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In this paper, we consider a planar system with two delays:

£1(t) = ~agz1 (¢) + arFy (w1t ~ 1), walt ~ 72)),
do{t) = —bpzo(2) + by Falzy(t — 11), 02 (t — m2})
Firstly, linearized stability and local Hopf bifurcations are studied. Then, existence

conditions for non-constant periedic solutions are derived using degree theory
methods. Firally, 2 simple neural network medel with two delays is analysed as an

example.

1. Introduction

In delay differential equations, periodic solutions can arise through the (local) Hopf
bifurcation. However, these periodic solutions exist only locally since they are cre-
ated when the bifurcation parameter, say «, passes through a critical value, say
op, and exist only for « in a small neighbourhood of ag. It is natural to ask if the
non-constant periodic solutions exist globally, that is, if they exist for all parameter
oz Qp.

In the last two decades, a great deal of research has been devoted to the global
Hopf bifurcation of delay differential equations. The scalar delay differential equa-
tion,

2(t) = —z(t) + flz(t - 7)), (1.1)

which has been used to model a vaziety of biological and physical phenomena, has
been studied by many researchers (cf. [2,11,17,18] and references therein). The
paper of Grafton [10] is the piloneering work in studying the global existence of
periodic solutions of two-dimensional systems with delay (see also [13,19,20}), but
his systems were derived from scalar second-order delay differential equations, so
a delay appears only in the second equation of the systerns. Similarly, Leung [16]
and Zhao et al. [26] investigated the existence of non-constant periodic solutions
for predator-prey systems with a delay in the predator equation. For the planar

1017



1018 S. Ruan and J Wei

delay differential system with a single delay in both equations,

fb‘“l(t) = _ml(ﬁ) + O-’Fl(ajl(t - 1)13:2(7: - 1))1 }

. (12)
To(t) = —za(t) + aFo(zy (t — 1), 22(2 ~ 1)),

the first piece of research was done by Tdboas (23], where & > 0 is a constant, F)
and Fy are bounded C® functions on R? satisfying

OF .0y 20, 20,0y 0,
83:2

8.’-‘31
and the negative feedback conditions:

zaF1(2y,22) > 0, z2#0,
z1Fp(zy,22) <0, x1#0.

Taboas showed that there is an ap > 0 such that for any a > ag, there is a
non-constant periodic solution with period greater than 4. Further study on the
global existence of periodic solutions to system (1.2) can be found in [} and [8].
All together there are very few results on the giobal existence of periodic solutions
of planar systems with a delay appearing in both equations, especially there are no
resuits involving planar systems with two delays.

In this paper, we are interested in the following planar system with two delays

£1{t) = —apx1(t) + a1 F1(x1(t — 1), 2a{t — m2)), }

(13)

a(t) = —bpzo(t) + biFa(z (t — m), zalt — 1)), )

where ag > 0, by > 0, gy and by are constants, and F and K5 satisfy the following
assumption:

Fj € CS(Rz)v Fj(Ov O) = Oa gfj (050) = Oa } = 1a2a
7
9 0.0y 20, 220,020, maFi(erzs) £0, for zs #£0 (Hy)
aCL‘g 8231

and xyF5(zy,22) #£0, for z; #0.

The method of showing the existence of non-constant periodic solutions used by
the above-mentioned researchers came from a widely known idea of Jones [15]. In
this seminal paper, Jones introduced the idea of finding a cone in the phase space
that maps into itself under a certain operator defined by the flow. The fixed points
of this operator are corresponding to periodic solutions of differential equations
The cone is easy to construct, but some other complications arise because most
problems have zero as an equilibrium point, which corresponds to the trivial periodic
solution. Thus, one needs to find non-zero fixed points of the flow operator knowing
in advance that zero is a fixed point. This can be achieved by applying a theorem
due to Nussbaum [20], which depends on the ejectivity of fixed points of the flow
operator. For a more applicable form of Nussbaum’s theorem, we refer to [3] and [12].

In this paper, instead of applying Nussbaum’s theorem, we shall use a different
approach, the degree theory, to study the global existence of periodic solutions of
system (1.4). Degree theory has been employed to develop global Hopf bifurcation
theory for delay differential equations since the work of [4]. Here, we shall use the
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global Hopf bifurcation theorem in [7], which was established using a purely topo-
logical argument. For more related results and references, we refer to the monograph
of Wu [25].

