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REACTION-DIFFUSION EQUATIONS
WITH INFINITE DELAY

SHIGUI RUAN AND JIANHONG WU

ABSTRACT. We have developed several results on the ex-
istence and asymptotic behavior of mild solutions to reaction-
diffusion systems that have infinite delays in the nonlinear
reaction terms. We find that the semiflow generated by a co-
operative and irreducible reaction-diffusion system with infi-
nite delay is not compact but set-condensing, and not strongly
order-preserving but quasi strongly order-preserving. These
set-condenseness and quasi strong order-preserving proper-
ties allow us to use a modification, recently given by Freed-
man, Miller and one of the authors of this paper, of the well-
known monotone dynamical system theory due to Dancer,
Hess, Hirsch, Matano, Smith, Thieme, Politik and Takag to
obtain some results about convergence and stability of solu-
tions. Examples of Lotka-Volterra competition-diffusion mod-
els with distributed delay are given to illustrate the obtained
results.

1. Introduction. A varicty of mathematical models for biological
processes are most appropriately framed as partial functional differ-
ential equations. For example, the rcaction-diffusion logistic equation
with finite delay
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du(t,z) _ &%u(t,x) _ u(t—7,z)

o =T ST )1 - ), 150, 2€(0,1)
Ou(t,z) _
oz 0 =04

Accepted for publication on October 4, 1994.
Research was carried out while the first author was a Junior Fellow at the Fields
Institute for Research in Mathematical Sciences and was partially supported by the

Ministry of College and University of Ontario and the NSERC of Canada.
Research of the second author partially supported by the NSERC of Canada.

This paper was written while the second author was an invited Visiting Scientist to
the Fields Institute for Research in Mathematical Sciences. The author would like

to thank the Institute for its support. _
AMS Mathematics Subject Classifications. 351335, 35R10, 341K30.
Key words and phrases. Partial functional differential equations, reaction-

diffusion systems with infinite delay, monotonicity, invariance, comparison, set-
condensing maps, strongly order-preserving semiflows, convergence, stability.
Copyright ©1994 Rocky Mountain Mathematics Consortium

485



486 S. RUAN AND J. WU

where d,r,7 and K are positive constants, has been used to model
an one-dimensional herbivorous population and has been studied by
many authors, for example, Busenberg and Huang [5], Friesecke [8, 9],
Gopalsamy, He and Sun [13], Green and Stech [14], Huang (28], Lin
and Khan [33], Luckhaus [35], Memory [44, 45], Morita [47], Yoshida
[76] and Yoshida and Kishimoto [77], to name a few.

General partial functional differcntial equations with finite delay have
been extensively studied. We refer to Fitzgibbon [10], Rankin [55] and
Travis and Webb [68, 69] for detailed discussions on the existence
and asymptotic behavior of solutions; to Kunish and Schappacher [32]
for necessary conditions to generate Cy-sciigroups; to Hale [17] for the
convergence to solutions of an ordinary [unctional differential equation;
to Fitzgibbon and Parrott [11] and Parrott [50] for the lincrized
stability; to He [20, 21] for periodic and almost periodic solutions; to
Lin, So and Wu [34] for a center manifold theory; to Hale and Ladeira
[19] for the differentiability with respect to dclays, and to Rey and
Mackey [57, 58] for bifurcations, traveling waves and multistability.

Recently Martin and Smith, in their three consecutive papers [36—-38],
have studied partial functional differential equations in a Banach
space. They developed several fundamental results on the existence
and asymptotic behavior of solutions to abstract semilinear functional
differential equations with finite delay and then apply the results to
reaction-diffusion equations which have finite time delays in the nonlin-
ear reaction terms. By employing the monotone dynamical system the-
ory due to Hirsch [25-27], Matano [39-42], Smith [61], and Smith and
Thieme [63, 64], they established sufficient conditions for a reaction-
diffusion equation with finite delay to gencrate a (eventually) strongly
monotone semiflow on an appropriate space and concluded that al-
most all orbits converge to the set. of cquilibria. They also established
the existence of an invariant rectangle and obtained certain compar-
ing systems of ordinary functional differential equations relative to the
invariant rectangle. As an application, they considered the n-species
Lotka-Volterra model of competition with diflusion and finite delay and
developed sufficient conditions for the global asymptotic stability of the
coexistence state.

It is well known that distributed delay should be used to describe the
stochastic element in the delayed response of a biological process. The
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following reaction-diffusion equation with infinite delay

ou(t,z) _  6%u(t,z) 1t
5 = d 922 +ru(t,z) |1 E[wk(t s)u(s,z)ds|,
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k(s)ds == 1
0
also has been used as a modificd version of (1.1) and has been studied
by Bonilla and Lifidn [3], Britton [4], Redlinger [56], Schiaflino [60],
Tesei [67] and Yamada [73]. Particular classes of reaction-diffusion
systems with infinite delay have been investigated by Gopalsamy [12],
Kuang and Smith [30, 31], Pozio [54], Yamada [74], and Yamada and
Niikura [75]. However, there are all together very few results on general
theory of reaction-diffusion systems with infinite delay.

One of the main purposes of this paper is to develop a general
theory of existence, comparison, invariance, monotonicity and sct-
condenseness for partial functional differential cquations with infinite
delay and to provide some applications to reaction-diffusion systemns
with general distributed delays. We shall follow Martin and Smith [36-
38] to derive general results for abstract semilinear integral equations
in general phase spaces and then draw some conclusions for reaction-
diffusion systems with distributced delays. We also establish an invari-
ance principle which generalizes a well-known result due to Haddock
and Terjéki [15] from ordinary to partial {unctional differential cqua-
tions.

Our approaches and ideas arc motivated by those in Martin and
Smith [36-38] for reaction-diffusion systems with finite delay and in
Hale and Kato [18] for ordinary functional differential equations with
infinite delay. However, there are numcrous technical difficulties in
dealing with partial functional differential equations with infinite delay
due to the unboundedness of the delay involved. In particular, the
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choice of phase space is a nontrivial job and plays an important role in
establishing several inequalities which are essential to build a general
theory. Secondly, the corresponding semiflow is no longer compact, but
set-condensing in the sense of Nussbaum [49]. Thirdly, an example in
Wau [70] indicates that the solution semiflow of a functional diflerential
equation with infinite delay may not be (eventually) strongly monotone
even if the usual quasimonotonicity and irreducibility conditions are
satisfied. We shall show that the solution semiflow generated by a
certain reaction-diffusion system with infinite delay is quasi strongly
order-preserving in the scnse described in Section 2. This enables
us to apply a result due to Freedman, Miller and Wu [7], which
represents some modification and generalization of those recent results
due to Dancer and Hess [6], to establish some general results on the
convergence and stability for a class of reaction-diffusion systems with
infinite delay.

As an application of the invariance principle established in this pa-
per, we obtain the convergence of the steady state of the n-specics
Lotka-Volterra competition-dilfusion model with distributed delay. We
also find that the two-species Lotka-Volterra competition-diffusion
model with infinite delay generates a quasi strongly order-preserving
semiflow, hence we can rule out the occurrence of pattern formation in
certain situations. It is observed that the asymptotic behavior of so-
lutions of the two-species Lotka-Volterra competition-diffusion model
with infinite delay is similar to that of the two-species Lotka-Volterra
competition-diffusion model without a delay or with a discrete delay.

The paper is organized as follows. Section 2 contains a short survey
of some recent results about sct-condensing and quasi strongly order-
preserving semiflows. In Section 3, we introduce the definition and
examples of a fundamental phase space which will be used throughout
this paper. In Section 4, we establish a general existence theorem for the
abstract semilinear integral cquations. Comparison and monotonicity
principles are described, in Section 5, for the abstract semilincar
integral equations and, in Scction G, for the reaction-diflusion systems
with infinite delay. Finally, in Scction 7, we apply our general results
to the Lotka-Volterra reaction-dillusion models with distributed dclay.

2. Preliminary results on order-preserving and set-condensing
semiflows. Consider the Banach space B with a closed ordered cone
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B,.For ¢, v € B, we write ¢ >2p P i{ ¢ - € By, ¢ >p ¢ if
¢—1 € By \ {0} and ¢ >>p ¢ if int(B,) # @ and ¢ — ¢ € int(By).
¢ <p (<, <)Y means ¥ 25 (>p,>p)¢.

Let R, = [0,00). Assume & : R, x B — B is a given semiflow. For
each ¢ € B, define the positive orbit initiating from ¢ by vt (¢) =
{®:(¢); t > 0} and the omega limit set of v (¢) by

w(@) = (17 (2ue)),

120

here and in what follows, ®,(¢) = ®(¢t,¢) for {t,¢) € Ry x B. It is
well-known that if v+ (¢) is relatively compact then w(¢) is nonempty,
compact, connected and invariant.

The semiflow @ is said to be strictly order-preserving if (¢, ¢), (¢,v) €
R, x B with ¢ >p ¢ implies ®,(¢) >p ®,(¢) for ¢ > 0. A given point
¢ € B is called a subequilibrium of ® if ¢ <p ®,(¢) for t > 0, and a
strict subequilibrium if ¢ <g ®,(¢) for ¢t > 0. Similarly, we can define a
(strict) superequilibrium. An entire orbit of ® is a mapping u: R —» B
such that u(t + s) = ®;(u(s)) for t > 0 and s € R.

Let a be a measure of noncompactness (see, cf. Nussbaum [49]).
We say that the semiflow ®, is set-condensing on a subset E of B for
t > 0 if, for every bounded subset W of E' with a(W) # 0, we have
a(®(W)) < a(W) for every t > 0.

Theorem 2.1. Suppose @ : Ry x B — B is strictly order-preserving.
Let ¢y <p ¢, be order-related equilibria of ® and define

E =[¢1, ¢2] ={d € B;¢1 < ¢ <p ¢2}.

Assume that ®, is set-condensing on E for t > 0. Then one of the
following statements holds:

(i) there exists a further fized point ¢ of ® such that 1 <p ¢ <p P2;

(ii) there exists an entire orbit of strict subequilibria u connecting
&1 and ¢ such that u(t) = ¢ ast — —oo and u(t) — ¢ ast — oo;

(iii) there exists an entire orbil of strict superequilibria u connecting
1 and ¢ such that u(t) — ¢ ast — —oo and u(t) — @1 ast — oo.
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The above theorem represents a slight improvement of Theorem 8 in
Matano [40] and Proposition 1.1 in Dancer and Hess [6] by relaxing
the requirement on compactness and the strongly order-preserving
property of ®. We refer to Smith and Thicme [64] for a related result
(Proposition 3.7). Theorem 2.1 can be proved by a similar argument to
that in Dancer and Hess [6] with some necessary modifications in order
to deal with set-condensing semiflows in stead of compact semifiows.
We refer to Freedman, Miller and Wu [7] for details.

Recall that a strongly order-preserving semiflow ® is one such that
¢ <p 1 implies ®,(¢) K5 ¥, () for t > 0. The following weaker
notation of strong order-preserving property of & was introduced in
Freedman, Miller and Wu [7).

Definition 2.2. A semiflow ® : R, x B — B is said to be quasi
strongly order-preserving (QSOP) if it is order-preserving and for every
sequence {¢™} of equilibria and for every compact invariant subset
A C Bsuch that lim, , o ¥"=¢¥ <pAand ¢y <gp ¢ forn=1,2,...,
there exists an integer ng such that ¢ <pg A.

It can be easily shown that a strongly order-preserving semiflow is
QSOP, but the inverse is not truc. We refer to Freedman, Miller and
Wu [7] for some examples and for a sufficient condition guarantecing
an order-preserving semiflow to be QSOP.

For r > 0 and ¢ € B, define
Up(p,r)={Y € B; |¥—d|lp<r}.

Suppose that the semiflow ® has a subequilibrium ¢; and a superequi-
librium ¢, with ¢; <p ¢2. Denote E = [¢, 2] 5. An equilibrium ¢ in
E is said to be stable with respect to E if for each £ > 0 there exists
& > 0 such that ®,(y) € Up(p,¢) for all ¥ € Up(¢,d) and ¢t > 0.

Theorem 2.3. Suppose that ® is a QSOP semiflow and that there
exists a subequilibrium ¢, and a superequilibrium ¢4 such that ¢, <p P2
and every equilibrium in E = [¢1,¢2]p is stable with respect to E.
Assume further that ®; is set-condensing on E for t > 0. Then every
bounded positive orbit converges. That is, for every bounded positive
orbit vt (¢) in E, w(@) is a singleton.



REACTION-DIFFUSION EQUATIONS 491

The above result is established by Dancer and Hess [6] for strongly
order-preserving semiflows. It turns out (see Freedman, Miller and
Wau [7]) that their argument applies to QSOP semiflows as well once
Theorem 2.1 is justified. We refer to Alikakos, Hess and Matano [2],
Hirsch [27], Palgik [52, 53], Tak4c [65, 66], Smith and Thieme [63,
64)] for related results.

Theorem 2.4. Assume ® is a QSOP semiflow and ¢;,¢92 are
strict subequilibrium and strict superequilibrium of ®, respectively, with
¢1 KB ¢9. Assume also that ¥, is set-condensing for t > 0 on
E = [¢1,¢2]B. Then there erists a stable equilibrium in E.

Theorem 2.5. Suppose ® is a strictly order-preserving semiflow
and ¢1 <p ¢, are order-related equilibria. Furthermore, assume that
®, is set-condensing for t > 0 on E = [¢1,¢2]p. If ¢1 and ¢ are
stable respect to E and ¢; is an isolated equilibrium from above or
¢2 is an isolated equilibrium from below, then there exisls an unstable
equilibrium ¢ such that ¢ <p ¢ <p ¢2.

In the above result, ¢; (¢2) is isolated from above (below) means
that there exists a small neighborhood of ¢; (¢2) in E which contains
no other equilibrium 1 such that ¢, <p ¥ (¢2 >p ¥). The above two
results are basically established by Dancer and Hess [6] (they prove
these results by assuming that ®,(E} is relatively compact, but their
argument also applies to the case where ®, is set-condensing in E). We
refer to Matano [40—42] and Hirsch [27] for some earlier versions.

3. Phase spaces and examples. Let R- = (~00,0]. Assume that

X is a real Banach space with a norm denoted by | - at B
is a linear space of mappings from R_ to X with clements de31g,11atcd

by ¢, w, . Suppose also there is a seminorm | - 5 on B so that

the quotient space B = B/| - | 5 is a Banach space w1th a norm |- |g
naturally induced by | - |5. Throughout this paper, we shall denote by

¢ the corresponding equivalence class of ée B.

The Banach space B will be ecmployed as the phase space for the study
of partial functional differential equations with infinite delay. The first
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hypothesis on B is described as follows:
(A1) There exists a constant L > 0 such that
6(0)|x < L|gl5 for any § € B.
Under the above assumption, for every cquivalence class ¢ there is a
unique ¢(0) € X defined by ¢(0) = ¢(0) for ¢ € B and |¢(0)|x < L|¢|p-

To describe other assumptions on the phase space, we introduce
the following notation: suppose 0 < t £ A < oo and the mapping
i (—00,4] = X is given, then w, : R- — B is defined by
u(f) =u{t+6) for 0 € R_.
For any given ¢ € B and A > 0, we dcfine
Fa(¢) = {t: (~o0, A] = X; fig = ¢ and it} ) is continuous}.
Moreover, we set
Fa=|JFa(d).
éeB
Other fundamental assumptions on the phase spaces can now be de-
scribed as follows:

(A2) If A>0and @ € Fy, then 4, € Biforalte [0, A]. Moreover,
the mapping t € [0, A] = u; € B is continuous.

