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In this paper we study the versal unfolding of a predator–prey sys-
tem with ratio-dependent functional response near a degenerate
equilibrium in order to obtain all possible phase portraits for its
perturbations. We first construct the unfolding and prove its ver-
sality and degeneracy of codimension 2. Then we discuss all its
possible bifurcations, including transcritical bifurcation, Hopf bifur-
cation, and heteroclinic bifurcation, give conditions of parameters
for the appearance of closed orbits and heteroclinic loops, and de-
scribe the bifurcation curves. Phase portraits for all possible cases
are presented.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of predator–prey systems has been favored by both biologists and mathematicians
since the well-known Lotka–Volterra model was brought forward (see [9,21]). Functional response is
a crucial and important concept in modeling predator–prey interactions, which describes the change
in the density of prey per unit time per predator. Traditionally, the functional response is regarded as
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a function of the prey density and is called a prey-dependent functional response. A typical example is
the Michaelis–Menten or Holling type II function p(x) = cx/(x + m) (see [9,21]).

It has been noticed that predator–prey models with prey-dependent functional response cannot
explain the experimental observations that the predators or both the predators and prey can either go
extinction or coexist in oscillatory modes depending on the initial populations densities (see [14,20]).
Also, such models cannot produce the so-called “paradox of biological control” phenomenon: durable
coexistence of prey with their predators at a mean abundance is much lower than the prey carrying
capacity (see [19,1]). To address these issues, Arditi and Ginzburg [2] suggested that the functional
response should be expressed in terms of the ratio of prey to their predators which is now called the
ratio-dependent functional response. Based on the Michaelis–Menten or Holling type II function, they
proposed the following ratio-dependent predator–prey model⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x

(
a − bx − cy

x + my

)
,

dy

dt
= y

(
−d + f x

x + my

)
,

(1.1)

where x(t) and y(t) are the density of prey and predators at time t , respectively. All parameters
are positive constants, a is the prey intrinsic growth rate, a/b is the carrying capacity of the prey,
c represents the capturing rate of predators, d denotes the death rate of predators, f is the conversion
rate, and m is the half saturation constant. In the last decade, many researchers (e.g. [4,5,13,17,18,22,
26]) have paid their attention to this model and many interesting and novel dynamic behaviors have
been observed.

With the change of variables x �→ (a/b)x, y �→ (a/mb)y, t �→ (m/c)t and the transformation of
parameters α = ma/c, β = md/c, κ = mf /c, system (1.1) can be transformed into an equivalent form⎧⎪⎪⎨⎪⎪⎩

dx

dt
= αx(1 − x) − xy

x + y
,

dy

dt
= −β y + κxy

x + y
,

(1.2)

which in turn is orbitally equivalent to the following system⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x

{
αx + (α − 1)y − αx2 − αxy

}
,

dy

dt
= y

{
(κ − β)x − β y

} (1.3)

after the re-scaling of the time variable dτ = (x + y)dt , where x, y � 0 and α,β,κ are all positive.
Notice that system (1.3) is of Lotka–Volterra type.

System (1.3) has three equilibria (0,0), (1,0) and (x∗, y∗) in the first quadrant, where x∗ = (ακ −
κ + β)/ακ , y∗ = (κ − β)x̄/β . The origin (0,0) is degenerate and great efforts [4,13,15,17,26] have
been made to understand its qualitative properties by means of Briot–Bouquet transformations and
generalized normal sectors. Transcritical bifurcation at (1,0) and Hopf bifurcation at (x∗, y∗) have also
been discussed. The existence of a heteroclinic orbit connecting the equilibria (1,0) and (0,0) was
proposed in [13] and discussed in [4,26]. Heteroclinic orbits have been further studied by combining
analytical method and numerical approach in [4,18,22,25].

The above mentioned bifurcations are induced by the change of parameters within system (1.2).
Actually, having so much degeneracy the system may be affected by other changes from outside but
within Lotka–Volterra systems. This motivates us to unfold bifurcations of the system completely near
the degenerate origin and display all possible phase portraits arising from perturbations in the class
of generalized Lotka–Volterra systems (called GLV systems for abbreviation)
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dx

dt
= xP (x, y),

dy

dt
= y Q (x, y),

(1.4)

where both P (x, y) and Q (x, y) are analytic functions.
In this paper we study the versal unfolding of system (1.3) near (0,0) in the class of GLV systems.

We first reduce system (1.3) to a normal form and prove that its degeneracy is of codimension 2.
Then we present a versal unfolding for the system, study qualitative properties of the unfolding in
various cases, and discuss all possible bifurcations including transcritical bifurcation, Hopf bifurcation,
bifurcations of periodic orbits and heteroclinic loops. We give conditions on system parameters for
the appearance of closed orbits and heteroclinic loops and describe their bifurcation curves.

The rest of the paper is organized as follows. In Section 2 the system is reduced to its normal
form. The versal unfolding is presented in Section 3. The existence and properties of equilibria of the
versal unfolding are discussed in Section 4. Section 5 is devoted to the study of limit cycles, including
the existence and uniqueness. Section 6 deals with the existence of heteroclinic loops. Bifurcation
diagrams for all possible cases are given in Section 7.

2. Normal forms

The Jacobian matrix of system (1.3) at the origin (0,0) is a zero matrix. We consider vector fields
in the family of GLV systems (1.4) with the same degeneracy

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x

{
a10x + a01 y + a20x2 + a11xy + a02 y2 + O

(∣∣(x, y)
∣∣3)}

,

dy

dt
= y

{
b10x + b01 y + b20x2 + b11xy + b02 y2 + O

(∣∣(x, y)
∣∣3)}

.

(2.1)

First, we reduce (2.1) to the simplest GLV system which is orbitally equivalent to (2.1).

Lemma 1. Under the generic condition a01b01(b01b10 −2b10a01 +b01a10) �= 0, system (2.1) is orbitally equiv-
alent to

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x

{
a10x + a01 y + ã20x2 + O

(∣∣(x, y)
∣∣3)}

,

dy

dt
= y

{
b10x + b01 y + O

(∣∣(x, y)
∣∣3)} (2.2)

near the origin (0,0).

Proof. We need to use transformations which do not change the structure of GLV systems. Such
transformations can be chosen in the form

x = x̃(1 + c1x̃ + c2 ỹ), y = ỹ(1 + c3x̃ + c4 ỹ), dt = (1 + c5x̃ + c6 ỹ)dt̃, (2.3)

where the spatial part of the transformation (x, y) �→ (x̃, ỹ) is close to the identity near the origin.
Even if a constant c0 is considered as one of its coefficients of degree 1, a simple dilation can reduce
c0 to 1. This transformation is obviously one-to-one near the origin, does not change the sign of time,
and transforms system (2.1) into the following
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dx̃

dt̃
= x̃

{
a10x̃ + a01 ỹ + ã20x̃2 + ã11x̃ ỹ + ã02 ỹ2 + O

(∣∣(x̃, ỹ)
∣∣3)}

,

dỹ

dt̃
= ỹ

{
b10x̃ + b01 ỹ + b̃20x̃2 + b̃11x̃ ỹ + b̃02 ỹ2 + O

(∣∣(x̃, ỹ)
∣∣3)}

,

(2.4)

where

ã20 = a10c5 + a20,

ã02 = −b01c2 + a01c4 + a01c6 + a02,

ã11 = −a01c1 + (a10 − b10)c2 + a01c3 + a01c5 + a10c6 + a11,

b̃20 = b10c1 − a10c3 + b10c5 + b20,

b̃02 = b01c6 + b02,

b̃11 = b10c2 + (b01 − a01)c3 − b10c4 + b01c5 + b10c6 + b11.

