
Dynamics of Continuous, Discrete and Impulsive Systems
Series A: Mathematical Analysis 10 (2003) 863-874
Copyright c©2003 Watam Press

ON THE ZEROS OF TRANSCENDENTAL

FUNCTIONS WITH APPLICATIONS TO

STABILITY OF DELAY DIFFERENTIAL

EQUATIONS WITH TWO DELAYS

Shigui Ruan†,1 and Junjie Wei‡,2

†Department of Mathematics
University of Miami

Coral Gables, FL 33124-4250, USA

‡Department of Mathematics
Harbin Institute of Technology

Harbin, Heilongjiang 150001, China

Abstract. In this paper, we first establish a basic theorem on the zeros of general tran-

scendental functions. Based on the basic theorem, we develop a decomposition technique

to investigate the stability of some exponential polynomials, that is, to find conditions

under which all zeros of the exponential polynomials have negative real parts. The tech-

nique combines the D-decomposition and τ -decomposition methods so that it can be used

to study differential equations with multiple delays. As an application, we study the sta-

bility and bifurcation of a scalar equation with two delays modeling compound optical

resonators.
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1 Introduction

For an ordinary differential equation, the trivial solution is asymptotically
stable if and only if all roots of the corresponding characteristic equation of
the linearized equation have negative real parts. Since the characteristic func-
tion is a polynomial, the well-known Routh-Hurwitz criterion can be used to
determine the negativity of the real parts of the characteristic roots. Similar
equivalence holds for delay differential equations, especially the discrete delay
differential equations. However, the characteristic functions corresponding to
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the linearized delay differential equations are no longer ordinary polynomi-
als, rather, they are exponential polynomials or quasi-polynomials as named
in Bellman and Cooke [5].

Consider the delay differential equation

m
∑

j=0

n
∑

k=0

ajkx(j)(t − τk) = 0, (1.1)

where 0 = τ0 < τ1 < τ2 < · · · < τn, the associated characteristic exponential
polynomial is a transcendental function of the form

p(λ, e−λτ1 , · · · , e−λτn) =

m
∑

j=0

n
∑

k=0

ajkλje−λτk . (1.2)

We introduce some notations (see Bellman and Cooke [5] and Hale and Ver-
duyn Lunel [21]). Equation (1.1) is called a retarded or delay differential
equation if the highest derivative term does not have a delay, i.e., if am0 6= 0,
and amk = 0 for k = 1, 2, ..., n, and a neutral differential equation if at
least one of of the highest derivative terms has delay, i.e., if amk 6= 0 for
some k = 1, 2, ..., n. For a neutral differential equation, if amn 6= 0, then
amnλme−λτn is called a principal term. It is known that if (1.1) is a re-
tarded differential equation and all roots of the exponential polynomial (1.2)
have negative real parts, then the zero solution of the delay equation (1.1) is
asymptotically stable. Occasionally, we also say that the exponential poly-
nomial is stable if all its roots have negative real parts.

Special cases of the exponential polynomial (1.2) have been studied by
many researchers. For example, Hayes [23] and Wright [47] investigated the
first degree exponential polynomials; Bellman and Cooke [5], Baptistini and
Tátoas [2], Boese [8], Chuma and van den Driessche [11], etc. studied the
second degree exponential polynomials; Ruan [41] studied the distribution of
zeros of some second order exponential polynomials and used the results to
investigate the stability and bifurcations in Kolmogorov types of predator-
prey systems, see also Martin and Ruan [33]; Ruan and Wei [42] analyzed
a third degree exponential polynomial and applied the obtained results to a
delayed model for the control of testosterone secretion; Cooke and van den
Driessche [13], Brauer [10], Beretta and Kuang [6], etc. considered the higher
degree exponential polynomials without the principal term; Freedman and
Kuang [17] studied the case with the principal term; see also Avellar and
Hale [1], Cooke [12], Hale and Verduyn Lunel [21], Kolmanovskii and Nosov
[25], Walther [44], Wei and Ruan [45, 46], and the references cited therein.

