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Abstract. In this chapter, we review some previous studies on modeling spatial spread of
specific communicable diseases involving animal hosts. Reaction-diffusion equations are
used to model these diseases due to movement of animal hosts. Selected topics include the
transmission of rabies in fox populations (Källen et al., 1984; Källen et al., 1985; Murray
et al., 1986), dengue (Takahashi et al., 2005), West Nile virus (Lewis et al., 2006; Ou &
Wu, 2006), hantavirus spread in mouse populations (Abramson and Kenkre, 2002), Lyme
disease (Caraco et al., 2002), and feline immunodeficiency virus (FIV) (Fitzgibbon et al.,
1995; Hilker et al., 2007).

15.1 Introduction

Spatial spread of communicable diseases is closely related to the spatial heterogene-
ity of the environment and the spatial-temporal movement of the hosts. Mathematical
modeling of disease spread normally starts with the consideration of the transmission
dynamics within a population which is homogeneous in terms of host structures and
environmental variation, and then follows by the examination of the impact on the
transmission dynamics of the refined and detailed biological/epidemiological struc-
tures and patterns of spatial dispersal/diffusion of the hosts.

Epidemic theory for homogeneous populations has shown that thebasic reproduc-
tive number, which may be considered as the fitness of a pathogen in a given pop-
ulation, must be greater than unity for the pathogen to invade a susceptible popu-
lation (Anderson and May, 1991; Brauer and Castillo-Chavez, 2000; Diekmann and
Heesterbeek, 2000; Edelstein-Keshet, 1988; Jones and Sleeman, 2003; Murray, 2003;
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Thieme, 2003). It is natural to ask how spatial movement of the hosts affects the
spatial-temporal spread pattern of the disease if the basic reproduction number for an
otherwise homogeneous population exceeds unity.

Answers to the above question obviously depend on the manner in which hosts move
into, out of, and within the considered geographical region. For example, adding an
immigration term so that infective individuals enter the system at a constant rate
clearly allows the persistence of the disease, because if it dies out in one region then
the arrival of an infective from elsewhere can trigger another epidemic. Indeed, a
constant immigration term has a mildly stabilizing effect on the dynamics and tends
to increase the minimum number of infective individuals observed in the models
(Bolker and Grenfell, 1995). Spread of diseases in a heterogeneous population has
also been intensively studied using patchy or metapopulation models. These models
are formulated under the assumption that the host population under consideration
can be divided into multipatches so that the host population within a patch is consid-
ered as homogeneous, and the heterogeneity is associated with the rates with which
individuals move from one patch to another (Arino and van den Dreissche, 2006).

Another popular way to incorporate the spatial movement of hosts into epidemic
models is to assume some types of host random movements, leading to reaction-
diffusion equations. See, for example, Busenberg and Travis (1983), Capasso (1978),
Capasso and Wilson (1997), De Mottoni et al. (1979), Gudelj et al. (2004), Fitzgib-
bon et al. (2007), Webb (1981). This strand of theoretical developments built on
the pioneering work of Fisher (1937), who used a logistic-based reaction-diffusion
model to investigate the spread of an advantageous gene in a spatially extended pop-
ulation. With initial conditions corresponding to a spatially localized introduction,
such models predict the eventual establishment of a well-defined invasion front which
divides the invaded and uninvaded regions and moves into the uninvaded region with
a constant velocity. The velocity at which an infection wave moves is set by the rate
of divergence from the (unstable) disease-free state and can be determined by linear
methods (Murray, 2003).

Most reaction-diffusion (or reduced/related space-dependent integral) epidemic mod-
els are space-dependent extensions of the classical Kermack-McKendrik (Kermack
and McKendrik 1927) deterministic compartmental model for a directly transmitted
viral or bacterial agent in a closed population consisting of susceptibles, infectives,
and recovereds. Their model leads to a nonlinear integral equation which has been
studied extensively. The deterministic model of Bartlett (1956) predicts a wave of
infection moving out from the initial source of infection. Kendall (1957) generalized
the Kermack-McKendrik model to a space-dependent integro-differential equation.
Aronson (1977) argued that the three-component Kendall model can be reduced to
a scalar one and extended the concept of asymptotic speed of propagation devel-
oped in Aronson and Weinberger (1975) to the scalar epidemic model. The Kendall
model assumes that the infected individuals become immediately infectious and does
not take into account the fact that most infectious diseases have an incubation pe-
riod. This incubation period was considered by Diekmann (1978, 1979) and Thieme
(1977a, 1977b, 1979), using a nonlinear (double) integral equation model. For further
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study on velocity of spatial spread, we refer to Mollison (1991), van den Bosch et al.
(1990), the monograph of Rass and Radicliffe (2003), and references cited therein.
Most of these studies concern the existence of traveling waves, and their relation to
the disease propagation/spread rate. For additional studies, see Ai and Huang (2005),
Cruickshank et al. (1999), Hosono and Ilyas (1995), Kuperman and Wio (1999),
Zhao and Wang (2004), etc.

Despite these studies on reaction-diffusion epidemic models, however, there are very
few studies on modeling spatial spread of specific diseases using partial differen-
tial equation models. In this chapter, we review some previous studies on modeling
spatial spread of specific communicable diseases using reaction-diffusion equations.
Selected topics include the transmission of rabies in fox population (Källen et al.,
1984; Källen et al., 1985; Murray et al., 1986), dengue (Takahashi et al., 2005), West
Nile virus (Lewis et al., 2006; Ou and Wu, 2006), hantavirus spread in mouse popu-
lations (Abramson and Kenkre, 2002), Lyme disease (Caraco et al., 2002), and feline
immunodeficiency virus (FIV) (Fitzgibbon et al., 1995; Hilker et al., 2007).

15.2 Rabies

The celebrated studies by Källen (1984), Källen et al. (1985), and Murray et al.
(1986) about the spatial spread of rabies among foxes show the feasibility and useful-
ness of utilizing a simple reaction-diffusion model for the description of transmission
dynamics and spread patterns of specific diseases and for the qualitative evaluation
of various space-relevant control strategies. These studies give a fine example of how
to build a reaction-diffusion model based on the known ecology of the host behavior
and the detailed epidemiology of the disease progression, how to use known data and
facts to determine model parameter values, how to calculate the speed of propaga-
tion of the epizootic front and the threshold for the existence of an epidemic, and
how to use models to quantify and evaluate space-relevant control strategies. They
also demonstrate the trade-off between simplicity and the number of parameters that
have to be estimated from field studies. It is therefore natural that we start with a
brief introduction of these studies to illustrate some of the basic ideas and techniques
involved in reaction-diffusion models for disease spread.