We would like to make a few remarks about our system (1.4). Fiist, deferring
from the system of Tdboas, the coefficients ag and by in the non-delay terms are
not necessarily 1. In fact, the Hopf bifurcation analysis in the paper of Téboas very
much depended on the unitizing of these coefficients. Because of this, we have to
analyse a general transcendental equation in the local Hopf bifurcation analysis.
Second, we do not require the negative feedback conditions on Fy and F. Third,
there are two delays appearing in our system This is significant since even scalar
equations with two delays are difficult to analyse (cf. [21]). We believe that even
our local analysis is new in the literature.

We should mention that we have to assume

OF,, . OF
—(0,0) = Fzg

(9.’1',‘1
Notice that, as pointed out in [8], this assumption was also made by Tdboas [23]
(see also [1]). The first example in which this assumption is satisfied is the example
used by Téboas [23] and Baptistini and Téboas [1]:

(0,0) = 0.

£y (t) = ~xz,(t) + carctanzo(t — 1), (15)

To(t) = —xzq(t) + aarctanz; {t ~ 1). '
The second example is a neural network model without self-connection,

£1(t) = —z1(t) + ara fza{t — 12)), (1.6)

Ey(t) = —z2(t) + aa1 f(21{t — 1)), '

which was studied in [9] and [22], where a1z, a2z, 71 > 0 and 7 > 0 are constants,
f{u) = tanhu (see also [24]). The above-mentioned authors investigated the lin-
earized stability and delay-induced oscillations in system (1.6) We shall discuss
global existence of non-constant periodic solutions to system {1.6) with a general

function f.
The paper is organized as follows. In § 2, local Hopf bifurcation analysis is carried
out. The global existence of periodic solutions is discussed in §3. As an example,

system (1.6) is analysed in §4.

2. Hopf bifurcation analysis
In this section, we first consider a general transcendental equation,
N 4ph+g(ple™ 41 =0, (2.1)

where p > 0, r > 0 and r are constants, 4 € R is a parameter.

LEMMA 2.1. Suppose that g(u) € C*(R), ¢'(1) > 0 and q(0) = 0. Let

- 45 -1
ij(Q(J 1)7r’(J )n), i—la.
T 2T
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Figure 1. The points of intersection of y; = [pw/(w® — r)] and y» = tanwr when

VT < [m/27]

be the roots of the egquation
pw

=3 = tanwr. (2.2)
27

If there ezists a sequence {p; };en such that
g(p;) = [pw;/ sinw;rl, (2.3)

then equation (2.1) with g = p; has a pair of purely imaginary roots Fiw;, which
are simple. Moreover, there exists a pg = [, € {45}, such that oll other roots of
equation (2.1) with p € [0, po) have strictly negative real parts provided that r 2 0.

In order to prove lemma 2.1, we give several claims. First, we know that Ziw
(w > 0) is a pair of purely imaginary roots of equation (2.1) if and only if w satisfies

—w? +ipw + g(p)[coswr — isinwr] + 7 = 0.
Separating the real and imaginary parts, we have:

I
w” — 1 = g{y) coswr,
pw = g(p) sinwr. }

It then follows that w must satisfy equation (2.2).

Cram 2.2, Let p; be defined by (2.3).

(i) Ifr 2 0 and /v < [n/27], then equation (2.2) has roots

93 — -
m-ez(““ br (4 3)”), j=12,

T ’ 2T

satisfying eguation (2.4) with = ;.



Periodic solutions of planar systems with two delays 1021

)}

! |
i |
H |
| i
| |
! I
i H
| i
I |
1 |
i

|

!
{
i
|
|
|
|
|
H
{
|
|
|
i
|
I
[
H
H
|
|
|
1

Figure 2. The points of intersection of y1 = [pw/{w? ~ r)] and yo = tanwr when
VT 2 [7/27].

(i} If r > 0 and /r 2 [r/27], then there exists an integer k = 1, such that
equation (£.2) has roots

w; € (4]—3)71',(4_]"“1)?1' for 1< <k
: 27 2r

and

w, € ((2(3' - 1)77, (43'—3)7%’) for i >k,

T 2r

satisfying equation (2.4) with p = p;.

