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1 Introduction

Throughout recorded history, nonindigenous vectors that arrive, establish,
and spread in new areas have fomented epidemics of human diseases such as
malaria, yellow fever, typhus, plague, and West Nile (Lounibos 2002). The
spatial spread of newly introduced diseases is a subject of continuing interest
to both theoreticians and empiricists. One strand of theoretical developments
(e.g., Kendall 1965; Aronson and Weinberger 1975; Murray 1989) built on the
pioneering work of Fisher (1937) and Kolmogorov et al. (1937) based on a
logistic reaction-diffusion model to investigate the spread of an advantageous
gene in a spatially extended population. With initial conditions correspond-
ing to a spatially localized introduction, such models predict the eventual
establishment of a well-defined invasion front which divides the invaded and
uninvaded regions and moves into the uninvaded region with constant veloc-
ity.

Provided that very small populations grow in the same way or faster than
larger ones, the velocity at which an epidemic front moves is set by the rate of
divergence from the (unstable) disease-free state, and can thus be determined
by linear methods (e.g., Murray 1989). These techniques have been refined
by Diekmann (1978, 1979), Thieme (1977a, 1977b, 1979), van den Bosch
et al. (1990), etc. who used a closely related renewal equation formalism
to facilitate the inclusion of latent periods and more general and realistic
transport models. Behind the epidemic front, most epidemic models settle to
a spatially homogeneous equilibrium state in which all populations co-exist
at finite abundances. In many cases, the passage from the epidemic front to
co-existence passes through conditions where the local abundances of some
or all of the players drops to truly microscopic levels. Local rekindling of the
disease usually takes place not only because of the immigration of infectives
but also by in situ infections produced by the non-biological remnants of
previous populations.
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Kermack and McKendrik (1927) proposed a simple deterministic model of
a directly transmitted viral or bacterial agent in a closed population consist-
ing of susceptibles, infectives, and recovereds. Their model leads to a nonlin-
ear integral equation which has been studied extensively. The deterministic
model of Barlett (1956) predicts a wave of infection moving out from the ini-
tial source of infection. Kendall (1957) generalized the Kermack-McKendrik
model to a space-dependent integro-differential equation. Aronson (1977) ar-
gued that the three-component Kendall model can be reduced to a scalar
one and extended the concept of asymptotic speed of propagation devel-
oped in Aronson and Weinberger (1975) to the scalar epidemic model. The
Kendall model assumes that the infected individuals become immediately in-
fectious and does not take into account the fact that most infectious diseases
have an incubation period. Taking the incubation period into consideration,
Diekmann (1978, 1979) and Thieme (1977a, 1977b, 1979) simultaneously pro-
posed a nonlinear (double) integral equation model and extended Aronson
and Weinberger’s concept of asymptotic speed of propagation to such models.
All these models are integral equations in which the spatial migration of the
population or host was not explicitly modelled.

Spatial heterogeneities can be included by adding an immigration term
where infective individuals enter the system at a constant rate. De Mottoni
et al. (1979) and Busenberg and Travis (1983) considered a population in
an open bounded region and assumed that the susceptible, infective, and
removed individuals can migrate inside the region according to the rules of
group migration. The existence of traveling waves in epidemic models de-
scribed by reaction-diffusion systems has been extensively studied by many
researchers, for example, Thieme (1980), Källen et al. (1985), Murray et al.
(1986) and Murray and Seward (1992) studied the spatial spread of rabies
in fox; Abramson et al. (2003) considered traveling waves of infection in the
Hantavirus epidemics; Cruickshank et al. (1999), Djebali (2001), Hosono and
Ilyas (1995) investigated the traveling waves in general SI epidemic mod-
els; Caraco et al. (2002) studied the spatial velocity of the epidemic of lyme
disease; Greenfell et al. (2001) discussed the traveling waves in measles epi-
demics; etc.

In this article we try to provide a short survey on the spatial-temporal
dynamics of nonlocal epidemiological models, include the classical Kermack-
McKendrick model, the Kendall model given by differential and integral equa-
tions, the Diekmann-Thieme model described by a double integral equation,
the diffusive integral equations proposed by De Mottoni et al. (1979) and
Busenberg and Travis (1983), a vector-disease model described by a diffusive
double integral equation (Ruan and Xiao 2004), etc.
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2 Kermack-McKendrick Model

Kermack and McKendrick (1927) proposed a simple deterministic model of
a directly transmitted viral or bacterial agent in a closed population based
on the following assumptions: (i) a single infection triggers an autonomous
process within the host; (ii) the disease results in either complete immunity
or death; (iii) contacts are according to the law of mass-action; (iv) all in-
dividuals are equally susceptible; (v) the population is closed in the sense
that at the time-scale of disease transmission the inflow of new susceptibles
into the population is negligible; (vi) the population size is large enough to
warrant a deterministic description.

Let S(t) denote the (spatial) density of individuals who are susceptible to
a disease, that is, who are not yet infected at time t. Let A(θ) represent the
expected infectivity of an individual who became infected θ time units ago.
If dS

dt (t) is the incidence at time t, then dS
dt (t−θ) is the number of individuals

arising per time unit at time t who have been infected for θ time units.
The original Kermack-McKendrick model is the following integral differential
equation

dS

dt
= S(t)

∫ ∞

0

A(θ)
dS

dt
(t− θ)dθ. (1)

Kermack and McKendrick (1927) derived an invasion criterion based on the
linearization of equation (1). Assume S(0) = S0, the density of the popu-
lation at the beginning of the epidemic with everyone susceptible. Suppose
the solution of the linearized equation at S0 has the form cert. Then the
characteristic equation is

1 = S0

∫ ∞

0

A(θ)e−rθdθ.

Define
R0 = S0

∫ ∞

0

A(θ)dθ.

Here, R0 is the number of secondary cases produced by one typical primary
case and describes the growth of the epidemic in the initial phase on a gen-
eration phase. Since A(θ) is positive, we have r > 0 if and only if R0 > 1.
Therefore, the invasion criterion is R0 > 1.

If the kernel A(θ) takes the special form βe−γθ, where β > 0, γ > 0 are
constants, and define

I(t) = − 1
β

∫ ∞

0

A(θ)
dS

dt
(t− θ)dθ.

Then I(t) represents the number of infected individuals at time t. Let R(t)
denote the number of individuals who have been infected and then removed
from the possibility of being infected again or of spreading infection. Thus,
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dR
dt = γI(t). This, together with (1) and differentiation of I(t), yields the
following ODE system

dS

dt
= −βS(t)I(t),

dI

dt
= βS(t)I(t)− γI(t), (2)

dR

dt
= γI(t).