(A3) There exist a continuous nondeccreasing function K : Ry — R4
and a locally bounded function M : Ry — R, such that

luelg < K(t) sup |u(s)|x + M(t)|uols, 0<t< A, ue F,.
0<s<t

To discuss the monotonicity of semiflows on the phase space B, we
also assume that there exists a closed cone X in X with the property
that if u, —u € X, then u = 0. The cone X induces a partial ordering
>x on X defined as follows

u>xv (orvxu) ff u-veX,.
We assume that X with the above ordering is a Banach lattice. For
simplicity of notations, we shall employ the following ordering intervals:
[v,w]x = {u € X; v<x u<x w},
[v,00)x = {u€ X; v<x u},
(—oo,w]x = {u€eX; u<x w}
(—o0,00)x = X,
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where v,w € X with v <x w.

Similarly, we assume that there exists a closed cone By in the phase
space B with the property that if ¢, —¢ € By, then ¢ = 0. The partial
ordering induced by B, is denoted by >, and ordering intervals can
be defined similarly.

Finally, we require the following compatibility conditions on the
orderings <x and <p:

(A4) <z ¢ implics that $(0) <x ¥(0).

(A5) If A>0and 4 € Fa, 0 € F4 arc given such that ug <p vp and
u(t) <x v(t) for ¢ € [0, A], then ug <p va.

To present an example of phase space satisfying (Al)-(A5), we
suppose ¢ : (—00,0] — [1,00) is a function satislying the following
conditions:

(g1) g¢ is continuous, nonincreasing and ¢(0) = 1;
(g2) g(s+ u)/g(s) — 1 uniformly for s € (—c0,0] as p — 07F;
(83) g(s) = 00 as s = —o0.

For example, if v > 0, then the functions g(s) = e~7* and g(s) =
(1 + |s])” satisfy the above conditions.

Suppose & C R"™ is bounded, C(f; R™) is the Banach space of
continuous functions from 2 to ™ with the supremum norm || C@R™)"
Define

Cy= {¢; ¢ : (—00,0] — C(Q; R™) is continuous,

[6(s) (. pom
sup M < +oo}.
<0 g(s)

Then C, equipped with norm

|¢(3)|C(Zi_;1_¢__ml

() for g € Cy

|¢lg = I#lc, = sup
s<0

is a Banach space.

Since g(0) = 1, C, satisfies (A1) with L = 1. Morcover, as g is
nonincreasing, if u : B = C(2; R™) so that uy € Cy and u : [0,00) —
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C(; R™) is continuous, then u; € C, for all t > 0. A similar argument
to that in Example 2.1 of Haddock and Terjéki [15] leads to

g(0+1)

uglg < sup |u(s 5. pmy o+ SUP —————=|ugplq.
|uelg 058S0| ()lc(n,n ) Oslc 9(0) luolg

Hence C, satisfies (A3) with K(t) = 1 and M(t) = supg<_,(9(6 +
t)/9(6)) on [0, 00).

Obviously, X = C(§%; RT) is a closed cone in X = C(Q; R™), where
RT denotes the positive octant of R™. Hence C(§; RY}') induces a
partial ordering > ¢y, pmy OR C(; R™) by

U2ompm v ff u—veC(GRY).
Define a closed order cone Cf in C, by
Cf ={¢ € Cy;¢(6) Zc@pmy 0 for 0 <0}

Similarly, C; induces a partial ordering >¢, on C,. Obviously, if
¢, ¥ € C}, then ¢ <¢, ¥ implics ¢(0) Sc@nmy ¥(0), ie, (Ad) is
satisfied. Moreover, if u,v : R — R" arc given continuous functions
such that ug, vo € Cy, up <¢, vo and u(t) <c@nm) v(t) for t > 0,
we have u; <¢, v; for t > 0.

Note that (A2) is not satisfied by Cy. We now define a subspace UCy
of Cy as follows

UCy = {¢ € Cy; ¢ is uniformly continuous on R_}.
g

As a closed subspace of Cy, UCy is a Banach space and satisfies (A1)
and (A3). Employing the same argument as that of Theorem 2.1
of Haddock and Terjéki [15], we can prove that (UC,,| - |g) satisfies
(A2) as well. Similarly, we can define a closed cone UCS in UC,.
UCH = C} nUC, induces a partial ordering 2yc, on UC, and
satisfies (A4) and (A5). Another closed subspace of Cy which satisfies
(A1)-(A5) is

CY = {¢ € Cy; ¢(s) = 0 as s & —o0}.
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It should be mentioned that the work of Wu [71] shows that UC,
arises very naturally from reaction-diflusion equations with both dis-
crete and distributed delays in the nonlinear reaction term which sat-
isfies a certain fading memory condition. We reler to Atkinson and
Haddock [1] for related discussions.

The following axiom on the phase space B will sometime be required:
(A6) Every constant mapping from (—o0,0] into X belongs to B.

Denote by w the constant mapping from (—o0,0] into X with the
constant value w € X. We will also require the following conditions.

(A7) For any constant mapping 7, w € B, 7 <p W if and only if
v <x w.

(A8) There exists a constant @ > 0 so that for cvery constant
mapping W € B, |w|s < Qw|x, w € X.

(A1) and (A8) imply that the induced topology ({fromn B) on the space
of constant mappings from (—o0, 0] into X is equivalent to the topology
of X. Also

[#(0)|3 < Q|¢(0)|x < QL|¢|s, € B.

It is easy to see that (A6)-(A8) are satisficd by X = C(Q; R™) and
B = UC, defined above. Morcover, it is trivial to show that for these
two spaces, the following assumption is also satisficd:

(A9) If ¢,9 € B and 3(0) <x 1’/;(0) for @ <0, then ¢ <g .

4. Existence theorems for semilinear integral equations.
Assume a > 0 is a given constant. In this section, we shall consider an
abstract integral equation in some subset of [a,00) X B satisfying the
following properties:

(D1) D is a closed subset of [a,00) x X and D(t) = {u € X;{t,u) €
D} is a nonempty subset of X for cach t > a.

(D2) D is a closed subset of [a,00) x B such that D(t) = {¢ €
B; (t,¢) € D} is a nonempty subsct of B for cach ¢ > a, and for any
U € Fyxanda <7 <t if ur € D(7) and u(s) € D(s) for s € [r,t], then
U € D(t)

(D3) For each b > a, there exist a constant K(a,b) > 0 and a
continuous nondecreasing function 7, : [0,0 — a) — Ry such that
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Nap(0) = 0and if a < t; < t2 < b, uy € D(t1) and ue € D(t2)
then there is a continuous function w : [t;,t2] =& X such that w(t;) =
u1, w(te) = ug, w(t) € D(t) for t; <t <ty and

lug — u1|x

[w(t) = w(s)|x < an(lt = o) + K(a,8)]t = o] =—-

for all s,¢ € [t1,t2).

Now we consider the following abstract semilincar integral equation

u(t) = S(t,a)¢(0) + /tT(t,r)F(r, u,)dr, t>a

U, € ¢ € D(a),

(4.1)

where F is a continuous mapping from an open neighborhood v(D) of
D to X satisfying the following condition:

(F) for any ! > 0 there exist a constant L;; > 0 and a continuous
function L2 ; : Ry — Ry with Lo (0) = 0 such that

|F(t,¢) — F(s,¥)|x < La{|t — s]) + Ll — ¥\

for (¢,¢), (s,9) € D with |¢|p €I, [¢¥|p <landa<t, s<a+1l.

T = {T(t,s); t > s > a} is a Cp lincar evolution system on X and
S = {S(t,s); t > s > a} is an affine evolution system associated
with T That is, the following conditions (T1)-(T3), (S1) and (S2) are
satisfied.

(T1) T, t)u=vand T(t,s)T(s,r)u=T({,rJuforallt >s>r >
a, u€ X;

(T2) for each u € X, the mapping (¢, s) — T(t, s)u is continuous for
t>s2>a;

(T3) there are numbers M >1 and w € R such that
IT(t, s)| = sup{|T'(¢, s)ulx; |ulx <1} < Me“t=9), t,s > a;

(S1) t — 5(t,a)0 is continuous from [a,00) into X, where 0 is the
zero of X
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(52) S(t,r)u+ T(t,s)v = S(¢,8)[S(s,r)u <+ v] for all u,v € X and
t>s>r>a.

It can be shown that (see, ¢f. Martin and Smith [36]) conditions (S1)
and (S2) are equivalent to the following

(S3) there is a continuous function f : [a, 00) — X such that
S(t, s)u = T(t, s)[u ~ A(s)] + fi(t)

foralue X andt > s > a.

A function u : (—00,b) = X, b > a is a solulion in D of (4.1) if
u : [a,b) & X is continuous, (f,u;) € D and wu satisfics (4.1) for all
t € [a,b). To guarantee the invariance of the set D, we also need the
following subtangential condition:

(SC) limy+ (1/R)A(S(t+h, )(0)+ [T T (t+h,7)F(t, $)dr; D(t+
h)) = 0 for all (t,¢) € D, where d(u; D(t)) = inf{|u — v|x; v € D(¢t)}
forue X and t > a.

We refer to Martin and Smith [36] for detailed discussion on
(D1)-(D3), (S1)-(S3), (T1)-(T3) and (SC). Under the above assump-
tions, we have the following basic result on the existence and uniqueness
of a solution of (4.1).

Theorem 4.1. Suppose that (D1)-(D3), (T1)-(T3), (S1), (52),
(F) and (SC) are satisfied. Then (4.1) has a unique noncontinuable
solution u, denoted by u(t; a, d), on an interval of the form [a, b), where
a < b < 0o. Moreover, u(t) € D(t) and w, € D(t) for a <t < b and if
b < oo, then

limsup |u,|p = oo.
t—b—

Proof. The proof is similar to that in Martin and Smith [36]
for abstract integral equations with finite delay. However, since our
argument involves certain technicalitics caused by the unboundedness
of the delay, we provide the details of the proof here for the sake of
completeness. The basic idea of our proof is to construct a scquence
of approximate solutions which converges to a solution. We divide the
proof into ten steps.
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Step 1. By assumption (D3) there exists a constant M; > 0 and
a continuous nondecreasing function M, : [0,1] — R, satisfying
Mz(O) =0andifa<t; <tz <a+1l, uy € D(tl) and up € D(t2),
then there exists a continuous function w : [t;,t2] — X such that
w(ty) = uy, wlts) = uo, w(t) € D(t) for ¢y <t <ty and

[0(t) = w(o)lx < Ma(le - o)) + by - o227 01

(4.2) e

for s,t € [tl,tg].

Step 2. Because of the continuity of I : D — X, there exists 6; > 0
such that for any (¢,4) € D with |t — a| < &, and |¢ — ¢|p < 8, we
have

(43) |F(tﬂ//‘)|x S N = ll:‘((LsQ’))l-‘( -+ 1.

On the other hand, since D(a + 1) # @, by the result in Step 1, we
can find a continuous function @ : [a,a+1] —» X such that w(a) = ¢(0)
and W(t) € D(t) for t € |a,a + 1]. We now define ¢ : (~00,a+1] — X

by R
-on__Jet—a), t<a
¢(t)"{w(t), a<t<a+l,

where ¢ € B is a representing clement of ¢ € B. By (A2) and (D2),
é. € D(t) C B for any t € [a,a + 1] and ¢, — ¢ as t — a*. Therefore,
there exists d > 0 such that |, — ¢|p < 01/2 for all t € [a,a + &3]
Set dp = min{1,d1,82}. Then for any u : (—o0o,a + §] — X such
that u, = @, u : [a,a + &] — X is continuous, u(s) € D(s) and
lu(s) = ¢(0)|x < 81/(2[K (&) + 1] + 1) for s € [a,a + J), we have for
t € [a,a + o] that

lue — BB < |ue — ¢ulis + ¢ — ¢
< K(6o) sup |u(s) — ¢(0)|x + ¢ — ¢l

a<s<t
. & 1
< K(%) )+ 1 301

< 6;.
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Hence, from (4.3) it follows that

(4.49) [Ft,u)lx <N,  t€la,a+d)

Step 3. Because of the continuity of S and Mj, we can find constants
o > a and gg > 0 such that

(4.5) o+eg <a+d,

61

lwl A7 (plwl Af -
(46)  eIM(eMMN +e0)lo + 0 — ) < g R

0,

(4.7) |5(¢,0)$(0) — ¢(0)1x < 8[K (56) + 1][2M; + 1]’
t € [a,0 + g¢],
d
(4.8) My(o+ep—a

) < ARG + UM 1]

where w and M were defined in (T3). Now for any given € € (0,¢9], we
construct an e-approximate solution w and a corresponding sequence
{t;} as follows: set t; = a and define w(a + s) = ¢(s) for s < 0,
where (,7> is a fixed representative clement of ¢. Assume that ¢ is a
nonnegative integer and w is constructed and continuous on (—oo, ;]
with a < ¢; < 0+ €9 and w(t) € D(¢) for t € [a,t;]. If t; > o, then set
tiy1 = ti. lf t; < o, we define I'; to be the set of all constants -y € [0,¢/2)
such that

(4.9) lS(t, t,-)w(t,-) - w(ii)lx < g, L, <t<t+7,
(4.10)
ti+h c
d(S(ti+h,t,~)w(t,') +/ T(t.,'+h, 0)[‘1(/,1', ur, )d0, D(t,'-f-h)) < §h,
ti

where 0 < h <+, and

€
MK (o—a)+1]’

(4.11) Ju(t)-wls)lx < ; t,s € [a,ti], |t—s| < 7,



500 S. RUAN AND J. WU

(4.12) K(o — a)Ms(vy) < €/2,

(4.13) |6 - ¢ls <e/2, tela,a+4]
By assumptions (S3) and (SC), I'; is noncmpty. We let

3
(4.14) %=y sup{~; v € I';},

and t;11 = t; + ;. Because of (4.10), we can find an clement w(t;41) €
D(t;41) so that

[TESY

415)  |S(tise, tihw(ts) + / " T, 0)F (L, we,) d6 — w(tiss)
X

t;
€ (ti+1 — ti).
Finally, by Step 1, we can define w on [¢;, ¢;4+1] so that w is continuous,
w(t) € D(¢) and (4.2) holds.

Step 4. We claim that the function w constructed as above satisfies
the following properties:

(4.16)
0y o )
lw(t:) — #(0)|x < ARG+ RM 1] fori=0,1,2,...;
(4.17)

lw(t) — ¢(0)|x <

(4.18)
|F(t,‘,’wt‘.)|xSN, 1=0,1,2,....