For the general exponential polynomial (1.2), the first and most funda-
mental criterion was due to Pontryagin [38] who studied the special case of
(1.2) when −τk = k, k = 0, 1, 2, · · · , n, namely,

p(λ, eλ) =

m
∑

j=0

n
∑

k=0

ajkλjekλ. (1.3)
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Pontryagin gave necessary and sufficient conditions for the stability of (1.3).
Pontryagin criterion is widely used in engineering and control theory. How-
ever, it has strong limitations and becomes very complicated for equations
with multiple delays. Other methods which have been developed to study
the stability of the exponential polynomials include the Nyquist criterion (see
Krall [26]), the Michailov criterion (see Krall [27]), the direct stability inves-
tigation method (see Stépán [43]), to name a few. We refer to Stépán [43] for
a brief introduction of these methods.

For a fixed delay τ, the zeros of the exponential polynomial associated
with a delay differential equation are continuous functions of its coefficients.
Divide the coefficient space into different regions by means of hypersurfaces,
the points of the hypersurfaces correspond to exponential polynomials with
at least one zero on the imaginary axis. Such a partition is called a D-
decomposition, proposed by Nĕimark [35]. The points of each region of a D-
decomposition correspond to exponential polynomials with the same number
of zeros with positive real parts (by number of zeros it means the sum of their
multiplicities). To every region Dk of the D-decomposition, it is possible to
assign a number k which is the number of zeros with positive real parts of
the exponential polynomial. Suppose that the region D0 (if exists) is also
found, corresponding to the exponential polynomial which does not have any
root with positive real part. Then this region is the stability region for the
solution of the delay differential equation. For a more detailed description
and applications of the D-decomposition method, we refer to the monographs
of El’sgol’ts [16] and Pinney [37].

A variant of the D-decomposition method is the τ -decomposition method
(see Popov [39], Lee and Hsu [29], and Huang [24]) which involves first de-
composing the delay τ -axis into intervals such that within each interval the
same stability character prevails, and then studying the change of stability
character of the system as the boundary points of the intervals are crossed.
Both the D-decomposition and the τ -decomposition methods are very use-
ful in applications. However, they cannot be used to study equations with
multiple delays.

In this paper, we first prove a basic theorem on the zeros of some general
transcendental functions and then use the basic theorem (and its corollar-
ies) to investigate the stability of some exponential polynomials by choos-
ing either one of the coefficients or one of the delays as a parameter. The
technique can be regarded as a combination of the D-decomposition and the
τ -decomposition methods so that it can be used to study equations with mul-
tiple delays. As an application, we consider a first order differential equation
with two delays. By choosing one of the coefficients as a parameter, we dis-
cuss the stability of the steady state solution and the Hopf bifurcation of the
equation. The obtained results can be applied to analyze the two-delay equa-
tions of Mizuno and Ikeda [34] and Marriot, Vallée and Delisle [32] modeling
compound optical resonators.
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2 Basic Theorems

In this section, we state and prove some basic results on zeros of some tran-
scendental functions.

Theorem 2.1 Suppose that B ⊂ Rn is an open connected set, h(λ, µ) is
continuous in (λ, µ) ∈ C×B and analytic in λ ∈ C, and the zeros of h(λ, µ)
in the right half plane

{λ ∈ C : Reλ ≥ 0}

are uniformly bounded. If for any µ ∈ B1 ⊂ B, where B1 is a bounded,
closed, and connected set, h(λ, µ) has no zeros on the imaginary axis, then
the sum of the orders of the zeros of h(λ, µ) in the open right half plane (Re
λ > 0) is a fixed number for B1, that is, it is independent of the parameter
µ ∈ B1.

Proof. Since the zeros of the function h(λ, µ) in the right half plane are
uniformly bounded, there exists a constant r > 0 such that for any zero λ of
h(λ, µ) with Reλ > 0, we have |λ| < r. Let

A = {λ ∈ C : Reλ ≥ 0, |λ| < r}.

If λ is a zero of h(λ, µ) satisfying Reλ > 0, then λ ∈ Å (the interior of A).
The assumptions imply that for any µ ∈ B, h(λ, µ) has no zeros on

∂A = {λ ∈ A : Reλ = 0 or |λ| = r},

the boundary of A. By Rouché’s Theorem (Dieudonné [15, Theorem 9.17.4]),
for any µ0 ∈ B1, there exists an open neighborhood of µ0, W (µ0) ⊂ B,
such that for any µ ∈ W (µ0), the sum of the orders of the zeros of h(λ, µ)
belonging to InA is independent of µ. Clearly,

∪µ0∈B1
W (µ0)

is an open covering of B1. Since B1 is compact, there is a finite integer N ≥ 1
such that

∪N
i=1W (µ

(i)
0 ) ⊃ B1.