Remark 1. Interestingly, it is system (2) (instead of the original equation (1))
that is widely referred as the Kermack-McKendrick model. Though Kermack
and McKendrick (1927) studied the special case (2), a more general version
was indeed previously considered by Ross and Hudson (1917) (see Diekmann
et al. 1995).

Observe from system (2) that dS
dt < 0 for all t ≥ 0 and dI

dt > 0 if and only
if S(t) > γ/β. Thus, I(t) increases so long as S(t) > γ/β, but S(t) decreases
for all t ≥ 0, it follows that I(t) eventually decreases and approaches zero.
Define the basic reproduction number as

R0 =
βS(0)

γ
.

If R0 > 1, then I(t) first increases to a maximum attained when S(t) = γ/β
and then decreases to zero (epidemic). If R0 < 1, then I(t) decreases to zero
(no epidemic).

The Kermack-McKendrick model and the threshold result derived from
it have played a pivotal role in subsequent developments in the study of the
transmission dynamics of infective diseases (Anderson and May 1991; Brauer
and Castillo-Chavez 2000; Diekmann and Heesterbeek 2000; Hethcote 2000;
Thieme 2003).

3 Kendall Model

Kendall (1957, 1965) generalized the Kermack-McKendrick model to a space-
dependent integro-differential equation. Denote R = (−∞,∞),R+ = [0,∞).
Let S(x, t), I(x, t) and R(x, t) denote the local densities of the susceptible,
infected, and removed individuals at time t in the location x ∈ R with S+I+R
independent of t. All infected individuals are assumed to be infectious and
the rate of infection is given by

β

∫ ∞

−∞
I(y, t)K(x− y)dy,
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where β > 0 is a constant and the kernel K(x− y) > 0 weights the contribu-
tions of the infected individuals at location y to the infection of susceptible
individuals at location x. It is assumed that

∫ ∞

−∞
K(y)dy = 1.

Removed individuals can be regarded as being either immune or dead and
the rate of removal is assumed to be γI(x, t), where γ > 0 is a constant. With
this notation, Kendall’s model is

∂S

∂t
= −βS(x, t)

∫ ∞

−∞
I(y, t)K(x− y)dy,

∂I

∂t
= βS(x, t)

∫ ∞

−∞
I(y, t)K(x− y)dy − γI(x, t), (3)

∂R

∂t
= γI(x, t).

Given a spatially inhomogeneous epidemic model it is very natural to look
for traveling wave solutions. The basic idea is that a spatially inhomogeneous
epidemic model can give rise to a moving zone of transition from an infective
state to a disease-free state. A traveling wave solution of system (3) takes
the form (S(x − ct, t), I(x − ct, t), R(x − ct, t)). Kendall (1965) proved the
existence of a positive number c∗ such that the model admits traveling wave
solutions of all speeds c ≥ c∗ and no traveling wave solutions with speeds
less than c∗. Mollison (1972) studied Kendall’s original model in the special
case in which there are no removals. With this assumption the system of
integro-differential equations reduces to a single equation. For a particular
choice of the averaging kernel Mollison (1972) proved the analog of Kendall’s
result. Atkinson and Reuter (1976) analyzed the full Kendall model for a
general class of averaging kernels and obtained a criterion for the existence
of a critical speed c∗ > 0 and the existence of traveling waves of all speeds
c > c∗. See also Barbour (1977), Brown and Carr (1977), Medlock and Kot
(2003), etc.

Minimal wave speeds analogous to those found by Kendall and others
also occur in the classical work of Fisher (1937) and Kolmogoroff et al.
(1937) concerning the advance of advantageous genes. Aronson and Wein-
berger (1975, 1978) showed that the minimal wave speed is the asymptotic
speed of propagation of disturbances from the steady state for Fisher’s equa-
tion. Roughly speaking, c∗ > 0 is called the asymptotic speed if for any c1, c2

with 0 < c1 < c∗ < c2, the solution tends to zero uniformly in the region
|x| ≥ c2t, whereas it is bounded away from zero uniformly in the region
|x| ≤ c1t for t sufficiently large. Aronson (1977) proved that an analogous
result holds for Kendall’s epidemic model.

A steady state of system (3) is given by S = σ, I = R = 0, where σ > 0
is a constant. To study the asymptotic behavior of solutions to system (3),
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consider the initial values

S(x, 0) = σ, I(x, 0) = I0(x), R(x, 0) = 0, x ∈ R, (4)

where I0(x) ≥ 0 is continuous such that I(x) 6≡ 0 and I(x) ≡ 0 in [x0,∞) for
some x0 ∈ R.

By rescaling, the initial value problem can be re-written as

∂S
∂t

= −S(x, t)
∫ ∞

−∞
I(y, t)K(x− y)dy,

∂I
∂t

= S(x, t)
∫ ∞

−∞
I(y, t)K(x− y)dy − λI(x, t),

∂R
∂t

= λI(x, t),

S(x, 0) = 1, I(x, 0) = I0(x), R(x, 0) = 0, x ∈ R,

(5)

where λ = γ/βσ. It is not difficult to see that if (S, I,R) is a solution of
system (5), then R satisfies

∂R
∂t

= −λR(x, t) + λ

[
1− exp

(
− 1

λ

∫ ∞

−∞
R(y, t)K(x− y)dy

)]
+ λI0(x),

R(x, 0) = 0, x ∈ R.
(6)

Conversely, if R is a solution of the problem (6), then (S, I, R) is a solution
of system (5) with

S = exp
(
− 1

λ

∫ ∞

−∞
R(y, t)K(x− y)dy

)
,

I = −R +
[
1− exp

(
− 1

λ

∫ ∞

−∞
R(y, t)K(x− y)dy

)]
+ I0(x).

Assume that

(K1) K is a nonnegative even function defined in R with
∫∞
−∞K(y)dy = 1.

(K2) There exists a ν ∈ (0,∞] such that
∫∞
−∞ eµyK(y)dy < ∞ for all µ ∈

[0, ν).
(K3) Define Aλ(µ) = 1

µ [
∫∞
−∞ eµyK(y)dy − λ]. For each λ < 1 there exists a

µ∗ = µ∗(λ) ∈ (0, ν) such that 0 < c∗ ≡ Aλ(µ∗) = inf{Aλ(µ) : 0 < µ < ν},
A′λ(µ) < 0 in (0, µ∗) and A′λ(µ) > 0 in (µ∗, ν).

