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On the zeros of a third degree exponential polynomial with
applications to a delayed model for the control of

testosterone secretion

SHIGUI RUAN†

Department of Mathematics and Statistics and School of Biomedical Engineering,
Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

AND

JUNJIE WEI

Department of Mathematics, Northeast Normal University, Changchun, Jilin 130024,
People’s Republic of China

[Received 3 December 1999 and in revised form 1 July 2000]

In this paper, we first study the distribution of the zeros of a third degree exponential
polynomial. Then we apply the obtained results to a delay model for the control of
testosterone secretion. It is shown that under certain assumptions on the coefficients the
steady state of the delay model is asymptotically stable for all delay values. Under another
set of conditions, there is a critical delay value, the steady state is stable when the delay
is less than the critical value and unstable when the delay is greater than the critical value.
Thus, oscillations via Hopf bifurcation occur at the steady state when the delay passes
through the critical value. Numerical simulations are presented to illustrate the results.
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1. Introduction

The secretion of testosterone from the gonads is stimulated by a pituitary hormone called
luteinizing hormone (LH). The secretion of LH from the pituitary gland is stimulated by
luteinizing hormone releasing hormone (LHRH). This LHRH is normally secreted by the
hypothalamus and carried to the pituitary gland by the blood. It is believed that testosterone
(T) has a feedback effect on the secretion of LH and LHRH. Based on this, Smith (1980)
proposed a simple negative feedback compartment model involving the three hormones
LHRH, LH and T. Denote the concentrations of LHRH, LH and T by R(t), L(t), and T (t),
respectively. Smith considered each of the hormones to be cleared from the bloodstream
according to first order kinetics with LH and T produced by their precursors according to
first order kinetics. There is a nonlinear negative feedback by T on LHRH. Smith proposed
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the following model of three ordinary differential equations (ODEs):

dR

dt
= f (T ) − b1(R),

dL

dt
= g1(R) − b2(L),

dT

dt
= g2(L) − b3(T ),

(1.1)

where f is a positive monotonic decreasing function, and bi (i = 1, 2, 3) and g j ( j = 1, 2)

are positive monotonic increasing functions. We refer to Liu & Deng (1991) and Liu et al.
(1997) for modifications of system (1.1); see also Keener & Sneyd (1998).

In actual physiological processes, there is a delay between the production of a hormone
at one level and its effect on the production of the hormone it stimulates, simply because of
the hormones’ spatial separation and the fact that they are transported by circulating blood.
Smith (1983) incorporated a single delay into system (1.1) in which the production of T is
delayed. The model is the following system of three delay differential equations:

dR

dt
= f (T ) − b1(R),

dL

dt
= g1(R) − b2(L),

dT

dt
= g2(L(t − τ)) − b3(T ),

(1.2)

where τ is the delay associated with the blood circulation time in the body, i.e. the time
that LH requires to travel through the bloodstream to reach its site of action at the gonads.
Linear analysis of system (1.2), when bi (i = 1, 2, 3) and g j ( j = 1, 2) are all linear
functions, was carried out by Murray (1989). The simplified model takes the form

dR

dt
= f (T ) − b1 R,

dL

dt
= g1 R − b2L ,

dT

dt
= g2L(t − τ) − b3T,

(1.3)

where the coefficients are all positive constants. Murray (1989) showed that there is a
critical delay value τc such that the steady state of (1.3) is linearly unstable because of
growing oscillations. Thus, limit cycle periodic solutions could be generated by choosing
the parameters properly.

Based on some experimental results, Cartwright & Husain (1986) also proposed a
delayed model on the control of T secretion which includes delay in the production of
each of R(t), L(t) and T (t). They also carried out some analysis to illustrate certain
laboratory experiments, and their numerical simulations show stable oscillations in all three
components.

In studying a delay model, linearization of the system at its steady state gives us a
transcendental characteristic equation or an exponential polynomial equation. It is well
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known that the steady state is stable if all eigenvalues of the exponential polynomial
equation have negative real parts, and unstable if at least one root has a positive real part.
Thus, a Hopf bifurcation occurs when the real part of a certain eigenvalue changes from
negative to zero and to positive (i.e. the steady state changes from stability to instability).
This is usually caused by the delay.

However, there is a strong possibility that if the coefficients of the exponential
polynomial satisfy certain assumptions, the real parts of all eigenvalues remain negative for
all values of the delay; that is, independent of the delay. The corresponding delay system is
called absolutely stable (see, for example, Hale et al. (1985)). A general result in Hale et al.
(1985) says that a delay system is absolutely stable if and only if the corresponding ODE
system is asymptotically stable and the characteristic equation has no purely imaginary
roots.