In fact, roots of equation (2.2) are the w values at which the functions y; =
(pw/(w?—7)] and y» = tanwr intersect. It is clear that y; and y, intersect twice in
the interval

2i— D 23

2(; mo2jm ) .

l:—(m"m")'ma“:"_“‘jf: Jj=12,.., or 71=2,3,...,
T T

other than w = 0 (see figure 1). Meanwhile, the w value of the intersection must

satisfy equation (2.4), so it belongs to

(2(3' . 1)n, (47 — 3)::)’

T 2r

denoted by w;. Then, wy is a root of equation (2.4) with p = p;. This proves (i).
Notice that there is an integer k£ 2 1 such that

(2k — D) (2k + 3w
A i AR TR
" <r< 5

when +/r 2 [m/2r], (ii) can be proved similarly (see figure 2).
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Proof of lemma 2.1. For any r, claim 2.2 implies that +iw; is a pair of purely
imaginary roots of equation (2.1) with p = p;. Since ¢'(i) > 0, there exists an
integer k > 1, such that g(u;41) > q(p;) for j = k. Hence, we can find jo 2> 0 such
that

qlug) = lgljgk{q(uj)k

Denote
Ho = Hig, Wo = Wyg.

Then, for any u € [0, po), equation (2.1) has no imaginary root.
Next, we prove that +iw; ate simple For a contradiction, assume that for some
7, lw; is not simple, that means

d s _
X +pA+aluj)e Mt ]z, =0

We thus have
[2}‘ +p- TQ(}uj)e—‘XT}}\=iwj =0,

that is,
Qiw; -+ p — Tq(py)cosw;T — isinw; 7] = 0.

Separating the real and imaginary parts, we obtain

p = rq(p;) cosw;,
~2w; = Tg(p;) sinwyT

From claim 2.2, we know that either

o (z(j —Dr (4j —B)Tr)

T T 2r
* (49— 3)r (45 ~1)
4j — 3w (45~ Dr
wi € ( 2r 27 )
The former contradicts —2w; = 7¢(u;)sinw;r, and the latter contradicts p =

7g{u;) cosw; 7. Therefore, the roots =iw; are simple.

From the above discussion, we know that pg is the first value of g at which
equation (2.1) has a pair of purely imaginary roots. Meanwhile, the roots of (2.1)
with p =0, i.e

A iph4r=0,

Mz = §(-pE VPP~ 7).

Obviously, both A; and Ay have negative real parts when r > 0. By Rouché’s
theorem [6, theorem 9.17.4), as p varies the sum of the multiplicities of the roots of
equation (2.1) in the open right half-plane can change only if a root appears on, or
crosses, the imaginary axis. Since pg is the minimal positive value of p such that
equation (2.1) has a pair of purely imaginary 100ts, we can see that all roots of
equation (2.1) with z € [0, uo) have strictly negative real paits.

1f equation (2.1) with p == ug has a root with positive real pars, say AMu) = a(p)+
iw(p), where a(ug) > 0. Since afy) is continuous for p € é(up), & neighbourhood of

are
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o, we have a{p) > 0 for g < po and close to pg. It follows that equation (2.1) has
a root with positive real part for 4 < po, p € 6(up), which contradicts the above
discussion. In the case that r = 0, we can apply {25, lemma 6.2.1] to obtain the
conclusion. 0

Let
Al = aj(p) +iw;(p)
be the root of equation (2.1) with «;(1;) = 0, w;(g;) = w;. Then we have the
following result.
LeMmMA 2.3. The following transversality condition holds:
dRe A;(p)

> 0.
dp =g

Proof. From equation (2.1), we have

dy o dA s sy
22 (1 )d +p—d—j+q’(ﬂ)e MT — g(u)Te *”-a"j=0,

that is,
) _ (e
du 22i(w) +p—glp)re™7

Substituting g == u; in the above equation, we obtain
d;(ps) ¢’ (1) [cosw;T — isinw;r]

deg Ziw; +p—q(u)T(cosw;T — isinw;T)

= (‘u“") {llp — g(uj)7 cosw;r)cosw;T — (2wj + glp;)Tsinw; ) sinw, 7]
—i— i[—(p — g(u;)r cosw;T) sinw; 7 — (2w; + ¢{p;) 7 sinw,; ) cosw; 7]}

Hence,
dRe A; (1 r

ed;(#;,) e g SXJ) [(p—gq(p;)7 cosw;T) cosw;T — (2w; +q{p;) Tsinw; 7) sinw; 7],
where

A=[p~q{u;) T(:oswjr]2 [Qu)j—]-q(yj)rsinwjr]g.