(K4) For each µ̄ ∈ (0, ν) there exists an r = r(µ̄) ≥ 0 such that eµxK(x) =
min{eµyK(y) : y ∈ [0, x]} for all µ ∈ [0, µ̄] and x ≥ r(µ̄).

Theorem 3.1 (Aronson 1977) Suppose the kernel K satisfies (K1)-(K4).
Let R(x, t) be a solution of the problem (6). If λ ≥ 1, then for every x ∈ R
and c ≥ 0,

lim
t→∞,|x|≥ct

R(x, t) = 0.
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Theorem 3.1 corresponds to the Kermack-McKendrick threshold result.
Roughly speaking, it says that an initial infection (given by I0(x)) does not
propagate if λ = γ/βσ ≥ 1, that is, if the initial density of susceptibles (σ)
is too low or the removal rate (γ) is too high.

The next result shows that the situation is quite different for λ ∈ (0, 1).

Theorem 3.2 (Aronson 1977) Suppose the kernel K satisfies (K1)-(K4)
and λ ∈ (0, 1). Let R(x, t) be a solution of the problem (6).

(i) If c > c∗, then for every x ∈ R,

lim
t→∞,|x|≥ct

R(x, t) = 0.

(ii) If 0 < c < c∗, then for every x ∈ R,

lim
t→∞,|x|≥ct

R(x, t) = α(λ),

where α(λ) is the unique solution of 1− α = e−α/λ in (0, 1).

Theorem 3.2 says that if you travel toward +∞ from any point in R, then
you will outrun the infection if your speed exceeds the minimal speed c∗, but
the infection will overtake you if your speed is less than c∗.

4 Diekmann-Thieme Model

Suppose that not all individuals are equally susceptible, but certain traits
have a marked influence. Let S(x, t) denote the density of susceptibles at
time t and location x and i(x, t, θ)dτ be the density of infectives who were
infected some time between t−θ and t−θ−dθ. Then I(x, t) =

∫∞
0

i(x, t, θ)dθ
is the density of infectives at time t and location x. Let A(θ, x, y) represent
the expected infectivity of an individual who became infected θ time units
ago while having a trait value y towards a susceptible with trait value x.
Similar to the Kermack-McKendrick model (1), one has (Diekmannn 1978)

∂S

∂t
= S(x, t)

∫

Ω

∫ ∞

0

A(θ, x, y)
∂S

∂t
(y, t− θ)dθdy, (7)

where Ω denotes the set of trait values. Assume

i(x, 0, θ) = i0(x, θ), S(x, 0) = S0(x).

Then equation (7) can be written as

∂S

∂t
= S(x, t)

[ ∫ t

0

∫

Ω

A(θ, x, y)
∂S

∂t
(y, t− θ)dydθ − h(x, t)

]
, (8)



8 Shigui Ruan

where
h(x, t) =

∫ ∞

0

∫

Ω

i0(x, θ)A(t + θ, x, y)dydθ.

Now, assuming S0(x) > 0 for every x ∈ Ω and integrating equation (8) with
respect to t, one obtains the Diekmann-Thieme model (Diekmann 1978, 1979;
Thieme 1977a, 1977b, 1979)

u(x, t) =
∫ t

0

∫

Ω

g(u(y, t− θ))k(θ, x, y)dydθ + f(x, t), (9)

where

u(x, t) = − ln S(x,t)
S0(x) , g(u) = 1− e−u,

k(θ, x, y) = S0(y)A(θ, x, y), f(x, t) =
∫ t

0

h(x, s)ds.

Let BC(Ω) be the Banach space of bounded continuous functions on Ω
equipped with the supremum norm. Denote CT = C([0, T ]; BC(Ω)) the Ba-
nach space of continuous functions on [0, T ] with values in BC(Ω) equipped
with the norm

‖f‖CT = sup
0≤t≤T

‖f [t]‖BC(Ω),

where f(x, t) is written as f [t] when it is regarded as an element of CT .
The first result is about the local and global existence and uniqueness of the
solution of equation (9).

Theorem 4.1 (Diekmann 1978) Suppose g is locally Lipschitz continuous
and f : R+ → BC(Ω) is continuous, then there exists a T > 0 such that equa-
tion (9) has a unique solution u in CT . If g is uniformly Lipschitz continuous,
then equation (9) has a unique solution u : R+ → BC(Ω).

Remark 2. Thieme (1977a) proved a very similar result for a more general
model and considered how far an epidemic can spread. See also Thieme
(1977b).

The next result is about the positivity, monotonicity and stabilization of
the solution of equation (9).

Theorem 4.2 (Diekmann 1978)

(1) Suppose g(u) > 0 for u > 0 and f [t] ≥ 0 for all t ≥ 0, Then u[t] ≥ 0 on
the domain of definition of u.

(2) Suppose, in addition, g is monotone nondecreasing and f [t + h] ≥ f [t]
for all h ≥ 0, then u[t + h] ≥ u[t] for all h ≥ 0 and t ≥ 0 such that t + h
is in the domain of definition of u.
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(3) Suppose, in addition, that g is bounded and uniformly Lipschitz contin-
uous on R+ and that the subset {f [t]|t ≥ 0} of BC(Ω) is uniformly
bounded and equicontinuous and that k satisfies
(i) For each x ∈ Ω,

∫ t

0
k(θ, x, ·)dθ → ∫∞

0
k(θ, x, ·)dθ in L1(Ω) as t →∞,

and for some C > 0, supx∈Ω

∫
Ω

∫∞
0

k(θ, x, y)dθdy < C.
(ii) For each ε > 0 there exists δ = δ(ε) > 0 such that if x1, x2 ∈ Ω and

|x1 − x2| < δ, then
∫

Ω

∫∞
0
|k(θ, x1, y)− k(θ, x2, y)|dθdy < ε.

Then the solution u of equation (9) is defined on R+ and there exists
u[∞] ∈ BC(Ω) such that, as t → ∞, u[t] → u[∞] in BC(Ω) if Ω is
compact, and uniformly on compact subset of Ω if Ω is not compact.
Moreover, u[∞] satisfies the limit equation

u[∞] =
∫

Ω

g(u[∞](y))
∫ ∞

0

k(θ, x, y)dθdy + f [∞](x).

