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Abstract Predator–prey models with Michaelis–Menten–Holling type ratio-
dependent functional response exhibit very rich and complex dynamical behavior,
such as the existence of degenerate equilibria, appearance of limit cycles and hetero-
clinic loops, and the coexistence of two attractive equilibria. In this paper, we study
heteroclinic bifurcations of such a predator–prey model. We first calculate the higher
order Melnikov functions by transforming the model into a Hamiltonian system and
then provide an algorithm for computing higher order approximations of the hetero-
clinic bifurcation curves.
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224 S. Ruan et al.

1 Introduction

In population dynamics of predator–prey models, the functional response describes
the behavior of searching predators on a fast behavioral time scale, in minutes or
hours, whereas the differential equations operate on a slow dynamical time scale, in
days or years. To overcome this problem, Arditi and Ginzburg [1] suggested that the
functional response should be expressed in terms of the ratio of prey to predators and
proposed the following predator–prey model with Michaelis–Menten–Holling type
ratio-dependent functional response:

⎧
⎨

⎩

dx
dt = x

(
a − bx − cy

x + my

)
,

dy
dt = y

(
−d + f x

x + my

)
,

where a, b, c, d, f,m are positive coefficients and x(t), y(t) are the density of prey
and predators, respectively, at time t . This system can be simplified as

⎧
⎨

⎩

dx
dt = αx(1 − x)− xy

x + y ,

dy
dt = −βy + κxy

x + y

(1.1)

with the changes of variables x �→ (a/b)x, y �→ (a/mb)y, t �→ (m/c)t , where
α = ma/c, β = md/c, κ = m f/c.

In the last decade, both biologists and mathematicians have paid great attention
to this type of predator–prey models since many complicated dynamical phenomena,
such as the existence of degenerate equilibria, appearance of limit cycles and hete-
roclinic loops, and the coexistence of two attractive equilibria, have been observed.
In 1998, Kuang and Beretta [9] showed, by using the divergency criterion, that it has
no nontrivial positive periodic solutions if the positive equilibrium is asymptotically
stable. They also gave sufficient conditions on global asymptotic stability for each
of the three possible equilibria O = (0, 0), A = (1, 0) and B = (x1, y1), where
x1 = (ακ − κ + β)/ακ and y1 = (κ − β)x1/β. In 2001, Hsu et al. [8] gave more
results on the degenerate equilibrium O and proved that a periodic solution exists only
in the case when

(HHK) : β < κ < α + β < 1, ακ − κ + β > 0,

where the equilibrium B is unstable, and that such a periodic solution must be unique
and stable. It was pointed out in [8] that a heteroclinic loop, formed by the equilibria O
and A together with their joint separatrices, may exist when the unstable manifold of
the saddle A happens to coincide with the orbit γ0 which goes towards the degenerate
equilibrium O in the direction of the polar angle θ = arctan((κ−α−β)/(α+β−1)).

Efforts were made in studying the existence of the heteroclinic loop in system (1.1),
among other dynamical properties, by Berezovskaya et al. [2] and Xiao and Ruan [16]
at the same time (these two papers appeared in the same issue of the J Math Biol).
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Computing the heteroclinic bifurcation curves in predator–prey systems 225

Under the condition (HHK), Berezovskaya et al. [2] used the continuity of the vector
field to establish the existence of a constant κL between κH (the parameter value
for the Hopf bifurcation at equilibrium B) and κO B (the parameter value for B to
coincide with O), so that a heteroclinic loop exists at κ = κL . By investigating the
topological structures in the neighborhood of the degenerate equilibrium O and the
global dynamics involving all three equilibria, Xiao and Ruan [16] showed that, under
certain parameter values, there is a heteroclinic loop, and when it is broken there exists
a stable limit cycle surrounding the unstable positive equilibrium. Using the package
XPP (see [6]), they demonstrated numerically the existence of a heteroclinic loop
(Fig. 1) and the existence of a stable limit cycle (Fig. 2).
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Fig. 1 The phase portrait of system (1.1) when α = 0.5, β = 1, and κ = 1.6. O = (0, 0) is an attractor,
A = (1, 0) is a saddle, and B = (0.25, 0.15) is an unstable focus. There is a heteroclinic loop consisting
of the origin O, the saddle A, the heteroclinic orbit connecting A and O, and the seperatrices between O
and A. This is Fig. 4.8 in Xiao and Ruan [16]
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Fig. 2 The phase portrait of system (1.1) when α = 0.5, β = 1, and κ = 1.564. The heteroclinic loop is
broken and there is a stable limit cycle surrounding the unstable positive equilibrium B = (0.2788, 0.1568).
This is Fig. 4.7 in Xiao and Ruan [16]
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Consider a prey species growing to its carrying capacity with logistic growth in
a habitat [represented by the boundary equilibrium A = (1, 0) in Fig. 1]. Now a
predator species invades the habitat. Figure 1 indicates that, no matter what the initial
densities of the prey and predators are, the predation will always drive both species
to extinction. The heteroclinc orbit connecting the equilibria A and O describes the
transition from positive density to extinction of both prey and predator populations.
All solutions with initial values from either side of the heteroclinc orbit will eventually
approach the origin. This is the catastrophe or overexploitation (van Voorn et al. [15])
scenario in predator–prey systems.

