equilibria, the dis-
ease-free equilibrium E0 = (K/d,0, 0), which is a saddle point
and unstable, the non-trivial equilibrium

Ew ¼
c þ rw

b
;
dðc þ rwÞðR0 � 1Þ

bc
;0

� �
;

which is locally asymptotically stable, and another non-trivial
equilibrium

Er ¼
c þ rr

b
;0;

dðc þ rwÞðR0 � 1Þ
bc

� dðrr � rwÞ
bc

� �
;

which is unstable if it exists.
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2.2. With treatment: fh > 0

We first consider the case rr < rw + fh. In this case

R0 ¼max
bK

dðc þ rw þ fhÞ ;
bK

dðc þ rrÞ

� �
¼ bK

dðc þ rrÞ

and system (1.1) has at most two equilibria, the disease-free equi-

librium E0 and the semitrivial equilibrium Er ¼ cþrr
b ;0; dðcþrr ÞðR0�1Þ

bc

� �
if R0 > 1.

The Jacobian matrix of system (1.1) at Er is

JEr
¼
�R0d� drr

c ðR0 � 1Þ �c � rr þ rw þ fhð1� sÞ �c

0 rr � rw � fh 0
dð1þ rr=cÞðR0 � 1Þ fhs 0

2
64

3
75:

It follows that Er is locally asymptotically stable under the assump-
tion of R0 > 1.

From the above discussion, we have the following result.

Theorem 2.2. Suppose rr < rw + fh, then R0 ¼ bK
dðcþrrÞ. If R0 < 1, then

system (1.1) has a disease-free equilibrium E0 = (K/d,0, 0), which is
locally asymptotically stable. If R0 > 1, then E0 is unstable, and the

semitrivial equilibrium Er ¼ cþrr
b ;0; dðcþrrÞðR0�1Þ

bc

� �
exists and is locally

asymptotically stable.

Next we discuss the case rr > rw + fh. In this case

R0 ¼
bK

dðc þ rw þ fhÞ

and system (1.1) may have three equilibria, the disease-free equilib-
rium E0,the semitrivial equilibrium with the resistant strain Er and a
positive equilibrium eE ¼ ð~x; ~yw; ~yrÞ. For convenience, we denote

~yw ¼
ðrr � rw � fhÞðK� dðc þ rw þ fhÞ=bÞ

cðrr � rw � fhð1� sÞÞ ;

~yr ¼
fhsðK� dðc þ rw þ fhÞ=dÞ

cðrr � rw þ fhð1� sÞÞ :

From the expressions of ~yw and ~yr , we know that eE exists if and only
if R0 > 1. The Jacobian matrix of system (1.1) at eE is

JeE ¼
�d� bð~yw þ ~yrÞ �c � fhs rr � rw � fh� c

b~yw 0 0
b~yr fhs fhþ rw � rr

2
64

3
75:

Therefore, the corresponding characteristic equation is

k3 þ a1k
2 þ a2kþ a3 ¼ 0; ð2:1Þ

where

a1 ¼ bð~yw þ ~yrÞ þ rr � rw � fhþ d;

a2 ¼ bcð~yw þ ~yrÞ þ b~ywðrr � rw � fhð1� sÞÞ þ dþ rr � rw þ fh;

a3 ¼ bc~ywðrr � rw � fhð1� sÞÞ:

Furthermore, by the relation

ðrw þ fh� rrÞ~yr þ fhs~yw ¼ 0;

we have

a2 ¼ bc~yw 1þ fhs
rr � rw � fh

� �
þ b~ywðrr � rw � fhð1� sÞÞ þ dðrr � rw þ fhÞ:

Thus, in view of the new expression of a2, it is easy to see that
a1,a2,a3 > 0 and a1a2 � a3 > 0. By Routh–Hurwitz criteria (see [18,
Section 1.6-6(b)]), all roots of Eq. (2.1) have negative real parts.
Therefore, when R0 > 1, the positive equilibrium eE is locally stable.
Thus, we have the following conclusion.

Theorem 2.3. Assume rr > rw + fh, then R0 ¼ bK
dðcþrwþfhÞ : If R0 < 1, then

system (1.1) has a disease-free equilibrium E0 = (K/d,0, 0), which is
locally asymptotically stable. If R0 > 1, then E0 is unstable and the
disease-endemic equilibrium

eE ¼ c þ rw þ fh
b

;
dðc þ rw þ fhÞðrr � rw � fhÞðR0 � 1Þ

bcðrr � rw � fhð1� sÞÞ ;

�
dfhsðc þ rw þ fhÞðR0 � 1Þ

bcðrr � rw � fhð1� sÞÞ

�

is locally asymptotically stable. Furthermore, if R0 > 1þ rr�rw�fh
cþrwþfh , then

the semitrivial equilibrium with the resistant strain

Er ¼
c þ rr

b
;0;

d
bc
ððc þ rw þ fhÞðR0 � 1Þ � ðrr � rw � fhÞÞ

� �

exists and is unstable.
To explore the global stability of the positive equilibrium, we

define the new variables

X ¼ d
K

x; Yw ¼
d
K

yw; Yr ¼
d
K

yr;

and parameters

~t ¼ dt; ~b ¼ b
d
; ~rw ¼

rw

d
; ~rr ¼

rr

d
; ~h ¼ h

d
; ~c ¼ c

d
:

Using these changes of variables and parameters, system (1.1)
becomes

dX
d~t
¼ 1� X � ~bK

d XðYw þ YrÞ þ ~rwYw þ ~rrYr þ f ~hð1� sÞYw;

dYw
d~t
¼ ~bK

d X � ~c � ~rw � f ~h
� �

Yw;

dYr
d~t
¼ ~bK

d X � ~c � ~rr

� �
Yr þ f ~hsYw

8>>>><
>>>>:

ð2:2Þ

with eNðtÞ ¼ XðtÞ þ YwðtÞ þ YrðtÞ. The equation for the total popula-
tion eN is

deN
d~t
¼ 1� X � ~cYw � ~cYr: ð2:3Þ

Clearly, eN 2 ð0;1� since at the disease-free equilibrium eN ¼ X ¼ 1
and the natural expectation is that the spread of the disease in
the population will reduce eN (that is eN < 1). Therefore, we study
the stability of the model (2.2) in the region

D ¼ ðX;Yw;YrÞ 2 R3
þ : 0 6 X þ Yw þ Yr 6 1

n o
:

Consider the subset D* of D given by

D� ¼ fðX;Yw;YrÞ 2 D : X þ ~cYw þ ~cYr ¼ 1g:

From (2.3), it is obvious that deN
d~t
¼ 0 in D*. If X þ ~cYw þ ~cYr > 1, then

deN
d~t < 0 and if X þ ~cYw þ ~cYr < 1, then deN

d~t > 0. It follows that D* is a
positively invariant set in D. Thus the x-limit set of each solution
of model (2.2) is contained in D*. Moreover, it is easy to see thateE0 attracts the region D0 = {(X,Yw,Yr) 2 D : Yw = Yr = 0}.

In the next result, we will show that there cannot be any closed
orbit around the equilibrium.

Lemma 2.4. The model (2.2) has no periodic orbits, homoclinic orbits
or polygons in D*.

Proof. Let f1, f2, f3 denote the three functions on the right hand
sides in system (2.2), respectively. Denote f = (f1, f2, f3)T(T denotes
transpose), gðX;Yw;YrÞ ¼ 1

XYwYr
� r � f , (where r = (X,Yw,Yr)T), then

g � f ¼ 0:

By straightforward calculation, we have in the interior of domain D
that

58 H.-R. Sun et al. / Mathematical Biosciences 227 (2010) 56–67
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ðcurlgÞ1 ¼
@g3

@Yw
� @g2

@Yr
¼

~bK
dYr
�

~Yw þ f ~hð1� sÞ
XYr

� f ~hs

Y2
r

þ
~bK

dYw
�

~rr

XYw
;

ðcurlgÞ2 ¼ �
@g3

@X
þ @g1

@Yr
¼ �

~bK
dYr
�

~rr

X2 �
1þ ðf ~hþ ~rwÞYw

X2Yr

;

ðcurlgÞ3 ¼
@g2

@X
� @g3

@Yw
¼ �

~bK
dYw

� 1þ ~rrYr

X2Yw

�
~rw þ f ~hð1� sÞ

X2 � f ~hs
XYr

:

Using the normal vector n ¼ ð1; ~c; ~cÞ on D*, it can be shown that

curlg � ð1; ~c; ~cÞ ¼ �ð~c � 1Þ
~bK
d

1
rr
þ 1

rw

� �
�

~Yw þ f ~h
XYr

� f ~hs

Y2
r

�
~rr

XYw
�

~rr

X2

� 1þ ðf ~hþ ~rwÞYw

X2Yr

� 1þ ~rrYr

X2Yw

�
~rw þ f ~hð1� sÞ

X2 � f ~hs
XYr

:

In view of the assumption of ~c > 1, we have that curlg � ð1; ~c; ~cÞ is
negative on Dn@D. From Corollary 4.2 in [10], there are no solutions
of the stated type in Dn@D. The desired result is obtained. h

From Theorems 2.1, 2.2, 2.3 and Lemma 2.4, the following the-
orem can be obtained.

Theorem 2.5. For system (1.1) , the following results hold.

(i) Assume fh < rr � rw, then system (1.1) has at most three equilib-

ria E0; Er ; eE with R0 ¼ bK
dðcþrwþfhÞ : If R0 < 1, then the DFE E0 is glob-

ally asymptotically stable, if R0 > 1,E0 is unstable, the positive

equilibrium eE is globally asymptotically stable, the semitrivial
equilibrium Er is unstable if it exists.

(ii) Assume fh > rr � rw, then system (1.1) has at most two equilib-
ria E0,Er with R0 ¼ bK

dðcþrrÞ : If R0 < 1, then the DFE E0 is globally
stable, if R0 > 1,E0 is unstable, the semitrivial equilibrium Er is
globally asymptotically stable.

The above results can be summarized in Table 1 (BRN = basic
reproduction number).

3. The model with multiple antibiotic therapies

In this section we consider model (1.2), where we assume that
the fitness cost associated with resistance is manifest by a higher
rate of clearance of the infection (recovery) of hosts infected with
resistant bacteria relative to those infected with sensitive bacteria
(rr > rw) and the death rate of infected patients is higher than that
of susceptible one, that is c > d [6].

Because of the components of (x(t),yw(t),ya(t),yb(t),yab(t)) have
to be non-negative, we focus on the model in the first octant of
R5. We first consider the existence of equilibria of system (1.2).
For any values of parameters, model (1.2) always has a disease-free
equilibrium E0 = (K/d,0,0,0,0).