Note that w; satisfies equation (2.4}, so we have

i (i
SR - L - 1) =l = 1)? = 2 - ]
= “‘f@%)z[—w =Wy = 1) = pf — 7]
= qQ'(#J) fpw +7) +T(w —T) + 7P wz]
> 0.

This completes the proof. 0
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By applying the above lemma and using a similar argument to the one in [5], we
obtain the following lemma.

LEmMMA 2.4. If {p;} is reordered such that pjp1 > iy, then for p € (15, piv1),
equation (2.1) has ezactly 2j roots with positive real part.

REMARK 2.5. Lemmas 2.1-2.4 generalize the results in [14] {see also [25]), where
the conditicn 0 < r < [x/2r] is 1equired. Here, we only require that r > 0. In
the following, we shall apply lemmas 2.1-2.4 to system (1 4) and only require that
aob{} = 0.

Now we consider the planar system (1.4). Under the hypothesis (Hy), (z1,22) =
(0,0) is an isolated stationary point of (1.4), and the linearized system of (1.4) at
(0, 0) has the following form:

oF:
£1(t) = —agza () + a;%}(o,mm(t —73),

oF, (25)
a(t) = —~boza(t) + b}gm:”(oyo)mz(i —T1).
]
Denote 5F S
a1 = a1 6—:1:;(0’ 0), Qg = bl”é”&:":f“(oa@), Q= =g,
Then the associated characteristic equation is
—ap— A ape” MY
det (Ckge_Mg ~bp — )\) =0,
that is,
A2 4 (ag + bo)A + ae™ M) 4 ogoby = 0. (2.6)
Let w; be the roots of the equation
(ap + bo)w
m = tanw(r; - Tg),

in the interval

(zu ~Dr (45— 3)7;)

m e T ! 2(7’1 + T2)

for § = k, k an integer. Applying lemmas 2.1-2.4 to equation (2.6} and regarding
o as the bifurcation parameter, we have the following lemma.

LeMMA 2.6. If (Fy) is satisfied, then there exists o sequence {0y}, j = 1,2, ..,
satisfying oy > oy, and

_ lootbolwy a0 = min{a;},

i sinw;(m + )’ iz

such that
(i) all roots of equation (2.6) have siricily negative real paris for a € [0, ag);

(ii) when o = ay, eguation (2.6) has o pair of purely imaginary roots +iw;, which
are simple, and all other roots have negative real parts;
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(iii) when o > ap, equation (2.6) has at least one root with a strictly positive real
part.

Applying lemma 2.6 to system (1.4), we obtain the following result on stability
and bifurcation in the system.

THEOREM 2.7. Suppose a = —ajap > 0.

(i} If o € [0, a0), then the zero solution of system (1.4) is asymptotically stable.
(ii) If @ > ap, then the zero solution of system (1.4) is unstable.

(i) Every o € {ay}, j=1,2,..., is a Hopf bifurcation value for system (1.4).

3. Global existence of periodic solutions

In this section, we shall study the global existence of periodic solutions of sys-
tem (14). First, we state a general global bifurcation theorem due to Fibe et
al. [7]. The form of the theorem we state here is from [25] (see [25] for unexplained
notation).

Let X be a Banach space over R and 7 > 0 be a constant. Let C' = C{[-7, 0}; X)
denote the Banach space of continuous X-valued functions on [—r, 0] with the supre-
raum norm || - || For any real numbess a < b, ¢ € [0, b] and any continuous function
u:la=rbl — X, u denotes the element of C given by u(8) = u(t + 8) for
6 € [~r,0]. Consider the abstract differential equation

w(t) = Arult) + fla,u), (3.1)

where A7 generates an analytic semigroup {T'(¢{)}izoon X, and f : Rx C = X
is a continuously differentiable mapping sending bounded sets into bounded sets.
Let Po(Az) denote the point spectrum of Ap, that is, the set of all A € C (where
C is the set of all complex numbers) such that Arv = Av has non-zero solution for
v € Dom(Ar). Assume that

(P1) there exist ug € Dom(Ar) and oy € R such that Agup + f(ao, o) = 0 and
0 gi_f PO‘(AT + Dd;f(Oi{},ﬁ-()));