In order to make (2.4) coincide with (2.2), it is required that

ã11 = ã02 = b̃20 = b̃11 = b̃02 = 0, (2.5)

which is a system of linear equations in (c1, . . . , c6). Under the condition that

W := a01b01(b01b10 − 2b10a01 + b01a10) �= 0,

the coefficient matrix of system (2.5) has the same rank as its augmented matrix. Thus we can solve
from system (2.5) that

c1 = {
2b2

10a01b02 + b2
01a11b10 − b01a2

10b02 − a01b10b11b01 + 3a10b10a01b02 − b2
10a02b01

− b01b10a10b02 − a10b10a02b01 + b01a2
01b20 − a01b01a11b10 + a10b2

01a11

− a10a01b11b01 + (
b2

01a2
10 + b10b2

01a10 − 2a10a01b01b10
)
c2

}
/W ,

c3 = {
4b2

10a01b02 + b2
01a11b10 + b2

01a01b20 − 2a01b10b11b01 − b01b10a10b02

− 2b2
10a02b01 + (

b10b2
01a10 + b2

10b2
01 − 2a01b01b2

10

)
c2

}
/W ,

c4 = {
a01b02 − a02b01 + b2

01c2
}
/{a01b01},

c5 = {
b2

10a02b01 − b2
01a01b20 − 2b2

10a01b02 − b2
01a11b10 + b01b10a10b02 + a10b10a01b02

+ a01b10b11b01 − a10b10a02b01 + b01a2
01b20 + a01b01a11b10 − a10a01b11b01

}
/W ,

c6 = −b02/b01,

where c2 ∈ R can be chosen arbitrarily. Hence, an appropriate transformation (2.3) is determined,
which transforms (2.1) into the normal form (2.2). �

Since system (2.1) has a zero matrix in its linear part, we cannot proceed the standard computation
of normal forms (as shown in [6,10]) to simplify the system. From (2.4) we see that the transformation
(2.3) does not change the coefficients a10,a01,b10,b01 of the terms of degree 2. We will concentrate
on the generic case that none of a10,a01,b10,b01 is zero. In the opposite cases higher codimensions
will be involved. In comparison with (2.1), system (2.2) clearly has the least number of coefficients
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and thus is called a normal form of (2.1), as being in the simplest form in the family of GLV systems
reduced with the structure-preserving transformation (2.3) near the origin.

From Lemma 1, there remains a case that the generic condition is invalid, i.e.,

U20(a10,a01,b10,b01) := b01b10 − 2b10a01 + b01a10 = 0. (2.6)

In this case our strategy is to give up the constant ã20 but retain one of others. If we retain ã11,
similarly to (2.5) we obtain another linear system of (c1, . . . , c6) and the condition

U11(a10,a01,b10,b01) := a01 − b01 �= 0. (2.7)

Retaining ã02, b̃20, b̃11, and b̃02, we obtain the conditions

U02(a10,a01,b10,b01) := a10 − b10 �= 0, (2.8)

V 20(a10,a01,b10,b01) = U11(a10,a01,b10,b01) �= 0, (2.9)

V 11(a10,a01,b10,b01) = U02(a10,a01,b10,b01) �= 0, (2.10)

V 02(a10,a01,b10,b01) := b01a10 + a01a10 − 2a01b10 �= 0, (2.11)

respectively. It is easy to see that the polynomials Uij and V ij have common zeros in the subset

Z := {
(a10,a01,b10,b01) ∈ R4

0: a01 = b01, a10 = b10
}
, (2.12)

where R0 := R\{0}. Therefore, out of Z we can transform Eq. (2.1) into the simplest GLV system as
in Lemma 1, where only one coefficient of degree 3 is retained. Concrete calculations show that the
normal forms under (2.11) are same as the one given in Lemma 1 by the homeomorphism (x, y) �→
(y, x). Similarly, the normal forms under (2.7) and (2.10) are the same and the normal forms under
(2.8) and (2.9) are the same by (x, y) �→ (y, x).

Applying Lemma 1 to our system (1.3), we obtain its normal form

⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x

{
αx + (α − 1)y + ã20x2 + O

(∣∣(x, y)
∣∣3)}

,

dy

dt
= y

{
(κ − β)x − β y + O

(∣∣(x, y)
∣∣3)}

,

(2.13)

where

ã20 = α(α2κ + 2αβ − 3ακ − 2β + β2 − βκ + 2κ)

(1 − α){2(ακ − κ + β) + β(κ − α − β)} (2.14)

under the generic condition (1 − α){2(ακ − κ + β) + β(κ − α − β)} �= 0. If the generic condition is
invalid, as shown above we can obtain normal forms of system (1.3) of other forms, which can be
discussed similarly.
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3. Versal unfoldings

In order to give a versal unfolding of system (1.3), in what follows we consider the 3-jet of the
normal form (2.13) ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x

{
αx + (α − 1)y + ã20x2},

dy

dt
= y

{
(κ − β)x − β y

} (3.1)

near the origin as the principal system [3], which is denoted by V 0. More generally, let LV(x) be the
space of germs at the point x = (x1, x2) ∈ R2 of vector fields in the family of GLV systems and, fixed a
neighborhood U0 of the origin in R2, let

V =
⋃

ξ∈U0

LV(ξ).

A germ V ξ ∈ V at ξ ∈ U0 defines a vector field of the GLV form

dx

dt
= V (x), x ∈ Uξ , (3.2)

where Uξ ⊂ U0 is a neighborhood of ξ .
Obviously, system V 0 is at least of codimension 2. Its versal unfolding of exact codimension 2 is

the most fundamental and simplest situation. In order to give such a versal unfolding for V 0 in V , we
first need to describe the class of germs which have the same singularity as V 0. Actually, this class is

S = {
V ξ ∈ V

∣∣ V ξ satisfies (H1), (H1), (H3)
}
,

where

(H1) the linearization of V ξ (x) at x = ξ is
[ 0 0

0 0

]
;

(H2) the coefficients of the terms of degree 2 in the expansion (2.1) of V ξ (x) satisfy

aijbi j(aij − bij)(a10b01 − a01b10) �= 0, i, j = 0,1, i �= j;

(H3) the coefficients of the terms of degree 3 in the expansion (2.1) of V ξ (x) are not all equal to 0.

In fact, without (H2) additional degeneracy will be caused as explained after the proof of Lemma 1.
Under (H2) the coefficients of (2.1) are out of Z as shown in (2.12), so hypothesis (H3) guarantees
that (2.1) can be reduced surely to a normal form as in Lemma 1. Being a non-degeneracy condition,
(H2) together with (H3) is generic in order to achieve an unfolding of codimension 2. Actually, we
will prove that S forms a local submanifold of codimension 2 near V 0 in V .

Lemma 2. The set S is a smooth submanifold of codimension 2 near V 0 in V .

Proof. Let J k = { jk V ξ | V ξ ∈ V}, where k ∈ Z+ and jk V ξ is the k-jet of V ξ at ξ , which corresponds to
a truncated polynomial system of degree k. A natural projection πk : V → J k can be defined by

V ξ �→ (
V (ξ), D V (ξ), . . . , Dk V (ξ)

)
,
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where V is defined in (3.2) and Dk V (ξ) is the kth order derivative of V at x = ξ . Note that V (ξ) ≡ 0
since V is in the family of GLV systems.