The interesting scenario is in Fig. 2. Though solutions with initial values outside
the just-disappeared heteroclinc orbit still tend to the origin, solutions starting inside
the previous heteroclinc orbit will approach the stable limit cycle surrounding the
unstable positive equilibrium. Thus, both prey and predator populations coexist in
oscillatory modes. Therefore, it is biologically significant and important to determine
the heteroclinic bifurcation curves, analytically and precisely, in terms of the model
parameters. In fact, mathematically heteroclinic bifurcation is also a very challenging
and very active problem in dynamical systems (see, for example, Guckenheimer and
Holmes [7], Zhang and Li [17]).

Motivated by these facts, in 2005, two of us gave an analytical condition on para-
meters for the existence of the heteroclinic loop in [14]. Blowing up the degenerate
equilibrium O with a Briot–Bouquet transformation and reducing the transformed
system of (1.1) to a perturbation of a Hamiltonian system possessing a triangular-like
heteroclinic loop, we obtained an explicit expression of κ in terms of α and β, that is,

κ = β +
(

β

2 − 2α − β

)

α + O(α2), (1.2)

by finding zeros of the Melnikov function ([7,13]). The dependence defines a bifurca-
tion curve in the (α, κ)-plane for the heteroclinic loop. Most recently, Li and Kuang
[10] found a flaw in the dependence on β in our computation in [14]. Applying the
same ideas and techniques to a different Hamiltonian system, they obtained a new
explicit relation

κ = β +
(

β

2 − β

)

α +
(

6β

(4 − β)(2 − β)2

)

α2 + O(α3) (1.3)

in a higher order expansion for the bifurcation curve of the heteroclinic loop.
In this paper we calculate the Melnikov functions of higher orders as in [5,17] and

present an algorithm for computing the higher order approximations to the bifurcation
curves. The computational procedure of the first order Melnikov function, which was
applied in [14] and [10], is simplified with properties of the Beta function. One can
observe by comparing (1.2) and (1.3) that a further expansion with respect to α was
neglected in [14]. We then employ the improved computational procedure to the same
type of Hamiltonian system as considered in [14], where the further expansion is
applied, and obtain the same expression (1.3) of the bifurcation curve as in [10]. In
order to illustrate our algorithm, the second order Melnikov function is computed so
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that a third order approximation of the bifurcation curve of the heteroclinic loop is
obtained.

The paper is organized as follows. Section 2 deals with the second order approxi-
mation. Higher order approximations are discussed in Sect. 3. Section 4 provides the
algorithm for calculating the Melnikov functions.

2 Second order approximation

We still follow the steps in [14]. Under the condition (HHK) we only need to consider
the equivalent system of (1.1), where (1.1) is multiplied by a factor x + y. Using the
Briot–Bouquet transformation x̃ = x, u = y/x, dt̃ = x dt and the substitutions of
variables x̃ = x2

1/α, u = u2
1/(1 − α− β), t̃ = −2t1, respectively, the system can be

transformed into the form

⎧
⎨

⎩

x ′
1 = x1

(
−α + x2

1 + 1−α
1−α−β u2

1 + 1
1−α−β x2

1 u2
1

)
,

u′
1 = u1

(
α + β − κ − x2

1 − u2
1 − 1

1−α−β x2
1 u2

1

)
,

(2.1)

where x ′
1, u′

1 represent the derivatives of x1, u1 with respect to t1, respectively. System
(2.1) has a unique equilibrium

B ′′ =
(√

ακ − κ + β

κ
,

√
(κ − β)(1 − α − β)

β

)

in the interior of the first quadrant and three boundary equilibria:

O ′′ = (0, 0), O ′′
1 = (0,

√
α + β − κ), A′′ = (

√
α, 0).