We first determine the stability of the disease-free equilibrium
E0. The Jacobian matrix of system (1.2) at E0 is

J0 ¼

�d j12 j13 j14 j15

0 j22 0 0 0
0 hsfa j33 0 0
0 hsfa 0 j44 0
0 hqfab hsðfab þ fbÞ hsðfa þ fabÞ j55

2
6666664

3
7777775
;

where

j12 ¼ �bK=dþ rw þ hð1� qÞfab þ hð1� sÞðfa þ fbÞ;
j13 ¼ �bK=dþ ra þ hð1� sÞðfb þ fabÞ;
j14 ¼ �bK=dþ rb þ hð1� sÞðfa þ fabÞ;
j15 ¼ �bK=dþ rab;

j22 ¼ bK=d� c � rw � hðfa þ fb þ fabÞ;
j33 ¼ bK=d� c � ra � hðfb þ fabÞ;
j44 ¼ bK=d� c � rb � hðfa þ fabÞ;
j55 ¼ bK=d� c � rab:

The eigenvalues of J0 are �d,j22,j33,j44,j55. So from the expressions of
jii(i = 2,3,4,5), we can see that the steady state E0 is locally asymptot-
ically stable if

bK=d� c < minfrw þ hðfa þ fb þ fabÞ; ra þ hðfb þ fabÞ;
rb þ hðfa þ fabÞ; rabg;

and unstable if
bK=d� c > minfrw þ hðfa þ fb þ fabÞ; ra þ hðfb þ fabÞ;

rb þ hðfa þ fabÞ; rabg:

By using the next generation operator approach as described by
Diekmann et al. [13], we obtain the basic reproduction number as
follows:

R0 ¼
bK
d

1
c þminfrw þ hðfa þ fb þ fabÞ; ra þ hðfb þ fabÞ; rb þ hðfa þ fabÞ; rabg

:

Observe that
bK=d� c �minfrw þ hðfa þ fb þ fabÞ; ra þ hðfb þ fabÞ;

rb þ hðfa þ fabÞ; rabg ¼ ðR0 � 1Þminfrw þ hðfa þ fb þ fabÞ;
ra þ hðfb þ fabÞ; rb þ hðfa þ fabÞ; rabg:

We have the following result.

Theorem 3.1. For model (1.2), the disease-free equilibrium E0 is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

In order to analyze the stability of other equilibria of model
(1.2), we consider four cases.

3.1. In the absence of treatment: fa = fb = fab = 0

Theorem 3.2. When fa = fb = fab = 0, for system (1.2), there are at
most five possible steady state

E0 ¼ ðK=d;0;0;0;0Þ;

Ew ¼
c þ rw

b
;
K
c
� d

b
� drw

bc
;0;0;0

� �
;

Ea ¼
c þ ra

b
;0;

K
c
� d

b
� dra

bc
;0;0

� �
;

Eb ¼
c þ rb

b
;0;0;

K
c
� d

b
� drb

bc
;0

� �
;

Eab ¼
c þ rab

b
;0;0;0;

K
c
� d

b
� drab

bc

� �
:

The existence and stability of equilibria are described in Table 2.

Table 1
Stability chart for system (1.1).

Condition BRN Cases E0 Er eE
fh < rr � rw R0 ¼ bK

dðcþrwþfhÞ
R0 < 1 Globally stable 9= 9=
R0 > 1 Unstable If exist, unstable Globally stable

fh > rr � rw R0 ¼ bK
dðcþrr Þ

R0 < 1 Globally stable 9= 9=
R0 > 1 Unstable Globally stable 9=
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Proof. When fa = fb = fab = 0, the Jacobian matrix of system (1.2) at
the non-trivial equilibrium Ew is

JEw
¼

�d�b K
c � d

b�
drw
bc

� 	
�c �c� rwþ ra �c� rwþ rb �c� rwþ rab

�b K
c � d

b�
drw
bc

� 	
yw 0 0 0 0

0 0 rw� ra 0 0
0 0 0 rw� rb 0
0 0 0 0 rw� rab

2
6666664

3
7777775
:

We can see that the eigenvalues of JEw
are rw � ra, rw � rb, rw � rab,

and the roots of the polynomial equation

k2 þ dþ b
K
c
� d

b
� drw

bc

� �� �
kþ bc

K
c
� d

b
� drw

bc

� �
¼ 0:

Thus, under the condition rw < min{ra, rb,rab}, if R0 < 1, namely
K
c <

d
bþ

drw
bc , the equilibria Ew, Ea, Eb, Eab do not exist and the trivial

equilibrium E0 is locally stable. If R0 > 1, all eigenvalues of JEw
have

negative real parts, so Ew is locally stable. Equilibria Ea, Eb, Eab are
unstable, since their corresponding Jacobian matrices have positive
eigenvalues ra � rw, rb � rw, rab � rw, respectively.