Now consider the Diekmann-Thieme model (9) with Ω = Rn(n = 1, 2, 3).
Assume k(θ, x, y) = k(θ, x − y) : R+ × Rn → R+ is a Borel measurable

function satisfying

(k1) k∗ =
∫∞
0

∫
Rn k(θ, y)dydθ ∈ (1,∞).

(k2) There exists some λ0 > 0 such that
∫∞
0

∫
Rn eλ0y1k(θ, y)dydθ < ∞, where

y1 is the first coordinate of y ∈ Rn.
(k3) There are constants σ2 > σ1 > 0, ρ > 0 such that k(θ, x) > 0 for all

θ ∈ (σ1, σ2) and |x| ∈ (0, ρ).
(k4) k is isotropic (i.e., k(θ, x) = k(θ, y) if |x| = |y|).

Define

c∗ = inf
{

c ≥ 0 :
∫ ∞

0

∫

Rn

e−λ(cθ+y1)k(θ, y)dydθ < 1 for some λ > 0
}

.

(10)
Assume that g : R+ → R+ is a Lipschitz continuous function satisfying

(g1) g(0) = 0 and g(u) > 0 for all u > 0.
(g2) g is differentiable at u = 0, g′(0) = 1 and g(u) ≤ u for all u > 0.
(g3) limu→∞ g(u)/u = 0.
(g4) There exists a positive solution u∗ of u = k∗g(u) such that k∗g(u) > u

for all u ∈ (0, u∗) and k∗g(u) < u for all u > u∗.

Thieme (1979) proved that the c∗ defined by (10) is the asymptotic wave
speed (see also Diekmann 1979, Thieme and Zhao 2003).

Theorem 4.3 (Thieme 1979) Assume k satisfies (k1)-(k4) and g satisfies
(g1)-(g4).

(i) For every admissible f(x, t), the unique solution u(x, t) of (9) satisfies

lim
t→∞,|x|≥ct

u(x, t) = 0

for each c > c∗.
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(ii) If g is monotone increasing and f(x, t) : Rn × R+ → R+ is a Borel
measurable function such that f(x, t) ≥ η > 0 for all t ∈ (t1, t2) and
|x| ≤ η with t2 > t1 ≥ 0, η > 0, then

lim
t→∞,|x|≥ct

u(x, t) ≥ u∗

for each c ∈ (0, c∗).

To discuss the existence of traveling wave solutions in equation (9), we
assume Ω = R and f(x, t) = 0. Suppose g satisfies the modified assumptions:

(g5) g(0) = 0 and there exists a positive solution u∗ of u = k∗g(u) such that
k∗g(u) > u for all u ∈ (0, u∗).

(g6) g is differentiable at u = 0, g′(0) = 1 and g(u) ≤ u for all u ∈ [0, u∗].

Theorem 4.4 (Diekmann 1978, 1979) Suppose k(θ, x) satisfies (k1)-(k4)
with n = 1 and g satisfies (g5)-(g6). Moreover, assume that g is monotone
increasing on [0, u∗] and g(u) ≥ u − au2 for all u ∈ [0, u∗] and some a > 0.
Then for each c > c∗, there exists a monotone traveling wave solution of
equation (9) with speed c which connects 0 and u∗.

Remark 3. Thieme and Zhao (2003) considered a more general nonlinear in-
tegral equation and studied the asymptotic speeds of spread and traveling
waves. Schumacher (1980a, 1980b) argued that the following model

∂u

∂t
=

∫ ∞

0

∫ ∞

−∞
g(u(x− y, t− s))dη(y, s) (11)

is more reasonable, where η is a Lebesgue measure on R×R+ such that η(R×
R+) = 1, and investigated the asymptotic speed of propagation, existence of
traveling fronts and dependence of the minimal speed on delays.

5 Migration and Spatial Spread

Spatial heterogeneities can be included by adding an immigration term where
infective individuals enter the system at a constant rate. This clearly allows
the persistence of the disease because if it dies out in one region then the
arrival of an infective from elsewhere can trigger another epidemic. Indeed,
the arrival of new infectives has been demonstrated as being important in
the outbreaks of measles observed in Iceland, a small island community (Cliff
et al., 1993). A constant immigration term has a mildly stabilizing effect
on the dynamics and tends to increase the minimum number of infective
individuals observed in the models (Bolker and Grenfell 1995). De Mottoni
et al. (1979) and Busenberg and Travis (1983) considered a population in
an open bounded region Ω ⊂ Rn(n ≤ 3) with smooth boundary ∂Ω and
assumed that the susceptible, infective, and removed individuals can migrate
inside the region Ω according to the rules of group migration.
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5.1 An SI Model

Assume the population consists of only two classes, the susceptibles S(x, t)
and the infectives I(x, t), at time t and location x ∈ Ω. Assume that both
the susceptibles and infectives can migrate according to a Fickian diffusion
law with each subpopulation undergoing a flux which is proportional to the
gradient of that particular subpopulation: ∆S and d∆I, respectively, where
the diffusion rate of the susceptibles is normalized to be one and d > 0 is the
diffusion rate for the infectives. The mechanism of infection is governed by a
nonlocal law, as in the Kendall model. It is also assumed that the susceptibles
grow at a rate µ > 0 the susceptibles are removed (e.g. by vaccination)
depending on an effectiveness coefficient σ. Based on these assumptions, De
Mottoni et al. (1979) considered the following model

∂S
∂t

= ∆S + µ− σS(x, t)− S(x, t)
∫

Ω

I(y, t)K(x, y)dy,

∂I
∂t

= d∆I + S(x, t)
∫

Ω

I(y, t)K(x, y)dy − γI(x, t)
(12)

under the boundary value conditions

∂S

∂n
(x, t) =

∂I

∂n
(x, t) = 0, (x, t) ∈ Ω × (0,∞) (13)

and initial value conditions

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω. (14)

Let C(Ω̄) denote the Banach space of continuous functions on Ω̄ endowed
with supremum norm ‖u‖ = maxx∈Ω̄ |u(x)|. Let X = C(Ω̄)⊕C(Ω̄) with norm
|U |X = ‖u‖+ ‖v‖ for U = (u, v) ∈ X.

De Mottoni et al. (1979) proved the following local stability and global
attractivity of the disease free equilibrium (µ/σ, 0), where stability is meant
relative to the X-norm. Thus, the threshold type result has been generalized
to the diffusive nonlocal epidemic model (12).