Rabies, a viral infection of the central nervous system, is transmitted by direct con-
tact. The dog is the principal transmitter of the disease to man, and it is a particularly
horrifying disease for which there is no known case of a recovery once the disease
has reached the clinical stage. The aforementioned studies examined the rabies epi-
demic, which started in 1939 in Poland and moved steadily westward at a rate of
30-60 km per year. The red fox was the main carrier, and victim, of the rabies epi-
demic under consideration, although most mammals are thought to be susceptible to
the disease and although an epidemic, which was mainly propagated by racoons, was
also moving rapidly up the east coast of America during that period and subsequently.

The basic model of Källen et al. (1985) is built on the assumptions that foxes are the
main carriers of rabies in the rabies epizootic considered, the rabies virus is normally
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transmitted by bite, and rabies is fatal in foxes. It also assumes that susceptible foxes
are territorial, but once the virus enters the central nervous system it induces behav-
ioral changes in its host and, in particular, if it enters the limbic system the foxes
become aggressive, lose their sense of direction and territorial behavior, and wander
about in a more or less random way.

Let S(x, t) andI(x, t) be the total number of susceptible foxes and the total number
of infective foxes, respectively, in the space-time coordinate(x, t) and ignore the
incubation period at the moment. Then the model formulated in a one-dimensional
unbounded domain takes the form (Källen et al., 1985)

∂S
∂t

= −βS(x, t)I(x, t),

∂I
∂t

= D ∂2I
∂x2 + βS(x, t)I(x, t)− µI(x, t),

(15.1)

whereβ is the transmission coefficient,µ−1 is the life expectancy of an infective fox,
andD is the diffusion coefficient.

The basic reproduction number of the corresponding ODE model isR0 = βS0/µ,
with S0 being the initial susceptible population (with homogeneous environment).
If R0 < 1 then the mortality rate is greater than the rate of recruitment of new
infectives, and hence the infection is expected to die out quickly. We thus obtain the
minimum fox densitySc := µ/β below which rabies cannot persist. It was indeed
proven (Källen, 1984) that ifR0 < 1, I(·, 0) ≥ 0 has bounded support, and if
S(x, 0) = S0 for x ∈ R, thenI(x, t) → 0 ast →∞ uniformly onR.

The case whereR0 > 1 indicates the persistence of the disease in a spatially ho-
mogeneous setting. The spatial diffusion then propagates the disease so that a small
localized introduction of rabies evolves into a traveling wave with a certain wave
speed, that is, a solution withI(x, t) = f(z), S(x, t) = g(z) with the wave variable
z = x−ct so that the wave forms (profiles)f andg are determined by the asymptotic
boundary value problem

Df ′′ + cf ′ + βfg − µf = 0, cg′ − βfg = 0;
f(±∞) = 0, g(+∞) = S0, g(−∞) = S∞,

where primes denote differentiation with respect toz, S∞ gives the number of sus-
ceptible foxes that remain after the infective wave has passed, and this number is
found by solving the final size equation

S∞/S0 −R−1
0 ln(S∞/S0) = 1.

The existence of traveling waves with speeds larger thanc0 = 2
√

1−R−1
0 is estab-

lished by Källen (1984) and Källen et al. (1985), and the importance of the traveling
wave with the minimal wave speedc0 is shown by Källen (1984). Namely, it was
shown that ifI(·, 0) has compact support, then for everyδ > 0 there existsN so
that I(x + c0t − lnt/c0, t) ≤ δ for everyt > 0 and for allx > N . Therefore, if a
fox travels with speedc(t) = c0 − (c0t)−1lnt towards+∞ (in space) to the right
of the support ofI(·, 0), the infection will never overtake the fox. In other words,
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the asymptotic speed of the infection must be less thanc(t). As a consequence, if
I(x, t) takes the form of a traveling wave for larget, it must do so for the one with
the minimal speedc0.

Estimating such a propagation speed is feasible once we know the relevant parameter
values. In (Murray et al., 1986),R0 was set to2 according to the observed mortality
rate 65 − 80% during the height of the epizootic. The diffusion coefficientD is
estimated to be 60 km2yr−1, using the average territory of a fox and the mean time a
fox stays in its territory. This yields the minimal wave speed near 50 km per year, in
good agreement with the empirical data from Europe.

The diffusion model provides a useful framework to evaluate some spatially related
control measures such as the possibility of stopping the spread of the disease by cre-
ating a rabies ‘break’ ahead of the front through vaccination to reduce the susceptible
population to a level below the threshold for an epidemic to occur. Based on parame-
ter values relevant to England, the model suggests that vaccination has considerable
advantages over severe culling. Using a classical logistic model for the growth of
susceptible foxes, one can explain the tail part of the wave, and in particular, the
oscillatory behavior. Indeed, Anderson et al. (1981) speculated that the periodic out-
break is primarily an effect of the incubation period, and Dunbar (1983) and Murray
et al. (1986) obtained some qualitative results that show sustained oscillations if the
classical logistic model is used and the carrying capacity of the environment is suffi-
ciently large.