For the other cases, the discussion is similar, we omit it
here. h

3.2. Cycling treatment: fa = 1, fb = fab = 0 or fb = 1, fa = fab = 0

When fa = 1, fb = fab = 0, system (1.2) becomes

dx
dt ¼ K� dx� bxðyw þ ya þ yb þ yabÞ þ rwyw þ raya

þrbyb þ rabyab þ hð1� sÞðyw þ ybÞ;
dyw
dt ¼ ðbx� c � rw � hÞyw;

dya
dt ¼ ðbx� c � raÞya þ hsyw;

dyb
dt ¼ ðbx� c � rb � hÞyb;

dyab
dt ¼ ðbx� c � rabÞyab þ hsyb:

8>>>>>>>>>><
>>>>>>>>>>:

ð3:1Þ

It has at most five possible steady state

E0 ¼ ðK=d;0;0;0;0Þ;

Ea ¼
c þ ra

b
;0;

K
c
� d

b
� dra

bc
; 0;0

� �
;

Eab ¼
c þ rab

b
;0;0;0;

K
c
� d

b
� drab

bc

� �
;

Ew;a ¼
c þ rw þ h

b
;
ðra � rw � hÞðK� dðc þ rw þ hÞ=bÞ

cðra � rw � hð1� sÞÞ ;

�
hsðK� dðc þ rw þ hÞ=bÞ

cðra � rw � hð1� sÞÞ ;0;0
�
;

Eb;ab ¼
c þ rb þ h

b
;0;0;

ðrab � rb � hÞðK� dðc þ rb þ hÞ=bÞ
cðrab � rb � hð1� sÞÞ ;

�
hsðK� dðc þ rb þ hÞ=bÞ

cðrab � rb � hð1� sÞÞ

�
:

The basic reproduction number is defined by

R0 ¼
bK
d

1
c þminfrw þ h; ra; rb þ h; rabg

:

Theorem 3.3. When fa = 1, fb = fab = 0, the existence and stability of
equilibria are described in Table 3.

Proof.

(i) When fa = 1, fb = fab = 0, the Jacobian matrix of system (1.2) at
the semitrivial equilibrium Ea is

It follows that ra � rw � h, ra � rb � h, ra � rab are the eigen-
values of JEa

, the other two eigenvalues of JEa
are the roots

of the quadratic polynomial equation

k2 þ dþ b
K
c
� d

b
� dra

bc

� �� �
kþ bc

K
c
� d

b
� dra

bc

� �
¼ 0:

In view of the assumption and above discussion, the existence
and stability the equilibrium Ea can be obtained. For the other
equilibria, the discussion is similar, we omit it here.

(ii) The existence and stability of Eab is similar to that of Ea, we
omit it.

(iii) By the expression of Ew,a, we find that when rw + h < ra and
K < d(c + rw + b)/b, the semitrivial equilibrium Ew,a exists.
For the convenience of discussion, we denote

Table 2
Existence and stability chart for system (1.2) with no treatment.

Condition BRN Cases E0 Ew Ea Eb Eab

rw < min{ra,rb,rab} R0 ¼ bK
dðcþrwÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable Stable � � �

ra < min{rw,rb,rab} R0 ¼ bK
dðcþraÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � Stable � �

rb < min{rw,ra,rab} R0 ¼ bK
dðcþrbÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � Stable �

rab < min{rw,ra,rb} R0 ¼ bK
dðcþrabÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � � Stable

Here � represents that if the equilibrium exists, it is unstable.

JEa
¼

�d� b K
c � d

b�
dra
bc

� 	
rw þ hð1� sÞ � c � ra �c rb þ hð1� sÞ � c � ra �c � ra þ rab

0 ra � rw � h 0 0 0
b K

c � d
b�

dra
bc

� 	
hs 0 0 0

0 0 0 ra � rb � h 0
0 0 0 hs ra � rab

2
6666664

3
7777775
:
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ŷw ¼
ðra � rw � hÞðK� dðc þ rw þ hÞ=bÞ

cðra � rw � hð1� sÞÞ ;

ŷa ¼
hsðK� dðc þ rw þ hÞ=bÞ

cðra � rw � hð1� sÞÞ :

Then the Jacobian matrix of system (3.2) at the equilibrium
Ew;a ¼ ððc þ rw þ fhÞ=b; ŷw; ŷa;0;0Þ has the form

It is easy to see that rw � rb and rw + h � rab are the eigen-
values of JEw;a

. After some algebra, we can find that the other
three eigenvalues of JEw;a

are the roots of

k3 þ a1k
2 þ a2kþ a3 ¼ 0

with

a1 ¼ bðŷw þ ŷaÞ þ dþ ra � rw � h;

a2 ¼ bcðŷw þ ŷaÞ þ bŷwðra � rw � hð1� sÞÞ þ dðra � rw � hÞ

¼ bcŷw
hs

ra � rw � h
þ 1

� �
þ bŷwðra � rw � hð1� sÞÞ þ dðra � rw � hÞ;

a3 ¼ bcŷwðra � rw � hð1� sÞÞ:

From the expressions of a1,a2,a3, it is easy to see that under
the assumption rw + h < min{ra,rb + h,rab}, we have a1,a2,
a3 > 0 and a1a2 � a3 > 0. Therefore, by Routh–Hurwitz criteria
[18], the local stability of Ew,a is obtained. Equilibria Ea,Eab and
Eb,ab are unstable since their corresponding Jacobian matrices
have positive eigenvalues ra � rw � h, rab � rw � h,rb � rw

respectively.
(iv) The existence and stability discussion of Eb,ab is similar to

that of Ew,a, we omit it here. h

The case that fb = 1, fa = fab = 0 can be analyzed similarly and
analogue results can be obtained.