First of all, we prove that π1(S) constructs a smooth submanifold of codimension 2 near π1(V 0)

in J 1. By the definition of S , we have

π1(S) =
{(

0, D V (ξ)
) ∣∣∣ ∂V 1(ξ)

∂x1
= ∂V 2(ξ)

∂x2
= 0

}
, (3.3)

where V 1 and V 2 are components of V . The structure of the submanifold for π1(S) is observed from
the projection π1 to a finite-dimensional Euclidean space. The two equalities in (3.3) confine the
submanifold π1(S) to be of codimension 2 near π1(V 0) in J 1.

Next, we claim that for each k � 2 the set πk(S) is also a smooth submanifold of codimension 2
near πk(V 0) in J k . The structure of the submanifold for πk(S) is observed similarly to the last step.
Define a projection πk1 : J k → J 1 such that(

V (ξ), D V (ξ), . . . , Dk V (ξ)
) �→ (

V (ξ), D V (ξ)
)
,

which is clearly a regular submersion. Hence, the map πk1 intersects π1(S) ⊂ J 1 transversally. By
Theorem 3.3 in [12] (p. 22), π−1

k1 (π1(S)) is a smooth submanifold in J k and the codimension of

π−1
k1 (π1(S)) in J k is the same as the codimension of π1(S) in J 1, i.e.,

codimπ−1
k1

(
π1(S)

) = codimπ1(S) = 2, (3.4)

as shown in the last paragraph. On the other hand, πk(S) ⊂ π−1
k1 (π1(S)). Actually, πk(S) consists

of those in π−1
k1 (π1(S)) with restrictions (H2) and (H3). Furthermore, πk(S) is an open subset of

π−1
k1 (π1(S)) near πk(V 0) because of the strict inequalities (H2) and (H3). It follows from (3.4) that

in J k ,

codimπk(S) = 2. (3.5)

Since πk is a smooth submersion from V to J k , we know that πk intersects πk(S) ⊂ J k transver-
sally. As above, Theorem 3.3 in [12] also implies that S = π−1

k (πk(S)) is a smooth manifold in V
and

codim S = codimπ−1
k

(
πk(S)

) = codimπk(S) = 2

by (3.5). It means that S is a smooth submanifold of codimension 2 in V . �
By Lemma 2, a versal unfolding of (2.13) has at least two unfolding parameters. Having the GLV

form, a natural unfolding of system (2.13) near the origin is⎧⎪⎪⎨⎪⎪⎩
dx

dt
= x

{
μ1 + αx + (α − 1)y + ã20x2} := X(x, y,μ),

dy

dt
= y

{
μ2 + (κ − β)x − β y

} := Y (x, y,μ),

(3.6)

where μ = (μ1,μ2) denotes the tuple of the unfolding parameters near (0,0) and the condition

(α − 1)(κ − β)(κ − α − β)(1 − α − β)(ακ + β − κ)ã20 �= 0 (3.7)

is required by the non-degeneracy conditions (H2) and (H3).
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Now we can state and prove the main result of this section.

Theorem 3. System (3.6) with (3.7) is a versal unfolding of system (1.3).

Proof. Let V (μ) = (V 1(x, y,μ1,μ2), V 2(x, y,μ1,μ2)) denote the family of vector fields in the form
of (3.6). Clearly, V (0) = V 0 ∈ S . In order to prove the transversality of V (μ), define a map g : R2 → J 3

by

μ �→ π3
(

V (μ)
) = (

V (μ), D V (μ), D2 V (μ), D3 V (μ)
)
.

It suffices to prove that g intersects π3(S) ⊂ J 3 transversally at π3(V 0). Consider an open neighbor-
hood U of μ = 0. By condition (H1) we have D V (μ) = 0 at the intersection g(U) ∩ π3(S), i.e.,⎧⎪⎪⎨⎪⎪⎩

∂

∂x
V 1(x, y,μ1,μ2) = μ1 + 2αx + (α − 1)y + 3ã20x2 = 0,

∂

∂ y
V 2(x, y,μ1,μ2) = μ2 + (κ − β)x − 2β y = 0

(3.8)

as in (3.3). Furthermore, the Jacobian matrix of g at μ = 0 contains a sub-matrix[ ∂
∂μ1

( ∂V 1
∂x ) ∂

∂μ2
( ∂V 1

∂x )

∂
∂μ1

( ∂V 2
∂ y ) ∂

∂μ2
( ∂V 2

∂ y )

]
μ=0

=
[

1 0

0 1

]
, (3.9)

which has rank 2. Therefore, the Jacobian matrix of g is of full rank, implying the transversality of g .
Furthermore, we can show that a general versal unfolding of (1.3), i.e.,⎧⎪⎪⎨⎪⎪⎩

dx

dt
= x

{
μ1 + αx + (α − 1)y − αx2 − αxy + μ3 y2},

dy

dt
= y

{
μ2 + (κ − β)x − β y + μ4x2 + μ5xy + μ6 y2} (3.10)

can be reduced to system (3.6) by a series of equivalent transformations. Let μ = (μ1,μ2,μ3,μ4,

μ5,μ6). Consider the transformation

x = x̃(1 + w1x̃ + w2 ỹ), y = ỹ(1 + w3 x̃ + w4 ỹ), dt = (1 + w5 x̃ + w6 ỹ)dt̃, (3.11)

where w2 = −μ3/β − (α − 1)μ6/β
2 + O (|μ|2), w4 = 0, w6 = μ6/β and

w1 = {
α

(
β2 − βκ − β − κα + κ

)
/
(
(1 − α)

(
2κ − 2κα − 2β + β2 − βκ + αβ

))}
+ {(

3β2 − 3βκ + αβ − 2β − 2κα + 2κ
)
(−κ + β)α2β/

(
(α − 1)

(−2κα + αβ + 2κ

+ β2 − 2β − βκ
)3)}

μ1 − {(
β3 − 2β2κ + α2β − 2αβ + βκ2 − 2κα2 + 2κα

)
/
(
β(α − 1)

(
αβ − 2κα + 2κ + β2 − 2β − βκ

))}
μ3 + {

(α − 1)/
(
2κ − 2κα + αβ

+ β2 − 2β − βκ
)}

μ4 + {
(β − α − κ)/

(
2κ − 2κα + αβ + β2 − 2β − βκ

)}
μ5

− {
(2κ − 2κα − 2β + αβ)

(
β2 − α − αβ − βκ + α2)

/
(
β2(α − 1)

(
2κ − 2κα + αβ + β2 − 2β − βκ

))}
μ6 + O

(|μ|2),
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w3 = {
(κ − β)αβ/

(
(α − 1)

(
αβ − 2κα + 2κ + β2 − 2β − βκ

))} − {(
3β2 − 3βκ + αβ − 2β

− 2κα + 2κ
)
(β − κ)α2β2/

(
(α − 1)2(2κ − 2κα + αβ + β2 − 2β − βκ

)3)}
μ1

+ {
(κ − β)

(
β2 + 2β − βκ − αβ + 2κα − 2κ

)
/
(
β(α − 1)

(
αβ − 2κα

+ 2κ + β2 − 2β − βκ
))}

μ3 − {
β/

(
αβ − 2κα + 2κ + β2 − 2β − βκ

)}
μ4

+ {
2(β − κ)/

(
2κ − 2κα + αβ + β2 − 2β − βκ

)}
μ5

− {
(−κ + β)