1 :
—_— - A .f,,', =0, ,2,...;
K o) 1] for t € [a, 4], i = 0,1

These estimates can be proved simultaneously by induction on i.
Clearly, (4.16), (4.17) and (4.18) hold for ¢ = 0. Assume that £ > 0 is
given such that (4.16)-(4.18) hold for all ¢ = 0,1,2,... ,k. Then, from
(4.15), (T3) and the fact that ¢;41 —t; <a+1—a = 1, it follows that

(4.19)  [S(tisr, t)w(ti) — wltiv1)|x
ts+l
’ T(tipr, O)F (ti,we, ) d|  +e(tivr — i)

X

< (e"‘”'MN +eg)(tigr —t;) fori=0,1,2,... k.
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Therefore, by (S2), (T1), (T3) and (4.15) we have

sup{e™"|T(ti+1 + 7, ti41)[S(ti+1,a)$(0) ~ w(tis1)]|x; r = 0}
< sup{e™“"|T(tiv1 + 7y tit1)[S(tiv1, t:)S(ti, a)$(0)
= S, t)w(ts)][x; 7 2 0}
+ sup{e ™| T (L1 + 7y ti1)[S (i1, t)w(ts) ~ w(tiya)]|x; 7> 0}
< sup{e™"[T(tiy1 + 7 ti41)[S(ti, a)(0) — w(ti)]|x; v > 0}
+ M\ MN + e0)(tig1 — t:)
< et quple™ T T (¢ + 7, 8:)[S (i, )d(0) — w(t;)]|x; r > 0}
+ M(e“IMN + eo)(tis1 — t),

wherei = 0,1,2,...,k. Using the above inequality fori = 0,1,2,... ,k,
we can easily get

sup{e“‘"|T(tk+1 + tk+1)[S(tk_|_1,(l)(f)(0) - 'w(tk“)]lx; > O}
< el M (eI AN + €0) (tis — a).

Consequently, by (4.6), we obtain

(4.20) [S(tk41,a)$(0) — w(tr41)|x
< sup{e™"T(tkt1 + 7, tkt1)[S (Bet1, @)(0) — w(te+1)]|x; r > 0}
< eI (e IMN + £0)(tisr — a)
1
< 8K (o) + UM, + 1]

Hence, by (4.7) we get

[w(te+1) — #(0)|x < jw(trs1) — S(trs1, a)e(0)|x
+ [S(trs1,a)p(0) — 6(0)[x
4y
< K Go) + UM, + 1)
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Moreover, by (4.2) and (4.8), for t € [tx, tk41) we have
lw(t) — $(0)lx < |w(t) - wlte)lx + lw(te) — H(0)]x
< Mz(lt _ tkl) + Ml (w(tk;:—zl_—'u;itk)lx (t _ tk)
+ |w(ts) — #(0)|x
< Ma(o + g0 — a) + Miffw(ti+1) — 6(0)|x
+ [w(ti) = #(0)|x] + lw(te) — #(0)[x

< % + M, 2
4[K (dg) + 1][2M; + 1] 2[K(do) + 1][2M; + 1]
+ J
4[K(8o) + 1][2M + 1]

&
< ARG + 1|

Therefore, by the result of Step 2, [F({ky1,w,,,)|x < N.

Step 5. Let p = lim;, o ¢;. Obviously, p exists and w is defined on
(@, p) with w(t) € D(t) for all t € [a, p). We claim that z = lim,_, ,- w(t)
exists and z € D(p). Indeed, using a similar argument as that for (4.20),
we obtain for j > k,

(4.21)

IS(t;, t)w(ty) —w(t;)|x < elw'(tj_t")]\?((flw’MN +eg0)(t; — tx)
where N = e“‘"(/"’“)./’\/[\(e“’U\/J\N + €0). Let € > 0 be given and choose

k > 0 so that 2N (p — t}) < £/2. By the continuity of S, we can find an
integer n(g) > k such that

(4.22) St te)w(ty) — Sy, t)w(ty)|x <E/2 for i, 2 n(E).
Therefore, for ¢, 7 > n(g) we have
lw(t:) — w(ti)lx < lw(ti) — S, wlts)|x

+ 1S (ki tew(te) = St tewte) x

Sﬁ(p—tk)+%+ﬁ(p—tk)<€.
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Hence, z = lim;_, o, w(t;) exists. Since (¢, w(t;)) € D and D is closed,
it follows that (p, z) € D. Morcover, by (4.2) we have
| lw(tiy1) — wlts)lx
Lip1—t;
< Ma([tigy — ti]) + Mrjw(tiva) — w(ts)|x,
t; <t <ty

lw(t) — w(t:)|x < Ma(lt — ti]) + M|t —t;

This implies that w(t) > zast — p~.

Step 6. We show that the e-approximate solution constructed above
is defined in [a, 0], i.e., there is an integer » = n(e) so that ¢, > o.
By contradiction, if no such n exists, then £{; < o for all ¢ > 1,
lim;,00ti = p £ o and lim;,o w(t;) = 2. Let w(p) = 2. Clearly,
w, € D(p). By the subtangential condition (SC), there exists a constant
d > 0 independent of %, such that (4.9), (4.11), (4.12) and (4.13) hold
with ~ being replaced by 4. Moreover,

d(S(p+n,p)Z+/p

for all n € (0,4]. (A2) implies lim;-, o wi, = w,. Therefore, we have

p+n €
T(p+n,0)F(p,w,)dd; D(p-+ n)) <37

ti+n

€

d(S(ti +n,t)wlt;) +/ T +n,0)F (L, w,)d8; D{; + 77)) < X
ti

for sufficiently large 7. This implics that § € Ty, hence § < 44;/3 =

4(t; 41 — t;)/3 = 0 as i — oo, a contradiction to the independence of §

on 1.

Step 7. We now construct a sequence of approximate solutions. Let
{€,}52, be a decreasing sequence in {0, gg) such that €,, = 0 as n — oo,
and for each n > 1 let w™ and {¢}'}{2, be as constructed above with
€ = €q, t; = t7 and w = w™. Therefore, by the result in Step 6, for cach
n > 1 there exists an ng = no(n) such that £ > o. For convenience,
we define a comparison function v™ for w" as follows

(4.23) t
(1) = 56,000 + [ TOFO O uine) s, tefadl

v (a+6) =0 for <0,
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where 4" : [a,0] — [a,0] is given by y"(t) = t} for t} <t < t},. We
claim that there exists a constant P > 0 mdcpcndent of n, such that
(4.24)

lvn(t) - wn(t)lx < Pmax{e,,,Mg(en)}, aft<o,n= 1a27 e
Indeed, by (S2) we obtain, for ¢ < s <t < g, that
vn(t) = S(t7 S)S(S, a)$(0)

+T(, ) / (s, 6)F (1" (6), wl0y) O

¢
(425) /T(t OYF (7™ (0), win (g)) 4O

t
= S(¢, s)v™(s) +/ T, 0)F (" (0), win (g)) dO.
8
Note that foreachn > land i = 1,2,..., we have

sup{e™“"|T () + r 8 D" (ty)) — w" (6 )]lxs » 2 0}

= sup{e™" | T(t7y1 + 7 17 IS0, )" (1)

th
b [ T OF (M), W) 0 - ()] 5720}
t X

n
i

< sup{e™ [T (tyy + 1 1) [S(Eh 1, 10" (E1)
— S(t1, £ (1P)]lx; 7 2 0}

T(t7q + ot ) S, 1w (8])
; 7'20}
X

< sup{e™"|T (741 + 7, 1) T (80, 8™ (8) — w™(89)]1x; 7 2 0}
e

i+l
S(t7 s (D)W (E2) + / T(t,1, 0)F(y"(0), wl ) d6

n
t i

+Sup{ —wr

thn
+ / T(t71,0)F (7 (6), wl gy) dO—w" (£2,1)]
t

n
i

+M

—w™( :l+1)
X

= sup{e™“"|T (1 + r, )" (&) — w" (F)][x; » = 0}
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— thh
+ M[S(R o (67) + / (L2, 1, 0)F(7"(0), W ) dB
t

- w ()

Therefore, by (4.15), we have
sup{e™“"|T(t7yy + 7t )" (1) — w™(t)][x; v 2 0}
< elwl(td =) sup{e™*"|T(t} + r, t") " (t}) — w"(tM)]|x; v > 0}
+ Men(tp, —tF),  i=0,1,2,....

Applying the above inequality at 0,1,2,... ,i and using e/t -t <
elwl(t?+l_a)’ we get

[o™ (8241) — w™ (1) |x
< sup{e“”|T(t?,H +7, ?+1)[U"( :‘+1) - w"(t?+1)|x; r >0}
< eI e, (1 o)
< an,
where Q = e"”'("‘“)ﬁ(a —-a). If t} <t <t < o, then by using
(4.25) we get
(O)-u"Olx < |S )

t
+ [ TEOFG"6), w500 - S8 Ew(e?)
o
+|S(, 7 )w™ (47) — w™ (8})
By (S3), (T3), (4.2) and (4.9), we have

X
x 4w (t}) — w"(t)

X

o™ (t) - w™(t)lx < Ml (@) — (1) x

t
/ T(t,0)F(7"(8), wl (g)) d6
t

n
i

-+

+en+ ]\’Iz(t?+1 - t?) + A{1|wn( :t+1) - w"(tin)lx
< Melle=ade, 4 Afellle=a ng,
+e,+ M2(5n) + Ml|w"(t?+1) - wn(t?)l)ﬁ
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where we used the fact that t — t? < ¢}, —t? < e,. By (4.21) and
(4.9), we obtain

lw™ (t21) — w™(t)]x < |w" () — S, t)w™ () x
+ 80, 1w (1) — w (87| x
SN — 1)) +&n
< (N + 1)eq,

(4.26)

where N = el?l(e=9)(el*| AN + £4). Therefore

o™ (t) — w(t)|x < [Mel=(J + N)+ 1+ Mi(N + 1)Je, + Ma(en).

This proves (4.24).

Step 8. We claim that there exists a constant ¢ > 0 independent of
t € [a,0] and n > 1, such that

|wi — wing))le < Qmax{en, M2(e,)} forté€la,0], n=1,2,....
Indeed, for all n > 1 and ¢} <1 <t} < o, by (A3) we have

lw' = whayle = |wg’ - w?;'lu

(4.27) SK@P—a) sup |w"(t—t} +s) —w"(s)|x

a< sty

+ Mt} — a)|jwis e é|B.
On the other hand, by (A3) we get

|w?—t;*+a - ¢lp < |w?—t;‘+a - $L—t:'+u.|13 + |$t—¢;-+a - 9|

SK(@-t'+a) sup  |w(s)—6(0)|x
als<i—t}+a

+ |$t—t;‘+a - ¢|B-
Therefore, (4.11) and (4.13) imply that

£
4.28) [wiipia—dlp < K(o- : 2
(428) fullgpya = 9la S Ko - @) e + 5

:

rhlw
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2

Moreover, if t — t? + s < ¢, then from (4.11) it follows that

En

(4.29) Wt - & +9) v G)x S I RG —oF 1)

and if s <17, t -t} 4+ 5 > 17, then

En

lw™(t}) — w"(s)|x < 4MK(o — a) + 1]

and by (4.2) we have
|lw™(t — 87 + 8) — w"(s)|x
St ="+ s) —w™(t])|x + [w™(t) — w™(s)lx

En
< ngn - T (g7 .
< Ma(en) + My|w™ (#y,) — w"™(6)|x + A[M K (0 - a) +1]

This, together with (4.26), implics that
(4.30)
[wh(t—t7+8)—w™(s)|x < Ma(e,)+ M (N+1)e, En

WA CEES

Substituting (4.28), {4.29) and (4.30) into (4.27), we obtain

lwg' = win(ylp < Ko - a){Mg(sn) + My (N + en

E'"-
YK —a) ¥ 1] }

3
+ sup M(s~—a)- —e,.
a<ls<o 4

Step 9. We show that {w™(¢)}22, is uniformly Cauchy on [a,0]. In
fact, by (4.17), we have

n ]
() = 60l € gy

and hence from the argument in Step 2, we have

lwi' — ¢l < 41
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This implies that
lwi s < |¢ls + 61

Therefore, by the Lipschitz condition of F, there exist a constant L; > 0
and a continuous function Ly : Ry —» R4 such that L;(0) = 0, and for
all d € [a,0], n,m > 1, we have
|F (7" (8), wia(g)) = F(7"™(8), wim(9))|x
< L1|w11',.(0) - w—?n(o)lB + L2(|7n(‘9) - 7m(0)|)
By the results in Step 7 and Step 8 as well as assumption (A3), we get

|F(7"(0), win(g)) — F(¥™(8), wi(g))]x
< Lilwg — wg'|p + LiQ max{e,, Ma(e,)}
+ LiQ max{en, Ma(em) } + La(|7y"(0) = v™(0)])
< LiK(o—a) sup [u"(s) - w™(s)|x
a<s<O

+ LIQ max{é‘n, M2(€n)}
+ LIQ max{em, M2(5m)} + L2(|’7"(9) - 7"1(0)')
< LiK(o —a) sup [v"(s) —v™(s)|x

a<s<Ld
+ Li[K (o ~ a) P + Q) max{en,, Ma(en)}
+ Li[K(o — a)P + Q) max{em, M2(em)}
+ La(|y™(8) — v™(O)])-
By the definition of v™, it follows that
[v™ (8)—v™ (t)|x

¢
< [ ITEOIFGMO), ) = FG™(6), 0 o) xd0
t
< LiK(e=a) ] [ sup 0" (5)=0" (9 x4,
« u<s<0
where
Nnm = Llﬁeh"l("‘“)(a —a)[K (o — a) P + Q] (max{e,,, Ma2(€.,)}
+ max{e,, M2(em)})
+ M= (g — a) max La(]y"(r) — v™(r)))-
a<r<o
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Hence, by the well-known Gronwall integral incquality, we have

sup [v™(s) — v™()|x < Mm exp(L1K (0 — a)Mello—a)t=a)) g
a<s<t

uniformly for ¢t € [a,0] as n,m — oo, since pym — 0 as n,m —
oo. Therefore, {v™(¢)}52, is uniformly Cauchy on [a,0], and so is
[ (D)2, by (4.24).

Step 10. Let u(t) = limpeo w™(t) uniformly for ¢ € [a,0] and
u(t) = ¢(t — a) for t < a. Clearly (t,u(t)) € D since (t,w™(t)) € D
and D is closed. We claim that u(t) is a solution of (4.1). In fact, by
the result in Step 8 and assumption (A3), we have

[Win(sy — utlB < [Winy — Wil + |0 — wlp

< Qmax{en, M2(en)} + K(0 — @) s<u§t |w™(s) — u(s)|x.

This implies w(, ) — w; in B uniformly for ¢ € [a,0] as n — o0, and
hence
F(y™(t), wingy) = F(t,w)

uniformly for ¢ € [a,0] as n — co. Thercfore

u(t) = lim {S(t,a)¢(0)+ / T(t,())F(—y”(O),w;'n((,))dO}
t

= S(t,a)p(0) + / T(t,0)F (0, 1)df.

a

This establishes the existence of a solution of (4.1) on [a, g].