Choose

λ1 := −α, λ2 := α + β − κ (2.2)

as the unfolding parameters. In order to reduce the highest order terms in (2.1) to
small perturbations, we introduce a small parameter δ > 0 and construct the invertible
transformations (x1, u1, t1) �→ (v1, v2, τ ), (λ1, λ2) �→ (δ, µ) such that

{
x1 = √

δv1, u1 = √
δv2, t1 = δ−1τ,

λ1 = −δ, λ2 = 2(1−β)
2−β δ + δ2µ,

(2.3)

which transfer system (2.1) into the form

⎧
⎨

⎩

dv1
dτ = v1(−1 + v2

1 + 1
1−β v

2
2) +δv1

[
β

(1−β)2 v
2
2 + 1

1−β v
2
1v

2
2 + O(|δ|)

]
,

dv2
dτ = v2(

2(1−β)
2−β − v2

1 − v2
2) +δv2

[
µ− 1

1−β v
2
1v

2
2 + O(|δ|)

]
.

(2.4)
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228 S. Ruan et al.

In contrast to (3.5) in [14], an expansion of a coefficient (1 − α)/(1 − α − β) with
respect to δ is applied in (2.4), i.e.,

1 − α

1 − α − β
= 1

1 − β
+
(

β

(1 − β)2

)

δ + O(δ2).

Multiplying system (2.4) by the integrating factor vξ−1
1 v

η−1
2 , where

ξ = 4(1 − β)

β
> 0, η = 2(2 − β)

β
> 0, (2.5)

we obtain a perturbed Hamiltonian system Hδ:

⎧
⎪⎨

⎪⎩

dv1
dτ = v

ξ
1v
η−1
2

(
−1 + v2

1 + 1
1−β v

2
2

)
+ δv

ξ
1v
η−1
2

[
β

(1−β)2 v
2
2 + 1

1−β v
2
1v

2
2 + O(|δ|)

]
,

dv2
dτ = v

ξ−1
1 v

η
2

(
2(1−β)

2−β − v2
1 − v2

2

)
+ δv

ξ−1
1 v

η
2

[
µ− 1

1−β v
2
1v

2
2 + O(|δ|)

]
,

(2.6)

which is equivalent to system (2.4) in the sense that they have the same phase portrait.
Here we only consider small α so that |δ| is small. Note that (2.2) and the second line
in (2.3) make a one-to-one correspondence between (α, κ) and (δ, µ) for each fixed β.
Thus, one can treat β in (2.4) as a parameter independent of the small δ. In this sense
no coefficients in the Hamiltonian system H0 (i.e., system (2.6) with δ = 0) depend
on the perturbation parameter δ.

Let

σ :=
√

1 − β

2 − β
, hB := 1

η
σ ξ+η

(

−1 + σ 2 + η

ξ
σ 2
)

= −1

η
σ ξ+η β

2(2 − β)
.

Obviously, σ > 0 and hB < 0 under the condition (HHK).

Lemma 2.1 Under the condition (HHK) system H0, that is system (2.6) for δ = 0, is
Hamiltonian with the Hamiltonian function H(v1, v2) = 1

η
v
ξ
1v
η
2 (−1+v2

1 + η
ξ
v2

2). The

system has three saddles at O0 = (0, 0), O1 = (0,
√

2σ), A1 = (1, 0), and a center
at B1 = (σ, σ ) in the first quadrant. Moreover, for h = hB the curve H(v1, v2) = h
is just the center B1; for hB < h < 0 the curve H(v1, v2) = h is a periodic orbit
around the center; and for h = 0 the curve is a heteroclinic orbit �0 formed by the
equilibria O0, A1 and O1 of system H0 together with their joint separatries, as shown
in Fig. 3.

The proof of this lemma is almost the same as the proof of Lemma 3 in [14] except
that we note that the linearized system at O0 has eigenvalues −1 and 2σ 2 and the linea-
rized system at B1 has a pair of purely imaginary eigenvalues ±2i

√
β(1 − β)/(2 − β).

The branch of the curve H(v1, v2) = 0, which is a heteroclinic orbit connecting
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Fig. 3 The Hamiltonian system H0

saddles O1 and A1, is ϒ :

v2
1 + η

ξ
v2

2 = 1. (2.7)

Lemma 2.1 enables us to reduce the problem of the heteroclinic loop to the bifurcation
of the heteroclinic orbit ϒ in the system Hδ (for δ �= 0).