It was noted that juvenile foxes leave their home territory in the fall, traveling dis-
tances that typically may be 10 times a territory size in search of a new territory. If a
fox happens to have contracted rabies around the time of such long-distance move-
ment, it could certainly increase the rate of spread of the disease into uninfected ar-
eas (see Murray et al. (1986)). To address this impact of the age-dependent diffusion
of susceptible foxes, Ou and Wu (2006) started with a general model framework
in population biology and spatial ecology wherein the individual’s spatial move-
ment behaviors depend on its maturation status, and they illustrated how delayed
reaction-diffusion equations with nonlocal interactions arise naturally. For the above
mentioned spatial spread of rabies by foxes, they showed how the distinction of ter-
ritorial patterns between juvenile and adult foxes yields a class of partial differen-
tial equations involving delayed and non-local terms that are implicitly defined by a
hyperbolic-parabolic equation. They then demonstrated how incorporating this dis-
tinction into the model leads to a formula describing the relation of the minimal wave
speed and the maturation time of foxes. Their work involvesI(t, a, x) andS(t, a, x)
as the population density at timet, agea ≥ 0, and spatial locationx ∈ R for the
infective and the susceptible foxes, respectively, andτ as the maturation time which
is assumed to be a constant. It was shown that the total population of the infec-
tive foxesJ(t, x) =

∫∞
0 I(t, a, x) da and the density of the adult susceptible foxes
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M(t, x) =
∫∞

τ S(t, a, x)da satisfy

∂J
∂t

= DI
∂2J
∂x2 + βM(t, x)J(t, x)− dIJ(t, x) + βJ(t, x)

∫ τ

0 S(t, a, x)da,

∂M
∂t

= −βM(t, x)J(t, x)− dSM(t, x) + S(t, τ, x),

whereDI is the diffusive coefficient,dI is the death rate for the infective foxes,β is
the transmission rate, the constantdS is the death rate for the susceptible foxes, and
S(t, a, x) with 0 ≤ a ≤ τ can be solved implicitly in terms of(J,M) by considering
{ (

∂
∂t

+ ∂
∂a

)
S(t, a, x) = DY

∂2

∂x2 S(t, a, x)− βS(t, a, x)J(t, x)− dY S(t, a, x),
S(t, 0, x) = b(M(t, x)),

whereDY anddY are the diffusive and death coefficients for the immature suscepti-
ble foxes andb(·) is the birth function of the susceptible foxes.

It was shown in Ou and Wu (2006) that some of the key issues related to the spa-
tial spread can be addressed, despite the difficulty in obtaining an explicit analytic
formula ofS(t, a, x) in terms of the historical values ofM at all spatial locations.
For example, the minimal wave speed can be shown to be a decreasing function of
the maturation period. This result coincides in principle with the speculation by An-
derson et al. (1981) and Murray et al. (1986), and gives a more precise qualitative
description of the influence of maturation time on the propagation of the disease in
space.

15.3 Dengue

Dengue fever (DF) and dengue hemorrhagic fever (DHF) are caused by one of four
closely related, but antigenically distinct, virus serotypes (DEN-1, DEN-2, DEN-3,
and DEN-4) of the genus Flavivirus. Infection by one of these serotypes provides
immunity to only that serotype for life, so persons living in a dengue-endemic area
can have more than one dengue infection during their lifetime. DF and DHF are
primarily diseases of tropical and sub-tropical areas, and the four different dengue
serotypes are maintained in a cycle that involves humans and the Aedes mosquito.
Here,Aedes aegypti, a domestic, day-biting mosquito that prefers to feed on humans,
is the most common Aedes species. Infections produce a spectrum of clinical illness
ranging from a nonspecific viral syndrome to severe and fatal hemorrhagic disease.
Important risk factors for DHF include the strain of the infecting virus, as well as the
age, and especially the prior dengue infection history of the patient (CDC, 2007a).

Winged femaleAedes aegyptiin search of human blood or places for oviposition are
the main reason for local population dispersal and the slow advance of a mosquito
infestation. On the other hand, wind currents may also result in an advection move-
ment of large masses of mosquitoes and consequently cause a quick advance of in-
festation. The study (Takahashi et al., 2005) we describe here focuses on an urban
scale of space, wherein a (local) diffusion process due to autonomous and random



DENGUE 299

search movements of wingedAedes aegyptiis coupled to constant advection which
may be interpreted as the result of wind transportation.

Takahashi et al. (2005) considered only two sub-populations: the winged form (ma-
ture female mosquitoes) and an aquatic population (including eggs, larvae and pu-
pae), with mortality ratesµ1 andµ2. The spatial density of the wingedA. aegypti
and aquatic population at pointx and timet are denoted byM(x, t) andA(x, t),
respectively. The specific maturation rate of the aquatic form into winged female
mosquitoes isγ, which is saturated by a term describing a carrying capacityK1; that
is, γA(1 −M/K1). Similarly, the rate of oviposition by female mosquitoes, which
is the only source of the aquatic form, is proportional to their density but is also
regulated by a carrying capacity effect dependent on the occupation of the available
breeders; that is,rM(1 − A/K2). Since the focus is on theA. aegyptidispersal as
a result of a random (and local) flying movement, macroscopically represented by a
diffusion process with coefficientD, coupled to a wind advection caused by a con-
stant velocity fluxν, we obtain naturally the coupled system of reaction-diffusion
equations

∂M
∂t

= D∂2M
∂x2 − ∂(νM)

∂x
+ γA(1− M

K1
)− µ1M,

∂A
∂t

= rM(1− A
K2

)− (µ2 + γ)A.
(15.2)

Traveling wave solutions representing an invasion process (linking two stationary
and spatially homogeneous solutions) were formally investigated under the assump-
tion that the invasion speeds obtained for the two sub-populations are equal. This
assumption was justified by the following biological argument: Suppose that there
are distinct subpopulations linked with the wave speed for the winged population
larger than that for the aquatic population. If we wait long enough there will be some
distant interval where the (faster) mosquito population will reach values close to
the saturation level with practically no aquatic population for as long as we want.
That would contradict the vital dynamics, since in that interval a large population
of mosquitoes would lay eggs at an enormous rate because (almost) no saturation
effect exists without a sizable aquatic population. A similar argument works if the
wave speed for the winged population is smaller than that for the aquatic population.
Consequently, from a practical point of view, we should only expect a time delay
between the wavefronts and a constant spatial gap, not an expanding one.

Existence and uniqueness of a positive spatially homogeneous equilibrium is guaran-
teed if the mortality rateµ1 is less than the oviposition rater and if the basic repro-
duction numberR0 = rγ

(γ+µ2)µ1
is larger than 1. The traveling wave with the minimal

wave speed was shown numerically to have the strong stability and attractivity prop-
erty, and hence an effective strategy for controlling theA. aegyptidispersal based
on the above model is to ensure the minimal wave speed is as small as possible. In
relation to this containment strategy, a numerical examination of dependence of the
wave speed on a few vital model parameters was carried and it was shown that an ap-
plication of insecticide against the winged (mosquito) phase is much more effective
as an infestation containment strategy than insecticide application against its aquatic
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phase. This should not be surprising, since the winged form is the one responsible
for theA. aegyptimovement. However, it was also shown that a saturation effect is
very apparent and massive insecticide application to increase the mosquito mortality
rate beyond a certain value will show very little improvement in wave speed reduc-
tion. In addition, it was shown that insecticide application against the aquatic form is
not very effective for wave control, but if a chemical attack against the winged form
is coupled with the elimination of infested water-holding containers, the results are
surprisingly effective.