3.3. 50–50 treatment: fa ¼ fb ¼ 1
2 ; f ab ¼ 0

When fa ¼ fb ¼ 1
2 ; f ab ¼ 0, system (1.2) becomes

dx
dt ¼ K� dx� bxðyw þ ya þ yb þ yabÞ þ rwyw þ raya

þrbyb þ rabyab þ hð1� sÞðyw þ 1
2 ya þ 1

2 ybÞ;
dyw
dt ¼ ðbx� c � rw � hÞyw;

dya
dt ¼ ðbx� c � ra � h

2Þya þ h
2 syw;

dyb
dt ¼ ðbx� c � rb � h

2Þyb þ h
2 syw;

dyab
dt ¼ ðbx� c � rabÞyab þ h

2 sðya þ ybÞ:

8>>>>>>>>>><
>>>>>>>>>>:

ð3:2Þ

It has at most five possible steady state

E0 ¼ ðK=d;0;0;0;0Þ; Eab ¼
c þ rab

b
;0;0;0;

K
c
� d

b
� drab

bc

� �
;

Ea;ab ¼
c þ ra þ h=2

b
;0;
ðrab � ra � h=2ÞðK� dðc þ ra þ h=2Þ=bÞ

cðrab � ra � hð1� sÞ=2Þ ;0;
�
hsðK� dðc þ ra þ h=2Þ=bÞ
2cðrab � ra � hð1� sÞ=2Þ

�
;

Eb;ab ¼
c þ rb þ h=2

b
;0;0;

ðrab � rb � h=2ÞðK� dðc þ rb þ h=2Þ=bÞ
cðrab � rb � hð1� sÞ=2Þ ;

�
hsðK� dðc þ rb þ h=2Þ=bÞ
2cðrab � rb � hð1� sÞ=2Þ

�
;

eE ¼ ~x; ~yw; ~ya; ~yb; ~yabð Þ;

where

~x ¼ c þ rw þ h
b

;

~yw ¼ 1þ 1þ hs=2
rab � rw � h

� �
hs=2

ra � rw � h=2
þ hs=2

rb � rw � h=2

� �� ��1

� bK� dðc þ rw þ hÞ
bc

;

~ya ¼
hs=2

ra � rw � h=2
�yw;

~yb ¼
hs=2

rb � rw � h=2
�yw;

~yab ¼
hs=2

rab � rw � h
hs=2

ra � rw � h=2
þ hs=2

rb � rw � h=2

� �
yw:

The basic reproduction number is defined by

R0 ¼
bK
d

1
c þmin rw þ h; ra þ h=2; rb þ h=2; rabf g :

JEw;a
¼

�d� bðŷw þ ŷaÞ �c � hs ra � c � rw � h rb � c � rw � hs rab � c � rw � h

bŷw 0 0 0 0
bŷa hs rw þ h� ra 0 0
0 0 0 rw � rb 0
0 0 0 hs rw þ h� rab

2
6666664

3
7777775
:

Table 3
Existence and stability chart for system (1.2) with cycling treatment.

Condition BRN Cases E0 Ea Eab Ew,a Eb,ab

ra < min{rw + h,rb + h,rab} R0 ¼ bK
dðcþraÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable Stable � � �

rab < min{rw + h,ra,rb + h} R0 ¼ bK
dðcþrabÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � Stable � �

rw + h < min{ra,rb + h,rab} R0 ¼ bK
dðcþrwþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � Stable �

rb + h < min{rw + h,ra,rab} R0 ¼ bK
dðcþrbþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � � Stable

Here � represents that if the equilibrium exists, it is unstable.
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Fig. 4.1. Solution trajectories of the model with a single antibiotic therapy, the parameters K = 10, d = 1, b = 2, s = 0.3, c = 1.5 and initial values x(0) = 1.4, yw(0) = 1, yr(0) = 0.4
are fixed and the parameters rw, rr, f, h vary such that R0 > 1. (i) When rr > rw and fh = 0, the semitrivial equilibrium Ew is stable; (ii) when rr < rw + fh and fh > 0, the semitrivial
equilibrium Er is stable; (iii) when rr > rw + fh and fh > 0, the endemic equilibrium ~E is stable.

Table 4
Existence and stability chart for system (1.2) with 50–50 treatment.

Condition BRN Cases E0 Eab Ea,ab Eb,ab ~E

rab < minfrw þ h; ra þ h
2 ; rb þ h

2g R0 ¼ bK
dðcþrabÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable Stable � � �

ra þ h
2 < minfrw þ h; rb þ h

2 ; rabg R0 ¼ bK
dðcþraþh=2Þ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � Stable � �

rb þ h
2 < minfrw þ h; ra þ h

2 ; rabg R0 ¼ bK
dðcþrbþh=2Þ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � Stable �

rw þ h < minfra þ h
2 ; rb þ h

2 ; rabg R0 ¼ bK
dðcþrwþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � � Stable

Here � represents that if the equilibrium exists, it is unstable.

Table 5
Existence and stability chart for system (1.2) with combining treatment.

Condition BRN Cases E0 Eab Ea,ab Eb,ab Ew,ab

rab < min{rw + h,ra + h,rb + h} R0 ¼ bK
dðcþrabÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable Stable � � �

ra + h < min{rw + h,rb + h,rab} R0 ¼ bK
dðcþraþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � Stable � �

rb + h < min{rw + h,ra + h,rab} R0 ¼ bK
dðcþrbþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � Stable �

rw + h < min{ra + h,rb + h,rab} R0 ¼ bK
dðcþrwþhÞ

R0 < 1 Stable 9= 9= 9= 9=
R0 > 1 Unstable � � � Stable

Here � represents that if the equilibrium exists, it is unstable.
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Theorem 3.4. When fa = fb = 1/2, fab = 0, the existence and stability of
equilibria can be summarized in Table 4.