Theorem 2.2 Under the condition (HHK), for small |δ| system (2.6) (i.e., Hδ) has a
heteroclinic orbit when

µ = − 6β

(4 − β)(2 − β)2
+ O(δ). (2.8)

Proof We need to investigate how the perturbation term of the lowest degree

(ϕ1(v1, v2), ϕ2(v1, v2))
T

:=
(

v
ξ
1v
η−1
2

[
β

(1−β)2 v
2
2 + 1

1−β v
2
1v

2
2

]

, v
ξ−1
1 v

η
2

[

µ− 1

1−β v
2
1v

2
2

])T

affects the Hamiltonian system H0. As known in [7], system (2.6) for δ �= 0 has a
heteroclinic loop near �0 if the Melnikov function
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M1(µ) :=
∫

ϒ

{ϕ2(v1, v2)dv1 − ϕ1(v1, v2)dv2}

=
(
ξ

η

) η
2

1∫

0

{

µv
ξ−1
1

(
1 − v2

1

) η
2 − ξ

(1 − β)η
v
ξ+1
1

(
1 − v2

1

) η+2
2

+ ξ

(1 − β)η
v
ξ+3
1

(
1 − v2

1

) η
2 + βξ

(1 − β)2η
v
ξ+1
1

(
1 − v2

1

) η
2
}

dv1, (2.9)

has a zero, where ϒ denotes a heteroclinic orbit in �0 connecting saddles O1 and A1,
as shown in (2.7). Solving M1(µ) = 0, we obtain a unique solution

µ =
ξ

(1−β)η J (ξ + 1, η + 2)− ξ
(1−β)η J (ξ + 3, η)− βξ

(1−β)2η J (ξ + 1, η)

J (ξ − 1, η)
, (2.10)

where

J (s1, s2) =
1∫

0

v
s1
1 (1 − v2

1)
s2
2 dv1 = 1

2
B

(
s1 + 1

2
,

s2 + 2

2

)

(2.11)

and B(p, q) is the Beta function for p > 0 and q > 0. In the computation of (2.11) the
expression (2.7) of curve ϒ is used. Note that B(p, q) = �(p)�(q)/�(p + q) and
�(s + 1) = s�(s) for s > 0, where �(s) is the Gamma function. It follows from
(2.10) that

µ = ξ2

(1 − β)η(ξ + η + 2)

(
η + 2

ξ + η + 4
− ξ + 2

ξ + η + 4
− β

1 − β

)

= − 6β

(4 − β)(2 − β)2
, (2.12)

that is, the bifurcation curve for the heteroclinic orbit is given by (2.8), as shown in
the Melnikov’s theory (see, e.g., [7]). ��

With the changes of parameters (2.2) and the second line in (2.3), the expression
(2.8) can be equivalently rewritten as

κ = β +
(

β

2 − β

)

α +
(

6β

(4 − β)(2 − β)2

)

α2 + O(α3), (2.13)

the same expression as (1.3). By the equivalence among those reduced systems, Theo-
rem 2.2 indicates that system (1.1) has the heteroclinic loop when parameters α, β, κ
lie on the bifurcation curve (2.13), denoted by κL(α, β). One can observe that the
expression (1.2) (i.e., (3.20) in [14]) has the same first two terms as the expression
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(2.13) if we expand the coefficient β/(2−2α−β) in (1.2) with respect to α. The more
precise expression (2.13) is actually the second order approximation to the bifurcation
curve κL(α, β).

We remark that the first order Melnikov function for a heteroclinic loop near �0
was computed inappropriately by

M1(µ) :=
∫ ∫

int�0

trace D(ϕ1(v1, v2), ϕ2(v1, v2))
T dv1dv2 (2.14)

in both [10] and [14], where int�0 denotes the region with boundary �0, but it is
corrected in the proof of our Theorem 2.2. From [7] we see that the correct expression
of M1(µ) is given as in (2.9) by an integral on the curveϒ . Note thatϒ is not a closed
curve and therefore we cannot apply the Green formula to reduce the integral on curve
in (2.9) to the form of (2.14).

3 Higher order approximation

From (2.12) in the proof of Theorem 2.2 we easily see that the first order Melnikov
function M1(µ) ≡ 0 when µ ≡ −6β/{(4 − β)(2 − β)2}. By the Melnikov theory
in dynamical systems (see Zhang and Li [17]), we have to calculate higher order
Melnikov functions as done in [5,11,17]. We will calculate coefficients of αk (k ≥ 3)
in (2.13) and give a higher order approximation to the bifurcation curve.

We present the detailed procedure of calculating the coefficient of α3 in (2.13).
Firstly, applying the substitution of variables

x̃ = x2
1/α, u = u2

1/(1 − β), t̃ = −2t1

together with a Briot-Bouquet transformation, we transform system (1.1) into the form

⎧
⎪⎨

⎪⎩

x ′
1 = x1

(
−α + x2

1 + 1−α
1−β u2

1 + 1
1−β x2

1 u2
1

)
,

u′
1 = u1

(
α + β − κ − x2

1 − 1−β−α
1−β u2

1 − 1
1−β x2

1 u2
1

)
,

(3.1)

a form similar to (2.1). Then, introducing some new parameters µi (i ≥ 2) for higher
order terms, we improve the second transformation (2.3) as

λ1 = −δ, λ2 = 2(1 − β)