In this paper we consider the general delay model (1.2). The linearized system of (1.2)
at a positive steady state has the following characteristic equation

λ3 + aλ2 + bλ + c + de−λτ = 0, (1.4)

which is a third degree exponential polynomial equation. We first study the distribution of
the roots of equation (1.3) and find that there are two possibilities.

(a) Under certain assumptions on the coefficients all roots of (1.3) have negative real
parts for all delay value τ � 0.

(b) If the assumptions in (a) are not satisfied, then there is a critical value τ0. When the
delay τ < τ0, the real parts of all roots of (1.3) are still negative; when τ = τ0, there
is a pair of purely imaginary roots and all other roots have negative real parts; when
τ > τ0, there is at least one eigenvalue which has a positive real part.

Applying these results to the delay model (1.2), we show that under a set of assumptions
on the parameters, the steady state of (1.2) is absolutely stable (i.e. asymptotically stable
independent of the delay). Under another set of conditions, the steady state of (1.2) is
conditionally stable; that is, there is a critical delay value τ0, and the steady state is
asymptotically stable when τ < τ0, loses its stability when τ = τ0, and becomes unstable
when τ > τ0. Thus, a Hopf bifurcation occurs at the steady state when τ passes through
the critical value τ0.

To discuss the distribution of the roots of the exponential polynomial equation (1.3),
we need the following result which was proved by Ruan & Wei (1999) by using Rouché’s
theorem (see Dieudonné (1960), Theorem 9.17.4).

LEMMA 1.1 Consider the exponential polynomial

P(λ, e−λτ1 , . . . , e−λτm ) = λn + p(0)
1 λn−1 + · · · + p(0)

n−1λ + p(0)
n

+ [p(1)
1 λn−1 + · · · + p(1)

n−1λ + p(1)
n ]e−λτ1

+ · · · + [p(m−1)
1 λn−1 + · · · + p(m−1)

n−1 λ + p(m−1)
n ]e−λτm ,

(1.5)

where τi � 0(i = 1, 2, . . . , m) and p(i)
j (i = 0, 1, . . . , m − 1; j = 1, 2, . . . , n)

are constants. As (τ1, τ2, . . . , τm) vary, the sum of the orders of the zeros of
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P(λ, e−λτ1 , . . . , e−λτm ) on the open right half plane can change only if a zero appears
on or crosses the imaginary axis.

REMARK 1.2 Lemma 1.1 is a generalization of the Lemma in Cooke & Grossman (1982).

2. The third degree transcendental polynomial

In this section, we study the distribution of zeros of a third degree transcendental
polynomial.

Consider the following third degree transcendental polynomial

λ3 + aλ2 + bλ + c + de−λτ = 0. (2.1)

Clearly, iω(ω > 0) is a root of equation (2.1) if and only if

−iω3 − aω2 + ibω + c + d(cos ωτ − i sin ωτ) = 0.

Separating the real and imaginary parts, we have

c − aω2 = −d cos ωτ,

ω3 − bω = −d sin ωτ .
(2.2)

Adding up the squares of both equations, we obtain

ω6 + (a2 − 2b)ω4 + (b2 − 2ac)ω2 + (c2 − d2) = 0. (2.3)

Let z = ω2 and denote p = a2 − 2b, q = b2 − 2ac, and r = c2 − d2. Then equation (2.3)
becomes

z3 + pz2 + qz + r = 0. (2.4)

CLAIM 1 If r < 0, then equation (2.4) has at least one positive root.

Proof. Denote

h(z) = z3 + pz2 + qz + r . (2.5)

Clearly, h(0) = r < 0, and limz→∞ h(z) = ∞. Hence, there exists a z0 ∈ (0, ∞) so that
h(z0) = 0. This completes the proof.

CLAIM 2 If r � 0, then the necessary condition for equation (2.4) to have positive real
roots is

∆ = p2 − 3q � 0. (2.6)

Proof. From (2.5) we have

dh(z)

dz
= 3z2 + 2pz + q.
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Set

3z2 + 2pz + q = 0. (2.7)

Then the roots of equation (2.7) can be expressed as

z1,2 = −2p ± √
4p2 − 12q

6
= −p ± √

∆
3

. (2.8)

If ∆ < 0, then (2.7) does not have real roots. So the function h(z) is monotone increasing
in z. It follows from h(0) = r � 0 that equation (2.4) has no positive real roots. This
completes the proof.