Since for any µ ∈ W (µ0), the sum of the orders of the zeros of h(λ, µ)

belonging to InA is independent of µ, and for any W (µ
(i)
0 ) ∈ {W (µ

(i)
0 )}1≤i≤N ,

there exists at least another W (µ
(j)
0 ) ∈ {W (µ

(i)
0 )}1≤i≤N which intersects with

W (µ
(i)
0 ) because of the connectness of ∪N

i=1W (µ
(i)
0 ), we know that the sum of

the orders of the zeros of h(λ, µ) belonging to InA is independent of µ ∈ B1.
This completes the proof.

Remark 2.2 Theorem 2.1 can be applied to study the distribution of zeros
of a transcendental function either by using a delay as the bifurcation parame-
ter or by dividing the coefficient space into different regions with purely imag-
inary zeros on the boundaries. In other words, both the τ−decomposition and
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D−decomposition methods can be derived from Theorem 2.1. Thus, Theo-
rem 2.1 can be regarded as a combination of the τ− and D−decomposition
methods.

Corollary 2.3 Under the assumptions of Theorem 2.1, as µ varies, the sum
of the orders of the zeros of h(λ, µ) in the open right half plane can change
only if a zero appears on or crosses the imaginary axis.

Since we focus on retarded differential equations, we now consider the
following exponential polynomial:

P (λ, e−λτ1 , · · · , e−λτm)

= λn + p
(0)
1 λn−1 + · · · + p

(0)
n−1λ + p

(0)
n

+[p
(1)
1 λn−1 + · · · + p

(1)
n−1λ + p

(1)
n ]e−λτ1 + · · ·

+[p
(m)
1 λn−1 + · · · + p

(m)
n−1λ + p

(m)
n ]e−λτm ,

(2.1)

where τi ≥ 0(i = 1, 2, ..., m) and p
(i)
j (i = 0, 1, · · · , m; j = 1, 2, · · · , n) are

constants.

Corollary 2.4 As (τ1, τ2, · · · , τm) vary, the sum of the orders of the zeros
of P (λ, e−λτ1 , · · · , e−λτm) in the open right half plane can change only if a
zero appears on or crosses the imaginary axis.

Proof. It suffices to prove that the zeros of P (λ, e−λτ1 , · · · , e−λτm) in the
open right half plane are uniformly bounded. Without loss of generality, let
λ be a zero of P (λ, e−λτ1 , · · · , e−λτm) satisfying Reλ ≥ 0 and |λ| > 1. Then
we have

|λ| ≤
n

∑

j=1

(

m
∑

i=0

|p
(i)
j |).

Hence, P (λ, e−λτ1 , · · · , e−λτm) satisfies the assumptions in Theorem 2.1 and
the conclusion follows.

Remark 2.5 Corollary 2.4 is a generalization of the Lemma in Cooke and
Grossman [14] in which a second order degree exponential polynomial was
studied. See also Kuang [28].

Remark 2.6 Theorem 2.1 can be used to discuss the zeros of P (λ, e−λτ1 , · · · ,
e−λτm) by regarding either the delays (τ1, τ2, · · · , τm) or some coefficients as
parameters.

3 A Scalar Equation with Two Delays

In the last two decades, great attention has been paid to equations with two
delays which not only have significant biological and physical background
but also exhibit very rich dynamics. We refer to Bélair and Campbell [4]
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and Beuter, Larocque and Glass [7] for a simple motor control equation with
two delays; to Braddock and van den Driessche [9] and Gopalsamy [18] for
a logistic model with two delays; and to Bélair [3], Hale and Huang [19],
Hale and Tanaka [20], Hassard [22], Li, Ruan and Wei [30], Mahaffy, Zak and
Joiner [31], Marriot, Vallée and Delisle [32], Nussbaum [36], Ragazzo and
Malta [40] and the references therein for related studies on scalar equations
with two delays.