2 − β
δ +

k∑

i=1

µiδ
i+1, (3.2)

123



232 S. Ruan et al.

where k ≥ 1. When µi = 0 (i ≥ 2) this transformation is exactly the same as (2.3).
With (3.2) system (3.1) is transformed into

⎧
⎨

⎩

dv1
dτ = v1

(
−1 + v2

1 + 1
1−β v

2
2

)
+ δv1

( −1
1−β v

2
2 + 1

1−β v
2
1v

2
2

)
,

dv2
dτ = v2

(
2(1−β)

2−β − v2
1 − v2

2

)
+ δv2

(
1

1−β v
2
2 − 1

1−β v
2
1v

2
2 + µ1

)
+ v2

∑k
i=2 µiδ

i .

(3.3)

Using the same integrating factor as for (2.6), we obtain

⎧
⎨

⎩

dv1
dτ = f1(v1, v2)+ g1(v1, v2)δ,

dv2
dτ = f2(v1, v2)+∑k

i=1 g2i (v1, v2)δ
i ,

(3.4)

a form similar to the perturbed Hamiltonian system Hδ in (2.6), where

f1(v1, v2) = v
ξ
1v
η−1
2

{

−1 + v2
1 + 1

1 − β
v2

2

}

,

f2(v1, v2) = v
ξ−1
1 v

η
2

{
2(1 − β)

2 − β
− v2

1 − v2
2

}

,

g1(v1, v2) = v
ξ
1v
η−1
2

{ −1

1 − β
v2

2 + 1

1 − β
v2

1v
2
2

}

,

g21(v1, v2) = v
ξ−1
1 v

η
2

{

µ1 + 1

1 − β
v2

2 − 1

1 − β
v2

1v
2
2

}

,

g2i (v1, v2) = µiv
ξ−1
1 v

η
2 , i ≥ 2.

Let

⎧
⎪⎨

⎪⎩

f (v1, v2) := ( f1(v1, v2), f2(v1, v2))
T ,

g1(v1, v2) := (g1(v1, v2), g21(v1, v2))
T ,

gi (v1, v2) = (0, g2i (v1, v2))
T , i ≥ 2.

(3.5)

Consider the equivalent 1-form of system (3.4), i.e.,

ωδ := −
(

f2 +
k∑

i=1

g2iδ
i

)

dv1 + ( f1 + g1δ)dv2 = 0. (3.6)

Clearly, ωδ = �k
i=0ωiδ

i , where ω1 = −g21 dv1 + g1 dv2, ωi = −g2i dv1 for
i ≥ 2 and ω0 = d H(v1, v2), the differential of the Hamiltonian function H(v1, v2)

defined in Lemma 2.1. As shown in [11,12,17], the Melnikov function along ϒ

123



Computing the heteroclinic bifurcation curves in predator–prey systems 233

can be written as

M(µ) =
k∑

i=1

Mi (µ)δ
i + O

(
|δ|k+1

)
,

where µ := (µ1, . . . , µk), M1(µ) = − ∫
ϒ
ω1, which can be presented in exactly the

same form as given in (2.9), and

Mi (µ) =
∫

ϒ

⎛

⎝
i−1∑

j=1

a jωi− j − ωi

⎞

⎠ (3.7)

if M j (µ) ≡ 0 for all 1 ≤ j ≤ i − 1. In (3.7) all a j ’s are analytic functions in (v1, v2)

except at equilibria and satisfy

ω j − a j d H =
j−1∑

�=1

a�ω j−� + d R j , (3.8)

where R j is an analytic function.
From [11,12,17] we see that ω1 = a1d H + d R1. So we can obtain the differential

equation

dω1 = da1 ∧ d H.

Moreover, we get

dω1 = (div g1) dv1 ∧ dv2

by the expression of ω1 in equation (3.6). Thus we can solve

a1(t) =
t∫

0

(div g1)dt + C,

where C is a constant. Therefore, we have

da1(v1(τ ), v2(τ ))

dτ

∣
∣
∣
∣
ϒ

= div g1(v1(τ ), v2(τ )). (3.9)

On the other hand, restricted to ϒ system (3.4) can be simplified as

⎧
⎨

⎩

v′
1 = 2

ξ
v
ξ
1v
η+1
2 ,

v′
2 = − 2

η
v
ξ+1
1 v

η
2 .