The study of the wavefront speed dependence on advection, i.e., wind transportation,
is interesting from a prediction point of view, and numerical analysis shows that the
wavefront speed varies linearly with the advection velocity but not in the same way as
in the classical Fisher model. Since the advection only carries the winged form, and
the mosquitoes need some time to oviposit, the dependence of the wavefront speed
in the model on the advection velocity is not as strong as in Fisher’s model. Although
advection by natural causes cannot be controlled, the above discussion may be useful
for the prediction of patterns ofA. aegyptiinvasion in urban areas exposed to strong
and constant winds.

Notice that model (15.2) only considers mosquito movement. More realistic models
need to include both host and vector populations. Some related models can be found
in Favier et al. (2005) and Tran and Raffy (2006).

15.4 West Nile virus

West Nile virus (WNV) was first isolated from a febrile adult woman in the West Nile
District of Uganda in 1937. The ecology was characterized in Egypt in the 1950s.
The virus became recognized as a cause of severe human meningitis or encephalitis
(inflammation of the spinal cord and brain) in elderly patients during an outbreak in
Israel in 1957. Equine disease was first noted in Egypt and France in the early 1960s.
WNV first appeared in North America in 1999, with encephalitis reported in humans
and horses. The subsequent spread in North America is an important milestone in the
evolving history of this virus (CDC, 2007b).

West Nile virus belongs to a family of viruses called Flaviviridae. It is spread by
mosquitoes that have fed on the blood of infected birds. West Nile virus is closely re-
lated to the viruses that cause Dengue fever, Yellow fever, and St. Louis encephalitis.
People, horses, and most other mammals are not known to develop infectious-level
viremias very often, and thus are probably "dead-end" or incidental-hosts (CDC,
2007b; PHAC, 2007).

Lewis et al. (2006) investigated the spread of WNV by spatially extending the non-
spatial dynamical model of Wonham et al. (2004) to include diffusive movements
of birds and mosquitoes, resulting in a system of 7 reaction-diffusion equations. A
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reduced 2-equation model takes the form

∂IV
∂t

= ε∂2IV

∂x2 + αV βR
IR
NR

(AV − IV )− dV IV ,

∂IR
∂t

= D∂2IR

∂x2 + αRβR
NR − IR

NR
IV − γRIR,

(15.3)

wheredV is the adult female mosquito death rate,γR is the bird recovery rate from
WNV, βR is the biting rate of mosquitoes on birds,αV andαR are the WNV trans-
mission probability per bite to mosquitoes and birds, respectively,ε andD are the
diffusion coefficients for mosquitoes and birds, respectively,IV (x, t) andIR(x, t)
are the numbers of infectious (infective) female mosquitos and birds at timet and
spatial locationx ∈ R, NR is the number of live birds, andAV is the number of
adult mosquitoes.

Phase-plane analysis of the spatially homogeneous system shows that a positive (en-
demic) equilibrium(I∗V , I∗R) exists if and only if the basic reproduction numberR0

is larger than 1, where

R0 =

√
αV αRβ2

RAV

dV γRNR
.

Moreover, this endemic equilibrium, if it exists, is globally asymptotically stable in
the positive quadrant.

For the spatially varying model, the vector field is cooperative, therefore an appli-
cation of the general result in (Li et al., 2005) ensures that there exists a minimal
speed of traveling frontsc0 such that for everyc ≥ c0, the system has a non-
increasing traveling wave solution(IV (x − ct), IR(x − ct)) with speedc, linking
(I∗V , I∗R) to (0, 0). The cooperative nature of the vector field ensures that the minimal
wave speedc0 coincides with the spread rate in the sense that if the initial values
of (IV (·, 0), IR(·, 0)), IV (·, 0) + IR(·, 0) > 0, have compact support and are not
identical to either equilibrium, then for smallε > 0,

limt→∞
{

sup|x|≥(c0+ε)t ||(IV (x, t), IR(x, t))||} = 0,

limt→∞
{

sup|x|≤(c0−ε)t ||(IV (x, t), IR(x, t))− (I∗V , I∗R)||} = 0.

In addition, thisc0 is linearly determined and thus could be explicitly calculated
from model parameters. In particular, using real data estimated from Wonham et al.
(2004) on the original 7-dimensional system, it was shown that a diffusion coefficient
of about 5.94 is needed in the model to achieve the observed spread rate of about
1000km/year in North America.

The work in Liu et al. (2006), using a patchy model based on the framework of
Bowman et al. (2004), seems to indicate the spread speed may be different if the
movement of birds has a preference direction.

One important biological aspect of the hosts in many epidemiological models, namely
the stage structure, seems to have received little attention, although structured pop-
ulation models have been intensively studied in the context of population dynamics
and spatial ecology, and the interaction of stage-structure with spatial dispersal has
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drawn considerable attention in association with the theoretical development of the
so-called reaction-diffusion equations with nonlocal delayed feedback (see the sur-
vey of Gourley and Wu (2006) and the references therein). The developmental stages
of hosts have a profound impact on the transmission dynamics of vector borne dis-
eases. In the case of West Nile virus the transmission cycle involves both mosquitoes
and birds, the crow species being particularly important. Nestling crows are crows
that have hatched but are helpless and stay in the nest, receiving more-or-less contin-
uous care from the mother for up to two weeks and less continuous care thereafter.
Fledgling crows are old enough to have left the nest (they leave it after about five
weeks), but they still cannot fly very well. After three or four months these fledglings
will be old enough to obtain all of their food by themselves. Consequently, adult
birds, fledglings, and nestlings are all very different from a biological and an epidemi-
ological perspective, and a realistic model needs to take these different stages into
account. For example, in comparison with grown birds, the nestlings and fledglings
have much higher disease induced death rate, much poorer ability to avoid being
bitten by mosquitoes, and much less spatial mobility.