(
2αβ2 − 3β2 + 3αβ − 3βκα + 3βκ − α2β − 2β + 2κα2 − 4κα + 2κ

)
/
(
β2(α − 1)

(−2κα + αβ + 2κ + β2 − 2β − βκ
))}

μ6 + O
(|μ|2),

w5 = {
α(α + β − 1)(β − κ)/

(
(α − 1)

(−2κα + αβ + 2κ + β2 − 2β − βκ
))}

+ {
βα2(α + β − 1)(β − κ)

(
3β2 − 3βκ + αβ − 2β − 2κα + 2κ

)
/
(
(α − 1)2(αβ − 2κα + 2κ + β2 − 2β − βκ

)3)}
μ1

+ {
(β − κ)(β − κ + α)/

(
(α − 1)

(
αβ − 2κα + 2κ + β2 − 2β − βκ

))}
μ3

+ {
(α − 1 + β)/

(
αβ − 2κα + 2κ + β2 − 2β − βκ

)}
μ4

− {
(β − κ + α)/

(
αβ − 2κα + 2κ + β2 − 2β − βκ

)}
μ5

+ {
(β − κ)

(
αβ − 2β + α2 − α + 2κ − 2κα

)
/
(
β(α − 1)

(
αβ − 2κα + 2κ + β2 − 2β − βκ

))}
μ6 + O

(|μ|2).
As in (2.3), the transformation (3.11) preserves the structure of GLV systems and changes system
(3.10) into ⎧⎪⎪⎨⎪⎪⎩

dx̃

dt̃
= x̃

{
μ1 + (

α + ε1(μ)
)
x̃ + (

α − 1 + ε2(μ)
)

ỹ + â20(μ)x̃2},
dỹ

dt̃
= ỹ

{
μ2 + (

κ − β + ε3(μ)
)
x̃ + (−β + ε4(μ)

)
ỹ
}
,

(3.12)

where ε1(μ) = (w5 − w1)μ1, ε2(μ) = w6μ1 − w2μ2, ε3(μ) = −w3μ1 + w5μ2, ε4(μ) = (w6 − w4)μ2,
â20(μ) = ã20 + O (|μ|) and ã20 is given in (2.14). In order to reduce (3.12) to the same form as in (3.6),
we use the change of variables

x̄ = āx̃, ȳ = b̄ ỹ, t̄ = t̃/c̄, (3.13)

where ā = αâ20(μ)/(α + ε1(μ))ã20, b̄ = α2(α − 1 + ε2(μ))â20(μ)/(α + ε1(μ))2(α − 1)ã20 and c̄ =
α2â20(μ)/(α + ε1(μ))2ã20, which transforms (3.12) into⎧⎪⎪⎨⎪⎪⎩

dx̄

dt̄
= x̄

{
c̄μ1 + αx̄ + (α − 1) ȳ + ã20x̄2},

dȳ

dt̄
= ȳ

{
c̄μ2 + c̄(κ − β + ε3(μ))

ā
x̄ + c̄(−β + ε4(μ))

b̄
ȳ

}
.

This system is clearly the same as (3.6) with the new parameters

μ̄1 := c̄μ1, μ̄2 := c̄μ2, β̄ := c̄(β − ε4(μ))

b̄
, κ̄ := c̄(κ − β + ε3(μ))

ā
+ β̄.
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Observe that ā = (1 − ε1(μ)/α + O (|μ|2))(1 + O (|μ|)) = 1 + O (|μ|). Similarly, b̄ = 1 + O (|μ|) and
c̄ = 1 + O (|μ|). Therefore, β̄ = β + O (|μ|) and κ̄ − β̄ = κ −β + O (|μ|). It implies that, as β and κ , the
new parameters β̄ and κ̄ satisfy the non-degeneracy condition (3.7). Moreover, transformations (3.11)
and (3.13) are both orientation-preserving homeomorphisms. Hence, system (3.6) is a versal unfolding
of system (1.3). �
4. Equilibria

We first discuss the qualitative properties of equilibria for the versal unfolding (3.6). It has at most
six equilibria in the first quadrant: (i) O = (0,0), (ii) B0 = (0,μ2/β) (exists if μ2 > 0), (iii) A0 =
(x+,0) (exists if μ1 < 0), (iv) A1 = (x−,0) (exists if ã20 < 0), (v) C0 = (x0, y0) (exists if Θ0 > 0,
Ξ0 > 0), and (vi) C1 = (x1, y1) (exists if Θ1 > 0, Ξ1 > 0), where

Θ0 = −βμ1 + (1 − α)μ2

ακ + β − κ
,

Ξ0 = (β − κ)μ1 + αμ2

ακ + β − κ
,

Θ1 = ακ + β − κ

−βã20
,

Ξ1 = (β − κ)(ακ + β − κ)

β2ã20
,

x+ = −α + √
α2 − 4ã20μ1

2ã20
= −μ1

α
− ã20

α3
μ2

1 + O
(|μ1|3

)
,

x− = −α − √
α2 − 4ã20μ1

2ã20
= − α

ã20
+ 1

α
μ1 + O

(|μ1|2
)
,

x0 = −(ακ + β − κ) ∓ √
(ακ + β − κ)2 − 4ã20β2μ1 − 4ã20β(α − 1)μ2

2ã20β
= Θ0 + O

(|μ|2),
y0 = μ2 + (κ − β)x0

β
,

x1 = −(ακ + β − κ) ± √
(ακ + β − κ)2 − 4ã20β2μ1 − 4ã20β(α − 1)μ2

2ã20β
= Θ1 + O

(|μ|2),
y1 = μ2 + (κ − β)x1

β
.

The sign ∓ in the expression of x0 depends on whether ακ +β−κ < 0 or > 0, and similarly in x1. The
last two equilibria lie in the interior of the first quadrant but the remaining four lie on its boundary.

Theorem 4. System (3.6) has at most six equilibria: O , B0, A0, A1, C0, and C1 in the first quadrant as defined
above.

(i) O is a node (resp. saddle) when μ1μ2 > 0 (resp. < 0).
(ii) B0 is a stable node (resp. saddle) when μ1 − ((1 − α)/β)μ2 < 0 (resp. > 0).

(iii) A0 is an unstable node (resp. saddle) when μ2 − ((κ − β)/α)μ1 > 0 (resp. < 0).
(iv) A1 is a stable node (resp. saddle) when β − κ > 0 (resp. < 0).
(v) C0 is either a saddle when ακ − κ + β > 0 or a node (or focus) when ακ − κ + β < 0.

(vi) C1 is either a saddle when (ακ −κ +β)(κ −β) < 0 or a node (or focus) when (ακ −κ +β)(κ −β) > 0.
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Moreover, O , A0 and B0 are saddle-nodes when μ lies on the μ1-(or μ2-) axis and on the curves

QA0C0 :=
{
(μ1,μ2)

∣∣∣ μ2 = κ − β

α
μ1 + O

(|μ1|2
)
, μ1 < 0

}
,

QB0C0 :=
{
(μ1,μ2)

∣∣∣ μ2 = β

1 − α
μ1, μ2 > 0

}
,

respectively, all of which are transcritical bifurcation curves. C0 is a stable weak focus with multiplicity 1 when
μ lies on the Hopf bifurcation curve

QH :=
{
(μ1,μ2)

∣∣∣ μ2 = β(κ − α − β)

α(α + β − 1)
μ1 + O

(|μ1|2
)
, ακ − κ + β < 0, Θ0 > 0, Ξ0 > 0

}
,

and a unique stable limit cycle arises when μ2 − β(κ − α − β)μ1/(α(α + β − 1)) > 0 (resp. < 0) is small
for α + β − 1 > 0 (resp. < 0).