Clearly, if ∆ � 0, then z1 = −p+√
∆

3 is the local minimum of h(z). Thus, we have the
following claim.

CLAIM 3 If r � 0, then equation (2.4) has positive roots if and only if z1 > 0 and
h(z1) � 0.

Proof. The sufficiency is obvious. We only need to prove the necessity. Otherwise, we
assume that either z1 � 0 or z1 > 0 and h(z1) > 0. If z1 � 0, since h(z) is increasing for
z � z1 and h(0) = r � 0, it follows that h(z) has no positive real zeros. If z1 > 0 and

h(z1) > 0, since z2 = −p−√
∆

3 is the local maximum value, it follows that h(z1) < h(z2).
Hence, by h(0) = r � 0, we know that h(z) does not have positive real zeros. This
completes the proof.

Summarizing the above discussion, we have the following lemma.

LEMMA 2.1 Suppose that z1 is defined by (2.8).

(i) If r < 0, then equation (2.4) has at least one positive root.
(ii) If r � 0 and ∆ = p2 − 3q < 0, then equation (2.4) has no positive roots.

(iii) If r � 0, then equation (2.4) has positive roots if and only if z1 = 1
3

( − p + √
∆

)
>

0 and h(z1) � 0.

Suppose that equation (2.4) has positive roots. Without loss of generality, we assume
that it has three positive roots, denoted by z1, z2 and z3, respectively. Then equation (2.3)
has three positive roots, say

ω1 = √
z1, ω2 = √

z2, ω3 = √
z3.

Let

τ
( j)
k = 1

ωk

[
sin−1

(
− ω3

k − bωk

d

)
+ 2( j − 1)π

]
, k = 1, 2, 3; j = 0, 1, . . . .

Then ±iωk is a pair of purely imaginary roots of equation (2.1) with τ = τ
( j)
k , k =

1, 2, 3; j = 0, 1, . . . . Clearly,

lim
j→∞ τ

( j)
k = ∞, k = 1, 2, 3.
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Thus, we can define

τ0 = τ
( j0)
k0

= min
1�k�3, j�1

{τ ( j)
k }, ω0 = ωk0 . (2.9)

LEMMA 2.2 Suppose that a > 0, c + d > 0, ab − c − d > 0.

(a) If r � 0 and ∆ = p2 − 3q < 0, then all roots of equation (2.1) have negative real
parts for all τ � 0.

(b) If r < 0 or r � 0, z1 > 0 and h(z1) � 0, then all roots of equation (2.1) have
negative real parts when τ ∈ [0, τ0).

Proof. When τ = 0, equation (2.1) becomes

λ3 + aλ2 + bλ + c + d = 0. (2.10)

By the Routh–Hurwitz criterion, all roots of equation (2.10) have negative real parts if and
only if

a > 0, c + d > 0, ab − c − d > 0.

If r � 0 and ∆ = p2 −3q < 0, Lemma 2.1 (ii) shows that equation (2.1) has no roots with
zero real part for all τ � 0. When r < 0 or r � 0, z1 > 0 and h(z1) � 0, Lemma 2.1 (i)
and (iii) implies that when τ �= τ

( j)
k , k = 1, 2, 3, j � 1, equation (2.1) has no roots with

zero real part and τ0 is the minimum value of τ so that equation (2.1) has purely imaginary
roots. Applying Lemma 1.1, we obtain the conclusion of the lemma.

Let

λ(τ) = α(τ) + iω(τ) (2.11)

be the root of equation (2.1) satisfying

α(τ0) = 0, ω(τ0) = ω0.

In order to guarantee that ±iω0 are simple purely imaginary roots of equation (2.1) with
τ = τ0 and λ(τ) satisfies the transversality condition, we assume that h′(z0) �= 0. Hence,
we have the following lemma.

LEMMA 2.3 Suppose h′(z0) �= 0. If τ = τ0, then ±iω0 is a pair of simple purely
imaginary roots of equation (2.1). Moreover, if the conditions of Lemma 2.2 (b) are
satisfied, then

dReλ(τ0)

dτ
> 0.

Proof. If iω0 is not simple, then ω0 must satisfy

d

dλ
[λ3 + aλ2 + bλ + c + de−λτ0 ]∣∣

λ=iω0
= 0,
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that is, ω0 must satisfy

3ω2 − b = −τd cos ωτ,

2aω = −τd sin ωτ .