(3.10)
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Therefore, by (3.9) and (3.10), we obtain

da1(v1, v2)

dτ

∣
∣
∣
∣
ϒ

= ξ − η

1 − β
v
ξ+1
1 v

η+1
2 + ξ − η − 2

β − 1
v
ξ−1
1 v

η+1
2 + ηµ1v

ξ−1
1 v

η−1
2

= (ξ − η)

(1 − β)

ξ

2
v1v

′
1 + (ξ − η − 2)

(β − 1)

ξ

2

v′
1

v1
+ ηµ1

ξ

2

v′
1

v1v
2
2

,

from which we have

a1(v1, v2)= (ξ−η)
(1−β)

ξ

2

∫

v1dv1 − (ξ−η−2)

(1−β)
ξ

2

∫
dv1

v1
+ηµ1

ξ

2

∫
dv1

v1(1−v2
1)ξ/η

+C

= − 2

β
v2

1 + 8

β
ln v1 − 6

β(4 − β)
ln

v2
1

1 − v2
1

+ C,

where C is a constant. Substituting a1(v1, v2) into formula (3.7), the second Melnikov
function of the heteroclinic loop �0 can be expressed as

M2(µ) =
∫

ϒ

{a1(v1, v2)(−g21 dv1 + g1 dv2)+ g22 dv1}

=
∫

ϒ

{

a1(v1, v2)[−vξ−1
1 v

η
2

(

µ1 + 1

1 − β
v2

2 − 1

1 − β
v2

1v
2
2

)

dv1

+vξ1vη−1
2

( −1

1 − β
v2

2 + 1

1 − β
v2

1v
2
2

)

dv2] + µ2v
ξ−1
1 v

η
2 dv1

}

=
∫

ϒ

{

−a1(v1, v2) v
ξ−1
1 v

η
2

[
2(1 − β)(8 − β)

(4 − β)(2 − β)2
− 6

2 − β
v2

1 + 4

2 − β
v4

1

]

dv1

+µ2v
ξ−1
1 v

η
2 dv1

}

= −I0 − I1 + µ2 I2

= I2{µ2 − I0

I2
− I1

I2
}, (3.11)

where

I0 := − 4

β

∫

ϒ

v
ξ+1
1 v

η
2

[
(1 − β)(8 − β)

(4 − β)(2 − β)2
− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

dv1

= − 4

β

(
ξ

η

) η
2

1∫

0

v
ξ+1
1 (1 − v2

1)
η
2

[
(1 − β)(8 − β)

(4 − β)(2 − β)2
− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

dv1,
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I1 := 4
∫

ϒ

(
4

β
ln v1 − 3

β(4 − β)
ln

v2
1

1 − v2
1

)

v
ξ−1
1 v

η
2

[
(1 − β)(8 − β)

(4 − β)(2 − β)2

− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

dv1

= 4

(
ξ

η

) η
2

1∫

0

(
4

β
ln v1 − 3

β(4 − β)
ln

v2
1

1 − v2
1

)

v
ξ−1
1

(
1 − v2

1

) η
2
[
(1 − β)(8 − β)

(4 − β)(2 − β)2

− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

dv1,

I2 :=
(
ξ

η

) η
2

1∫

0

v
ξ−1
1

(
1 − v2

1

) η
2

dv1 > 0

because vξ−1
1 (1 − v2

1)
η
2 > 0 for v1 ∈ (0, 1). From the relation (2.11) we can calculate

I0

I2
=

− 4
β

[
(1−β)(8−β)
(4−β)(2−β)2 J (ξ + 1, η)− 3

2−β J (ξ + 3, η)+ 2
2−β J (ξ + 5, η)

]

J (ξ − 1, η)

= 4(1 − β)(1 + β)

(4 − β)(2 − β)3
, (3.12)

the first quotient in (3.11). Although it is difficult to calculate the second quotient I1/I2
in (3.11) by using the same method as for (3.12) because the transcendental function
of logarithm ln is involved, integrals I1, I2 exist surely and the second quotient I1/I2
in (3.11) defines a function of β by (2.5), denoted by I12(β).

Solving the equation M2(µ) = 0 with (3.11) and (3.12), we obtain

µ2 = I0 + I1

I2
= 4(1 − β)(1 + β)

(4 − β)(2 − β)3
+ I12(β). (3.13)

Let µ̃2 denote the right hand side of (3.13). Thus, with the change (2.2) of parameters
and the relations in the second line of (2.3), the condition (3.13) of parameters can be
presented equivalently as

κ = β +
(

β

2 − β

)

α +
(

6β

(4 − β)(2 − β)2

)

α2

−
{

4(1 − β)(1 + β)

(4 − β)(2 − β)3
+ I12(β)

}

α3 + O(α4). (3.14)
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Therefore, we conclude the following:

Theorem 3.1 Under the condition (HHK) the bifurcation curve κL(α, β) of the
heteroclinic loop of system (1.1) has the third order approximation (3.14) for
small α.