Proof. (i) It is easy to see that O = (0,0) is a node (resp. saddle) when μ1μ2 > 0 (resp. < 0). In
particular, O is an unstable (resp. stable) node if both μ1 > 0 and μ2 > 0 (resp. both μ1 < 0 and
μ2 < 0). In the case that μ1 = 0 and μ2 �= 0 or μ1 �= 0 and μ2 = 0, the equilibrium O is degenerate.
In the first case, from Y (x, y,μ) = 0 in (3.6) we know that the branch passing through the origin is
the curve y = ϕ(x,μ) = 0. Thus, we consider zeros of the function

X
(
x,ϕ(x,μ),μ

) = μ1x + αx2 + ã20x3 (4.1)

for bifurcations of equilibria, where X(x, y,μ) is also defined in (3.6). As in [10] (Section 3.4) we
know that O is a saddle-node when μ1 = 0 and a transcritical bifurcation occurs in system (3.6)
when μ2 �= 0 and μ1 passes through 0. Actually, the equilibrium A0 is bifurcated from O as μ1 �= 0
but it does not lie in the first quadrant as μ1 > 0. In the other case, i.e., μ1 �= 0 and μ2 = 0, we solve
for x = φ(y,μ) = 0 from X(x, y,μ) = 0 and discuss zeros of the function

Y
(
φ(y,μ), y,μ

) = μ2 y − β y2. (4.2)

Similarly, we know that O is a saddle-node and the equilibrium B0 arises from a transcritical bifur-
cation in system (3.6) near O .

(ii) The same phenomenon also happens at B0 = (0,μ2/β), which exists in the first quadrant only
when μ2 > 0. In fact, the linearization of system (3.6) at B0 has eigenvalues μ1 − ((1 − α)/β)μ2 and
−μ2. Discussion on the signs of eigenvalues gives the properties of B0. When μ1 − ((1 − α)/β)μ2 is
near 0, as in (4.1), we similarly derive from (3.6) a function

X1(x,μ) = (
μ1 − (1 − α)μ2/β

)
x + (ακ + β − κ)x2/β + ã20x3.

The dependence of its zeros upon μ gives the bifurcations of equilibria for system (3.6). From this
function we know that B0 is a saddle-node when μ1 = ((1 − α)/β)μ2 and the equilibrium C0 arises
from a transcritical bifurcation in system (3.6) near B0.

(iii) Similarly, A0 = (x+,0) exists in the first quadrant only if μ1 < 0. The linearization of system
(3.6) at A0 has eigenvalues

λ01 = (−α + √
α2 − 4ã20μ1)

√
α2 − 4ã20μ1

2ã20
= −μ1 + O

(|μ1|2
)
,

λ02 = μ2 + (κ − β)(−α + √
α2 − 4ã20μ1)

2ã20
= μ2 − κ − β

α
μ1 + O

(|μ1|2
)
.
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Discussion on the signs of λ01 and λ02 gives the properties of A0. When μ2 − ((κ −β)/α)μ1 is near 0,
as in (4.2), we similarly derive from (3.6) a function

Y1(y,μ) = (
μ2 − (κ − β)μ1/α + O

(|μ1|2
))

y − (
(ακ + β − κ)/α

)
y2 + O

(|y|3).
The dependence of its zeros upon μ yields the bifurcations of equilibria for system (3.6). From this
function we know that A0 is a saddle-node when μ2 = ((κ −β)/α)μ1 + O (|μ1|2) and the equilibrium
C0 arises from a transcritical bifurcation in system (3.6) near A0.

(iv) A1 = (x−,0) is a simple equilibrium which exists in the first quadrant only when ã20 < 0.

More precisely, the linearization of system (3.6) at A1 has eigenvalues

λ1 = (α + √
α2 − 4ã20μ1)

√
α2 − 4ã20μ1

2ã20
= α2

ã20
+ O

(|μ1|
)
,

λ2 = μ2 + (κ − β)(−α − √
α2 − 4ã20μ1)

2ã20
= (β − κ)α

ã20
+ O

(|μ|).
None of them is zero for small |μ| because of the requirement (3.7). Since β �= κ , discussion on the
signs of λ1 and λ2 gives the properties of A1. We see that A1 is a stable node (or saddle) when
β − κ > 0 (or < 0).

(v) Consider C0 = (x0, y0), which exists in the interior of the first quadrant only if Θ0 > 0 and
Ξ0 > 0. The linearization of system (3.6) at C0 has trace and determinant

TC0 = β(κ − α − β)μ1 − α(α + β − 1)μ2

ακ − κ + β
+ O

(|μ|2),
DC0 = − (μ2α − μ2 + μ1β)(−μ1β + κμ1 − αμ2)

ακ − κ + β
+ O

(|μ|3).
Thus C0 is either a saddle when DC0 < 0 or a node (or focus) when DC0 > 0. In particular, when C0 is
a node (or focus) it is stable (resp. unstable) when TC0 < 0 (resp. > 0); i.e., (β(κ − α − β)μ1 − α(α +
β−1)μ2)/(ακ −κ +β) < 0 (resp. > 0). If TC0 = 0, i.e., μ2 = (β(κ −α−β)/α(α+β−1))μ1 + O (|μ1|2),
and T 2

C0
− 4DC0 < 0, i.e., ακ − κ + β < 0, a Hopf bifurcation may occur at C0. Compute the first

Liapunov value

L1 = 1

μ2
2

{
3ã20β

2(α − 1)(κ − α − β)2

16α2(κ − β)(ακ + β − κ)
+ O

(|μ|)} �= 0 (4.3)

by (3.7). It implies that C0 is a weak focus with multiplicity 1. Note that the inequality ακ −κ +β < 0
implies that β < κ and α < 1. Therefore,

ã20 < 0. (4.4)

In fact, when κ < α +β < 1 (resp. 1 < α +β < κ ) we have ∂ã20/∂κ > 0 (resp. < 0). The monotonicity
in κ implies that ã20 < α(α − 2)/2(1 − α) < 0 (resp. ã20 < α/(α − 1) < 0) since κ < α + β (resp. κ >

β/(1 − α)). In the remaining case, i.e., α + β < min{1, κ}, we consider the monotonicity of η(α,β,κ)

and δ(α,β,κ), the numerator and the denominator of ã20 respectively, in β . It is easy to see that
∂η/∂β < 0 and ∂δ/∂β > 0. For κ < 1, we have that δ < ακ(κ − 1)(α − 1)2 < 0 since β < κ(1 − α).