The uniqueness and continuation can be proved by using the standard
technique. The proof is complete. o

As a consequence of Theorem 4.1, we obtain the following invariant
property:

Corollary 4.2. Suppose that Ky and K, are nonempty closed,
convex subsets of X and B, respectively, such that (D2), (T1)-(T3),
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(S1), (S2) and (F) are satisfied with D = [a,00) x Ky and D =
[a,00) x K3. Moreover, assume that

(i) S(t,8)K1 C K, fort> s> q;
(ii) limy_,o+(1/R)d(4(0) + hF(t,¢); K1) = 0 for (t,¢) € R x K;.

Then the unique noncontinuable solution u : (—oo,b) = B, b > a of
(4.1) satisfies that u(t) € K1 and us € K for all t € [a,b).

Proof. Obviously, (D3) holds since D(t) = Kj is convex. To prove
Corollary 4.2. it suffices to verify that

. 1 t+h
;.l_'fg+ Ed(S(t + h,t)¢(0) +/t T(t+ h,0)F(t, ¢)db; Kl) =0

for (¢, ¢) € [a,0) x K. Indeed, for given h > 0 and (¢, ¢) € [a, 00) x K>,
define ¥ : (—oo,t + h] = X by ¢, = ¢ and ¥(0) = S(0,t)¢(0) for
6 € [t,t+h]. Since S(0,t)K; C K, for t < 6 < t+h, by assumption (D2)
we have ¥y4+n € K2 and ¥4, is continuous in h € R,. Therefore, the
set {(£, Ye+n); 0 < h < 1} is a compact sct of [a, 00) x K7. This, together
with the convexity of the function h € Ry — d(¢(0) +hF(t,¢); K1) €
R, as well as the continuity of F, shows that assumption (ii) implies
that limp, o+ (1/h)d(¥(t + h) + hF(t,%e4n); K1) =0.

On the other hand, by (A3), we have

[Ye+n — Y15 < Weth — Seanln + 1Gern — SlB
< K(h) sup [5(6,t)$(0) — ¢(0)|x
t<O<t+h

+|¢t+n —¢lp >0 ash— 0"
and for any €; > O there exists h; > 0 such that if 0 < h < hj, then
IT(¢t+ h,0)F(t,8) — F(t,¢)|x <e1, t<O<t+h

Hence, if 0 < h < h,, we obtain

1 t+h
Zd(s(t+h’t)¢(0)+/ T(t + h,0)F(¢t, $)d0; 1(1)

< 2d(S(t + h, )$(0) + hF (¢, 8); K:)

bl i
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1 t+h
3| [ rernore.o-Fe.ola
t X
< %d(g(t + B 1)$(0) + hE(t,8); K1) + €1

< %d(w(t + h) + hF(t, Yeen); K1)

+ |F(t, Yern) — F(t, @) x + &1
—0 ash—=0.

This completes the proof. o

5. Comparison and monotonicity principles for semilinear
integral equations. In this section, we show how to apply the
general results in Section 4 to obtain some comparison principles.

Let St = {S*(t,s); t > s >a}and S~ = {S™(L,s); t > s > a}
be given families of mappings from X to X which satisfy the following
conditions:

(C1) St and S~ satisfy (S1) and (S2) with S replaced by S* and
S~, respectively;

(C2) S~ (t,8)x < S(t,s)zx<St(t,s)rforallt >s>aand z € X.
In addition to (T1), (T2) and (T3), we require that
(T4) T, )X+ C X, fort>s>a.

Suppose that v* : (—o00,] & X, b > a are given such that
v¥ € B, vt :[a,b] = X are continuous and the following condition is
satisfied:

(C3) vy <pwv} and v=(¢) <x v*(t) for t € [a, ].
Let

D(t) = [v™ (1), v*(®)]x, D(t) = [v;, vi]s fort>a.
Define
D = {(t,z); t > a,z € D(t)} and D= {(t,¢); t >a,¢ € D(t)}.

Clearly, (A5) implies that (D2) is satisficd. We assume that there exist
continuous mappings F* : D — X such that
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(C4) wH(t+h) 2 SH(E+ ht)or(t) + [T T(t + h,6)F+(8,v])db,
a<t<t+h<d

(C5) v=(t+h) < S=(t+h,tyo~(t) + [[T" T(t + h,6)F~(8,v;)db,
alt<t+h<d

(C6) limy,_,q+(1/R)d(v* (0) — #(0) + h[F*(t,vf )~ F(t,8)); X4) =0,
a<t<b, (t!¢)€D;

(C7) limy_,o+ (l/h)d(d)(O) —v=(0)+h[F(t, §) ~ F~(t,v])); X+) =0,
a<t<b, (t,¢)€D.

Now we can state and prove the following general comparison princi-
ple:

Theorem 5.1. Suppose that (T1)-(T4), (S1), (82), (F), and
(C1)—(C7) are satisfied. If v; <p ¢ <p v}, then the abstract semilin-
ear integral equation (4.1) has a solution u on [a,b) for some b € (a, b]
such that

v (t) <x u(t) <x v*(t) and v <pu, <p vy
for t € [a,b).

Proof. It has been shown in Martin and Smith [36] that (D3) is
satisfied with D(t) = [v=(t),v*(t)]x on [a,b]. By using assumptions
(C2), (C4), (S52) and (T3), we can show that i[ ¢ € [a,b], ¢ € D(¢) and
h > 0 is sufficiently small, then

t+h
d(u+(t + h) — S(t + h, t)¢(0) —/ T(t + h,0)F(t, $) db; X+>
< d(S*(t + hy )t (8) — St + b £)6(0)
t+h
+ / T(t + h,0)[F*(0,v}) — F(t, ¢)] db; X+)
< d(S(t + h,t)vt(t) = S(t + h,t)¢(0)

t+h
+ / T(t + h,0)[F*(6,v}) — F(t, )] db; X+)
t
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- d(T(t T b Ot (t) - 6(0)]

t+-h
+ / T(t+ h,0)[Ft(8,v]) — F(¢, $)|d6; X+)
< d(T(t+ h, t)([v* (t) ~ ¢(0)] + h[Ft(t,vf) — F(t,4)]); X+)

t+h
+ ! / T(t + h,0)[F*(0,v]) — F(t,¢)] do

— hT(t + h, t)[F*(t,v;) - F(t,¢)]
X
< Me“rd(v* (t) — (0) + h[FH(t,v}) — F(t, d)]; X4)
t+h

+ T(t + h,0)[F*(8,v)) — F(t,4)]do

t

— hT(t + h, )[F(t,v}) - F(t, qﬁ)]' .
X
Therefore, by assumption (CG), we get
. 1 +
hl_l)%l+ Ed(v (t+h) — S(t+h,t)e(0)
t+h
- / T(tL + h,r)F (L, p)dr; X+) =0.
t
That is,

lim %d(S(Hh, t)é(0)

h—0+

t+h
+ T(t+h,0)F(t, $)do; (—oo,v+(t+h)]x> =0.

t

Similarly, we can prove that
lim ~d(S(t+h,6)6(0)
h—0+ h ’

t+h
+/+ T(t+h,r)F(t, ¢)dr; [v_(t+h),oo)x) =0.
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These imply that

t+h
lim 1d(5(t+h,t)¢(0) + [ T(t+h,r)F(, ¢) dr;
h—0+ h ¢

v~ (t+h), v+(t+h)]x) = 0,

which completes the proof, by Theorem 4.1. n]

As an immediate consequence of the general comparison principle, we
obtain the following monotonicity principle:

Theorem 5.2.  Suppose that (T1)-(T4), (S1), (S2), (F) and
(C3)—(C5) are satisfied with St =S~ =S and F* = F~ = F. More-
over, suppose that F satisfies the following quastmonolonicity condition

(QM) Lim_,0¢ (1/R)d(¥(0) — 6(0) + KF(t,¥) = F(t,¢)]; X4) = 0
for all (¢, ¢), (t,v) € D with ¢ < 1.
Then for each ¢ € D(a) with v; <p ¢ <p v}, equation (4.1) has a

unique solution u(t; a, ¢) on [a,d), where a < b = b(¢). Furthermore, if
vy <B ¢ <BY <V, then

v (t) <x ult;a, @) <x u(t;a, i) <x vH(t)

and
v; <p wla, @) <p wla,9¥) <puv;

for all t € [a,b), where b= min{b(¢),b(x)}.

Throughout the remainder of this scction, in order to establish
some strict inequalities leading to the so-called quasi strongly order-
preserving property, we assume that the Banach lattice X is a product
space X = H:’;l X, where m is a positive integer, X; is a Banach space
with a cone X; C X; such that X, = []/%, X;'. We shall use > x, and
>x to denote the partial order on X; and X induced by X and X,
respectively. Therefore, if z = (2;)™, vy = (y;)" € X, then ¢ >x y if
and only if z; > x, y; for i € {1,2,... ,m}.

We first assume that (T1)}—(T3), (S1) and (S2) are satisfied by T and
S which are defined as follows:
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(CT1) T(t,8)x = (T,-(t, s)w,-)'ln, where T;(t,s) : X; — X; for all
t>s>aand z = (2;)" € X;

(CT2) S(t,s)x = (S,-(t,s)z,-)'ln, where Si(t,s) : X; — X; for all
t>s>aand z= ()7 € X.

Moreover, we assume that (C1)-(C7) and (F) are satisfied with

v¥ = (of)], F = (F)], F* = (F)]", where v} maps (—o00,b)

into X;, F;" maps D into X;, and F; maps a necighborhood of D into
X;.

Under these assumptions, system (4.1) can be reformulated as

t
u;(t) = Si(t,a)$:(0) +/ Ti(t, ) Fi(r, u, )dr, t>a
u(a+0)=¢:(0), 6<0,

(5.1)

m

where ¢; = ((f),);" and u = (u;); is the solution of (4.1). From
Theorem 5.1, if v; <p ¢ <p v}, then v; (t) <x, wi(t) <x, v (t)
and v; <pu; <p vy fort € [a,b) and i = 1,2,... ,m.

The following one side Lipschitz condition will be useful in establish-
ing strict inequalities:

(L1) for each ! > 0 there exists L; > 0 such that
Fi(t,¢) = F7 (t,v7) 2 —Li[¢:(0) — v} (2)]

foralli € {1,2,...,m} and (¢,9) € [a,a+!] x B with v, <p ¢ <p v}
and |¢|p < L.

Under this assumption, it can be shown (by using the same argument
as that for Lemma 3.1 in Martin and Smith [36]) that, if u = (u.,-);"

is the solution of (4.1), b € (a,b) with b — a < I and |u|p < I for all
t € [a,b], then

(5.2) ui(t) — vy (t) 2x, €™ LTI (¢, o) [uslto) — v] (to)]

foralla<ty<t<bandi=12,...,m.
For each i € {1,2,...,m}, let X} be the dual space of X; and

Pr ={®; € X}; ®;(z;) 2 0for all z; € X;}}.



516 S. RUAN AND J. WU

Following Martin and Smith [36], to achieve generality we introduce a
nonempty index set A; and assume that for cach p € A; there is a given
€ P?. Let
A = {(I)f; peEAN}

The inequality (5.2) motivates the following abstract “maximum prin-
ciple”:

(MP) ifi € {1,2,...,m} and z; € X:', then ®¢(z;) > 0 for some
o € A; implies that ®7(T;(t,t0)z;) > 0 for all t > ¢y > a and all p € A;.

From inequality (5.2) it easily follows that assumptions (L1) and
(MP) imply that

(5.3) if ®F(ux(to)) > ®Z(vg (to)) for some to € [a,b) and o € Ay,
then &% (ux(t)) > @4 (v (t)) for all t € (to,b] and p € Ay.

In order to obtain strict inequalities for other components, we need
the following “irreducibility” condition:

(I1) there exists a constant 73 > 0 such that if {1 and ¢, are given
constants such that a < t; < t; + 7, < ¢2, L is a proper nonempty

subset of {1,2,...,m} and w = (wj)lu : (—o0,t2] — B is given such
that w : [t1,2] — B is continuous, w,, € B and

(a) vy, <p wy, <p vyl and v~ (1) <x w(t) <x v (t) forallt € [ty ta];

(b) @f(w;(t)) = 4 (vj (1)) for all j € B¢, p € A and L € {t,15);

(c) ®f(w;(t)) > ®f(vy(t)) forall j € , p € Aj and ¢ € [ty,t2];
then there exist a k € ¢ and a o € Ay such that

Sup{®(Fe(t, we)) — BL(Fy (t,0)); 11 S 1 < 5} > 0

forallt) +7 < s<ts.

We are now in the position to state our first result on strict inequal-
ities relative to v~ (¢). Similar results hold for v*(¢t).

Theorem 5.3. Suppose that, in addition to all conditions of Theorem
5.1, (MP), (L1) and (I1) are satisfied. Consider the solution u of (4.1)
defined on [a,b). If there exists aty > a such that t; +(m—1)1; < b and
®7(u;(t1)) > 7 (vj (t1)) for some j € {1,2,... ,m} and some o € A;,
then there ezists a t,, € [t1,t1 + (m — 1)71) such that

@7 (uit)) > @ (v (1))
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for all t € (tm,b), i€ {1,2,...,m} and p € A,.

Proof. Let ¥ = {j}. f m = 1, then by (5.3) we are done. If m > 1,
then L is a proper and nonempty subset of {1,2,... ,m}. We now fix
€€ (0,b—t; — 71) and claim that there exists k € £¢, o € A; and
some ty € [t1,81 + 71 + €] such that ®F(ux(t2)) > ®7(v; (¢2)). By the
way of contradiction, if the claim is false, then ®f(ux(t)) = ®4(vf (2))
for all k € ¢, p € A and ¢ € [t;,¢; + 71 + ¢€]. By (I1), we can find
k € £°, o € Ax and a sequence {¢;}{° in (0,¢) such that ¢; — 0 as
J — oo and

F(Fi(ts + 11+ €5, Uty e )
— BU(FT (6 + 71+ €5,V 1 4e,)) > 0

By continuity, one can find Zj € [t1 + 1.ty + 11 + €5] such that
‘I)Z(Tk(fq + 7+ e,-,0)[Fk(0, ug) — Fk_(o,’ug)]) >0
for t; < 6 < t; + 7 +¢;. Therefore

OF (ur(ts + 11+ €5) — v (b1 + 71 +¢5))
> BF(S(tr + 11+, 8)[un(t;) — vi (1))

ti+T1+e;
+ﬁ @Z(T(h +71 + Ej,tG)[Fk((),U()) — Fk_(a,’uo)]) df

¢
>0,

a contradiction to the assumption that ®f(ui(t)) = @F (v, (t)) for all
t € [ti,t1 + 7 +el.

Therefore, there exist k € £°, o € Ay and some ¢, € [t1,t; + 71 + €]
such that ®F(ur(t2)) > ®7(vg (t2)). By (5.3), we have ®f(ui(t)) >
4 (v (¢)) for all £ > o and thus for t > ¢; + 71 + €. Because of the
arbitrary choice of €, we have @} (ui(t)) > ®{ (v () for all p € Ay and
t > to, where t2 is some number in [t;,¢; + 71].