Theorem 5.1 (De Mottoni et al. 1979) Assume that µ < γ/σ. Then

(i) The steady state solution (µ/σ, 0) is asymptotically stable.
(ii) For any (S0, I0) ∈ X with S0 ≥ 0, I0 ≥ 0, the corresponding solution of

(12) converges to (µ/σ, 0) in X as t →∞.

When µ = σ = 0,K(·) equals β times a delta function, system (12)
reduces to a reaction-diffusion model of the form

∂S
∂t

= ∂2S
∂x2 − βSI,

∂I
∂t

= d∂2I
∂x2 + βSI − γI.

(15)
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Capasso (1979) and Webb (1981) studied the stability of the disease free
steady state of the system (15).

To discuss the existence of traveling wave solutions, consider x ∈ R. Look
for traveling wave solutions of the form

S(x, t) = g(ξ), I(x, t) = f(ξ), ξ = x− ct

satisfying

g(−∞) = ε(ε < S0), g(+∞) = S0, f(−∞) = f(+∞) = 0. (16)

where c is the wave speed to be determined, ε is some positive constant. The
following result was obtained by Hosono and Ilyas (1995).

Theorem 5.2 (Hosono and Ilyas 1995) Assume that γ/βS0 < 1. Then for
each c ≥ c∗ = 2

√
βS0d(1− γ/βS0) there exists a positive constant ε∗ such

that system (15) has a traveling wave solution (S(x, t), I(x, t)) = (g(ξ), f(ξ))
for ε = ε∗.

Notice that when γ/βS0 > 1, the system has no traveling wave solutions.
The threshold condition γ/βS0 < 1 for the existence of traveling wave solu-
tions has some implications. We can see that for any epidemic wave to occur,
there is a minimum critical density of the susceptible population Sc = γ/β.
Also, for a given population size S0 and mortality rate γ, there is a critical
transmission rate βc = γ/S0. When β > βc, the infection will spread. With
a given transmission rate and susceptible population we can also obtain a
critical mortality rate γc = βS0, there is an epidemic wave moving through
the population if γ < γc.

5.2 An SIR Model

Assume that a portion of those who are infected acquire immunity to further
infection and join the removed class, while the remainder of those who are
infected return to the susceptible class and are subject to possible further
infections. Busenberg and Travis (1983) derived the following Kendall type
SIS model

∂S
∂t

= d S(x,t)
N(x,t)∆S − S(x, t)

∫

Ω

I(y, t)K(x, y)dy + γ1I(x, t),

∂I
∂t

= d I(x,t)
N(x,t)∆I + S(x, t)

∫

Ω

I(y, t)K(x, y)dy − γI(x, t),

∂R
∂t

= d R(x,t)
N(x,t)∆I + γ2I(x, t)

(17)

under the boundary value conditions

∂S

∂n
(x, t) =

∂I

∂n
(x, t) =

∂R

∂n
(x, t) = 0, (x, t) ∈ ∂Ω × (0,∞) (18)
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and initial value conditions

S(x, 0) = S0(x), I(x, 0) = I0(x), R(x, 0) = R0(x), x ∈ Ω. (19)

N(x, t) = S(x, t) + I(x, t) + R(x, t) satisfies the linear initial-boundary value
problem

∂N
∂t

= d∆N(x, t),

∂N
∂n (x, t) = 0, (x, t) ∈ ∂Ω × (0,∞),

N(x, 0) = S0(x) + I0(x) + R0(x), x ∈ Ω.

(20)

Theorem 5.3 (Busenberg and Travis 1983) Let K(x, y) > 0 be twice con-
tinuously differentiable on Ω̄ × Ω̄, and let S0 > 0, I0 > 0, R0 > 0 be twice
continuously differentiable with the sum N0 satisfying the Neumann condi-
tion in (20). Then the problem (17) - (19) has a unique positive solution
(S(x, t), I(x, t), R(x, t)) for (x, t) ∈ Ω × R+. Moreover,

lim
t→∞

(S(x, t), I(x, t), R(x, t)) = (Ŝ(x), Î(x), R̂(x)),

where

Ŝ(x) =
a0(N0(x)−R0(x))

N0(x)
− a0γ2

∫ ∞

0

I(x, s)
N(x, s)

ds,

Î(x) = 0,

R̂(x) =
a0R0(x)
N0(x)

+ a0γ2

∫ ∞

0

I(x, s)
N(x, s)

ds

and a0 =
∫

Ω
N0(x)dx/

∫
Ω

dx.

The result indicates that a portion of those who are infected eventually ac-
quire immunity, and the only possible limit is one where the disease dies out.
The steady state distribution of the susceptible and immune subpopulations
is generally spatially non-uniform and depends on the initial distributions of
the different subclasses. It also depends on the time history of the evolution
of the proportion I(x, t)/N(x, t) of infected individuals through the integral
a0γ2

∫∞
0

I(x, s)/N(x, s)ds, which represents that portion of the infected sub-
population at position x ∈ Ω which becomes immune during the span of the
epidemic.

6 A Vector-Disease Model

We consider a host-vector model for a disease without immunity in which
the current density of infectious vectors is related to the number of infectious
hosts at earlier times. Spatial spread in a region is modeled by a diffusion
term. Consider a host in a bounded region Ω ⊂ Rn(n ≤ 3) where a disease
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(malaria) is carried by a vector (mosquito). The host is divided into two
classes, susceptible and infectious, whereas the vector population is divided
into three classes, infectious, exposed, and susceptible. Suppose that the in-
fection in the host confers negligible immunity and does not result death or
isolation. All new-borns are susceptible. The host population is assumed to
be stable, that is, the birth rate is constant and equal to the death rate.
Moreover, the total host population is homogeneously distributed in Ω and
both susceptible and infectious populations are allowed to diffuse inside Ω,
however, there is no migration through ∂Ω, the boundary of Ω.

For the transmission of the disease, it is assumed that a susceptible host
can receive the infection only by contacting with infected vectors, and a
susceptible vector can receive the infection only from the infectious host.
Also, a susceptible vector becomes exposed when it receives the infection
from an infected host. It remains exposed for some time and then becomes
infectious. The total vector population is also constant and homogeneous in
Ω. All three vector classes diffuse inside Ω and cannot cross the boundary of
Ω.

Denote by u(t, x) and v(t, x) the normalized spatial density of infectious
and susceptible host at time t in x, respectively, where the normalization is
done with respect to the spatial density of the total population. Hence, we
have

u(t, x) + v(t, x) = 1, (t, x) ∈ R+ ×Ω.