The above procedure of calculating the third order approximation actually exhi-
bits the algorithm for higher orders. Suppose that we have obtained the kth order
approximation

κ = β +
(

β

2−β
)

α +
(

6β

(4−β)(2−β)2
)

α2 − µ̃2α
3 − · · · − µ̃k−1α

k + O(αk+1).

(3.15)

It implies that

M2(µ̃2) ≡ M3(µ̃3) ≡ . . . ≡ Mk−1(µ̃k−1) ≡ 0.

Solving µk = µ̃k from the equation Mk(µ) = 0 by formula (3.7) in a similar pro-
cedure, the (k + 1)th order approximation to the bifurcation curve κL(α, β) can be
obtained.

4 Algorithm for I12(β)

Although the third order approximation of the bifurcation curve is given in (3.14), it
is still difficult to compute the analytic expression of the quotient I12(β) := I1/I2.
Our strategy is to apply an appropriate numerical integration rule to approximate the
integral

Iψ :=
1∫

0

ψ(v1)v
s1
1

(
1 − v2

1

) s2
2

dv1,

where s1 = ξ − 1, s2 = η and ψ(v1) is a smooth function in v1 ∈ (0, 1), because Iψ
is equal to I1 (resp. I2) when

ψ(v1) = 4

(
ξ

η

) η
2
(

4

β
ln v1 − 3

β(4 − β)
ln

v2
1

1 − v2
1

)

×
[
(1 − β)(8 − β)

(4 − β)(2 − β)2
− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

(resp.ψ(v1) = (ξ/η)
η
2 ). Although many numerical integration rules (for example, the

Newton–Cotes integration rule of n+1 partition points, [3,4]) can be applied to Iψ , the
main difficulties come from estimating and controlling the approximation precision to
a desired level. For instance, the error in the Newton–Cotes rule requires derivatives of
the integrand in Iψ of at least (n + 1)th order but the integrand in I1 is so complicated
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that it is hard to compute its higher order derivatives for a higher precision. The
Composite Trapezoidal Rule, stated in Sect. 4.1 of [3], is an appropriate integration rule
for a high-order approximation with a lower order continuity of integrand. Applying
this integration rule we get

Iψ = I (n)+ E(n), (4.16)

where n is an integer,

I (n) := 1

n

⎡

⎣
n−1∑

j=1

ψ(t j )t
s1
j (1 − t2

j )
s2
2

⎤

⎦ and

E(n) := − 1

12 n2

(
d2

dv2
1

)

(ψ(ṽ)ṽs1(1 − ṽ2)
s2
2 )

are the approximation of the integral Iψ and its error, respectively, t j = j/n and
ṽ ∈ (0, 1) is a certain constant. Here we choose s1 > 2 and s2 > 4 so thatψ(v1)v

s1
1 (1−

v2
1)

s2
2 ∈ C2[0, 1]. Thus, for an arbitrary small positive constant ε, the approximation

error E(n) in (4.16) can be estimated as

|E(n)| < 1

12 n2 sup
0≤ṽ≤1

∣
∣
∣
∣
∣

(
∂2

∂v2
1

)
(
ψ(ṽ)ṽs1(1 − ṽ2)

s2
2

)
∣
∣
∣
∣
∣
< ε

by choosing a sufficiently large integer n (and appropriate choices of s1 and s2).
Let us demonstrate the algorithm for n = 100 and n = 1,000. Let

F1(v1) := 4

(
4

β
ln v1 − 3

β(4 − β)
ln

v2
1

1 − v2
1

)

v
ξ−1
1 (1 − v2

1)
η
2

×
[
(1 − β)(8 − β)

(4 − β)(2 − β)2
− 3

2 − β
v2

1 + 2

2 − β
v4

1

]

,

F2(v1) := v
ξ−1
1

(
1 − v2

1

) η
2
.

Then, for n = 100,

I1

(ξ/η)
η
2

= I1(100)+ E1(100),
I2

(ξ/η)
η
2

= I2(100)+ E2(100), (4.17)

where

I1(100) = 1

100

99∑

j=1

F1( j/100), I2(100) = 1

100

99∑

j=1

F2( j/100),

|E1(100)| < 1

12 · 104 sup
0≤v1≤1

|F ′′
1 (v1)|, |E2(100)| < 1

12 · 104 sup
0≤v1≤1

|F ′′
2 (v1)|.
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For n = 1000,

I1

(ξ/η)
η
2

= I1(1000)+ E1(1000),
I2

(ξ/η)
η
2

= I2(1000)+ E2(1000), (4.18)

where

I1(1000) = 1

1000

999∑

j=1

F1( j/1000), I2(1000) = 1

1000

999∑

j=1

F2( j/1000),

|E1(1000)| < 1

12 · 106 sup
0≤v1≤1

|F ′′
1 (v1)|, |E2(1000)| < 1

12 · 106 sup
0≤v1≤1

|F ′′
2 (v1)|.