Proof. We find the steady states of system (3.2) by equating the
derivatives on the left-hand sides to zero and solving the resulting
algebraic equations. The discussion (acquirement) of the trivial or
semitrivial equilibria easy, we omit it here. Now we consider the
existence of the positive equilibrium.

From the corresponding second equilibrium equation of (3.2),
we obtain the solution ~x ¼ cþrwþh

b . Substituting ~x ¼ cþrwþh
b into the

corresponding third, fourth, fifth equilibrium equations of (3.2), we
obtain

rw þ
h
2
� ra

� �
~ya þ

hs
2

~yw ¼ 0; ð3:3Þ

rw þ
h
2
� rb

� �
~yb þ

hs
2

~yw ¼ 0; ð3:4Þ

ðrw þ h� rabÞ~yab þ
hs
2
ð~ya þ ~ybÞ ¼ 0: ð3:5Þ

Combining Eqs. (3.3)–(3.5) with the first one of (3.2), after some cal-
culation we obtain that

~yw þ ~ya þ ~yb þ ~yab ¼
1
c
ðK� d~xÞ ¼ 1

c
K� d

b
ðc þ rw þ hÞ

� �
:

Thus, when rw + h < min{ra + h/2,rb + h/2,rab} and K > d
b ðc þ rw þ hÞ,

system (3.2) has a unique componentwise positive equilibrium eE.
Linearizing system (3.2) about the positive equilibrium

ð~x; ~yw; ~ya; ~yb; ~yabÞ yields the Jacobian matrix JeE .
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Fig. 4.2. System (1.2) with no treatment, i.e. fa = fb = fab = 0, we choose parameters K = 10, d = 2, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.65, yw(0) = 0.35,
ya(0) = 2.4, yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When rw < min{ra,rb,rab}, the semitrivial equilibrium Ew is stable; (ii) when
ra < min{rw,rb,rab}, the semitrivial equilibrium Ea is stable; (iii) when rb < min{rw,ra,rab}, the semitrivial equilibrium Eb is stable; (iv) when rab < min{rw,ra,rb}, the semitrivial
equilibrium Eab is stable.

JeE ¼
�d� bð~yw þ ~ya þ ~yb þ ~yabÞ rw þ hð1� sÞ � b~x ra þ hð1�sÞ

2 � b~x rb þ hð1�sÞ
2 � b~x rab � b~x

b~yw b~x� c � rw � h 0 0 0
b~ya

hs
2 b~x� c � ra � h

2 0 0
b~yb

hs
2 0 b~x� c � rb � h

2 0
b~yab 0 hs

2
hs
2 b~x� c � rab

2
666664

3
777775:
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Substituting ~x ¼ ðc þ rw þ hÞ=b into JeE and expanding the

determinant of the obtained matrix kI � JeE by the second row,

after some calculation, it can be seen that the eigenvalues are
rw þ h

2� ra; rw þ h
2� rb, and the roots of

k3 þ a1k
2 þ a2kþ a3 ¼ 0;

where

a1 ¼ bð~ywþ~yaþ~ybþ~yabÞþdþ rab� rw�h;

a2 ¼ bcð~ywþ~yaþ~ybþ~ryabÞþðbð~ywþ~yaþ~ybÞþdÞðrab� rw�hÞþbhs
2
ð~yaþ~ybÞ;

a3 ¼ bcð~ywþ~yaþ~ybþ~yabÞðrab� rw�hÞ:

It is noted that in the expression of a3, we have used the relation

hs
2
ð~ya þ ~ybÞ ¼ ðrab � rw � hÞ~yab:

From the expressions of a1,a2,a3, it is clear that under the assump-
tion rw + h < min{ra + h/2,rb + h/2,rab}, we have a1, a2,a3 > 0 and
a1a2 � a3 > 0. Therefore, by Routh–Hurwitz criteria [18], the stabil-
ity of the positive equilibrium eE is established. h

3.4. Combination treatment: fa = fb = 0, fab = 1

When fa = fb = 0, fab = 1, system (1.2) becomes

dx
dt ¼ K� dx� bxðyw þ ya þ yb þ yabÞ þ rwyw þ raya þ rbyb þ rabyab

þhð1� qÞyw þ hð1� sÞðya þ ybÞ;
dyw
dt ¼ ðbx� c � rw � hÞyw;

dya
dt ¼ ðbx� c � ra � hÞya;

dyb
dt ¼ ðbx� c � rb � hÞyb;

dyab
dt ¼ ðbx� c � rabÞyab þ hsðya þ ybÞ þ hqyw:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð3:6Þ

The basic reproduction number is defined as

R0 ¼
bK
d

1
c þmin rw þ h; ra þ h; rb þ h; rabf g :