Similarly, define I(t, x) and S(t, x) as the normalized spatial density of infec-
tious and susceptible vector at time t in x, respectively.

If α denotes the host-vector contact rate, then the density of new infec-
tions in host is given by

αv(t, x)I(t, x) = α[1− u(t, x)]I(t, x).

The density of infections vanishes at a rate au(t, x), where a is the cure/recovery
rate of the infected host. The difference of host densities of arriving and leav-
ing infections per unit time is given by d∆u(t, x), where d is the diffusion
constant, ∆ is the Laplacian operator. We then obtain the following equation

∂u

∂t
(t, x) = d∆u(t, x)− au(t, x) + α[1− u(t, x)]I(t, x). (21)

If the vector population is large enough, we can assume that the density
of vectors which become exposed at time t in x ∈ Ω is proportional to the
density of the infectious hosts at time t in x. That is, S(t, x) = hu(t, x), where
h is a positive constant. Let ξ(t, s, x, y) denote the proportion of vectors which
arrive in x at time t, starting from y at time t− s, then

∫

Ω

ξ(t, s, x, y)S(t− s, y)dy
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is the density of vectors which became exposed at time t− s and are in x at
time t. Let η(s) be the proportion of vectors which are still infectious s units
of time after they became exposed, then

I(t, x) =
∫ ∞

0

∫

Ω

ξ(t, s, x, y)S(t− s, y)η(s)dyds

=
∫ ∞

0

∫

Ω

ξ(t, s, x, y)hη(s)u(t− s, y)dyds.

Substituting I(t, x) into equation (21), changing the limits, and denoting

b = αh, F (t, s, x, y) = ξ(t, s, x, y)η(s),

we obtain the following diffusive integro-differential equation modeling the
vector disease

∂u

∂t
(t, x) = d∆u(t, x)− au(t, x) + b[1− u(t, x)]

∫ t

−∞

∫

Ω

F (t, s, x, y)u(s, y)dyds

(22)
for (t, x) ∈ IR+ ×Ω. The initial value condition is given by

u(θ, x) = φ(θ, x), (θ, x) ∈ (−∞, 0]×Ω, (23)

where φ is a continuous function for (θ, x) ∈ (−∞, 0]×Ω, and the boundary
value condition is given by

∂u

∂n
(t, x) = 0, (t, x) ∈ R+ × ∂Ω, (24)

where ∂/∂n represents the outward normal derivative on ∂Ω.
The convolution kernel F (t, s, x, y) is a positive continuous function in its

variables t ∈ R, s ∈ R+, x, y ∈ Ω. We normalize the kernel so that
∫ ∞

0

∫

Ω

F (t, s, x, y)dyds = 1.

Various types of equations can be derived from equation (22) by taking dif-
ferent kernels.

(i) If F (t, s, x, y) = δ(x − y)G(t, s), then equation (22) becomes the fol-
lowing integro-differential equation with a local delay

∂u

∂t
= d∆u(t, x)− au(t, x) + b[1− u(t, x)]

∫ t

−∞
G(t− s)u(s, x)ds (25)

for (t, x) ∈ R+ ×Ω.
(ii) If F (t, s, x, y) = δ(x − y)δ(t − s), then equation (22) becomes the

following reaction diffusion equation without delay
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∂u

∂t
= d∆u(t, x)− au(t, x) + b[1− u(t, x)]u(t, x), (t, x) ∈ R+ ×Ω. (26)

(iii) If F (t, s, x, y) = δ(x− y)δ(t− s− τ), where τ > 0 is a constant, and
u does not depend on the spatial variable, then equation (22) becomes the
following ordinary differential equation with a constant delay

du

dt
= −au(t) + b[1− u(t)]u(t− τ). (27)

Cooke (1977) studied the stability of equation (27) and showed that when
0 < b ≤ a, then the trivial equilibrium u0 = 0 is globally stable; when
0 ≤ a < b, the trivial equilibrium is unstable and the positive equilibrium
u1 = (b− a)/b is globally stable. Busenberg and Cooke (1978) assumed that
the coefficients are periodic and investigated the existence and stability of pe-
riodic solutions of the equation (27). Thieme (1988) considered equation (27)
when the coefficients are time-dependent and showed that, under suitable
assumptions, the following dichotomy holds: either all non-negative solutions
converge to zero or all pairs of non-negative solutions u(t) and v(t) with
non-zero initial data satisfy u(t)/v(t) → 0 as t → ∞. The case with multi-
ple groups and distributed risk of infection was studied by Thieme (1985).
Marcati and Pozio (1983) proved the global stability of the constant solution
to (22) when the delay is finite. Volz (1982) assumed that all coefficients
are periodic and discussed the existence and stability of periodic solutions of
equation (22).

We first consider the stability of steady states of equation (22) with gen-
eral kernel. Then we discuss the existence of traveling wave solutions in the
equation when the kernel takes some specific forms.

6.1 Stability of the Steady States

Denote E = C(Ω̄,R). Then E is a Banach space with respect to the norm

|u|E = max
x∈Ω̄

|u(x)|, u ∈ E.

Denote C = BC((−∞, 0], E). For φ ∈ C, define

‖φ‖ = sup
θ∈(−∞,0]

|φ(θ)|E .

For any β ∈ (0,∞), if u : (−∞, β) → E is a continuous function, ut is defined
by ut(θ) = u(t + θ), θ ∈ (−∞, 0].

Define

D(A) = {u ∈ E : ∆u ∈ E,
∂u

∂n
= 0 on ∂Ω},

Au = d∆u for all u ∈ D(A),

f(φ)(x) = −aφ(0, x) + b[1− φ(0, x)]
∫ 0

−∞

∫

Ω

F (0, s, x, y)φ(s, y)dyds,
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where φ ∈ C, x ∈ Ω̄. Then we can re-write equation (22) into the following
abstract form:

du
dt

= Au + f(ut), t ≥ 0,

u0 = φ ∈ C,
(28)

where

(a) A : D(A) → E is the infinitesimal generator of a strongly continuous
semigroup etA for t ≥ 0 on E endowed with the maximum norm;

(b) f : C → E is Lipschitz continuous on bounded sets of C.
Associated to equation (28), we also consider the following integral equation

u(t) = etAφ(0) +
∫ t

0
e(t−s)Af(us)ds, t ≥ 0,

u0 = φ.
(29)

A continuous solution of the integral equation (29) is called a mild solution
to the abstract equation (28). The existence and uniqueness of the maximal
mild solution to equation (28) follow from a standard argument (see Ruan
and Wu (1994) and Wu (1996)). When the initial value is taken inside an
invariant bounded set in C, the boundedness of the maximal mild solution
implies the global existence.