In modeling a compound optical resonator with competing boundary con-
ditions, Mizuno and Ikeda [34] proposed the following equation with two
delays:

γ−1φ̇(t) = −φ(t) + η[cos(φ(t − τ1) − φ1) + cos(φ(t − τ2) − φ2)], (3.1)

where φ denotes the phase shift of the electric field across the medium; γ−1

is the relaxation time of the nonlinear medium; η is the input power; φ1, φ2

are constants, τ1 and τ2(τ1 > τ2) are positive parameters related to the time
it takes the electromagnetic wave (the laser beam) to make a round trip
between the two mirrors and between the mirror and the semitransparent
mirror, respectively.

In this section, we shall apply the basic theorems obtained in section 2 to
study the stability and Hopf bifurcation of the following differential equation
with two delays:

ẋ(t) = −ax(t) + [f(x(t − τ1)) + f(x(t − τ2))], (3.2)

where a, τ1 and τ2(τ1 > τ2) are positive constants, and f ∈ C1(R). Suppose
that there exists x∗ ≥ 0 such that ax∗ = 2f(x∗), that is, equation (3.2) has
an equilibrium x∗. Clearly, equation (3.2) is the generalization of (3.1).

The linearized equation of (3.2) at the equilibrium x = x∗ is

ẋ(t) = −ax(t) − b[x(t − τ1) + x(t − τ2)], (3.3)

where b = −f ′(x∗). The associated characteristic equation of (3.3) has the
following form:

λ = −b[e−λτ1 + e−λτ2 ] − a. (3.4)

Notice that λ = 0 is a real root of equation (3.4) when b = −a/2. Meanwhile,
we know that iω (ω > 0) is a root of equation (3.4) if and only if ω satisfies

iω = −b[(cosωτ1 + cosωτ2) − i(sin ωτ1 + sin ωτ2)] − a.

Separating the real and imaginary parts, we have

b(cosωτ1 + cosωτ2) = −a,

b(sin ωτ1 + sin ωτ2) = ω,
(3.5)

which is equivalent to

2b cos
τ1 + τ2

2
ω cos

τ1 − τ2

2
ω = −a,

ω − 2b sin
τ1 + τ2

2
ω cos

τ1 − τ2

2
ω = 0.

(3.6)
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By (3.6), we have

tan
τ1 + τ2

2
ω = −

ω

a
. (3.7)

We know that equation (3.7) has a sequence of roots {ωj}j≥1, where (see
Fig. 3.1)

ωj ∈
((2j − 1)π

τ1 + τ2
,
(2j + 1)π

τ1 + τ2

)

.

Define

bj = −
a

2 cos τ1+τ2

2 ωj cos τ1−τ2

2 ωj

. (3.8)

y

0

y=-

ω

ω

y=tan ω
τ +τ

2
1 2

a

ω ω ω1 2 3

π 3π 5π 7π
τ  +τ τ  +τ τ  +τ1 2 1 2 1 2τ +τ 1 2

Figure 3.1: The points of intersection of y1 = −ω
a

and y2 = tan τ1+τ2

2 ω.

We have the following claim.

Claim. Equation (3.4) has purely imaginary roots if and only if b = bj ,
and the purely imaginary roots are ±iωj , where bj is defined by (3.8) and ωj

is a root of (3.7).

Lemma 3.1 Denote λ(b) = α(b)+ iω(b) the root of equation (3.4) satisfying
α(bj) = 0, ω(bj) = ωj . Then

Sign α′(bj) = Sign bj .
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Proof. From equation (3.4) we have

dλ

db
+ [e−λτ1 + e−λτ2 ] + b[−τ1e

−λτ1 − τ2e
−λτ2 ]

dλ

db
= 0.

Hence,

dλ

db
= −

e−λτ1 + e−λτ2

1 − b(τ1e−λτ1 + τ2e−λτ2)

=
λ + a

b[1 − b(τ1e−λτ1 + τ2e−λτ2)]
.

Substituting bj into the above equation, we obtain

dλ(bj)

db
=

iωj + a

bj [1 − bj(τ1e−iωjτ1 + τ2e−iωjτ2)]

=
iωj + a

bj [1 − bj(τ1 cosωjτ1 + τ2 cosωjτ2)] + ib2
j [τ1 sin ωjτ1 + τ2 sin ωjτ2]

.