More concretely, choosing β = 0.2 for example, we can calculate with (4.17) or (4.18)
that

−12n2 E1(n) = −(200/9747)(251160 ln(ṽ)+ 316236ṽ8

−803472ṽ6 + 6777042 ln(ṽ)ṽ4

+81900 ln(−(ṽ − 1)(ṽ+ 1))− 2239464 ln(ṽ)ṽ2 − 8314362 ln(ṽ)ṽ6

+2209905 ln(−(ṽ − 1)(ṽ + 1))ṽ4 + 716395ṽ4 − 266393ṽ2 + 34684

−730260 ln(−(ṽ − 1)(ṽ + 1))ṽ2 − 2711205 ln(−(ṽ − 1)(ṽ + 1))ṽ6

+3492504 ln(ṽ)ṽ8 + 1138860 ln(−(ṽ − 1)(ṽ + 1))ṽ8)

×(ṽ − 1)7(ṽ + 1)7ṽ13,

−12n2 E2(n) = −6ṽ13(176ṽ4 − 163ṽ2 + 35)(ṽ − 1)7(ṽ + 1)7.

The diagrams of −12n2 E1(n) and −12n2 E2(n) are plotted by Maple V.7 in Figs. 4
and 5. Therefore, we have

|12n2 E1(n)| < 0.006, |12n2 E2(n)| < 0.0015, ∀n ∈ N. (4.19)

For n = 100, by (4.17) and (4.19) we calculate

I1(100)

I2(100)
= −0.08352691394

0.3085150144
= −0.270738574803

and

I1

I2
= −0.08352691394 − 12 · 104 E1(100)

0.3085150144 − 12 · 104 E2(100)
∈ (−0.29160435,−0.25007471),

showing that the error for I1/I2 can be controlled within 0.02086577.
For n = 1000, by (4.17) and (4.19) we calculate

I1(1000)

I2(1000)
= −8.352691526

30.85150143
= −0.270738574748
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Fig. 4 Function 12n2 E1(n)

Fig. 5 Function 12n2 E2(n)

and

I1

I2
= −8.352691526 − 12 · 106 E1(1000)

30.85150143 − 12 · 106 E2(1000)
∈ (−0.2709462282,−0.2705309415),

showing that the error for I1/I2 can be controlled within 0.000207653, much less than
the error for n = 100. Thus for n = 1000 we can calculate by (3.13) that

µ̃2 = 4(1 − β)(1 + β)

(4 − β)(2 − β)3
+ I1

I2
≈ −0.0974658869

and the third order approximation of the bifurcation curve κL(α, β) is given by

κ = κL := 0.2 + 0.1111111111 α+ 0.09746588694 α2+0.0974658869 α3+O(α4).
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5 Discussion

In the classical predator–prey models with Michaelis–Menten–Holling type functional
response, predator species can always invade the habit of the prey population success-
fully in the following sense: both predator and prey populations can co-exist in terms
of either a stable steady state or a stable limit cycle. Recently, the traditional predator–
prey models with prey-dependent functional response have been challenged by some
biologists (see Arditi and Ginzburg [1]) based on the fact that functional responses
over typical ecological timescales ought to depend on the densities of both predators
and prey, especially when predators have to search for food. Such a functional response
is called a ratio-dependent functional response.

Predator–prey models with Michaelis–Menten–Holling type ratio-dependent func-
tional response have been studied by several researchers (Kuang and Beretta [9], Hsu
et al. [8]), very rich and complex dynamical behavior, such as the existence of degene-
rate equilibria, appearance of limit cycles and heteroclinic loops, and the coexistence
of two attractive equilibria, have been observed. The existence of heterclinic bifurca-
tion in the model has attracted particular attention (Berezovskaya et al. [2], Xiao and
Ruan [16], Tang and Zhang [14], and Li and Kuang [10]) since it leads to the collapse
of both predator and prey populations, that is, such models can exhibit catastrophe or
overexploitation scenario due to the ratio-dependent predation.

In this paper, we studied heteroclinic bifurcations of the predator–prey model with
Michaelis–Menten–Holling type ratio-dependent functional response. By transfor-
ming the model into a Hamiltonian system, we first calculated the higher order Mel-
nikov functions. The computational procedure of the first order Melnikov function
was simplified with properties of the Beta function. We also provided an algorithm
for computing higher order approximations of the heteroclinic bifurcation curves. The
second Melnikov function was computed so that a third order approximation of the
bifurcation curve of the heteroclinic loop is obtained.

Acknowledgments The authors are very grateful to the two referees for their helpful comments and
suggestions
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