Define
M = {u ∈ E : 0 ≤ u(x) ≤ 1, x ∈ Ω̄}.

We can prove that M is invariant by using the results on invariance and
attractivity of sets for general partial functional differential equations estab-
lished by Pozio (1980, 1983) and follow the arguments in Marcati and Pozio
(1980).

Theorem 6.1 (Ruan and Xiao 2004) The set M is invariant; that is, if
φ ∈ BC((−∞, 0];M) then u(φ) exists globally and u(φ)(t) ∈ M for all t ≥ 0.

The stability of the steady state solutions can be established following the
attractivity results of Pozio (1980, 1983).

Theorem 6.2 (Ruan and Xiao 2004) The following statements hold

(i) If 0 < b ≤ a, then u0 = 0 is the unique steady state solution of (22) in
M and it is globally asymptotically stable in BC((−∞, 0];M).

(ii) If 0 ≤ a < b, then there are two steady state solutions in M : u0 = 0
and u1 = (b−a)/b, where u0 is unstable and u1 is globally asymptotically
stable in BC((−∞, 0];M).

Recall that b represents the contact rate and a represents the recovery
rate. The stability results indicate that there is a threshold at b = a. If
b ≤ a, then the proportion u of infectious individuals tends to zero as t
becomes large and the disease dies out. If b > a, the proportion of infectious
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individuals tends to an endemic level u1 = (b−a)/b as t becomes large. There
is no non-constant periodic solutions in the region 0 ≤ u ≤ 1.

The above results also apply to the special cases (25), (26), and (27) and
thus include the following results on global stability of the steady states of
the discrete delay model (27) obtained by Cooke (1977) (using the Liapunov
functional method).

Corollary 6.3 (Cooke 1977) For the discrete delay model (27), we have the
following statements

(i) If 0 < b ≤ a, then the steady state solution u0 = 0 is asymptotically stable
and the set {φ ∈ C([−τ, 0],R) : 0 ≤ φ(θ) ≤ 1 for − τ ≤ θ ≤ 0} is a
region of attraction.

(ii) If 0 ≤ a < b, then the steady state solution u1 = (b−a)/b is asymptotically
stable and the set {φ ∈ C([−τ, 0],R) : 0 < φ(θ) ≤ 1 for − τ ≤ θ ≤ 0} is
a region of attraction.

6.2 Existence of Traveling Waves

We know that when b > a equation (22) has two steady state solutions,
u0 = 0 and u1 = (b − a)/b. In this section we consider x ∈ (−∞,∞) and
establish the existence of traveling wave solutions of the form u(x, t) = U(z)
such that

lim
z→−∞

U(z) =
b− a

b
, lim

z→∞
U(z) = 0,

where z = x− ct is the wave variable, c ≥ 0 is the wave speed. Consider two
cases: (a) without delay, i.e, equation (26); (b) with local delay, i.e., equation
(25). We scale the model so that d = 1.

(a) Without Delay. Substitute u(x, t) = U(z) into the reaction diffusion
equation (26) without delay, i.e.,

∂u

∂t
= ∆u(t, x)− au(t, x) + b[1− u(t, x)]u(t, x),

we obtain the traveling wave equation

U ′′ + cU ′ + (b− a− bU)U = 0,

which is equivalent to the following system of first order equations

U ′ = V,
V ′ = −cV − (b− a− bU)U.

(30)

System (30) has two equilibria: E0 = (0, 0) and E1 = ((b − a)/b, 0). The
following result shows that there is a traveling front solution of equation (30)
connecting E0 and E1.
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Theorem 6.4 If c ≥ 2
√

b− a, then in the (U, V ) phase plane for system
(30) there is a heteroclinic orbit connecting the critical points E0 and E1.
The heteroclinic connection is confined to V < 0 and the traveling wave U(z)
is strictly monotonically decreasing.

(b) With Local Delay. Consider the diffusive integro-differential equation
(25) with a local delay kernel

G(t) =
t

τ2
e−t/τ ,

which is called the strong kernel. The parameter τ > 0 measures the delay,
which implies that a particular time in the past, namely τ time units ago, is
more important than any other since the kernel achieves its unique maximum
when t = τ . Equation (25) becomes

∂u

∂t
= ∆u(t, x)− au(t, x) + b[1− u(t, x)]

∫ t

−∞

t− s

τ2
e−

t−s
τ u(s, x)ds (31)

for (t, x) ∈ R+ ×Ω. Define U(z) = u(x, t) and

W (z) =
∫ ∞

0

t

τ2
e−t/τU(z + ct) dt, Y (z) =

∫ ∞

0

1
τ

e−t/τU(z + ct) dt.

Differentiating with respect to z and denoting U ′ = V , we obtain the following
traveling wave equations

U ′ = V,
V ′ = aU − cV − bW + bUW,
cτW ′ = W − Y,
cτY ′ = −U + Y.

(32)

For τ > 0, system (32) has two equilibria

(0, 0, 0, 0) and (
b− a

b
, 0,

b− a

b
,
b− a

b
).

A traveling front solution of the original equation exists if there exists a
heteroclinic orbit connecting these two critical points.

Note that when τ is very small, system (32) is a singularly perturbed
system. Let z = τη. Then system (32) becomes

U̇ = τV,

V̇ = τ(aU − cV − bW + bUW ),
cẆ = W − Y,

cẎ = −U + Y,

(33)

where dots denote differentiation with respect to η. While these two systems
are equivalent for τ > 0, the different time scales give rise to two different
limiting systems. Letting τ → 0 in (32), we obtain
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U̇ = τV,

V̇ = τ(aU − cV − bW + bUW ),
0 = W − Y,
0 = −U + Y.

(34)

Thus, the flow of system (34) is confined to the set

M0 = {(U, V,W, Y ) ∈ R4 : W = U, Y = U}, (35)

and its dynamics are determined by the first two equations only. On the other
hand, setting τ → 0 in (33) results in the system

U ′ = 0,
V ′ = 0,
cW ′ = W − Y,
cY ′ = −U + Y.

(36)

Any points in M0 are the equilibria of system (36). Generally, (32) is
referred to as the slow system since the time scale z is slow, and (33) is
referred to as the fast system since the time scale η is fast. Hence, U and V
are called slow variables and W and Y are called the fast variables. M0 is
the slow manifold.