Therefore ã20 = α2(κ − β)(α + β − 1)/(−δ) − α < 0. For κ > 1, similarly we can see that η > α(κ −
1)(α − 1)2 > 0 and δ < (1 − κ)(α − 1)2 < 0 since β < 1 − α, implying that ã20 < 0. For κ = 1, we
calculate directly that ã20 = α(2 − α − β)/(1 − α)(β − 2) < 0. From (4.3) and (4.4) we see that L1 < 0
and C0 is stable. Thus, the Hopf bifurcation curve QH is well defined as in the statement of the
theorem.
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(vi) C1 = (x1, y1) is a simple equilibrium which exists in the first quadrant when Θ1 > 0, Ξ1 > 0.
We can compute the trace TC1 and determinant DC1 of the linearization of system (3.6) at C1 as
follows:

TC1 = (ακ − κ + β)(κβ − β2 − αβ + 2ακ − 2κ + 2β)

ã20β2
+ O

(|μ|),
DC1 = (ακ − κ + β)3(κ − β)

ã2
20β

3
+ O

(|μ|).
Thus C1 is either a saddle when DC1 < 0 or a node (or focus) when DC1 > 0. More concretely, when
C1 is a node (or focus) it is stable (resp. unstable) when TC1 < 0 (resp. > 0); i.e., (ακ − κ + β)(κβ −
β2 − αβ + 2ακ − 2κ + 2β)/ã20 < 0 (resp. > 0). �
5. Limit cycles

As known in Section 4, the only possible equilibria in the interior of the first quadrant are C0
and C1. Thus limit cycles (if exist) surround either C0 or C1. In what follows we first prove that there
is no cycle surrounding C1. Then we discuss the cycles surrounding C0 in the case

ακ + β − κ < 0, (5.1)

because this equilibrium is a saddle in the other case.

Theorem 5. When β < κ , ακ +β −κ > 0 and ã20 < 0, system (3.6) has no closed orbits in the first quadrant.

Proof. In this case the possible closed orbits surround the equilibrium C1 since C1 lies in the interior
of the first quadrant and C0 is a saddle if it exists. Note that the interval J between −3 and −(ακ +
β − κ + β(α + β − κ))/(ακ + β − κ) is nonempty. In fact, the denominator of ã20 contains the factor
δ1(α,β,κ) = 2(ακ + β − κ) + β(κ − α − β), which is nonzero by the non-degeneracy condition (3.7).
It is easy to show that −3 < −(ακ + β − κ + β(α + β − κ))/(ακ + β − κ) (resp. >) if δ1(α,β,κ) > 0
(resp. < 0). For arbitrarily chosen ι ∈ J , consider a Dulac function

W(x, y) := xι y(α−2β−1+ι(α−1))/β (5.2)

and discuss the divergence of the modified vector field (W X(x, y,μ),WY (x, y,μ)). Assume that the
system has a closed orbit γ in the first quadrant. Since the y-axis coincides with a union of orbits,
the distance ρ between the y-axis and γ is a definite positive constant. Therefore, div(W X,WY ) has
zeros in the region S = {(x, y): x > ρ/2, y > 0}. On the other hand,

div(W X,WY ) = ∂

∂x

(W X(x, y,μ)
) + ∂

∂ y

(WY (x, y,μ)
)

= W(x, y)

{
(ι + 1)μ1 +

(
α − β − 1 + αι − ι

β

)
μ2 + K (α,β,κ)

β
x + (ι + 3)ã20x2

}
,

(5.3)

where K (α,β,κ) = ακ + β − κ + β(α + β − κ) + ι(ακ + β − κ). One can check that K (α,β,κ) < 0
(resp. > 0) and (ι+ 3)ã20 < 0 (resp. > 0) when δ1(α,β,κ) > 0 (resp. < 0). Thus, when δ1(α,β,κ) > 0
we have

div(W X,WY ) < W(x, y)

{
K (α,β,κ)

β

ρ

2
+ (ι + 3)ã20

(
ρ

2

)2

+ O
(|μ|)} < 0
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in S for sufficiently small |μ|. In the other case we can also prove that div(W X,WY ) > 0. This
contradicts the existence of zeros of the divergence in S . The proof is completed. �

Next we discuss closed orbits around the equilibrium C0. In the case of (5.1), by Theorem 4,
a unique stable limit cycle can arise from a Hopf bifurcation at C0 when parameters pass through the
bifurcation curve QH . Now we further discuss the existence and uniqueness of the cycle for parame-
ters not close to the Hopf bifurcation value and prove that the cycle will disappear as a heteroclinic
loop arises.

Theorem 6. Suppose that α,β,κ satisfy (5.1) and α + β < 1. Then system (3.6) has a closed orbit in the first
quadrant for small (μ1,μ2) in the region

SL :=
{
(μ1,μ2) ∈ R2

∣∣∣ μ1 > 0, μ2 <
β(κ − α − β)

α(α + β − 1)
μ1 + O

(|μ1|2
)}

,

which lies on the right half plane but below the Hopf bifurcation curve QH .

This result will be proved by using the Poincaré–Bendixson Theorem. An observation at equilibria
at infinity makes it more convenient for us to construct an outer boundary in the proof.

Lemma 7. System (3.6) has two equilibria at infinity, Ix and I y, in the first quadrant locating on the posi-
tive half x-axis and y-axis, respectively. Moreover, Ix is a stable (or unstable) node if ã20 > 0 (or < 0). I y is
degenerate with a saddle sector when α + β < 1 and ã20 < 0.

Proof. With the Poincaré transformation x = 1/z, y = u/z and a change of time dτ = dt/z2, system
(3.6) is reduced to

⎧⎪⎪⎨⎪⎪⎩
du

dτ
= −ã20u + (κ − α − β)uz + (1 − α − β)u2z + (μ2 − μ1)uz2,

dz

dτ
= −ã20z − αz2 + (1 − α)uz2 − μ1z3.

(5.4)

On the u-axis system (5.4) has only one equilibrium (0,0), i.e., off the y-axis system (3.6) has exactly
one equilibrium Ix at infinity in the first quadrant, locating on the positive half x-axis. Eigenvalues of
(5.4) at (0,0) are both the same −ã20. Thus, the equilibrium is a stable (or unstable) node if ã20 > 0
(or < 0).

With another Poincaré transformation x = v/z, y = 1/z and the same change of time, system (3.6)
is rewritten as ⎧⎪⎪⎨⎪⎪⎩

dv

dτ
= (α + β − 1)vz + ã20 v3 + (α + β − κ)v2z + (μ1 − μ2)vz2,

dz

dτ
= βz2 + (β − κ)vz2 − μ2z3.

(5.5)

Obviously, I0 = (0,0) is a degenerate equilibrium of (5.5), i.e., system (3.6) has a degenerate equilib-
rium I y at infinity on the positive y-axis. With the polar coordinates v = r cos θ, z = r sin θ , system
(5.5) is reduced to

1

r

dr

dθ
= H(θ) + o(1)

G(θ) + o(1)
as r → 0,
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where G(θ) = sin2 θ cos θ(1 − α), H(θ) = β sin3 θ + (α + β − 1) sin θ cos2 θ . Function G has exactly
two zeros 0 and π/2 in the first quadrant, which are both possible exceptional directions [23,28].
Obviously, the v-axis and z-axis each coincides with an orbit. We hope to know others except for
these two. Clearly, θ0 = π/2 is a simple zero of G and satisfies H(π/2) = β > 0, G ′(π/2)H(π/2) =
β(α − 1) < 0. It follows that exact one orbit leaves I0 in θ0 = π/2, by Theorem 6 in Chapter 5 of [23]
(or Theorem 3.7 in Chapter 2 of [28]).