Gourley et al. (2007) derived a structured population model in terms of a system of
delay differential equations describing the interaction of five subpopulations, namely
susceptible and infected adult and juvenile reservoirs and infected adult vectors, for a
vector borne disease with particular reference to West Nile virus. Spatial movement
was then incorporated into this model to yield an analogue reaction-diffusion system
with nonlocal delayed terms. This permits a consideration of some specific condi-
tions for the disease eradication and sharp conditions for the local stability of the
disease-free equilibrium, as well as a formal calculation of the minimal wave speed
for the traveling waves and subsequent comparison with field observation data.

15.5 Hantavirus

Hantaviruses are rodent-borne zoonotic agents that result in hemorrhagic fever with
renal syndrome or hantavirus pulmonary syndrome. Hemorrhagic fever with renal
syndrome was first reported in 1951 when an outbreak occurred among military
personnel involved in the Korean War (Lee and van der Groen, 1989) and now
has been identified in Asia and Europe (Shi, 2007). In 1993, hantavirus pulmonary
syndrome was identified from an outbreak in New Mexico, USA (Schmaljohn and
Hjelle, 1997). Since then, it has been discovered in various regions of southwestern
US and in other countries in the Americas. Each hantavirus is generally associated
with a primary rodent host. Human infection occurs primarily through the inhalation
of aerosolized saliva and excreta of infected rodents. The case fatality rate for han-
tavirus pulmonary syndrome in the United States is37% (CDC, 2002a). Hantaviruses
pathogenic to humans in the United States include Sin Nombre virus hosted by the
deer mouse (Peromyscus maniculatus) (Mills et al., 1999), New York virus hosted
by the white-footed mouse (Peromyscus leucopus) (Song et al., 1994), Black Creek
Canal virus hosted by the cotton rat (Sigmodon hispidus) (Glass et al., 1998), and
Bayou virus hosted by the rice rat (Oryzomys palustris) (McIntyre et al., 2005).
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In the last few years, several mathematical models have been used to investigate the
temporal and spatial dynamics of various hantavirus reservoir species and their rela-
tion to the human population. Allen et al. (2003) proposed ordinary differential equa-
tion models to study hantavirus infection (Black Creek Canal virus) and arenavirus
infection (Tamiami virus) in cotton rats. The two viruses differ in their modes of
infection; the first virus is horizontally transmitted, whereas the second is primarily
vertically transmitted. Sauvage et al. (2003) considered Puumala virus infection in
bank voles (Clethrionomys glareolus). Their model is a system of ordinary differen-
tial equations for rodents infected with hantavirus in two different habitats: optimal
and suboptimal. The population is subdivided into susceptible and infected juveniles
and adults. Allen et al. (2006) developed two new mathematical models for han-
tavirus infection in male and female rodents. The first model is a system of ordinary
differential equations while the second model is a system of stochastic differential
equations.

Taking the random movement of the rodent population into account, Abramson and
Kenkre (2002) and Abramson et al. (2003) used partial differential equation models
to study Sin Nombre virus in deer mice. Suppose that the whole mice population
is composed of two classes, susceptible and infected, represented byMS andMI ,
respectively, withMS + MI = M. Since the virus does not affect properties such
as the mortality of the mice, the death rate is assumed to be the same for both sus-
ceptible and infected mice. It is also not transmitted to newborns, so that no mice are
born in the infected state. The infection is transmitted from mouse to mouse through
individual contacts, such as fights. The dispersal of mice is modeled as a diffusion
process. Finally, intra-species competition for resources indicates a logistic popula-
tion growth. The model is described by the following equations:

∂MS
∂t

= D∂2MS

∂x2 + bM − cMS − MSM
K − aMSMI ,

∂MI
∂t

= D∂2MI

∂x2 − cMI − MIM
K + aMSMI .

(15.4)

All parameters characterizing the different processes affecting the mice are supposed
constant, except the carrying capacityK of the mouse population, which we will
sometimes writeK = K(x, t) explicitly to indicate the dependence on the location
and time which allows for diversity in habitats and temporal phenomena. The birth
rateb characterizes a source of susceptible mice only. The death rate, common to
both subpopulations, isc. The contagion rate is the parametera. Finally, a diffusion
coefficientD characterizes a diffusive transport mechanism for the mice.

The sum of the two equations in (15.4) reduces to a Fisher type equation for the
whole population

∂M

∂t
= D

∂2M

∂x2 + (b− c)M
[
1− M

(b− c)K

]
. (15.5)

Abramson and Kenkre (2002) showed that, as a function of K, the system under-
goes a bifurcation between a stable state with only susceptible mice (andMI = 0)
to a stable state with both subpopulations positive. The value of the critical carry-
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ing capacity is a function of other parameters and is given byKc = b
a(b−c) . This

critical value does not depend onD, and the same bifurcation is observed either in
a spatially independent system (D = 0) or in a homogeneous extended one in the
presence of diffusion. In a nonhomogeneous situation, for moderate values of the
diffusion coefficient, the infected subpopulation remains restricted to those places
whereK(x, t) > Kc, becoming extinct in the rest.

Yates et al. (2002) found that the outbreaks of hantavirus pulmonary syndrome in
southwest US in 1993 and again in 1998-2000 were associated with the El Niño-
southern oscillation phenomenon, which produced increased amounts of fall-spring
precipitation in the arid and semi-arid regions of New Mexico and Arizona and in
turn initiated greater production of rodent food resources. Consequently, rodent pop-
ulation increased dramatically, and at high densities, rodents began dispersing across
the landscape and coming into contact with humans in homes and businesses. This
suggests that a ‘wave’ of virus infection was following the ‘wave’ of rodent dispersal.

Let z1 = x−vSt andz2 = x−vIt, wherevS andvI are the speeds of the susceptible
and infected waves, respectively. The wave form equations are

Dd2MS

dz2
1

+ vS
dMS
dz1

+ bM − cMS − MSM
K − aMSMI = 0,

Dd2MI

dz2
2

+ vI
dMI
dz2

− cMI − MIM
K + aMSMI = 0.

(15.6)

There are two interesting scenarios.