If M0 is normally hyperbolic, then we can use the geometric singular per-
turbation theory of Fenichel (1979) to obtain a two-dimensional invariant
manifold Mτ for the flow when 0 < τ ¿ 1, which implies the persistence
of the slow manifold as well as the stable and unstable foliations. As a con-
sequence, the dynamics in the vicinity of the slow manifold are completely
determined by the one on the slow manifold. Therefore, we only need to
study the flow of the slow system (32) restricted to Mτ and show that the
two-dimensional reduced system has a heteroclinic orbit.

Recall that M0 is a normally hyperbolic manifold if the linearization
of the fast system (33), restricted to M0, has exactly dimM0 eigenvalues
with zero real part. The eigenvalues of the linearization of the fast system
restricted to M0 are 0, 0, 1/c, 1/c. Thus, M0 is normally hyperbolic.

The geometric singular perturbation theorem now implies that there exists
a two-dimensional manifold Mτ for τ > 0. To determine Mτ explicitly, we
have

Mτ = {(U, V, W, Y ) ∈ R4 : W = U + g(U, V ; τ), Y = U +h(U, V ; τ)}, (37)

where the functions g and h are to be determined and satisfy

g(U, V ; 0) = h(U, V ; 0) = 0. (38)

By substituting into the slow system (32), we know that g and h satisfy
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cτ [(1 + ∂h
∂U + ∂g

∂U )V + ( ∂h
∂V + ∂g

∂V )(aU − cV − b(U + h + g)
+bU(U + h + g))] = g,

cτ [(1 + ∂h
∂U )V + ∂h

∂V (aU − cV − b(U + h + g)
+bU(U + h + g))] = h.

Since h and g are zero when τ = 0, we set

g(U, V ; τ) = τg1(U, V ) + τ2g2(U, V ) + · · · ,
h(U, V ; τ) = τh1(U, V ) + τ2h2(U, V ) + · · · . (39)

Substituting g(U, V ; τ) and h(U, V ; τ) into the above equations and compar-
ing powers of τ, we obtain

g1(U, V ) = cV,
h1(U, V ) = cV,
g2(U, V ) = 2c2(aU − cV − b(1− U)U),
h2(U, V ) = c2(aU − cV − b(1− U)U).

(40)

The slow system (32) restricted to Mτ is therefore given by

U ′ = V,
V ′ = aU − cV − b(1− U)[U + g(U, V ; τ) + h(U, V ; τ)], (41)

where g and h are given by (39) and (40). Note that when τ = 0 system (41)
reduces to the corresponding system (30) for the nondelay equation. We can
see that for 0 < τ ¿ 1 system (41) still has critical points E0 and E1. The
following theorem shows that there is a heteroclinic orbit connecting E0 and
E1 and thus equation (31) has a traveling wave solution connecting u0 = 0
and u1 = (b− a)/b.

Theorem 6.5 (Ruan and Xiao 2004) For any τ > 0 sufficiently small there
exist a speed c such that the system (41) has a heteroclinic orbit connecting
the two equilibrium points E0 and E1.

The above results (Theorems 6.4 and 6.5) show that for the small delay the
traveling waves are qualitatively similar to those of the non-delay equation.
The existence of traveling front solutions show that there is a moving zone
of transition from the disease-free state to the infective state.

Remark 4. When the delay kernel is non-local, for example,

F (x, t) =
1
τ0

e−
t

τ0
1√

4πρ0
e−

x2
4ρ0 , τ0 > 0, ρ0 >,

the existence of traveling wave solutions in equation (22) can be established
by using the results in Wang, Li and Ruan (2005).
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7 Discussion

Epidemic theory for homogeneous populations has shown that a critical quan-
tity, known as the basic reproductive value (which maybe considered as the
fitness of a pathogen in a given population), must be greater than unity for
the pathogen to invade a susceptible population (Anderson and May 1991).
In reality, populations tend not to be homogeneous and there are nonlocal
interactions. Therefore, there has been much theoretical investigation on the
geographical spread of infectious diseases.

Invasion of diseases is now an international public health problem. The
mechanisms of invasion of diseases to new territories may take many differ-
ent forms and there are several ways to model such problems. One way is
to introduce spatial effects into the model, divide the population into n sub-
populations and allow infective individuals in one patch to infect susceptible
individuals in another. The equilibrium behavior of such models has been
studied widely, see Lajmanovich and Yorke (1976), Hethcote (1978), Dushoff
and Levin (1995), Lloyd and May (1996), etc. It has been shown that spa-
tial heterogeneity can reduce the occurrence of fade-outs in epidemic models
(Bolker and Grenfell 1995).

Another way is to assume that there are nonlocal interactions between
the susceptible and infective individuals and use integral equations to model
the epidemics. In this short survey, we focused on the spatiotemporal dynam-
ics of some nonlocal epidemiological models, include the classical Kermack-
McKendrick model, the Kendall model given by differential and integral equa-
tions, the Diekmann-Thieme model described by a double integral equation,
the diffusive integral equations proposed by De Mottoni et al. (1979) and
Busenberg and Travis (1983), a vector-disease model described by a diffusive
double integral equation (Ruan and Xiao (2004)), etc.

For some diseases, such as vector-host diseases, the infectives at location
x at the present time t were infected at another location y at an earlier
time t− s. In order to study the effect of spatial heterogeneity (geographical
movement), nonlocal interactions and time delay (latent period) on the spread
of the disease, it is reasonable to consider more general models of the following
form

∂S
∂t

= d1∆S − S(x, t)
∫ t

−∞

∫

Ω

I(y, s)K(x, y, t− s)dyds,

∂I
∂t

= d2∆I + S(x, t)
∫ t

−∞

∫

Ω

I(y, s)K(x, y, t− s)dyds− γI(x, t),

∂R
∂t

= d3∆I + γI(x, t)

(42)

under certain boundary and initial conditions, where d1, d2, d2 are the diffu-
sion rates for the susceptible, infective, and removed individuals, respectively.
The kernel K(x, y, t− s) ≥ 0 describes the interaction between the infective
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and susceptible individuals at location x ∈ Ω at the present time t which oc-
curred at location y ∈ Ω at an earlier time t− s. It will be very interesting to
study the spatiotemporal dynamics, such as stability of the disease-free equi-
librium and existence of traveling waves, in the general model (42) and apply
the results to study the geographical spread of some vector-borne diseases,
such as West Nile virus and malaria.
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