Thus, we have

2aω

3ω2 − b
= tan ωτ . (2.12)

However, from (2.2) we know that ω0 satisfies

ω3 − bω

c − aω2
= tan ωτ . (2.13)

From (2.12) and (2.13) we have

ω3 − bω

c − aω2
= 2aω

3ω2 − b
,

that is,

3ω4 + 2(a2 − 2b)ω2 + (b2 − 2ac) = 0.

Recall that z0 = ω2
0, which implies that

3z2
0 + 2(a2 − 2b)z0 + (b2 − 2ac) = 0. (2.14)

Notice that p = a2 − 2b, q = b2 − 2ac, and h′(z0) = 3z2
0 + 2pz0 + q; we obtain a

contradiction to the condition h′(z0) �= 0. This proves the first conclusion.
Differentiating both sides of equation (2.1) with respect to τ gives

dλ(τ)

dτ
= dλe−λτ

3λ2 + 2aλ + b − dτe−λτ
.

It follows from (2.1) that

dReλ(τ0)

dτ
= ω2

0

∆
[3ω4

0 + 2(a2 − 2b)ω2
0 + (b2 − 2ac)],

where

∆ = (3ω2
0 − b + dτ0 cos ω0τ0)

2 + (2aω0 + dτ0 sin ω0τ0)
2.

As z0 = ω2
0 and h′(z0) �= 0, we have

dReλ(τ0)

dτ
= ω2

0

∆
h′(z0) �= 0.

If (d/dτ)Reλ(τ0) < 0 for τ < τ0 and close to τ0, then equation (2.1) has a root λ(τ) =
α(λ)+iω(λ) satisfying α(λ) > 0, which contradicts Lemma 2.2. This completes the proof.
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By Lemmas 2.2 and 2.3, we obtain the following theorem.

THEOREM 2.4 Let ω0, τ0, and λ(τ) be defined by (2.9) and (2.11), respectively, and z0 =
ω2

0. Suppose that a > 0, c + d > 0, ab − c − d > 0.

(i) If r � 0 and ∆ = p2 − 3q < 0, then all roots of equation (2.1) have negative real
parts for all τ � 0.

(ii) If r < 0 or r � 0, z1 > 0 and h(z1) < 0, then all roots of equation (2.1) have
negative real parts when τ ∈ [0, τ0).

(iii) If the conditions of (ii) are satisfied, τ = τ0, and h′(z0) �= 0, then ±iω0 is a pair
of simple purely imaginary roots of equation (2.1) and all other roots have negative
real parts. Moreover, (d/dτ)Reλ(τ0) > 0.

3. The delayed model for the control of testosterone secretion

In this section we study the stability of the delayed model (1.2) for the control of
testosterone secretion.

Let (R0, L0, T0) denote the positive steady state of system (1.2), that is, the solutions
of the algebraic equations

f (T0) − b1(R0) = 0, g1(R0) − b2(L0) = 0, g2(L0) − b3(T0) = 0.

Let

x = R − R0, y = L − L0, z = T − T0.

Then the linearized system of (1.2) at (R0, L0, T0) is

dx

dt
= f ′(T0)z − b′

1(R0)x,

dy

dt
= g′

1(R0)x − b′
2(L0)y,

dz

dt
= g′

2(L0)y(t − τ) − b′
3(T0)z.

(3.1)

The associated characteristic equation of system (3.1) is

λ3 + aλ2 + bλ + c + de−λτ = 0, (3.2)

where

a = b′
1(R0) + b′

2(L0) + b′
3(T0) > 0,

b = b′
1(R0)b

′
2(L0) + b′

2(L0)b
′
3(T0) + b′

1(R0)b
′
3(T0) > 0,

c = b′
1(R0)b

′
2(L0)b

′
3(T0) > 0,

d = − f ′(T0)g
′
1(R0)g

′
2(L0) > 0.
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We have

p = a2 − 2b = [b′
1(R0)]2 + [b′

2(L0)]2 + [b′
3(T0)]2,

q = b2 − 2ac = [b′
1(R0)]2[b′

2(L0)]2 + [b′
1(R0)]2[b′

3(T0)]2 + [b′
2(L0)]2[b′

3(T0)]2,

r = c2 − d2 = [b′
1(R0)]2[b′

2(L0)]2[b′
3(T0)]2 − [ f ′(T0)]2[g′

1(R0)]2[g′
2(L0)]2,

∆ = p2 − 3q,

z1 = 1
3

( − p + √
∆

)
.

Applying Theorem 2.4 to equation (3.2), we obtain the following theorem.

THEOREM 3.1 Let ω0 and τ0 be defined as in (2.9), z0 = ω2
0, and

h(z) = z3 + (a2 − 2b)z2 + (b2 − 2ac)z + (c2 − d2).