(i) Initially the system is at a state of low carrying capacity (belowKc) and the pop-
ulation consists of uninfected mice only at the stable equilibrium. When the environ-
ment changes so thatK > Kc, the population will be out of equilibrium: the suscep-
tible mice population will evolve towards a new equilibrium and a wave of infected
mice will invade the susceptible population. Analysis at the unstable equilibrium
(K(b−c), 0) implies that traveling wave speed satisfiesv ≥ 2

√
D[−b + aK(b− c)].

(ii) Initially the system is empty of mice. Consider a system withK > Kc and with
MS = MI = 0 in almost all of its range, but with a small region whereMS > 0
andMI > 0. A wave of both mouse populations will develop and invade the empty
region. The wave speed of the susceptible isvS ≥ 2

√
D(b− c) and the wave speed

of the infectedvI ≥ 2
√

D[−b + aK(b− c)].

The density of susceptible mice rises from zero and lingers near the positive unstable
equilibrium before tending to the stable one.

Barbera et al. (2008) generalized the Abramson-Kenkre reaction-diffusion model to
a hyperbolic reaction-diffusion model for the hantavirus infection in mouse popula-
tions and investigated traveling wave solutions related to the spread of the infection
in the landscape. For further studies on modeling spatial spread of hantavirus, we
refer to Giuhhioli et al. (2005), Kenkre et al. (2007), and the references cited therein.
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15.6 Lyme disease

In 1975, a group of children in the Lyme, Connecticut, area were originally diag-
nosed as having juvenile rheumatoid arthritis (Steere et al., 1977). Subsequently it
became apparent that this occurrence was actually a delayed manifestation of a tick-
transmitted multisystem disease for which some manifestations had been reported
previously in Europe (Steere et al., 2004). In 1976, the disease was recognized as
a seperate entity and named Lyme disease (Steere, 1989). In 1981 the spirochetal
bacteriumBorrelia burgdorferi from the deer tickIxodes scapulariswas identified
(Burgdorfer et al., 1982) and cultured from patients with early Lyme disease (Steere
et al., 1983). Lyme disease is now the most commonly reported tick-borne illness in
the US, Europe, and Asia (Dannis et al., 2002; CDC, 2002b; Zhang et al., 1998).

New cases of Lyme disease appear at unabated rates in endemic regions, the geo-
graphic distribution of the incidence of Lyme disease has expanded rapidly, and the
spread of the disease involves direct interactions among no fewer than four species
(Ostfeld et al., 1995). The hematophagous vector is the deer tickIxodes scapularis.
Larval and nymphal ticks feed primarily on the white-footed mousePeromyscus leu-
copusbut will attack a variety of hosts; inadvertent nymph bites can infect humans
with the spirochete. Adult ticks feed preferentially on white-tailed deerOdocoileus
virginianus.

Caraco et al. (1998) proposed an ODE model focusing on these four species and
let infection in humans follow as a consequence of the community’s population dy-
namics. According to Caraco et al. (1998),Ixodes scapularisexhibits a two-year life
cycle.89% of newly hatched larvae attack white-footed mice. Larvae that obtain a
blood meal drop off their host and then overwinter as nymphs. At the beginning of
the second year, nymphs quest for a blood meal (the second of the life cycle). If they
succeed, the nymphs mature to the adult stage. Adult females feed almost exclusively
on white-tailed deer and mate there. Females eventually drop off the deer they have
parasitized, lay about 2000 fertile eggs nearby, and die. It is estimated that20− 33%
of nymphs in infected areas (ticks that have previously taken a single blood meal) are
infected, and that50% of questing adults (those that have already taken two blood
meals) are infected with the spirochete. Interestingly, it is the tick to mouse to tick
enzootic cycle of infection that maintains the spirochete. Seasonality helps drive the
cycle. Nymphs infected last year appear first as warmer weather begins; these ticks
pass the spirochete to susceptible mice. After summer has arrived larvae hatch, quest
for a blood meal, and acquire the spirochete when they attack an infected mouse.
These individuals then become quiescent as infected nymphs, completing the cycle
of infection.

Since deer move fecund adult ticks, their dispersal influences the spatial pattern of
tick larvae. But deer cannot be infected and do not disperse the pathogen. Further-
more,Borrelia cannot survive outside of its hosts. Mice usually disperse juvenile
ticks, and dispersal of infectious mice can introduce the spirochete into tick popu-
lations. So the spatial advance of infection must be driven by dispersal of mice and
other hosts to juvenile ticks (Van Buskirk and Ostfeld, 1998). Caraco et al. (2002)
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modeled the advance of the natural infection cycle as a reaction-diffusion process.
The model may help identify factors influencing the rate at which the disease spreads
and predict the velocity at which spirochete infection advances spatially.

The model treats population densities at locations(x, y) in a two-dimensional do-
main Ω. Parameters for birth, death, infection, and developmental advance do not
depend on spatial location. Diffusion approximates dispersal via random motion.
It is assumed that the dynamics and dispersal of mice are independent of infesta-
tion/infection status. To limit the number of variables, dispersal of nymphs is ignored.
At equilibrium population densities, nymph dispersal does not affect the spread of
Lyme disease. Dispersal of larvae is important; spatial dispersion of replete larvae
governs the pattern in the risk of Lyme disease when these animals quest as nymphs.
Therefore, dispersal of larvae while they feed on mice is considered. Adult ticks
reproduce and disperse diffusively; dispersal of adults mimics movements of deer
while ticks mate (deer are not modeled explicitly). Natality and mortality among
black-legged ticks are apparently independent ofBorrelia infection (Van Buskirk
and Ostfeld, 1998). The model requires six state variables for the reaction-diffusion
dynamics; among them, three subsidiary variables are required to model the tick’s
population structure.

Mice reproduce in a density-dependent manner and incur density-independent mor-
tality. Since mice are born uninfected, the equation for susceptible-mouse density
M(x, y, t) includes birth, death, acquisition of the spirochete from infectious-nymph
bites, and dispersal:

∂M

∂t
= DM

(
∂2M

∂x2
+

∂2M

∂y2

)
+ rM (M + m)

(
1− M + m

KM

)
− µMM − αβMn,

(15.7)
whereDM is the diffusion coefficient for mice with unit (distance)2/time; rM is the
intrinsic birthrate;KM is the spatially homogeneous carrying capacity;µM is the
individual mortality rate among mice;α is the attack rate of juvenile ticks questing
for mice;β(0 < β < 1) is a mouse’s susceptibility to pathogen infection when bitten
by an infectious nymph.