If m = 2, then we are done. I m > 2, by repeating the above
argument m times, we will arrive at the conclusion. o

In order to obtain strict inequalities between compatible solutions of
(4.1), we assume
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(L2) for each ! > 0, there is an L; > 0 such that
Fi(t,¥) — Fi(t,¢) 2 —Li[%:(0) — ¢:(0)]
for all i = 1,2,...,m and (t,¢), (t,%) € [g,a + 1] x B with v; <p

¢ <p Y <p vy and |¢|p, [¥|z <}

(I2) there exists a constant 7; > 0 such that if ¢; and tp are given
constants with a < t; < t1 + 11 < t2, ¥ is a nonempty and proper
subset of {1,2,...,m} and w¥ = (w5)}" : (—00,t5] = X are given
such that w* : [t1,t2] = X are continuous, wfi € B and

(a) v, <pw;, <pwf <pvf andv7(t) <x wT(t) <x w(t) <x
vt (t) for all t € [t1,22);

(b) ®5(wf () = ®5(wj (t)) for all j € £°, p € Aj and t € [ty,t];
(c) @5(wi(t)) > @f(wy(t)) forall j € L, p € Aj and t € [t1,ta];
then there exist a k € X.° and a o € Ay, such that

sup{®7 (Fi(t,w;)) — 7 (Fr(t,w;)); 8, <t <s}>0

forallt; + 711 < s < ta.

Theorem 5.4. Suppose that, in addition to the assumptions for
Theorem 5.2, (L2) and (I2) are satisfied. Then for $* € B with
vy <p ¥~ <p ¥t <p v}, if ut denotes the solutions of (4.1) on

[a, b(x*)) with ¢ = ¢, respectively, then

v (t) Sx uT () Sx wt () <x vt(D),

vy <pu; <put <pvl, a<t<b,

where b = min{b(x~),b(y)}. Also, if there is a 1y > a such that
i+ (m -1 < b and (I>;f'(uj+(t1)) > ®7(uj (t1)) for some j €
{1,2,...,m} and some o € Aj, then there is a t,, € [t1,81+ (m—1)7q]
such that

7 (uf (8)) > @ (u; (1))

for allt € (tm,b), i € {1,2,... ,m} and p € A;.

Proof. This is an immediate consequence of Theorems 5.1 and 5.3.
a
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6. Applications to reaction-diffusion equations with dis-
tributed delay.  Suppose 2 is a bounded region in R™ with 92
smooth, C(§2; R™) is the Banach space of continuous functions from Q
to R™ with the supremum norm, A is the Laplacian operator on € and
8/0n is the outward normal derivative on 8. Let X = C({}; R™) and
B be a phase space satisfying (A1)-(A5) with X = C(; RT) asspec-
ified in Section 3. Consider the following nonlinear reaction-diffusion
system with infinite delay

%u"(t, z) = Fi{t,u)(z), t>a,z€N, 1€
ul(,z) = ¢ (., ), zeQ, ieX

61) Qui(t,z) = ddui(t )+ Bt uw)(e),  t>a zeQ i€

oi(z)u'(t,z) + %u"(t,w) =fi(t,x), t>a,z€dQ,icXf

i (,z) = ¢ (., ), reQ, ieXy,

where

(H1) X, is a given subset of {1,2,...,m} and d; > 0, o; €
CY(Q; Ry) and B; € C?(Ry x {; R) for i € If;

(H%) a > 0 is a constant, ¢ = (¢;)* € B is a given initial function
and ¢ is a representing element of ¢;

(H3) F = (F)P : Ry x B = C(Q; R™) is continuous and for each
1 > 0, there exists L1y > 0 and Lo : Ry — Ry with Ly ;(0) = 0 such
that

|F(t’¢) - F(S, d))lC(ﬁ;RM) < Ll,l|¢ - ¢|B + L2,l(|t - 5|)
forall 0 <t, s <l and ¢, ¥ € B with |¢|s, |¥|s <.

For i € X§, let A* : dom(A’) C C(Q; R) — C(Q; R) be the linear
operator defined by

dom (A*) = (ui € C*( R) N CHQ,; R); aut + é%ui =0on BQ),

At = d;Ad, u € dom (.A'i).
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Then the closure of A* generates an analytic, nonexpansive and positive
semigroup {T;(¢)}:>0 on C(; R) (see, cf. Mora [46] and Rothe [59]).
Assume that v* : [0,00) x 2 = R is a smooth mapping satisfying
(27 (1,2) + ' (t,z) = filtyz) on (0,00) x B
Define
Si(t, s)wh = T;(t—s)[wh— fi(s)] + i (t), t>s>0, wh € C(;R),

where
N i ¢ LN 9 i
f:(t) = 7' (¢) +/0 Tt - 3)[111'A7 (s) = 5 (3)] ds.

For i € £y and v}, w§ € C(Q; R), define
Ti(tyh = v, t=0,
Si(t, s)wy = wy, t>s>0.
Let
(6.2) v (t; -, vh) = Ti(t)vd, v € C(LR), t >0,
and
(6.3) wi(t, s, -, wh) = Si(t, s)w, wh € C(GR), t >s>0.

Then vi(t; z,v}), i € T, is a solution of the following linear system
(6.4)

%v"(t,x) = d;Avi(t, x), t>0,z€Q, i€

a;(z)v'(t, ) + %vi(t, z) =0, t>0, x €09, i€
v1(0,z) = vi(2), r€Q, i€ X,

and wi(t,s,z,wh), i € L, is a solution of the following nonhomoge-
neous system
(6.5)

%wi(t,x) = d;Aw'(t, z), 1>s20,z€0,i€X;

a;(2)w(t,z) + %wi(t,x) = Bi(t, x), t>82>0,2€dQ,i€X§

w'(s, ) = w'(x), s>0,z€Q, i€ X,
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It is known that (T1)—(T4) and (S1)-(S2) are satisfied (see, cf. Martin
and Smith [36, 37]). We will call a solution of the abstract integral
equation

t
u(t) = S(t, a)$(0) + / T(t - 0)F(0,us)d, t3>a
a
ua €6, (a,4) € Ry x B

(6.6)

a mild solution of (6.1). Hence by Theorem 4.1, for given closed subsets
D C [a,00) x X and D C [a,00) x B satisfying (D1)-(D3), we have the
following result about the existence and uniqueness of a solution of the
general nonlinear reaction-diffusion system (6.1).

Theorem 6.1 (Existence). Suppose that the operators T = {T'(t)}1>0
and S = {S(t,8)}t>s>0 defined above satisfy (SC). Then system (6.1)
has a unique noncontinuable mild solution u, denoted by u(t;a, o), on
an interval of the form [a,b), where a < b < co. Moreover, u(t) € D(t)
and uy € D(t) fort € [a,b) and if b < oo, then

limsup |us| g = 0.
t~b—

We now show the existence of solutions of the nonlinear equation
(6.1) relative to given upper “and lower solutions. Suppose that F s
(FT : [a,00) x B = C(§; R™) are continuous functions, vt =
()P i (—o0,¢) = C(Q; R™) are given mappings, a < ¢ < 00, such
that

(UL1) vZ € B with v7 < v} and v*(t) € X with v~ (t) <
vi(t)fora<t<c

(UL2) if i € 5§, (8/0t)f,
continuous;

(UL3) if i € Eo, (8/0t)vE : [a,c) = C((; R) is continuous;

(UL4) there exist 8 € C?(R; x ; R) for i € Z§ such that

C(S;R™)

(0*/0z®)vE : (a,¢) = C(QR) are

Dt (62) 2 o (,2) + B (60 (),

a<t<c, z€RQ, i€X]
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pTa vt (t,x) > Fit(t,v})(z),
a<t<ec,rell i€,
as(e)oi (1) + v (,2) = B (4,2) 2 Bult ),
a<t<ec,z€d i€X]

and

v; (t,z) < diAv] (¢, z) + F7 (¢, v )(x),
a<t<c,z€N, i€Lj
vy (t,z) < F (t,v; )(z),

a<t<c,zef, i€y

0
ot
0
ot

ai(z)v; (t,z) + E%U;(t’x) = 07 (t,x) £ Bi(t, x),
a<t<c z€d, i€k

We have the following result about the existence of a solution for
equation (6.1) relative to an upper solution (v*) and a lower solution

(v™).

Theorem 6.2. Suppose that conditions (UL1)-(UL4) are satisfied
and

(FC) for any (t,¢) € [a,00) x B with v, <p ¢ <p vy, we have

(a) if & (0)(z) = v (t)(z) for some k € {1,2,...,m} and z € 0,
then Fi(t,¢)(z) < Fy (t,07)(z);

(b) if ¢x(0)(z) = vi (¢t){(z) for some k € {1,2,... ,m} end z € Q,
then Fi(t,¢)(z) 2 Fy (t, vy )(x).

Then the nonlinear system (6.1) has a unique noncontinuable mild
solution u on [a,b), where b > ¢, and this solution satisfies

v (t) <c@.rm) u(t) <c@nrm) vt(t) and v; <pu <pv

for allt € [a,c).
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Proof. As {T(t)}:30 is a positive semigroup on C(; R™), (T4) is
satisfied. Moreover, (UL4) implies (C4) and (C5), and (FC) implies
(C6) and (C7). Therefore, the theorem follows from Theorem 5.1
immediately. n]

One side inequality in Theorem 6.2 holds when the corresponding
condition (a) or (b) of (FC) is satisfied. In particular, we have the
following nonnegative property of solutions of equation (6.1).

Theorem 6.3 (Nonnegativencss). Suppose that

(i) B; >0 0on Q2 x Ry for alli € Zf;

(ii) F is quasipositive in the sense that if k € {1
(t,¢) € Ry x By, then ¢(0)(z) = 0 at some = €
F(t, ¢)(z) 2 0.

Then for each (t,¢) € [a,00) x By, system (6.1) has a unique non-
continuable mild solution u : (—o0,b) - C(Q; RT), b > a, such that
u(t) € C(4; RT) and u, € By for all t € [a,b).

»2,...,m} and
Q implies that

To state a criterion for invariant rectangles, we will require that the
phase space B satisfies (A6) in Section 3. Recall that we denote by
@ the constant mapping from (—o0, 0] into X with the constant value
we X,

Theorem 6.4 (Invariant Rectangle Criterion). Suppose that M =
(M)P, N = (N € R™ with —c0 < M; < N; < o0 fori €
{1,2,...,m} and M <g N are given so thal a;(x)M; < Bi(t,z) <
ai(z)N; for i € 5§, x € Q and that for any (t,¢) € [a,00) X B with
M <g ¢ <g N, we have

(a) if #k(0)(z) = My for some k € {1,2,...,m}, = € Q, then
Fk(t’ ¢)($) 205

(b) if ¢x(0)(z) = Ny for some k € {1,2,...,m}, z € 0, then
Then for each (t,¢) € [a,00) x B such that M <p ¢ <p N, sys-
tem (6.1) has a unique noncontinuable mild solution u : (—~oo,b) —
C(; RY), b> a, such that M <p u, <p N for t € [a,b).



524 S. RUAN AND J. WU

Let us assume that all conditions of Theoremn 6.4 are satisfied. We
want to construct comparing systems for (6.1) relative to the rectangle
[M,N|p. For ¢ € [M,N]p, z € Q and i € {1,2,...,m}, define

hi(t, ¢)(z) = inf{Fi(t,¥)(z); ¢ <p ¥ <p N, ¢:(0)(z) = ¥:(0)(z)},

H;(t, ¢)(z) = sup{F;(t,¥)(z); M <p ¢ <p ¢, ¢:(0)(x) = :(0)(z)}.

We assume that h,H : Ry x [M,N]p — C(Q; R™) are continuous,
can be extended to a neighborhood of R, x [M, N|y, and satisfy (H3)
with F replaced by h and H, respectively and Ry x B replaced by
R, x [M,N]p. Consider the following comparing systems

(6.7)

%v"(t,x) = h;i(t,v)(z), t>a0,2€Q,ie Ly
%vi(t, r) = d; Avi(t, ) + hi(t, v, )(z), t>a,z€QN, i€X;

ai(z)v'(t, z) + ainv"(t,= z) = Bi(t, z), t>a,z€0Q,i€Xj
vi(s,z) = ¢7 (s, ), i€e{l,2,...,m}, ~0<s<0,;z€Q

and
(6.8)

gzwi(t,:v) = H;(t,w:)(z), t>a,z€Q,i€Xp

%wi(t,x) = d;Aw'(t, z) + Hy(t, w,)(x), t>a, xR, i€

a;(z)w'(t, z) + %wi(t, z) = Fi(t, z), t>a, 2 €00, i€L;
wi(s,z) = ¢ (s, z), i€{1,2,...,m}, —0<s<0, zel

By Theorem 6.2, we have the following comparison thcorem

Theorem 6.5 (Comparison Principle). Assume that all conditions
of Theorem 6.4 are satisfied. If M <p ¢~ <p ¢ <p ¢+ <p N, then
M <p v, <p ula,¢) <p w, <p N for all t € [a,b) provided u,v and
w are defined on [a,b).

We now discuss the monotonicity of solutions of system (6.1). By
Theorem 6.2, we have
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Theorem 6.6 (Monotonicity Principlc)_. Suppose that all conditions
of Theorem 6.2 hold and F : Ry x B = C(§; R™) satisfies the following
quasi-monotonicity property

(QMP) ifk € {1,2,...,m} and (¢,4), (t,¥) € Ry X B are given
such that ¢ <p ¥ and ¢x(0)(z) = ¥r(0)(z) at some = € Q, then
Fie(t, ¢)(z) < Fi(t,¥)(z).

Then for any (a,9), (a,v) € Ry X B with ¢ <p v, we have

u(t;e,9) <carm) ultia,¥) and w(a,¢) <p wla,¥)

for all t € [a, min{b(¢), b(¢)}).

In order to obtain strict inequalities of solutions of (6.1), we suppose
F satisfies the following one-side Lipschitz condition, ignition condition
and irreducibility condition:

(LR) for each | > 0, there is L; > 0 such that
I?i(ty "/J) - Fi(t9 d)) Zc(ﬁ;ltvn) -L [7/);(0) — @i (0)]

foralli=1,2,...,mand (¢,¢),(t,¥) € [a,a+!]|x B withv;, <p ¢ <p
¥ <p v and |¢|s,|¥ls < 1;

(IG) there exists 7o > 0 such that for any continuous functions
u,v : [a,a + 1] = C(Q; R™) with u, <p v, and u(t) = v(t) for
t € [a,a + 7], there exists k € {1,2,... ,m} and =z € Q such that

sup{Fx(t,v)(z) — Fe(t,u)(z); a <t <a+ 70} > 0;

(IR) there exists a constant 7; > 0 such that if ¥ is a proper,
nonempty subset of {1,2,...,m}, 7 > a+ 7 and u,v : (~00,7] —
C(2; R™) are given so that

(a) uj(t)(x) <v;(t)(z) forall j€ S,z € Qand t € [r — 7, 7];
(b) u;(t)(z) =v;(t)(z) forall j € £,z € Qand t € [r — 1y, 7];
(¢) vy <pu<puv <pvj fort€la,1—7

then there exists a k € ¢ and z € {2 such that

sup{Fy(t,v.)(z) — Fr(t,u)(x); T— 11 <t <71} >0.
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Applying Theorem 5.4 and the classical maximal principle to system
(6.1) with A; = Q and 97 (y;) = wi(z) forz € Q, i € {1,2,... ,m} and
u; € C(§; R), we get the following result.