It has at most five possible steady state
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Fig. 4.3. System (1.2) with cycling treatment, i.e., when fa = 1, fb = fab = 0, we choose parameters K = 10, d = 2, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.65,
yw(0) = 0.35, ya(0) = 2.4, yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When ra < min{rw + h,rb + h,rab}, the semitrivial equilibrium Ea is stable; (ii)
when rab < min{rw + h,ra,rb + h}, the semitrivial equilibrium Eab is stable; (iii) when rw + h < min{ra,rb + h,rab}, the semitrivial equilibrium Ew,a is stable; (iv) when
rb + h < min{rw + h,ra,rab}, the semitrivial equilibrium Eb,ab is stable.
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E0 ¼ ðK=d;0;0;0;0Þ; Eab ¼
c þ rab

b
;0; 0;0;

K
c
� d

b
� drab

bc

� �
;

Ea;ab ¼
c þ ra þ h

b
;0;
ðrab � ra � hÞðK� dðc þ ra þ hÞ=bÞ

cðrab � ra � hð1� sÞÞ ;

�

0;
hsðK� dðc þ ra þ hÞ=bÞ

cðrab � ra � hð1� sÞÞ

�
;

Eb;ab ¼
c þ rb þ h

b
;0;0;

ðrab � rb � hÞðK� dðc þ rb þ hÞ=bÞ
cðrab � rb � hð1� sÞÞ ;

�
hsðK� dðc þ rb þ hÞ=bÞ

cðrab � rb � hð1� sÞÞ

�
;

Ew;ab ¼
c þ rw þ h

b
;
ðrab � rw � hÞðK� dðc þ rw þ hÞ=bÞ

cðrab � rw � hð1� qÞÞ ;0;0;
�

hqðK� dðc þ rw þ hÞ=bÞ
cðrab � rw � hð1� qÞÞ

�
:

Similar to the discussion of the case fa = 1, fb = fab = 0, we have
the following conclusion.

Theorem 3.5. When fa = fb = 0, fab = 1, the existence and stability of
equilibria of system (3.6) are described in Table 5.

4. Numerical simulations

In this section, we perform some numerical simulations on the
two models to illustrate the results obtained in Sections 2 and 3.
For the purpose of simulations, we fix most of the parameters in
the models and let the other parameters vary.

For the model with single antibiotic therapy, we fix the values
of K, d, b, s, c as K = 10, d = 1, b = 2, s = 0.3, c = 1.5 and initial values
x(0) = 1.4, yw(0) = 1.0, ya(0) = 0.4, let the parameters rw, rr, f, h vary
such that R0 > 1. When rr > rw and fh = 0, the semitrivial equilibrium
with the wild type strain Ew is stable (Fig. 4.1(i)). When rr < rw + fh
and fh > 0, the semitrivial equilibrium with the resistant strain Er is
stable (Fig. 4.1(ii)). When rr > rw + fh and fh > 0, the endemic equi-
librium with both the wild type strain and resistant strain ~E is sta-
ble (Fig. 4.1(iii)).

For the model with multiple antibiotic therapies, we first con-
sider the case in the absence of treatment, that is, fa = fb = fab = 0.
We choose parameters K = 10, d = 2, b = 1, q = 0.1, s = 0.3, c = 1.5,
h = 0.2 and initial values x(0) = 0.65, yw(0) = 0.35, ya(0) = 2.4,
yb(0) = 1.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that
R0 > 1. When rw < min{ra,rb,rab}, the semitrivial equilibrium with
the wild type strain Ew is stable (Fig. 4.2(i)). When ra < min{rw,rb,rab},
the semitrivial equilibrium with the resistant strain A Ea is stable
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Fig. 4.4. System (1.2) with 50–50 treatment, i.e., when fa ¼ fb ¼ 1
2 ; f ab ¼ 0, we choose the same parameters K = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, the same initial

values x(0) = 0.45, yw(0) = 0.35, ya(0) = 1.4, yb(0) = 0.9, yab(0) = 2.6, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When rab < min{rw + h,ra + h/2,rb + h/2}, the semitrivial
equilibrium Eab is stable; (ii) when ra + h/2 < min{rw + h,rb + h/2, rab}, the semitrivial equilibrium Ea,ab is stable; (iii) when rb + h/2 < min{rw + h,ra + h/2,rab}, the semitrivial
equilibrium Eb,ab is stable; (iv) when rw + h < min{ra + h/2,rb + h/2, rab}, the positive equilibrium eE is stable.
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(Fig. 4.2(ii)). When rb < min{rw,ra,rab}, the semitrivial equilib-
rium with the resistant strain B Eb is stable (Fig. 4.2(iii)). When rab

< min{rw,ra,rb}, the semitrivial equilibrium with the resistant strains
A and B Eab is stable (Fig. 4.2(iv)).

Next we consider the case with cycling treatment, that is, fa = 1,
fb = fab = 0. Choose parameters K = 10, d = 2, b = 1, q = 0.1, s = 0.3,
c = 1.5, h = 0.2 initial values x(0) = 0.65, yw(0) = 0.35, ya(0) = 2.4,
yb(0) = 0.5, yab(0) = 0.2, and let rw, ra, rb, rab and h vary such that
R0 > 1. When ra < min{rw + h,rb + h,rab}, the semitrivial equilibrium
with resistant strain A Ea is stable (Fig. 4.3(i)). When rab < -
min{rw + h,ra,rb + h}, the semitrivial equilibrium with the resistant
strains A and B Eab is stable (Fig. 4.3(ii)). when rw + h < min{ra,rb + h, -
rab}, the semitrivial equilibrium with wild type strain and resistant
strain A Ew,a is stable (Fig. 4.3(iii)). (iv) when rb + h < min{rw + h,ra,
rab}, the semitrivial equilibrium with resistant strain B and both
strains Eb,ab is stable (Fig. 4.3(iv)).