The density of pathogen-infected micem(x, y, t) increases as susceptible mice are
bitten by infectious nymphs and decreases through mortality. The equation for in-
fected mice includes infection, death, and dispersal:

∂m

∂t
= DM

(
∂2m

∂x2
+

∂2m

∂y2

)
− µMm + αβMn. (15.8)

The subsidiary variableL(A, a) is the density of questing larvae which declines
through mortality and attacks on mice, whereA(x, y, t) anda(x, y, t) are density of
uninfected adult ticks and pathogen-infected adult ticks, respectively. It is assumed
that larval hatching rate depends nonlinearly on adult tick density. Then, at each point
(x, y) :

dL

dt
= r(A + a)[1− c(A + a)]− µLL− αL(M + m), (15.9)
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wherer is the tick’s per capita reproduction at low density;µL is the mortality rate
among questing larvae; andc represents crowding among reproducing ticks. Larvae
must hatch at a positive rate when(A+a) > 0, soc is small. Essentially,c is inversely
proportional to deer density, which is assumed a constant and treated implicitly.

The density of larvae infesting susceptible miceV (x, y, t) varies in successful attack,
completion of the first blood meal, death, and dispersal while they infest mice:

∂V

∂t
= DM

(
∂2V

∂x2
+

∂2V

∂y2

)
− (σ + µV )V + αML, (15.10)

whereσ is the rate at which larvae infesting mice complete their meal, andµV is the
mortality rate among larvae infesting mice. Since the duration of a larval meal seldom
exceeds a few days,σ > µV . The assumptions concerning the density of larvae
infesting pathogen-infected mice,v(x, y, t), are similar. We substitute the density of
infectious mice(m) for susceptible-mouse density(M) and obtain∂v/∂t.

The subsidiary variableN(V, v) is the density of susceptible questing nymphs at
(x, y, t), which increases as larvae complete their first meal without acquiring the
spirochete. The larvae may have infested a susceptible mouse or attacked an in-
fectious mouse and avoided infection. As they die, bite humans, and attack mice,
N(V, v) decreases. Combining processes yields

dN

dt
= σ[V + (1− βT )v]−N [γ + α(M + m) + µN ], (15.11)

whereβT (0 < βT < 1) is a tick’s susceptibility to infection when feeding on an
infected mouse. The mortality rate among questing nymphs isµN , andγ is the rate
at which nymphs bite humans.

The subsidiary variablen(v) is the density of questing infectious nymphs at(x, y, t).
Infectious nymphs must have attacked a mouse infected withBorrelia as larvae and
then acquired the pathogen. Their density at any location(x, y) varies as

dn

dt
= βT σv − n[γ + α(M + m) + µN ], (15.12)

where the termγn represents the local risk of Lyme disease to humans.

The density of uninfected adult ticksA(x, y, t) changes through attacks of those
nymphs on mice, death of adults, and dispersal:

∂A

∂t
= DH

(
∂2A

∂x2
+

∂2A

∂y2

)
− µAA + αN [M + (1− βT )m], (15.13)

whereµA is the density-independent mortality rate among adult ticks. The diffusion
coefficientDH models dispersal of adult ticks while they infest deer.

The density of pathogen-infected adult ticksa(x, y, t) increases as infected nymphs
attack any mouse and as susceptible nymphs attack infected mice and acquireBorre-
lia during their second blood meal. Adding death and dispersal yields

∂a

∂t
= DH

(
∂2a

∂x2
+

∂2a

∂y2

)
− µAa + α[(M + m)n + βT mN ]. (15.14)
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To analyze this model, Caraco et al. (2002) first identified three aspatial equilibria:
extinction of the system, positive abundance of ticks and mice in the absence of
spirochete, and proportional infection of both mice and ticks. Then they studied how
adult tick mortality and juvenile attack rate influence the velocity at which infection
spreads in the diffusion model. Their results indicate that as vector mortality rates
vary, the disease spread velocity is roughly proportional to the density of infectious
vectors, and thus proportional to the local risk of zoonotic infection. However, as the
rate at which juvenile ticks attack hosts varies, the spread velocity of infection may
increase or decrease. In both cases, the disease spread velocity remains proportional
to the frequency of infection among hosts.

15.7 Feline immunodeficiency virus (FIV)

In 1987, the isolation of a T-lymphotropic virus possessing the characteristics of a
lentivirus from pet cats in Davis, California was reported (Pedersen et al., 1987). The
virus is a member of the family of retroviruses and causes an acquired immunode-
ficiency syndrome in cats. It shares many physical and biochemical properties with
human immunodeficiency virus (HIV) and was therefore named feline immunodefi-
ciency virus (FIV). Today FIV has been detected worldwide. The prevalences vary,
ranging from2% in Germany and16% in the United States to33% in the United
Kingdom and44% in Japan (Hartmann, 1998).

FIV can be isolated from blood, serum, plasma, cerebrospinal fluid, and saliva of
infected cats. The infection is much more common in males than females since the
transmission mode is through bites inflicted during fights and biting is more apt to
occur between male cats (Yamamoto et al., 1989). Veneral transmission from infected
males to females is possible. In experimental studies, infection has been shown to
occur not only via a vaginal route, but also via rectal mucous membrane (Moench et
al., 1993).

Though there is no evidence that FIV can spread to humans, it is important to study
its epidemiology for a variety of reasons. Its spread mimics the spread of HIV within
the human population and it is possible that subsequent mutations of FIV could pro-
duce a virus capable of infecting humans. Courchamp et al. (1995) constructed a
deterministic model to study the circulation of FIV within populations of domestic
cats. Since all sexually transmitted diseases can be transferred from males to males,
from females to females, and from males to females and vice versa, Fitzgibbon et al.
(1995) proposed a criss-cross infection model to describe the spread of FIV. Their
model uses Fickian diffusion to account for the geographic spread of the disease and
introduces age of the disease within an individual as a structural variable.