Theorem 6.7 (Strict Inequality Principle). Suppose that, in addi-
tion to the conditions of Theorem 6.6, (LR), (IG) and (IR) are satisfied.
Assume that ¢,y € B are given so that v; <p ¢ <p ¥ <p v}, and
u(t;a, ¢) and u(t;a,y) are defined on [a,b) with b > a+ 79+ (m—1)7,.

Then . .
u'(ta,4)(x) < u'(ta,¥)(2)
forallie {1,2,... ,m}, z€ Qand t € (a+ 10 + (m — 1)1, b).

In the following, we suppose that F(¢,1,)(x) = F(w)(z), i.e., we con-
sider the following autonomous reaction-diffusion system with infinite
delay
(6.9)

%ui(t,z) = Fi(u)(z), t>a,2€Q,1€3%

ui(.,z) = ¢i(,2), zeQ, i€
%ui(t,x) = d;Aui(t, z) + Fi(w)(z),
t>a,z€Q,i€Xf
a;(z)ui(t, z) + aa—nui(t,x) = 3;(t, x),
t>a, z€df, i€ Xf
ui(.,z) = ¢'(.,x), €N, i€TE,

Clearly, all the above theorems hold for system (6.9) with necessary
modifications. Let u(t;a, ¢) be a solution of the autonomous system
(6.9). In the following, we always assume that all solutions of system
(6.9) can be extended to infinity. Let @ : [0,00) x B — B be defined
by ®(t,¢) = u:(d) = u:(0,¢) for all (t,¢) € [0,00) x B. Then @ is
a semiflow generated by (6.9). The above strict inequality principle
(Theorem 6.7) implies the following quasi strongly order-preserving
property for the semiflow ®.
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Theorem 6.8 (Quasi Strongly Order-Preserving Principle).  As-
sume that all the conditions of Theorem 6.7 hold for autonomous system
(6.9) and assume azioms (A7) and (A9) are satisfied by the phase space
B. Then the solution semiflow ® is quasi strongly order-preserving.

Proof. For any ¢,y € B with ¢ <g %, by Theorems 6.6 and 6.7, we
have

u(t, ¢) <c@rm) u(t,¥), u(P) <p w(¢) fort >0
and

u(t, ¢) Lo@rm) u(t,y) forallt > 79+ (m — 1)my,
provided both solutions are defined.

Let E, denote the space of all constant mappings from (—o0,0]
into C(; R™). Clearly, Ey can be identified with C(€; R™), and all
equilibria of ® belong to Ey, the norm of Ey is weaker than the induced
topology from B, and by axiom (A7), for any u,v € Ep, we have
u(t) <c@.am) v(t) if and only if u; <p v,.

Suppose v € Eg and A is a given compact set invariant with respect
to the semiflow and such that v <g A.
Claim I. v = v(t) ¢, pmy ¥(t) for every ¢ € A and t < 0.

If the claim is false, then there exist t* <0, k € {1,2,... ,m},z € Q
and ¢ € A such that

vk (z) = v (™) () = ¥u(t*)(z).

Let 7 = 1479+ (m— 1)1 —t*. Since A is invariant, there exists ¥* € A
such that ¥ = u.(¥*), so

w(r +%,9%) = u (¥7)(E") = ¥(¢%).
On the other hand, since v <pg ¥*, we have

v (y) = uk(T + %5 0)(y) < w(T +t%59")(y)
=¢i(t*)(y) forallyeQ,

which contradicts the choice of k,t* and z € Q such that vi(z) =

Yr(t*)(z)-
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Claim II. There exists § > 0 such that
’U(t) + dé Sc(ﬁ;nm) ¢(t)
for every t <0 and ¥ € A, where é € C(Q; R™) has the constant value

é=(@1,1,...,17.

In fact, if glaim II is not true, there must exist sequences {tx} C
R, {zx} € Q, {¢*} C A and an integer I € {1,2,... ,m} such that

wl@) + 1 2 P @)

for infinitely many k. Since wfk € A and A is compact, there exists
a subsequence, also denoted by {wfk}, such that z[)fk =Y € A So
YF(tx) = ¥(0) in C(G; R™). We can also assume, without loss of
generality, that zx — z € Q. Hence, by taking k¥ — oo in the above
inequality, we get vi(z) > ¥1(0)(z), a contradiction to Claim 1.

Let vg = v + §é/2. Then vy € Ey and v Lo@rmy Vo> and vop <p A
by using (A9).

Now we can prove the quasi strongly order-preserving property of ®.
Suppose that {4} is a sequence of equilibria of ® such that

lim y"=¢Y <p A and Y <gy™ forn=12,....
n-—>o00
By Claim II, there exists ¢° € Ey such that
P Lc@nm) ¥°, and 0 <p A.

On the other hand, since ¥™ — 1 in Ejy, there exists an integer ng such
that ¢me Lc@;rm) ¥9. Hence, by (A7), we get

Y <p Y™ <p Y’ <p A

This completes the proof. n]

We now consider the set-condensing property of the semiflow &, :
B— B, t>0.
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Theorem 6.9 (Set-Condensing Principle). Assume that the follow-
ing fading memory condition is satisfied

(FM) M(t) <1 forallt>0.
Assume further that E is a given subset of B such that
(i) F maps bounded subsets of E into bounded subsets of X;

(ii) For allt > 0, ¥, is defined and maps bounded subsets of E into
bounded subsets of X.

Then ®, is set-condensing on E fort > 0 with respect to the Kuratowski
measure of noncompactness.

Proof. Clearly, ®:(¢) = Pi(t)¢ + P2(t)¢ for (t,¢) € Ry x E, where
S(t+0,0)6(0), —t<6<0
B(t+0), 9 < —t,

t+6 N o
UM&@W)={ HOT(t 4+ 6 — 5)F(Dy(¢))ds, —t <00

0, 6 < —t.

(H®®@={

By using the same argument as that in Travis and Webb [69], we can
show that P(t) : E — B is compact for ¢ > 0. Moreover, using (A3) we
can prove that if (FM) holds, then Py(t) : E — B is a set-condensing
mapping with respect to the Kuratowski mecasure of noncompactness
for each t > 0. Therefore, the conclusion [ollows. n]

Note that if B = UC, with

gt +90)
su
053 9(6)
then (FM) is satisfied.

We are now in the position to discuss some applications of Thcorem
2.1, 2.3-2.5 to the reaction-diflusion system (6.9).

(6.10) <1, t>0,

Theorem 6.10. Assume that F satisfies (QMP) and ¢ <p ¢ are
order-related equilibria of ® such that there is no equilibrium in (¢, ¢]p
except ¢ and ¢, and all conditions of Theorem 6.9 are satisfied with
E = [¢,¥]B. Then there erists a monotone orbit connecting ¢ and 1.
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Theorem 6.11. Suppose that all conditions of Theorem 6.8 are
satisfied, and there erist a subequilibrium ¢ and a superequilibrium
of ® with ¢ <p v, such that all conditions of Theorem 6.9 are satisfied
with E = [¢, ). Then

(a) If all equilibria of ® in E are stable with respect o E, then every
bounded solution in E converges.

(b) If ¢ and ¢ are strict subequilibrium and superequilibrium of ®,
respectively, then there exists a stable equilibrium in E.
(c) If ¢ and ¢ are equilibria stable with respect to E and ¢ is isolated

from above or i is isolated from below, then there exists an unstable
equilibrium in E.

We conclude this section with an invariance principle for system (6.9)
of Liapunov-Razumikhin type. We will state our results for B = UC,,
with ¢ satisfying (g1)-(g3) and (6.10). We lcave extensions of this
invariance principle in general phase spaces to a further paper.

Let V : C(Q;R™) — R be a given continuous function. The
derivative of V with respect to a solution u of (6.9) is defined by

Vi g (u(2)) = lim sup :l}-b{V(u(t —h) = V(u(®)}, t>0.
h—0+

Define
DW)={¢p € UCysV(¢(:)) : (—00,0] = R is bounded},
W(¢) = sup V(¢(0)), ¢ € D(W).
9<o  9(6)

For a constant C, define
Ge={¢ € D(W); W(u(¢)) =W(¢)=C, t 2 0}

V(u(¢)(t +6)) V(¢(0))
= € D(W);sup ———— =su
{¢ W) 9<0 g9(9) so 9(60)
M = the largest subset of G¢ that is invariant with respect to(6.9).

_cuz),

Theorem 6.12 (Invariance Principle). Suppose that there ezists a
continuous function V : C(; R™) — R such that for all ¢ € D(W)
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and t > 0 with V(u(t,¢)) = W(u(e)), V(’G.g)(u(t,¢)) < 0. Assume
further that F maps bounded subsets of D(W) into bounded subsets of
X, and that ®, is defined for t > 0 and maps bounded subsets of D(W)
into bounded subsets of X. Then for any given ¢ € D(W) such that
u (@) and V(ui(@)) are bounded and Cl{u,(¢);t > 0} C D(W), there
ezists C € R such that

u (@) > Mg ast— oo.

Proof. By Theorem 6.10, the semiflow ®, is sct-condensing on D(W)
for t > 0. So, for any ¢ € D(W) such that u,(¢) is bounded and
Cl{u(¢);t > 0} C D(W),w(¢) is nonempty, compact, connected and
invariant. We claim that the map ¢t — W (u,) is nonincreasing on [0, 00),
where u; = u ().

In fact, if it is not nonincreasing on [0, 0o}, then for some ¢g > 0,
e 1
l}lxgz#f __h{W(uto—h) - W(w,)} >0,

hence there exist h, — 0t as n — oo and a > 0 such that

W (utyna) = Wit) o

n

n>1,

which implies that W(ue,) > W(ugy—s, ). We shall show that W(u,,) =
V(u(to))-

Suppose that W{u,) > V(u(to)). Then the boundedness of V(u(+)) :
(=00,0] = R and lim,_,_ g(s) = oo guarantee that there exists 8y < 0

such that V(ulto + 00)
_ V(u(to + 6o
W(uto) = 9(00) .

Choose sufficiently large n so that 6y + h,, < 0. Hence

V(u(to + 6p))
W(usg-n,) 2 “9(80 + )
_ V(ulto+60)) _ g(6)
g(gg) [](00 -+ hﬂ-)
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5 V(u(to + 6o))
9{6o)
2> W(ut0)9

a contradiction to W{u.,) > W{(uyy—n,.).

By assumption, we have

i eup V(0o = 1) = Vu(t) _ o
h—0+ —h

On the other hand, we have

V(u(to — hn)) — V(u(to)) = V(u(to — hn)) — W (uy,)
< I/V(ulu—hu) - ”/(uto)’
which implies that

V{uto ~ hn)) = V(u(t)) |, Wlug-n,) = W)

—hn = —h, =

a contradiction. This proves that W (u,) is nonincreasing on [0, 00).

As V(ui(¢)) is bounded for all ¢t > 0, infy>o W(u) > infyzo V(u,) >
—o0. Therefore,
lim W(u,) =C exists.
t—o0

Let ¥ € w(¢). Then there is a sequence {t,} such that ¢, — co and
ug, (@) — 9 as n — oo. This leads to

W(y) = Jm W(w,) = C.
Thus
W(u(9)) =W(y)=C forallt>0,
which implies that ¢ € G¢ and we have w(¢) C Ge. It follows that

u (@) = Mc as t — oo and the proofl is complete. o

The above result generalizes the invariance principle of Haddock and
Terjéki [15] for functional differential cquations with infinite delay to
reaction-diffusion systems with distributed delay.
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7. Lotka-Volterra models with diffusion and distributed
delay. Consider the Lotka-Volterra competition-diffusion model with
distributed delay

(7.1)
8 . . L ¢ )
Eu‘:d,-Au‘+u’ l:ri—-ai,-u'—Zbij/ —ockij(t—s)u’ (s, z)ds|,
j=1
t>0,z€e
2u"=0, t>0, €0
on

ui(s, z) = ¢i(s, z), s € (~00,0], z€Q, i €{1,2,...,m},

where §) is a bounded region in R* with smooth boundary 92, the
parameters satisfy

d; >0, r; > 0, a; >0, b;; > 0,

and each k;; : [0,00) — R, is a nonincreasing continuous function and
can be normalized so that

o0
/ kij(s)ds =1,
0

Let A : dom(A) C C(Q;R™) — C(Q; R™) be the linear operator
defined by

dom(A)={u€C2(Q;R’")ﬂCl(§; ™) t=00ondN, 1<i< m},

——u
' On

Au = (d;Aut),  u € dom (A).

It is well known that (sce, cf. Rothe [59]) the closure of the operator A
generates an analytic semigroup T = {T(t)},50 in the space C(; R™).
In [1], it has shown that there exists g : (—00,0] = [1,00) satisfying
conditions (g1)—(g3) in Section 3 and such that

0
/ kij(—s)g(s)ds < oo, i,j €{1,2,...,m}.

o0
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Clearly, the mapping F = (F;)T* : UCy; = C(Q; R™) defined by
m 0

(7.2)  Fi(¢) = ¢:(0) [T‘i —a;i$:(0) — Y _ by / kij(—s)¢;(s)ds
J=1 -

satisfies (H3) in Section 6.

We now consider the abstract integral equation
t
(7.8) () = T(t — s)u(s) + / T(t - 0)F(uo)dd, t> s3>0,

Theorem 6.1 implies that for any ¢ € UC,, there exists a unique
solution u(t, @) of (7.3) subject to the initial condition

(7.4) uo = .

For any R = (R;)* € intRT, we set

m
Kp =[]0, R € RT,
i=1

UCyr={0€UCy;¢(0) € C(Q; Kp) for 6 < 0}.

Lemma 7.1. If R; > rifai; for i € {1,2,...,m}, then UCy g

is positively invariant for system (7.1). That is, if ¢ € UCy R, then
u(¢p) € UCq g for allt > 0.

Proof. Assume that ¢ € UCyr. If ¢;(0)(x) = O for some z €
Q, then clearly Fy(¢)(z) = 0. If ¢;(0)(z) = R;, then Fy(¢)(z) <
#:(0)(z)[ri—aii¢:(0)(z)] < 0. Consequently, the conclusion follows from
the invariant rectangular criterion (Theorem 6.4). o
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For given ¢ € UCy, g with R; > r;/a;; for i € {1,2,... ,m}, define
F7 (9)(x)
m 0
= inf {'(l),(O)(:E) [1‘,’ - am/).-(O)(:t) - Z b.‘j/ kij(—S)wj (S)(m)dS];
j=1  J-oo

¢ <ve, ¥ <uc, B, ¥i(0)(z) = ¢i(0)(~’~")}

= 6:(0)(z) [r,' — a;i:(0)(z) — ijbijzzj]

&
and
Fr@)@)
= sup {s(0)(@) [ = s (0)) - ébﬁ [ kst ass
0 <ue, ¥ <ue, 6, O)a) = 4:0)e)]
= ¢i(0)(z)[r; ~ a::i(0)(z)].