Suppose that ab − c − d > 0.

(i) If r � 0 and ∆ = p2 − 3q < 0, then the steady state (R0, L0, T0) of system (1.2) is
absolutely stable (i.e. asymptotically stable for all τ � 0).

(ii) If r < 0 or r � 0, z1 > 0 and h(z1) < 0, then the steady state (R0, L0, T0) of
system (1.2) is asymptotically stable for τ ∈ [0, τ0).

(iii) If the conditions of (ii) are satisfied, τ = τ0, and h′(z0) �= 0, then system (1.2)
exhibits the Hopf bifurcation at (R0, L0, T0).

Applying Theorem 3.1 to the specific case (1.3), we obtain similar results on the
stability and bifurcation of the positive steady state.

4. Discussion

It has been observed in many experiments on intact adult animals that the serum
concentrations of both LH and T undergo rapid cyclic fluctuations of roughly the same
period. Several models have been proposed to try to account for the pulsatile release of
the hormones T, LH and LHRH (for example, Smith, 1980; Liu & Deng, 1991; Liu et al.,
1997). Smith (1983) argued that LH requires some time to travel through the bloodstream
to reach its site of action at the gonads and proposed a delay model for the control of
secretion of T.

In this paper, we first studied the distribution of the zeros of a third degree exponential
polynomial and obtained conditions which ensure that the zeros lie on the left, the
imaginary axis, and the right of the complex plane, respectively. Then we applied the
obtained results to analyse a delay model for the control of secretion of T proposed by
Smith (1983). Our analysis indicates that under certain assumptions on the coefficients
of the system, the steady state (R0, L0, T0) is asymptotically stable for all delay τ � 0.
However, if these conditions are not satisfied, then there is a critical value of the time delay
τ0. When τ < τ0, the steady state is asymptotically stable; when τ > τ0, it becomes
unstable; when τ = τ0, there is a Hopf bifurcation at the steady state; that is, a family
of periodic solutions bifurcates from the steady state when τ passes through the critical
value τ0. For the special case when bi (i = 1, 2, 3) and g j ( j = 1, 2) are linear functions,
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FIG. 1. (A1)–(A3) When τ < τ0, the three components converge to the steady state values; here τ = 0·2125.
(B1)–(B3) When τ > τ0, the three components fluctuate very rapidly; here τ = 0·3055.

the existence of a critical value of the time delay for system (1.3) was obtained by Murray
(1989) using a different approach. Thus, our results not only include Murray’s but also
provide conditions under which the steady state is asymptotically stable independent of
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the time delay. The bifurcation result indicates that there are parameter values for which
the three hormones undergo cyclic fluctuations.

As an example, we consider system (1.3) with f (T ) = c − hT , where c and h are
positive constants. Using the parameter values of Smith (1980) (except for the value of h),
that is, c = 100 pg/ml/h, g1 = 10 h−1, g2 = 0·7 h−1, b1 = 1·29 h−1, b2 = 0·97 h−1,
b3 = 1·39 h−1. We take h = 1 h−1. The steady state is given by E∗ = (R0, L0, T0) =
(15·428, 159·05, 80·098). Using Theorem 3.1, there is a critical value of the time delay,
τ0 = 0·3. When τ < 0·3, the steady state is asymptotically stable; when τ > 0·3, the
steady state becomes unstable and a periodic solution bifurcates from the steady state.
With τ = 0·2125, numerical simulation shows that the three components converge to the
steady state values. When τ = 0·3055, the three components oscillate very rapidly about
the steady state values (see Fig. 1).

We would like to mention that the techniques used in this paper can be applied to
other delayed models such as the virus replication model considered by Tam (1999) and
the HIV infection model considered by Culshaw & Ruan (2000). Finally, it would be very
interesting to study the multiple-delay model proposed by Cartwright & Husain (1986).
We leave this for future consideration.

Acknowledgements

Research by SR was supported by the Natural Science and Engineering Research Council
of Canada, and that by JW was supported by the National Natural Science Foundations of
China.

REFERENCES

CARTWRIGHT, M. & HUSAIN, M. A. 1986 A model for the control of testosterone secretion. J.
Theor. Biol. 123, 239–250.

COOKE, K. L. & GROSSMAN, Z. 1982 Discrete delay, distributed delay and stability switches. J.
Math. Anal. Appl. 86, 592–627.

CULSHAW, R. V. & RUAN, S. 2000 A delay-differential equation model of HIV infection of CD4+
T-cells. Math. Biosci. 165, 27–39.
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