It thus follows that

α′(bj) =
1

∆
{abj [1 − bj(τ1 cosωjτ1 + τ2 cosωjτ2)]

+ b2
jωj [τ1 sinωjτ1 + τ2 sin ωjτ2]},

(3.9)

where

∆ = b2
j [1 − bj(τ1 cosωjτ1 + τ2 cosωjτ2)]

2 + b4
j [τ1 sin ωjτ1 + τ2 sin ωjτ2]

2.

For convenience, set

h1(ω) = sin ωτ1 + sin ωτ2, h2(ω) = cosωτ1 + cosωτ2.

Then we have
h1(ω)

h2(ω)
= tan

τ1 + τ2

2
ω,

and hence
d

dω

(h1(ω)

h2(ω)

)

> 0.

Meanwhile, we have

d

dω

(h1(ω)

h2(ω)

)

=
h′

1(ω)h2(ω) − h′
2(ω)h1(ω)

h2
2(ω)

.

Thus, we must have

h′
1(ω)h2(ω) − h′

2(ω)h1(ω) > 0. (3.10)
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Since

h′
1(ω) = τ1 cosωτ1 + τ2 cosωτ2,

h′
2(ω) = −(τ1 sin ωτ1 + τ2 sin ωτ2),

by (3.5) and (3.9), we have

α′(bj) =
bj

∆
[a − abjh

′
1(ωj) − bjωjh

′
2(ωj)]

=
bj

∆
[a + b2

j (h
′
1(ωj)h2(ωj) − h′

2(ωj)h1(ωj))].

The lemma then follows from (3.10) and the fact that a > 0.
Now we can state and prove the following result on the distribution of

roots of the characteristic equation (3.4).

Theorem 3.2 Define

b+
0 = min

j≥1
{bj : bj > 0}, b−0 = max

j≥1
{−

a

2
, bj : bj < 0}. (3.11)

Then all roots of equation (3.4) have negative real parts if and only if b ∈
(b−0 , b+

0 ). If {bj : bj > 0}j≥1 = ∅, then the conclusion holds for b ∈ (b−0 ,∞).

Proof. Obviously, either {bj : bj > 0}j≥1 = ∅ or {bj : bj > 0}j≥1 6= ∅,
meanwhile {−a

2 , bj : bj < 0}j≥1 6= ∅. So b−0 and b+
0 are well-defined.

When b = 0, we know that equation (3.4) has only one root λ = −a < 0.
When b+

0 < ∞, b+
0 is the first value of b > 0 so that equation (3.4) has roots

on the imaginary axis. By Corollary 2.3, all roots of equation (3.4) have
negative real parts for b ∈ [0, b+

0 ). When b+
0 = ∞, this means that bj < 0

for all j ≥ 1. Once again, Corollary 2.3 implies that all roots of equation
(3.4) have negative real parts for b ∈ [0,∞). A similar argument applies for
b ∈ (b−0 , 0].

Denote by λ(b) the root of equation (3.4) satisfying λ(− a
2 ) = 0. Then we

have

λ′(−
a

2
) = −

4

2 + a(τ1 + τ2)
< 0.

By Lemma 3.1, we know that for b < b−0 and b > b+
0 , equation (3.4) has

at least one root with positive real part. This completes the proof of the
theorem.

By Theorem 3.2 and the Hopf Bifurcation Theorem (see Hale and Verduyn
Lunel [21]), we have the following result on the stability and bifurcation of
the equilibrium x = x∗ of equation (3.2).

Theorem 3.3 Let bj be defined by (3.8) and b−0 and b+
0 be defined by (3.11).

(i) The equilibrium x = x∗ of equation (3.2) is asymptotically stable if and
only if b ∈ (b−0 , b+

0 ). If {bj : bj > 0}j≥1 = ∅, then the conclusion holds
for b ∈ (b−0 ,∞).
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(iii) Equation (3.2) undergoes Hopf bifurcations at the equilibrium x = x∗

when b = bj(j = 1, 2, · · · ).

Applying Theorem 3.3 to the compound optical resonator equation (3.1),
one can easily derive stability and bifurcation conditions for the steady state
solution.

Finally, we would like to mention that the basic theorem in section 2 can
be used to study higher order delay differential equations and neutral delay
differential equations, we leave this for future consideration.

Acknowledgements. We are grateful to the referees for their helpful
comments and constructive suggestions.
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