We have difficulties with the direction θ0 = 0 since it is a double zero of G and satisfies H(0) = 0
and G ′(0)H(0) = 0. In such a situation no theorems in [23] and [28] are applicable. However, from
(5.5) we see that dz/dv < 0 near I0 in the interior of the first quadrant. By Lemma 4 in [24], no
orbits connect with I0 in θ0 = 0 in the interior. So the unique orbit, which approaches I0, lies on the
positive v-axis. �
Proof of Theorem 6. Under condition (5.1) we have β < κ , α < 1. Moreover, ã20 < 0 by (4.4). As
defined in Theorem 4, the curves QA0C0 and QB0C0 lie in the third and first quadrant of the (μ1,μ2)-
plane respectively. The inequalities Θ0 > 0 and Ξ0 > 0 in the definition of the Hopf bifurcation curve
QH imply that QH lies in the first, forth and third quadrant, respectively, when α,β,κ satisfy condi-
tions κ < α + β < 1, α + β < min{1, κ} and 1 < α + β < κ . In our case, α + β < 1, as stated in the
theorem. Thus it suffices to discuss the case κ < α + β < 1 and the case α + β < min{1, κ}.

In the first case, we prove the existence of closed orbits by the Poincaré–Bendixson Theorem [11]
for (μ1,μ2) in the sub-regions

S1
L :=

{
(μ1,μ2) ∈ R2

∣∣∣ 0 < μ2 <
β(κ − α − β)

α(α + β − 1)
μ1 + O

(|μ1|2
)
, μ1 > 0

}

and S4
L , the closure of the fourth quadrant.

For (μ1,μ2) in S1
L , by Theorem 4, system (3.6) has an unstable node O = (0,0), two saddles A1 =

(x−,0) and B0 = (0,μ2/β), and an unstable node or focus C0 = (x0, y0). Moreover, at infinity it has an
unstable node Ix and a degenerate equilibrium I y with a saddle sector, as shown in Lemma 7. System
(3.6) has a vertical isocline V ′: y = (ã20x2 + αx + μ1)/(1 − α) and a horizontal isocline H′: y =
((κ − β)/β)x + μ2/β uniquely in the interior of the first quadrant. Obviously, V ′ passes through A1
and C0 and intersects the y-axis at D = (0,μ1/(1 − α)), a point located above the equilibrium B0
because

μ1 >

(
1 − α

β

)
μ2 (5.6)

in S1
L , which follows the fact that β(κ − α − β)/(α(α + β − 1)) < β/(1 − α), i.e., the curve QH lies

below QB0C0 , under condition (5.1) and the assumption κ < α + β < 1 for the first case. Similarly, H′
passes through B0 and C0. We will show that the curve of the unstable manifold W u

B0
of B0 goes

around C0 and intersects H′ at a point E∗ between B0 and C0 so that the arc B̂0 E∗ of this curve and
the segment E∗B0 on H′ compose the outer boundary for the application of the Poincaré–Bendixson
Theorem.

Firstly, the saddle B0 has its stable manifold W s
B0

on the y-axis and its unstable manifold W u
B0

with the slope (κ −β)μ2/(βμ1 +(α+β −1)μ2) at B0, which is greater than 0 but less than (κ −β)/β

by (5.6). Thus, W u
B0

lies below H′ and above the positive x-axis but cannot go through the segments

O A1 and O B0 by the uniqueness of solutions and the qualitative properties of O and A1. Moreover,
W u

B0
cannot go back to intersect the open segment B0C0 on H′ because

ẋ|H′ = xQ 1(x) (5.7)



Author's personal copy

S. Ruan et al. / J. Differential Equations 249 (2010) 1410–1435 1425

Fig. 1. Left: Outer boundary for μ ∈ S1
L . Right: Outer boundary for μ ∈ S4

L .

by (3.6) and the quadratic function

Q 1(x) = ã20x2 + (
(ακ + β − κ)/β

)
x + μ1 + (

(α − 1)/β
)
μ2

is positive for x ∈ (0, x0). In fact, ã20 < 0 by (4.4) and Q 1(x) has its zeros at x1 < 0 and x0 > 0 by
Theorem 4. Since C0 is unstable, W u

B0
has to intersect with the arc of V ′ between A1 and C0 at a

point E1.
Secondly, on the parabola V ′ we have

ẏ|V ′ = y Q 2(x), (5.8)

where the quadratic function

Q 2(x) = (−βã20/(1 − α)
)
x2 − (

(ακ + β − κ)/(1 − α)
)
x + μ2 − (

β/(1 − α)
)
μ1

is positive for x > x0 because ã20 < 0 and Q 2(x) also has zeros at x1 < 0 and x0 > 0. Thus all orbits
from the arc Â1C0 of V ′ leave the region surrounded by O A1, Â1C0, C0 B0 and B0 O by the convexity
of the parabola. The repellency of the equilibrium Ix at infinity forces W u

B0
to intersect H′ outside

the segment B0C0. Let E2 denote the intersection point.
Obviously, ẋ < 0 at E2 by (5.7), i.e., as an orbit the curve W u

B0
penetrates H′ at E2 from one side

to the other. Thus, thirdly, such a curve will finally intersect V ′ again on the open arc Ĉ0 D by the
repellency of I y and the uniqueness of solutions. We denote the intersection point by E3. Similarly,
we also know that W u

B0
penetrates V ′ at E3 and enters the region surrounded by Ĉ0 D , D B0 and B0C0

since ẋ = 0, ẏ < 0 at E3 by (5.8) and the slope of V ′ at E3 is a positive number. At last, the repellency
of C0 and B0 forces W u

B0
to intersect H′ again on the open segment B0C0 of H′ at a point E∗ .

Thus, as shown in Fig. 1(left), the closed curve ̂B0 E1 E2 E3 E∗ ∪ E∗B0 makes an outer boundary,
from which no orbits leave the closed region surrounded by this closed curve. Since the equilibrium
C0 is unstable, the Poincaré–Bendixson Theorem ensures the existence of a closed orbit in this closed
region.

For (μ1,μ2) in S4
L , by Theorem 4 and Lemma 7, system (3.6) has the same situation of equilibria

as for (μ1,μ2) in S1
L , except B0 disappears and O becomes a saddle. Moreover, in this case system

(3.6) has the same vertical isocline V ′ and horizontal isocline H′ as for (μ1,μ2) in S1
L . Similarly, V ′

passes through A1 and C0 and intersects the y-axis at the same point D as above, but H′ passes
through C0 and intersects the positive x-axis at the point D1 = (−μ2/(κ − β),0), which obviously
lies on the left-hand side of A1 for small |μ2|. We claim that the unstable manifold W u

A1
of A1 goes

around C0 and intersects V ′ at a point E ′∗ between A1 and C0 so that the arc Â1 E ′∗ of W u
A1

and the

arc Ê ′∗ A1 of V ′ compose the outer boundary for application of the Poincaré–Bendixson Theorem.
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Firstly, the saddle A1 has its stable manifold W s
A1

on the x-axis and its unstable manifold W u
A1

with the slope (κ + α − β)/(α − 1) + O (|μ|) < 0 at A1. Note that the slope of V ′ at A1 is α/(α −
1) + O (|μ|) and (κ + α − β)/(α − 1) < α/(α − 1) < 0. It follows that W u

A1
lies on the right-hand side

of V ′ near A1. By repellency of A1, C0 and Ix and the uniqueness of solutions, W u
A1

has to intersect

either H′ outside the closed segment D1C0 or the open arc Â1C0 of V ′ . However, the second option is
impossible because on the parabola V ′ we have ẏ|V ′ = y Q 2(x) > 0 for x > x0 by (5.8). Let E ′

1 denote
the intersection point for the first option.