(P2) there exists fp > 0 such that +ifp are characteristic values of the linearized
system

i(t) = Azult) + Do f(a,()ur, (3.2)

with e = ap, where 7 : (g — bp, g + 6o) — Dom(Ar) is a C*-mapping such
that Apn(e) + f{o, () = 0 for each & € (ag — &, @0 + &o), do > O

(P3) for (o, B) € D = g — o, ap + o] X [Bo — €0, Bo +€0), where §g > 0 and go > 0
are sufficiently small, i3 is a characteristic value of the linearized system (3.2)
if and only if & = aqp and § = [p;

(P4) the set M* of equilibria of system (3.1) is a complete one-dimensional smooth
manifold such that (i) the assumption (P1) is satisfied for every (ug, ap) € M*,
and (ii) if 413 are characteristic values of (3.2), then (P3) is satisfied.
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Define
.u'k(u‘()f Gg, ﬁU) = E(U(}, a’U}ﬁO) deg(w”k])?

where
1 if 9o(c, fo) € GLH(X),
“W”Mm”{w, i Yo (a0, fo) € GL™(X),

Yolon B) = Id + A7 Déf (@, 7(a)),

[1;;] is the homotopy class of ¢y : 0D — GL(Ey), and deg : [8D,GL.(Ey)] — Z
is the bijection defined by the classical Brouwer degree.
The following theorem is theorem 5.5 from ch. 6 of [25].

THEOREM 3.1. Suppose that (P1)-(P4) are satisfied. Let S denote the closure of
the set {(z,0,8) € C(S',X) x R x (0,00); u(t) = 2(Bt) is a non-trivial 2n/3
periodic solution of (3.1)}. Then, for each connected component C, at least one of
the following holds:

(i} C is unbounded, i e. sup{maxser [2(t)| +|al+ B8+ 071 : (z,&,8) € C} = 0.
. (i) Cn(M* x (0,00)) is finite, and for all k 2 1, one has the equality
z pic (o, co, Bp) = 0.

(ua,ao,ﬁg}ecﬂ(.’\’f‘ ® ({},OO)}

REMARK 3.2. The main step in applying theorem 3.1 is to compute deg({ir]} As
pointed out in remark 6.5.7 in [25], this can be done under transversality conditions.
If i, is a simple characteristic value of system (3.2) with « = ay satisfying (P3),
then iy is a simple isolated eigenvalue of Ap + D¢ f(ap, 7i(ag)) with eigenvector
ag € Dom(Ar). In this case,

deg([tn]) = degg(if — A(a),0D),
where A : {ag —6p, ap +8p) — C satisfles A(ag) = 1Fy and (ay, fo) € 8D. Therefore,
deg([¥1]) = 1 if Re M{ap) > 0 and deg([¥y]) = —1 if Re A'{ag) < 0.

Now we consider system (1.4). We shall regard @ = —oyas as the bifurcation
parameter. We first make the following assumptions.

(Ho) There exists a constant L > 0 such that |Fj(z:,z2)| < L, j = 1,2, for all
(w1, 72) € RZ.

(H3) There exists an integer m > 1 such that either ry = mm or 7 = mn.

Without loss of generality, we assume that m = mn. Clearly, by lemma 2.6, we
have lim;5 00w = 00. Assume that wy41 > wy for j > 1. Then, there exists an
integer jo = 1 such that [27/w;] € 7, [2r/wy] > 7 for j < jp and [2r/w;] < 7y
for j > jo-

(H4) There exist constants & > @, and

Lla:| + IBZD}

a

M= ma.x{l,
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where |a; |+ |b;| = max{|a:]+|b:| : @ € [0,3}} and @ = min{ap, bo}, such that

OF, JF:
—(ag + bo) + ala—mi(mhﬂﬂz) + bl*é"“m'"g*(iﬂh Ta),

2

has definite sign for (z1,29) € {(z1,22) : V/xi + 23 < M}

THEOREM 3.3. Suppose (Hi )~(Ha) are satisfied and either aj # 0 or by # 0. Then,
Jor any a € [ay,, &), system (1.4) has at least one non-constant periodic solution.

Proof. Tt is clear that for system (1.4), assumptions (P1)—(P4) are satisfied with
up = 0, ag = @y, and [y = w;, where a; and w; are defined in lemma 2 6. Mean-
while, by lemma 2.3 and remark 3.2, we know that

(0, oy, ;) = —1.

Thus, the connected component C, which contains (0, a;,w;), is unbounded, that
is,
Sup{lgzea&;{ lz(t)] + || + T+ T (3,0,T) € C} = co.