Divide the feline population sexually into male and female classes. Each of these
classes is in turn subdivided into susceptible and infective subclasses. Consider four
state variablesu,w, v, z representing population densities of susceptible males, in-
fective males, susceptible females, and infective females, respectively. Assume that
the infection spreads from infective males to susceptible males and females and from
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infective females to susceptible males and females, with different infection rates. Let
Ω ⊂ Rn(1 ≤ n ≤ 3) be a bounded region which lies locally on one side of its
boundary∂Ω, which is sufficiently smooth. The criss-cross epidemic model without
age structure is, forx ∈ Ω, t > 0 :

∂u
∂t

= d1∆u− k1uw − k2uz,

∂w
∂t

= d2∆w + k1uw + k2uz − λ1w,

∂v
∂t

= d3∆v − k3vw − k4vz,

∂z
∂t

= d4∆z + k3vw + k4vz − λ2z

(15.15)

with Neumann boundary conditions

∂u

∂n
=

∂w

∂n
=

∂v

∂n
=

∂z

∂n
= 0, x ∈ ∂Ω, t > 0 (15.16)

and initial conditions

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,
w(x, 0) = w0(x) ≥ 0, z(x, 0) = z0(x) ≥ 0, x ∈ Ω,

(15.17)

whereki(i = 1, ..., 4) are the infection rates of the four subclasses;λ1 andλ2 are
the removal rate of the infective males and females, respectively;di(i = 1, ..., 4)
are the diffusion rates of the four subclasses. All parameters are positive constants.
The Neumann boundary conditions imply that all populations remain confined to the
regionΩ for all time.

The analysis of Fitzgibbon et al. (1995) indicates that the infective population is al-
ways ultimately extinguished. Thus, the model applies to a short term development
of FIV, which extinguishes because of a lack of new susceptibles. From their ODE
model, Courchamp et al. (1995) claim that FIV is endemic in domestic feline popula-
tions. The reason is that the model of Courchamp et al. incorporates a logistic growth
nonlinearity for the total population, whilst the the model of Fitzgibbon et al. does
not include demographic population dynamics of the feline population.

Hilker et al. (2007) extended the model of Courchamp et al. (1995) to the reaction-
diffusion system version. LetS(x, t) andI(x, t) denote the densities of susceptible
and infectious cats in the locationx ∈ Ω (in km) and at timet > 0 (in years), so that
P (x, t) = S + I is the density of the cat population (in number of individuals per
km2). The model takes the form

∂S
∂t

= DS∆S − σSI
P + β(P )P − µ(P )S,

∂I
∂t

= DI∆I + σSI
P − µ(P )I − αI,

(15.18)

whereDS and DI (km2 per year) are the diffusion rates of the susceptibles and
infectives, respectively;σ is the transmission coefficient; andα is the disease related
death rate. The fertility functionβ(P ) ≥ 0 and the mortality functionµ(P ) ≥ 0
are assumed to be density-dependent; the intrinsic per-capita growth rate isg(P ) =
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β(P )−µ(P ). If β(P ) = b > 0, µ(P ) = m+rP/K, r = b−m, m > 0, one obtains
the well-known logistic per-capita growth rateg(P ) = r(1− P/K). If

β(P ) =
{

a[−P 2 + (K+ + K− + e)P + c], 0 ≤ P ≤ K+ + K−
nonnegative and nonincreasing, otherwise

andµ(P ) = a(eP + K+K− + c), then the per-capita growth rate

g(P ) = a(K+ − P )(P −K−)

describes the strong Allee effect in the vital dynamics. This type of function can be
used to model the fact that cat is a very opportunistic predator and is one of the worst
invasive species threatening many indigenous species.

For the model with logistic growth, numerical simulation indicates that a traveling
infection wave emerges and advances with a constant speed. In its wake, the popula-
tion settles down to the endemic state. In the model with Allee effect, the emergence
and propagation of a traveling wave can be observed as well. However, if the trans-
mission coefficient is further increased so that the nontrivial state disappears, two
different scenarios are possible: (a) front reversal with eventual host extinction (see
Fig. 2c, Hilker et al. 2007) and (b) a transient (and spatially restricted) epidemic be-
fore disease-induced extinction (see Fig. 10, Hilker et al. 2007). In both cases, the
propagation of traveling pulse-like epidemics will wipe out the host population.

Recently, the spatial spread of some infectious diseases, including FIV and FeLV
(Feline Leukemia Virus), among animal populations distributed on heterogeneous
habitats has been extensively studied. We refer to Fitzgibbon et al. (2001), Fitzgibbon
and Langlais (2008), Malchow et al. (2008), and the references cited therein.

15.8 Summary

We have summarized a few models developed for specific diseases which involve
animal hosts and have significant implication to human health: rabies, dengue, West
Nile virus, hantavirus, Lyme disease, and feline immunodeficiency virus. A common
feature of these diseases is the involvement of a certain animal carrier and at least
a subgroup of individuals in the animal population that may move more or less ran-
domly in space. This feature leads naturally to the addition of diffusion and perhaps
advection terms to classical compartmental models.

Most studies introduced here started with the assumption that the disease is capable
of invading the susceptible population in a spatially homogeneous environment, and
these studies then considered the issue of spatial spread patterns and disease propa-
gation speeds under various conditions of spatial movement of the host population.
A particular object is the existence of traveling wave fronts and the minimal wave
speed of such fronts that is believed to coincide with the disease spread speed.

Spatial diffusion may interact with structural heterogeneity, for example, maturation
status of the host population. How this interaction leads to particular spatio-temporal
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patterns of disease spread and the implication for the design of containment strategies
was a key issue of some of the studies discussed here. Further work in this area is
discussed in two other recent review articles (Ruan, 2007; Gourley et al., 2008).

Diseases involving multiple species or higher dimensional space may also permit
different propagation speeds for different species and dimensions, and pose great
mathematical challenges for analysis. Furthermore, parameterizing spatial models
from epidemiological or biological data (Noble, 1974; Murray et al., 1986) is difficult
but crucial in studying the spatial spread of diseases.

So, despite the substantial recent progress in the study of spatial spread of diseases
using reaction-diffusions equations, the implications of spatial structure in epidemi-
ological models are still far from clear, and the statement in Murray (2003) remains:
“the geographic spread of epidemics is less well understood and much less well stud-
ied than the temporal development and control of diseases and epidemics.”
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