Let v(t,¢) and w'(t, ¢) be the solutions of the following systems

g . o i .
-a—tv' = d; Av* -—’U'[(—T‘,‘+Zbinj) +a.,-,-v’], z €N
i=1
(7.5) 9 . ) )
—v' =0, z€edN, 1<i<m
on
v'(0,¢)(z) = ¢i(0,z), z€
and
dw = wi[ri - a,-iw"], 1 < i <n
(7.6) dt

w*(0, ¢) = sup ¢;(0, ),
z€EQ

respectively. We have the following result.
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Proposition 7.2. If u(t,¢) is a solution of system (7.3) such that
¢ € UCy g with R; > rifay; fori€ {1,2,... ,m}, then

(7.7) vi(t, 9)(z) < ui(t, ¢)(z) < wi(t, ¢)

forallie {1,2,...,m}, z € Q and t > 0. In particular, if $;(0)(Z) > 0
for some Z € Q, then

(7.8) u'(t, ¢)(z) > 0

for alli € {1,2,...,m}, z € Q and t > 0. Moreover, u(-,¢) : Ry —
C(Q; R™) is bounded.

Proof. 'The inequality (7.7) is an immediate consequence of the
comparison principle (Theorem 6.5). If ¢;(0)(z) > 0 for some z € 2,
then the classical maximum principle implies that vi(t,¢)(x) > 0 for
all (t,z) € (0,00) x Q, thus ui(t,¢)(z) > 0 for all (¢,z) € (0,00) x Q.

Clearly, lim;_, oo wi(t, @) < ri/a; < oo implics that

limsupui(t,¢)(z) < rifa, 1<i<m.
t—o0
This implies the boundedness of the solutions u(t, ¢) of (7.3). a

Theorem 7.3. Suppose that system (’(.1) has a unigue, spatially
homogeneous steady state solution u* = (u**)1* € int R*. Furthermore,
assume that

m 0
(7.9) ai > Zb"j_/ ki;j(—s)g(s)ds, 1<i<m.
j=1 -

Then for any ¢ € UCq r so that R; > rifa;; and ¢;(0) >c@iR) 0,

1=1,2,...,m, we have u; (@) — u* ast — oo.

Proof. Throughout the proof, we assume, without loss of generality,
that u** # u*¥for i # j. For otherwise we can choose & > 0 such that
S;u*t # 8;u*, i # j, and make the change of variables @' = d;u’ in
system (7.1).
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For £ € R™, define
Vi(€) = max{|¢’ — u*|: 1 < i <m}, I(€) = {é: Vi(€) = |€" — ™|}
Also, for u € C(T, R™), define
V(u) = max{Vi(u(z)) : z € Q}, J(u) = {z : V() = Vi (u(z))}.
It is easy to check that if

V(u— hv) = V{u)
—h

D_V(u)(v) = limsup
h—0t+

for all u,v € C(Q, R™), then for u(z) # u* on {, we have
(7.10) . o
D_V(u)(v) = max{sign [u'(z) — u™*]v'(z) : 2 € J(u), i € I(u(z))},

where
ifr>0

ifr <.

sign (r) = { 11

Note that T(t)u* = u* for £ > 0. Applying the maximum principle, we
can show that

V(T(h)u) < V(u) forallh>0 and ue CE%R™).
Assume ¢ € UC, p and denote u(t) = u(t, ¢). Then
u(t) — hF(u;) = T(h)u(t — h) 4+ o(h) for t >0,

where h™t|o(h)| = 0 as h — 0%. Hence,

V(u(t) — hF(u)) < V(T(R)u(t — h)) + o(h) < V(u(t — h)) + o(h).
Consequently,
(7.11) Viz3y (1)) < DV (u(t))(F(u,)).

Now for ¢ € UC, g, define

(7.12) W(¢) = sup M



538 S. RUAN AND J. WU

We want to show that if W(u,) = V(u(t)), then

(7.13) Virap (u(®)) < 0.

Pick up i € {1,2,...,m} and ¢ € Q so that V(u(t)) = [uf(t)(xq) —
u*!|. Assume at this moment that V' (u(t)) # 0. We consider

sign [w'(t)(z0) — u*'|Fy(ue) (z0)
= sign [u'(t)(zo) — u™Ju(t) (o)

T3 —aiiui(t)(:z: )—' 3 b,‘j t k,’j t— S)Uj To)ds
« )-3 [ bt = syl (s)(ao) ds
= sign [ ()(z0) — w*'u’ () (o)

X {— a,','[ui(t)(:co) - u*i]—Zb,’j/

= ui(t)(:vo)lui(t)(xo) — u*|
X { —ay — —1 bij f_ tJ(t"S)[uJ(s) xo)_u] ]ds}

ui(t) (@) — u*t

As W(u) = V(u(t)), we have

b (=) (9)(z) ~ ] s

| (s)(z0) - w"| < | (t)(zo) ~ ulg(s — 1)

for all j € {1,2,...,m} and s < t. Therefore,

b;; .t_ooki' t—s)ud — u*ild .
_ i J szi(t)(:v[:) (_‘_9)530) lds < by /_w kij(t—s)g(s—t)ds

0
= by [ his(=s)g(s)ds

Consequently,
sign [u’ (t)(z0) — u**}Fi(us)(2o)

< v (8)(wo)l (8) (o) ~ u”|{ —au+ Z bi; / ki s)g(s)ds}
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This, together with (7.9)-(7.11), implies (7.13).

By the invariance principle (Theorem 6.12), we know that there exists
C € R such that

u = Mc CGe ast— oo

We will show that C = 0.

For the sake of contradiction, we suppose that C > 0. Since w(¢)
of u,(¢) is nonempty, compact and invariant, if ¥ € w(¢) and v(¢) =
v(t, ) is the solution of (7.3), then

(7.14) W()=C>0 forallt>0.
For each t > 0, there exists z* € @ and i € {1,2,... ,m} so that

V(u(t)) = [v'(t, ¥)(2) — u™}.

Claim 1. For any t > 0, if V(v(t)) = C = W(v;) then vi(t)(z') = 0.
In fact, if V(v(t)) = W(v;) and vi(t)(z*) > 0 hold simultaneously at
some ¢ > 0, then the above argument for (7.13) implies that

lim sup Vvt - h))h— Ve®)
h—0t -

Consequently, for some sufficiently small k > 0 with ¢t — h > 0, we have
Wve_n) > V(v(t — b)) > V(u(t)) = C,
a contradiction to W(v,) = C for all s > 0. This justifies the claim.

Claim II. It is impossible for V(v(t)) < C for all t > 0.

By the way of contradiction, we assume that V(v(t)) < C for all
t > 0. Fix s; < 0 so that g(s;) > 1. Hence, for a fixed t > —~s;, we have

C = max{V(v(s));t+s1 <s<t} <C

and
W(v) < max{C,C/g(s1)} < C,
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a contradiction to W{v,) = C for all s > 0.

Putting Claim I and Cla}i_m IT together, we obtain to > 0, ip €
{L,2,...,m} and z'* € Q so that V(v(to)) = W(v,) = C =
[vio (tg)(zte) — uio™| and vio(ty)(xte) = 0. Hence, C = u'e™.

Claim IIIL |[v/(t)(z) —u*| < C = u*® for allt > 0, z € Q and
J # to.

For otherwise, there exists t* > 0, z* € @ and j # 4o so that
V(")) = [v(t*)(z*) — u*¥| = C = W(v,+). By the result in Claim
I, v/(t*)(z*) = 0 and thus, u*/ = C = u*%, a contradiction to our
assumption u** # u*/ for i # j.

Since g(8) — +o0 as s — —oo, we can choose ¢ > 0 so that
R;/g(—0) < C/2. For this chosen o > ty, v, € w(é) and hence there
exists a sequence {tx} so that tx — oo and u;, (¢) = v, in UCy as
k — o0o. Consequently, we can use Claim III to find K; > 0 so that

max{|u (tx + 0)(z) —u"|; § € [-0,0], €, j#ip} <u'o =C

for k > K;.

On the other hand, by Proposition 7.2, we derive from v (tg)(z') = 0
that v (o + s)(z) = 0 for all s < 0 (and hence for s < 0 by continuity)
and z € Q. Since u,;, (¢) — v, as k — oo, we can find K2 > 0 so that
0 < u(ty + 6)(z) < u* for all z € 0,0 € [—0,0] and k > K>. Hence,
for k > K3, we have

max{|u®(tx+0)(z) — u*¥|; 8 € [-0,0], T € O} < u*’ =C.
Therefore,
max{|u’ (tx+60)(z) — u*|; 6 € [-0,0], z €}, j=1,2,... ,m} < C
and

W (ue,) < max { max{|u(t + 0)(z) - ul; 6 € [~0,0],

. 2R;
€0, j=12,..,m}, — g
zell g mh ey}

Therefore, W(u;) < Wuzy,) < Clorallt > tk, and limi 0o W(u) <
C, a contradiction to lim;_,o W(u,) = C.
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Hence C = 0 and then G¢ = {u*}. This completes the proof. o

In general, system (7.1) does not satisfy the quasimonotone hypothe-
sis even allowing the nonstandard partial ordering. However, if m = 2,
then system (7.1) generates a monotone semiflow in the sense described
below. For u,v € R?, define u <gq v if u; < v; and uy > vp. The sub-
script @ indicates that the order is generated by the second quadrant
of R2. This generates a new partial ordering in UC, in the obvious
pointwise sense, that is, ¢ = (d1,¢2) <q (¥1,%2) = ¢ in UCy if and
only if ¢1(s8) < ¢1(s) and ¢2(s) 2> ¥o(s) for all s € (—o0,0].

Now we consider the following two-species Lotka-Volterra diffusion-
competition model with infinite delay
(7.15)

7]

t
5;'(1,1 = dlAul +uy [rl—alul —bl / kl(t-‘S)UQ(S)dS] y z€N

t
%'L@ = daAuy+uy [Tz—bz/ kg(t—s)ul(s)ds—agw] , z €S
—00

-aa—nul=5-aﬁU2=0, z € 05
ui(s,z) = ¢1(s,z) > 0, uz(s, ) = ¢a(s,2) >0

8 € (—00,0], z € Q.

Proposition 7.4. If ¢ = (¢1,¢2) and ¥ = (P1,%2) are elements of
UC} and ¢ <q ¥, then u(t,x;¢) <q u(t,z;9) for all t>0,z€
Q.

Proof. Setting v; = u; and vy = —uy in (7.15), we obtain
a t
avl =d1Avy + v [rl —av; + b / k1(t — s)vz(s, x)ds]
(7.16) 5 -

t
E’l& = dpAvy + v [7'2 - b2/ ka2(t — s)vi(s,z)ds + a21)2:|.
It can be easily verified that (QMP) in Section 6 holds for the standard
partial ordering, hence the conclusion follows by the monotonicity
principle (Theorem 6.6). u]
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System (7.15) has two boundary equilibria (r/a1,0), (0,72/a2) and
an interior equilibrium

riag —reby 1201 —T1b
] *
(ul,uZ) = (

ajaz — bzbl’ aaz — b2b1) if ajaz = b2b1 ;6 0.

Proposition 7.5. Suppose
(7.17) max{a1/bz, b1/az} < ri/re.

If p = (¢1,¢2) € UCy g with Ry = Ry > ma,x{;—'i-, %} and ¢1(0,z) > 0
for some x € 2, then

(u1(t,z), uz(t,x)) = (r1/a1,0)

uniformly in x €  as t — oo.

Proof. By (7.17) and the fact that f;° k;(s)ds = 1, i = 1,2, for any
€ > 0 there exists T, > 0 such that

a b1 fOT‘ k1(s)ds
T2

Ty — € ’

bl/ k1(8)d$ < Rl_lé‘,
T.

o _b ST ki(s)ds
Ty — € T2 )

By Lemma 7.1 and Proposition 7.2, 0 < u1 (2, z) < Ry and up(t, z) < Ra
for all £ > 0 and z € Q. Note that

uy [rl —ayu; — b /t ki(t — s)uz(s) ds]

-00

=T,
=1u [7‘1 —a1u; — b1/ k1(t — s)ua(s)ds
-0

-b '/:-T. ki(t — s)ua(s) ds]

>ui(r—¢) [1 -4 uy — by /tt k1(t — s)ua(s) ds]

rL—€ T1 =€ Ji-T.
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and similarly
t
Uug [7‘2 — QU — bz/ kg(t - s)ul(s) ds]
-00

=T,
= up [7'2 — agug — by / ka(t — s)uy(s)ds

—00

t
- b2/ k2(t — s)ui(s) ds]
t—T,
t
< ug [rz — agug — b2/ ka(t — s)ui(s) ds]
t—T,

= Uuyry [1 - (—lzuz - ——/ ka(t — s)uy (s)ds]

Therefore, by Theorem 6.2 we get
ui(t, z) > ui(t, z), ug(t, z) < uj(t, )

for all t > 0 and = € Q, where (u}, u}) solves the following reaction-
diffusion equation with delay

(7.18)
Oyuy = diAul+(r1—e)u] [1 — u]
™™ —¢€
by [ . —
- ky(t—s)u3(s)ds|, Tz €N
=€ Ji—T.
* * * a2 . be t * e
Guy = deAug+rauy |1 — —=uy — = ko(t—s)ui(s)ds|, z€N
T2 T2 Je-T,

Opul = 0,u3 =0, z € 90
ui(s) = d1(s),  ub(s) =¢a(s), se€[-T.,0.

Now, Proposition 5.6 in [37] can be applied to (7.18) (as delay T is
finite). It follows that
. * _n-—e¢ . * _
tl—lglo ui(t,x) = Pt tl_x)r& uz(t,z) =0

uniformly for z € Q. Since wux(t, z) < us(t,z), we have that
lim; o0 u2(t, ) = 0 uniformly for z € Q. On the other hand, by Propo-
sition 7.2 we get limsup,_, . u1(t,z) = ri1/a1, and by ui{t,z) > ui (¢, z)
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we have liminf, o ui(t,z) = (r1 —¢)/a;. Consequently, due to the
arbitrary choice of &, we have lim; o0 u1 (t,z) = ri1/a; uniformly for
z € §). This completes the proof. o

Simijlarly we can prove the following result.

Proposition 7.6. Suppose
(7.19) min{al/bz,b,/ag} > Tl/'l‘g.
If ¢ = (¢1,02) € UCyr with Ry = Ry > max{ri/a1,r2/a2} and
$2(0,z) > 0 for some z € €1, then
(ul(t’x)’ UQ(t,IL‘)) - (01 T2/a2)

uniformly inxz € Q as t — 0.

Propositions 7.5 and 7.6 indicate that if the intraspecies competition
is weaker than the interspecies competition, then one of the two com-
petitors will go to extinction, that is, competition exclusion principle
applies to system (7.15). For the positive interior equilibrium, we can
employ a similar argument to establish the following result.

Proposition 7.7. Suppose
(720) bl/az < 7‘1/""2 < al/bz.
If ¢ = (¢1,¢2) € UCyr with Ry = Ry > max{ri/a1,r2/a2} and

$1(0,z) > 0, ¢2(0,z) > 0 for some z € 2, then
(w1, ), ualt, z)) = (ug,uz)

uniformly inz € Q ast — oo.