Firstly, we prove that for a € [0, 4], the periodic solution z(t) = (x1(t), z2(t)) of
system (1.4) satisfies |z(¢)] < M for ali ¢, where & and M are given by (Hy).
Let
r(t) = /3 (t) + 23 (1)

Taking the derivative of r{t) along solutions of system (1.4), we have

(t) = ;(%[ml(ww'l(t) + 2a(t)a(0)]

1
= m[“(a(;.?:%(t) -+ bgﬂ:%(t)) + ala:;(t)Fl (.’L‘l(t - T‘;), .’L‘g(t — Tz))
+ blﬂ?g(i})Fg(CD](i — 1), xa(t ~ Tg))]
1
< @[“a(mg(ﬂ + 23(8)) + Llea| |21 ()] + b1 | Jz2 ()]
If there is a tg > 0 such that |z(te)] =7(to) = A = M, then, by (Hy), we have
F(to) < (1/A)[~aA® + AL(laz| + b1 )]
= [-aA + L(laz| + |ba])]
< 0.
It follows that if (1) is a periodic solution of system (1 4), then either r(f} < M or
r(t) > M for all & If 7(t) > M for all £, by the above discussion, we have 7(t) < 0
for all t, which contzadicts the fact that z{t) is periodic in ¢. Therefore, for each
periodic solution of system (1.4), r(t) < M for all t.
Next, we prove that if a periodic solution z{t) of system (1.4) with a € [0, Go] is
on C, then its period T and T~ are uniformly bounded.
In fact, since 12 = mm, system (1.4) becomes

£1(t) = —agzy (t) + ey Fi (21 (t — 1), 22t — mn)), }

.’i?g(t) = *-bg.’L‘z(t) -+ b1F2(.’L‘1(t o Tl), .’L‘z(t — mrl)), (3‘3)
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and it has no r-periodic solution z(t) satisfying |z(t)| < M. Otherwise, if sys-
tem (3.3) has a my-periodic solution, say (u1(t), ua(t)), then it satisfies the ordinary
differential equations

&1 (t) = ~aoz1(t) + a1 F1 (71, 72) = P($1,$2)>}

Eg(t) = —boza(t) + by Fo(zy, ) = Q(z1, T2), (34)

which means that system (3.4) has a non-constant periodic solution on {z : |z| <
M}. On the other hand, from (H,} we have that

BP(ml,xg) - 6@(:::1,:1:2) 81*"1(:1:1,:1:2) + b1 3F2($1,222) 7& G,
da Oxo dry 1o
for all z € {z : |z| £ M} By Bendixson’s ciiterion, we know that system (3.4)
has no non-constant periodic solutions on the region z € {z : |z| £ M} Hence,
system (3.3) has no [ /n]-periodic solution on {z: |z| < M} foranyn 2 1.
By the choice of o, there exists a & > 1 such that

= —(ao -+ bo) + s

) 2 (5]

< <
E+1  wy,  k

Thus, on the connected component C, which contains (0, [27/w;,], &5, ), the period
T of the periodic solution of system (3.4) with « £ & satisfies
1 1
k1 T
Finally, we prove that system (3.3) with & = 0 has no non-constant periodic

solution.
If

< T <

8F1(0,0) 8F,(0,0)
5.’132 6231 -

by (H;), we have either a; = 0 or b = 0. Without loss of generality, we assume
a; = 0. Then system (3.3) becomes

1 (t) = —agza(t), (35)
:f:z(t) = —boi’g(ﬂ) + b1F2($1(t - T1),$2(i - mﬁ))‘ ‘

0,

0 = —alb;

For any ¢ = (¢1,¢d2) € C, the solution of system (3.5) with the initial data z(t) =
o(t}, t € [-mm, 0], can be expressed as

z1(t) = $1(0)e™ %,
Ig(t) = ewbnt qusz((}) e 51 /t eb"st(m](s - T1),$2(S - mT1)) ds} y t = 0.
40

It is obvious that
lim z,(t) = 0.
t—+o0

Meanwhile, from the expression of z5(¢} and the fact that [Fa(z;,zs)| € L for all
(x1,22) € R?, we can see that zo(t) is bounded for all ¢ > —mr;. Hence, by the
assumption that z1Fa(z1,z2) # 0 for z; # 0 and the continuity of Fa(z,z2), we
have

t}i%lo Falz1(t — ), z2(t —mmn)) =0
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Now, let us prove that

lim [Uﬂt e Fo(zy (8 — 1), a(s mrl))ds> /ebof«J = (). (3.6)