Now we consider the case with 50–50 treatment, that is,
fa ¼ fb ¼ 1

2 ; f ab ¼ 0, Choose the parameters K = 10, d = 1, b = 1,
q = 0.1, s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.45,
yw(0) = 0.35, ya(0) = 1.4, yb(0) = 0.9, yab(0) = 2.6, and let rw, ra, rb, rab

and h vary such that R0 > 1. When rab < min{rw + h,ra + h/2,rb + h/
2}, the semitrivial equilibrium with both resistant strains A and B
Eab is stable (Fig. 4.4(i)). When ra + h/2 < min{rw + h,rb + h/2,rab},
the semitrivial equilibrium with resistant strain A and both resistant

strains A and B Ea,ab is stable (Fig. 4.4(ii)). When rb + h/2 < min{-
rw + h,ra + h/2,rab}, the semitrivial equilibrium with resistant strain
B and both resistant strains A and B Eb,ab is stable (Fig. 4.4(iii)). When
rw + h < min{ra + h/2,rb + h/2,rab}, the positive equilibrium with all
strains ~E is stable (Fig. 4.4(iv)).

Finally we consider the case with combining treatment, that is,
fa = fb = 0, fab = 1. Choose parameters K = 10, d = 1, b = 1, q = 0.1,
s = 0.3, c = 1.5, h = 0.2, initial values x(0) = 0.45, yw(0) = 1.5,
ya(0) = 1.0, yb(0) = 0.5, yab(0) = 1.6, and let rw, ra, rb, rab and h vary such
that R0 > 1. When rab < min{rw + h,ra + h,rb + h}, the semitrivial equi-
librium with both resistant strains A and B Eab is stable (Fig. 4.5(i)).
When ra + h < min{rw + h,rb + h,rab}, the semitrivial equilibrium with
resistant strain A and both resistant strains A and B Ea,ab is stable
(Fig. 4.5(ii)). When rb + h < min{rw + h,ra + h,rab}, the semitrivial
equilibrium with resistant strain B and both resistant strains A and
B Eb,ab is stable (Fig. 4.5(iii)). When rw + h < min{ra + h,rb + h,rab},
the semitrivial equilibrium with the wild type strain and both resis-
tant strains A and B Ew,ab is stable (Fig. 4.5(iv)).

5. Discussion

We provided qualitative analysis of models for different treat-
ment protocols to prevent antibiotic resistance. For the model with
a single antibiotic therapy, we carried out a global qualitative
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Fig. 4.5. System (1.2) with combining treatment, i.e., when fa = fb = 0, fab = 1, we choose the same parameters K = 10, d = 1, b = 1, q = 0.1, s = 0.3, c = 1.5, h = 0.2, the same initial
values x(0) = 0.45, yw(0) = 1.5, ya(0) = 1.0, yb(0) = 0.5, yab(0) = 1.6, and let rw, ra, rb, rab and h vary such that R0 > 1. (i) When rab < min{rw + h,ra + h,rb + h}, the semitrivial
equilibrium Eab is stable; (ii) when ra + h < min{rw + h,rb + h,rab}, the semitrivial equilibrium Ea,ab is stable; (iii) when rb + h < min{rw + h,ra + h,rab}, the semitrivial equilibrium
Eb,ab is stable; (iv) when rw + h < min{ra + h,rb + h,rab}, the semitrivial equilibrium Ew,ab is stable.
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analysis and studied the existence and stability of the disease-free
and endemic equilibria. In terms of the basic reproduction number
R0 ¼ bK

dðcþminfrwþfh;rrgÞ, our results indicate that when R0 < 1, then the

disease-free equilibrium is globally asymptotically stable. If
R0 > 1, when the rate of patients infected with wild type bacteria
recover from the wild type infected compartment (fh) is less than
the difference of the rates of patients infected with resistant bacte-
ria (rr) and wild type (rw) recover from the infection in the absence
of treatment, the endemic equilibrium with both strains is globally
stable; when fh > rr � rw, the semitrivial equilibrium with the resis-
tant strain is globally stable. Which shows that preventing the
initiation or enhancing the discontinuation of unnecessary antibi-
otic therapy will have a great impact to preserve antibiotic effec-
tiveness [6].

For the model with multiple antibiotic therapies, stability of
various equilibria are analyzed. The model allows quantification
of the consequences of different therapy regimens and hospital
controls in terms of the complex dynamics of competing bacterial
strains [6]. The results show that, in the absence of treatment,
when R0 < 1, the disease-free equilibrium is stable, when R0 > 1,
the semitrivial equilibrium with the strain which has the lowest
recovery rate is stable. The results for the cases with 50–50 treat-
ment, cycling treatment and combining treatment demonstrate the
essential difficulties in controlling the advance of resistant bacte-
rial infections in hospitals. When more than one antibiotic is em-
ployed, as shown by Bonhoeffer et al. [6], Bergstrom et al. [4],
Reluga [20], D’Agata et al. [11], cycling use of different antibiotics
is not as good as that with a combination of antibiotics.

An ultimate goal is to validate these models by applying it to a
particular hospital to compare the predicted endemic states with
the prevalence data. We leave this for future study.
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