The above propositions demonstrate that if one of the conditions
(7.17), (7.19) and (7.20) holds, then the asymptotic behavior of (7.16)
is very similar to that of the ordinary differential equation model

du1

(7.21) d‘ffz
e ug[rg — bou; — aguy)

= U1[7'1 ~ aju; — byuy)
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and the reaction-diffusion model

%ul =d1Au + ul[rl - aiu; — b1u2], zeN
(7.22) %U2 = daAug + ug[r2 — bau; — aguy), z €
a

7]
%ul = %uz =0, z € 99

In particular, there are no stable spatially inhomogeneous solutions.

In the remaining case that
(723) al/bg < 1"1/7‘2 < bl/az,

Matano and Mimura [43] showed that there may exist a stable spa-
tially inhomogeneous solution for the reaction-diffusion model (7.22)
provided the domain £ is suitably nonconvex, for example, dumbbell
shaped with a narrow handle. Matano and Mimura only considered the
reaction-diffusion model where there arc no delays, but we believe that
their conclusion is still true for (7.16), the reaction-diffusion model
with infinite delay. This should be proved by following Matano and
Mimura’s procedure and by applying the techniques and results in this
paper.

However, if the domain © is convex and condition (7.23) holds,
then there cannot exist stable spatially inhomogeneous solutions (for
general reaction-diffusion systems, this was proved by Kishimoto and
Weinberger [29]). In fact, we have the following results when (7.23) is
satisfied.

Proposition 7.8. Suppose that (7.23) holds.

(i) If ¢ satisfies that uf < $1(t,x) < Ry, 0 < ¢a(t,z) < uj for
(t,x) € (—00,0] x @ with Ry > ri/a;, then

(ui(t, ), ug(t,z)) — (r1/a1,0)

uniformly in x € 2 as t — oo.

(ii) If ¢ satisfies that 0 < ¢1(t,z) < uf, uj < ¢2(t,z) < Rg for
(t,z) € (—00,0] X Q with Ry > r2/az, then

(us(t, ), ua(t,z)) = (0,72/az)
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uniformly inz € Q ast — oo.

(iii) (u},u}) is unstable.

Proof. (i) and (ii) can be proved following the previous procedure.
To see (iii), we know that

(0’ 7‘2/a2) <Q (UI,UE) <Q (7’1/01,0),

where (0,72/a;) and (ri/a;,0) are (locally) stable with respect to
E = [(0,r2/az2), (r1/a1,0)]q, and (0,72/az) is isolated from above,
Theorem 6.11 implies that there is an unstable equilibrium in E, while
(u},u3) is the only steady state in E, hence it is unstable. 0

Acknowledgments. We would like to thank Professor H.L. Smith
for pointing out a mistake in the original manuscript, and Professor
John Mallet-Paret for his help and encouragement. We are also grateful
to the referee for his careful reading and valuable suggestions which lead
to significant improvement of the original version of the paper.

REFERENCES

1. F.V. Atkinson and J.R. Haddock, On determining phase spaces for functional
differential equations, Funkcial. Ekvac. 81 (1988), 331-347.

2. N. Alikakos, P. Hess and H. Matano, Discrete order-preserving semi-groups
and stability for periodic parabolic differential equations, J. Differential Equations
82 (1989), 322-341.

3. L.L. Bonilla and A. Lifidn, Relazation oscillations, pulses, and traveling waves
in the diffusive Volterra delay-differential equation, SIAM J. Appl. Math. 44 (1984),
369-391.

4. N. F. Britton, Spatial structures and periodic traveling waves in an integro-
differential reaction-diffusion population model, SIAM J. Appl. Math. 50 (1990),
1663-1688.

5. S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population
delay model with diffusion effects, preprint.

6. E.N. Dancer and P. Hess, Stability of fized points for order-preserving discrete-
time dynamical systems, J. Reine Angew. Math. 419 (1991), 125-139.

7. H.I. Freedman, R.K. Miller and J. Wu, Heteroclinic orbits and convergence of
order-preserving set-condensing semiflows with applications to integrodifferential
equations, preprint.

8. G. Friesecke, Fxponentially growing solutions for a delay-diffusion equation
with negative feedback, J. Differential Equations 98 (1992), 1-18.



REACTION-DIFFUSION EQUATIONS 547

9. , Convergence to equilibrium for delay-diffusion equations with small
delay, J. Dynamics and Differential Equations 5 (1993), 89-103.

10. W.E. Fitzgibbon, Semilinear functional differential equations in Banach
space, J. Differential Equations 29 (1978), 1~14.

11. W.E. Fitzgibbon and M.E. Parrot, Linearized stability of semilinear delay
equations in fractional power spaces, Nonlinear Anal. 16 (1991), 479-487.

12. K. Gopalsamy, Time lags and global stability in two species competition, Bull.
Math. Biol. 42 (1980), 729-737.

13. K. Gopalsamy, X. He and D. Sun, Global asymptotic stability and oscilla-
tions in a diffusive delay logistic equation, in Functional differential equations (T.
Yoshzawa and J. Kato, eds.), World Scientific, Singapore, 1991, 80-89.

14. D. Green and H. W. Stech, Diffusion and hereditary effects in a class of pop-
ulation models, in Differential Equations and Applications in Ecology, Epidemics
and Population Problems (S. Busenberg and K. Cooke, eds.), Academic Press, New
York, 1981, 19-29.

15. J. Haddock and J. Terjéki, On the location of positive limit sets for functional
differential equations with infinite delay, J. Differential Equations 86 (1990), 1-32.

16. J.K. Hale, Theory of functional differential equations, Springer-Verlag, New
York, 1977.

17. , Large diffusivity and asymptotic behavior in parabolic systems, J.
Math. Anal. Appl. 118 (1986), 455-466.

18. J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay,
Funkcial. Ekvac. 21 (1978), 1141.

19. J.K. Hale and L.A.C. Ladeira, Differentiability with respect to delays for a
retarded reaction-diffusion equation, Nonlinear Anal. 20 (1993), 793-801.

20. M. He, Periodic and almost periodic solutions of a class of reaction diffusion
equations with delay, Acta Math. Sinica 32 (1989), 91-97.

21. , Abstract functional differential equations, VII-Boundedness, periodic
solutions, almost periodic solutions, stable and unstable manifolds, Acta Math.
Sinica 33 (1990), 205-213.

22. D. Henry, Geometric theory of semilinear parabolic equations, Springer-
Verlag, New York, 1981.

23. P. Hess, Periodic-parabolic boundary value problems and positivity, Longman,
London, 1991.

24. M. Hirsch, Differential equations and convergence almost everywhere in
strongly monotone semiflows, Contemp. Math. 17 (1983), 267-285.

25. , The dynamical systems approach to differential equations, Bull.
Amer. Math. Soc. 11 (1984), 1-64.

26. , Attractors for discrete time monotone dynamical systems in strongly
ordered spaces, in Geometry and topology (J. Alexander, ed.), Lecture Notes Math.
1167, Springer-Verlag, New York, 1985, 141-153.

27. , Stability and convergence in strongly monotone dynamical systems,
J. Reine Angew. Math. 383 (1988), 1-53.




548 5. RUAN AND J. WU

28. W. Huang, Dynamics and global stability for a class of population models
with delay and diffusion effects, preprint.

29. K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable
equilibria of some reaction-diffusion systems on convex domains, J. Differential
Equations 58 (1985), 105-114.

30. Y. Kuang and H.L. Smith, Global stability in diffusive delay Lotka- Volterra
systems, Differential Integral Equations 4 (1991), 117-128.

31. , Convergence in Lotka-Volterra type diffusive delay systems without
dominating instantaneous negative feedbacks, J. Austral. Math. Soc. Ser. B 34
(1993), 471—493.

32. K. Kunish and W. Schappacher, Necessary conditions for partial differential
equations with delay to generate Cy-semigroups, J. Differential Equations 50 (1983),
49-79.

33. J. Lin and P.B. Kahn, Phase and amplitude instability in delay-diffusion
population models, J. Math. Biol. 13 (1982), 383-393.

34. X. Lin, J. So and J. Wu, Centre manifolds for partial differential equations
with delays, Proc. Royal Soc. Edinburgh Sect. A 122 (1992), 237-254.

85. S. Luckhaus, Global boundedness for a delay differential equation, Trans.
Amer. Math. Soc. 294 (1986), 767-774.

36. R.H. Martin and H.L. Smith, Abstract functional differential equations and
reaction-diffusion systems, Trans. Amer. Math. Soc. 321 (1990), 1-44.

37. , Reaction-diffusion systems with time delays: Monotonicity, invari-
ance, comparison and convergence, J. Reine Angew. Math. 413 (1991), 1-35.

38. , Convergence in Lotka-Volterra systems with diffusion and delay, in
Differential equations with applications in biology, physics and engineering (J.A.
Goldstein, F. Kappel and W. Schappacher, eds.), Marcel Dekker, New York, 1991,
259-267.

39. H. Matano, Asymptotic behavior and stability of solutions of semilinear
diffusion equations, Publ. Res. Inst. Math. Sci., 15 (1979), 401-454.

40. , Existence of nontrivial unstable sets for equilibrium of strongly order-
preserving systems, J. Fac. Sci., Univ. Tokyo, Sect 1A, Math 30 (1983), 645-673.
Corrections, 34 (1987), 853-855.

41. , Strongly order-preserving local semi-dynamical systems-theory and
applications, in Semigroups, theory and applications (1. Brezis, M.G. Crandall and
F. Kappel, eds.), Vol. I, Longman, London, 1986, 178-185.

42, , Strong comparison principle in nonlineur parabolic equations, in
Nonlinear parabolic equations: Qualitative properties of solutions (L. Boccarda and
A. Tesei, eds.), Longman, London, 1987, 148-155.

43. H. Matano and M. Mimura, Pattern formation in competition-diffusion
systems in nonconver domains, Publ. Res. Inst. Math. Sci., 19 (1983), 1049-1079.

44. M.C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-
differential equation with diffusion, SIAM J. Math. Anal. 20 (1989), 533-546.

45. , Stable and unstable manifolds for partial functional differential
equations, Nonlinear Anal. 16 (1991), 131-142.




REACTION-DIFFUSION EQUATIONS 549

46. X. Mora, Semilinear problems define semiflows on C* spaces, Trans. Amer.
Math. Soc. 278 (1983), 1-55.

47. Y. Morita, Destabilization of periodic solutions arising in delay-diffusion
systems in several space dimensions, Japan J. Appl. Math. 1 (1984), 39-65.

48. J.D. Murry, Spatial structures in predator-prey communities—a nonlinear
time delay diffusion model, Math. Biosic. 30 (1976), 73-85.

49. R. Nussbaum, The fized point indez for locally condensing maps, Ann. Mat.
Pura Appl. 87 (1971), 217-258.

80. M.E. Parrott, Positivity and a principle of linearized stability for delay-
differential equations, Differential Integral Equations 2 (1989), 170-182.

81. A. Pazy, Semigroups of linear operators and applications to partial differential
equations, Springer-Verlag, New York, 1983.

52. P. Polatik, Convergence in smooth strongly monotone flows defined by
semilinear parabolic equations, J. Differential Equations 79 (1989), 89-110.

53. , Domains of attraction of equilibria and monotonicity properties of
convergent trajectories in parabolic systems admitting strong comparison principle,
J. Reine Angew. Math. 400 (1989), 32-56.

54. M.A. Pozio, Decay estimates for partial functional-differential equations,
Nonlinear Anal. 8 (1982), 1253-1266.

55. S.M. Rankin, Ezistence and asymptotic behavior of a functional differential
equation in Banach space, J. Math. Anal. Appl. 88 (1982), 531-542.

56. R. Redlinger, On Volterra’s population equation with diffusion, SIAM J.
Math. Anal. 16 (1985), 135-142.

57. A.D. Rey and M.C. Mackey, Bifurcations and traveling waves in a delayed
partial differential equation, Chaos 2 (1992), 231-244.

58. , Multistability and boundary layer development in a transport equa-
tion with delayed arguments, Canad. Appl. Math. Quart. 1 (1993), 61-81.

89. F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in
Math. 1072, Springer-Verlag, New York, 1984.

60. A. Schiaffino, On a diffusion Volterra equation, Nonlinear Anal. 3 (1979),
595-600.

61. H.L. Smith, Systems of ordinary differential equations which generate an
order preserving flow. A survey of results, SIAM Rev. 30 (1988), 87-113.

62. , Monotone semiflows generated by functional differential equations,
J. Differential Equations 66 (1987), 420-442.

63. H.L. Smith and H.R. Thieme, Quasi convergence and stability for strongly
order-preserving semiflows, SIAM J. Math. Anal. 21 (1990), 673-692.

64. , Convergence for strongly order-preserving semiflows, SIAM J. Math.
Anal. 22 (1991), 1081-1101.

65. P. Takag, Convergence to eguilibriumm on invariant d-hypersurfaces for
strongly increasing discrete-time semigroups, J. Math. Anal. Appl. 148 (1990),
223-244.

66. , Domains of attraction of generic w-limit sets for strongly monotone
discrete-time semigroups, J. Reine Angew. Math. 423 (1992), 101-173.




550 S. RUAN AND J. WU

67. A. Tesei, Stability properties for partial Volterra integrodifferential equations,
Ann. Mat. Pura Appl. 126 (1980), 103-115.

68. C.C. Travis and G.F. Webb, Ezistence and stability for partial functional
differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418.

69. , Ezistence, stability and compactness in the a-norm for partial
Sfunctional differential equations, Trans. Amer. Math. Soc. 240 (1978), 129-143.

70. J. Wu, Strong monotonicity principles and applications to Volterra integrod-
ifferential equations, in Differential equations: stability and control, (S. Elaydi, ed.),
Marcel Dekker, New York, 1991, 519-528.

T1. , Semigroup and integral form of a class of partial differential equations
with infinite delay, Differential Integral Equations 4 (1991), 1325-1352,

72. , Global dynamics of strongly monotone returded equations with infi-
nite delay, J. Integral Equations 4 (1992), 273--307.

73. Y. Yamada, On a certain class of semilincar Volterra diffusion equations, J.
Math. Anal. Appl. 88 (1982), 433-451.

74. , Asymptotic stability for some systemns of semilinear Volterra diffu-
sion equations, J. Differential Equations 52 (1984), 295-326.

75. Y. Yamada and Y. Niikura, Bifurcation of periodic solutions for nonlinear
parabolic equations with infinite delay, Funkcial. Ekvac. 29 (1986), 309-333.

76. K. Yoshida, The Hopf bifurcation and its stability for semilinear differential
equations with time delay arising in ecology, Hiroshima Math. J. 12 (1982), 321-348.

77. K. Yoshida and K. Kishimoto, Effect of two time delays on partially functional
differential equations, Kumamoto J. Sci. (Math.) 15 (1983), 91-109.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE, DAL-
HOUSIE UNIVERSITY, HALIFAX, NovAa ScoTiAa, CANADA B3H 3J5

DEPARTMENT OF MATHEMATICS AND STATISTICS, YORK UNIVERSITY, NORTH
York, ONTARIO, CANADA M3J 1P3