Lok 00

For ¢ > 0, we know that

t
< / e?8| Fy(z1(s — 1), z2(s — mr1))|ds.
S0

i
/ e Fy(z1(s — 1), z2(s — mmy)) ds
Jo

Hence, we have either
4

lim ‘ebeleg(ml(s ~ 1), za(s — mr)}| ds < oo, (3.7)
t—~oo )
or
t
tl_iu}m e8| Fy(zq(s ~ 1), m2{s — m71)}| ds = co. (3.8)
o0 Ju

If (3.7) holds, so does (3.6). If (3.8) holds, by L'Hospital’s rule, we have

th—viﬁa[(l/: e”* | Fy(z1(s — 1), z2(s — mmn))| ds) /ebot]

- lim ebotIFz(ml(t - Tl),.’Bz(t — m‘f’l))l
t—roo byebot

= (),
which shows that (3 6) holds. Thus, by the expression of za(t}, we have

lim za(t) = 0.
|2 dae)

This implies that when a = 0, system (1.4} has no non-constant periodic solution.
By the above discussion, we can see that the projection of C on the a-axis includes

[@jo, @) This completes the proof. O

4. An example

Consider the neural network model without self-connection, ie the differential
equations with two delays:

£1(t) = ~z1(t) + a2 f (z2(t — 72)),
Eo(t) = ~z2(t) + aar f(z1(t — 7))
Related models have been studied by Gopalsamy and Leung (9], Olien and Bélair
[22] and Wei and Ruan [24]. We shall use the results in §§2 and 3 to study the
stability of the zero solutions and the global existence of periodic solutions of sys-

tem (4.1).
First of all, we make the following assumptions.

(Hy) f e C3R), zf(z) # 0 for  # 0, and f'(0) #0.
(H%) There exists a constant L > 0 such that | ()] < L for allz € R.

(4.1)

(H%) There exists an integer m 2 1 such that either 1 = mrp or 72 = mn.
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Clearly, under the assumption (H}), (0,0) is an isolated stationary point of sys-
tem (4 1) and the linearization of system (4.1) at (0,0) is

£1(t) = —z1(t) + ar2 f (0)za(t — 72), (4.2)
Zo(t) = —za{t) + aoy f'(O)a (t — 1) h
For convenience, we denote
a = "”‘a12‘121[f’(0)]2: (4.3)

which will be regarded as the bifurcation parameter, and the associated character-
istic equation is

A4 2x +aeMrdm) L1 =, (4.4)
Denote
ij
= — o = min{c; 4
Ct;, Sinw,-(rl + Tg) o I;pll?]:?{a]} ( 5)
Let

e (Bl oy

1ol 2(1 4+ )
for j 2 k, k an integer, be the 1oots of the equation
[2w/(w? — 1)} = tanw(ry + 72). (4.6)

By applying theorem 2.7, we have the following result.
THEOREM 4.1. Suppose that & > 0 and (H]) holds.

(1} For o € [0, cxg), the zero solution of system (4.1) is asymptotically stable.

(if) For a > ag, the zero solution of system (4.1) is unstable.

(ili) Every a; € {a;}j=1,2, . ts a Hopf bifurcation value of system (4.1).

Applying theorem 3.3 to system (4.1), we obtain the global existence of periodic
solutions.

THEOREM 4.2. Suppose that (Hi)-(Hj) are satisfied and either ajn # 0 or ag # 0
is fired Let a;, be the value such that (2m/w;,] € m and 2r/w;] > 1y for j < jg
and [2m/w;] < 7 for j > jo. Then, for any « = a;,, system (4.1) has at least one
non-constant periodic solution.

Without loss of generality, we assume that 7 = mn. Clearly, under (H{)-(H3),
the system satisfies the assumptions (H;)—(Hg). Notice that

3P($1,5‘32) n ﬁQ(ml,mg) - 8f(-’132) +a 6]‘(:1:1)
(9:[21 6$2 . 2

*2‘*‘&12 =—-2%0,

Oz 2 0o

for all (z7,z2) € R%. Thus, assumption (H4) is also satisfied. By theorem 3.3, we
obtain our conclusion.
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