Using the same arguments as in the case of S1
L , we know that W u

A1
penetrates H′ at E ′

1 from
one side to the other because ẋ = xQ 1(x) < 0, ẏ = 0 at E ′

1 by (5.7). After penetration, the repellency
of I y and C0 forces W u

A1
to intersect V ′ again on the open arc Ĉ0 D . Let E ′

2 denote this intersection

point. Furthermore, as an orbit W u
A1

has to enter the region surrounded by Ĉ0 D , D O , O D1 and D1C0

because ẋ = 0, ẏ = y Q 2(x) < 0 at E ′
2 by (5.8) and the slope of the parabola V ′ at this point is a

positive number. For the same reason, the repellency of C0 and O forces W u
A1

to intersect H′ again

at a point E ′
3 on the segment D1C0.

Finally, ẋ = xQ 1(x) > 0, ẏ = 0 at E ′
3 by (5.7), which implies that W u

A1
enters the region surrounded

by C0 D1, D1 A1 and the arc Â1C0 of V ′ . Therefore, the repellency of C0 and A1 also forces it to inter-

sect V ′ again at a point E ′∗ on the arc Â1C0. As shown in Fig. 1(right), the closed curve ̂A1 E ′
1 E ′

2 E ′
3 E ′∗ A1

makes an outer boundary, from which no orbits leave the surrounded closed region. The Poincaré–
Bendixson Theorem implies the existence of a closed orbit in this closed region.

The discussion in the subcase when α + β < min{1, κ} is totally a repetition of that for μ ∈ S4
L in

the subcase when κ < α + β < 1. Similarly we obtain the existence of a closed orbit and the proof of
the theorem is completed. �

We now study the uniqueness of the closed orbit given above. It suffices to discuss the uniqueness
under condition (5.1) and the condition that Θ0 > 0, Ξ0 > 0. These conditions guarantee that C0 =
(x0, y0) is not a saddle and x0 > 0, y0 > 0, respectively, as shown in Theorem 4 and in the proof of
Theorem 6. Our strategy is to reduce system (3.6) to the form of a generalized Liénard system{

ẋ = Φ(y) − F (x),

ẏ = −g(x)
(5.9)

and apply a known result (Theorem 1.1 in [16]) on the uniqueness of limit cycles, which is a modifi-
cation of Z.-F. Zhang’s Theorem in [27] as given in [7,8]. For this purpose, re-arrange terms in system
(3.6) in the order of the powers of y, i.e.,{

ẋ = F0(x) − F1(x)y,

ẏ = G1(x)y + G2(x)y2,
(5.10)

where F0(x) = x(μ1 + αx + ã20x2), F1(x) = (1 − α)x, G1(x) = μ2 + (κ − β)x and G2(x) = −β . Then,
we need some transformations to eliminate terms containing the product xy in the first equation of
(5.10) and lower the degree of the second one of (5.10) in y. The two transformations

x = x, ỹ = F0(x) − F1(x)y, (5.11)

and

x = x, u = ỹ exp

( x∫
x0

E(w)dw

)
, dt̃ = exp

(
−

x∫
x0

E(w)dw

)
dt, (5.12)

where E(x) = (G2(x) − F ′
1(x))/F1(x), change system (5.10) into
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ẋ = u,

u̇ = −Ψ0(x)exp

( x∫
x0

2E(w)dw

)
− uΨ1(x)exp

( x∫
x0

E(w)dw

)
,

(5.13)

where

Ψ0(x) = F0(x)
{

F1(x)G1(x) + F0(x)G2(x)
}
/F1(x),

Ψ1(x) = −F ′
0(x) − G1(x) + {

F ′
1(x)F0(x) − 2F0(x)G2(x)

}
/F1(x).

Obviously, the first equation of system (5.13) has the simplest form and the degree of the second
equation is lowered by 1. Another transformation

x = x, v = u − F0(x)exp

( x∫
x0

E(w)dw

)
+ F0(x0) (5.14)

changes system (5.13) further into⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v + F0(x)exp

( x∫
x0

E(w)dw

)
− F0(x0),

v̇ = F1(x)G1(x) + F0(x)G2(x)

F1(x)
exp

( x∫
x0

E(w)dw

)(
v − F0(x0)

)
,

(5.15)

a form in which variables are separated in the first equation by addition and in the second equation
by multiplication. Note that F0(x0) = F1(x0)y0 = (1−α)x0 y0 > 0 because α < 1 by (5.1), and that v <

F0(x0) because F1(x) = (1 − α)x > 0 implies that ỹ < F0(x). Therefore, u − F0(x)exp(
∫ x

x0
E(w)dw) +

F0(x0) < F0(x0). So 1 − v/F0(x0) > 0 and the transformation

x̂ = x, ŷ = ln

(
1 − v

F0(x0)

)
, dt̂ = −F0(x0)dt̃ (5.16)

can be applied to reduce system (5.15) to the form (5.9), where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φ(y) = e y − 1, F (x) = F0(x)

F0(x0)
exp

( x∫
x0

E(w)dw

)
− 1,

g(x) = F1(x)G1(x) + F0(x)G2(x)

F0(x0)F1(x)
exp

( x∫
x0

E(w)dw

)
.

(5.17)

Theorem 8. System (3.6) has at most one closed orbit in the interior of the first quadrant under condition (5.1)
and the inequalities α + β < 1 and

β(κ − α − β)μ1 + α(1 − α − β)μ2 < 0. (5.18)

Moreover, the closed orbit is stable if it exists.
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Proof. Clearly, transformations (5.11), (5.12), (5.14) and (5.16) are all one-to-one for x > 0 and y > 0,
so it is equivalent to discuss the uniqueness of closed orbit of system (5.9) for x > 0. With those
transformations, the coordinates of the equilibrium C0 = (x0, y0) of system (5.10) is translated into
(x0,0) for system (5.9). From (5.17), we calculate

f (x) := F ′(x) = − (2ã20α − 2ã20 + ã20β)x2 + α(α + β − 1)x + βμ1

F0(x0)(1 − α)
exp

( x∫
x0

E(w)dw

)
,

g(x) := Q 2(x)

F0(x0)
exp

( x∫
x0

E(w)dw

)
,

where Q 2(x) is defined in (5.8). Clearly, Φ ′(y) = e y > 0 for all y ∈ R and g(x0) = 0, (x−x0)g(x) > 0 for
0 < x �= x0 by the properties of Q 2(x) as shown below (5.8). Thus conditions (i) and (ii) in Theorem 1.1
in [16] hold. In order to verify condition (iii), we calculate

f (x0) =
{

β(κ − α − β)μ1 − α(α + β − 1)μ2 + O (|μ|2)
ακ + β − κ

}
exp

( x∫
x0

E(w)dw

)
> 0, (5.19)

where the negativeness of the denominator and the numerator is guaranteed by (5.1) and (5.18). On
the other hand,

d

dx

(
f (x)

g(x)

)
= h(x)

Q 2
2 (x)(α − 1)

for 0 < x �= x0, (5.20)

where

h(x) = ã20
(
2ακ + 2β − 2κ + βκ − βα − β2)x2

+ 2ã20
(
2βμ1 + (β + 2α − 2)μ2

)
x − (

β(κ − α − β)μ1 + α(1 − α − β)μ2
)
.

Note that the coefficient of x2 in h(x) is equal to ã20δ(α,β,κ)/(1 −α), where δ(α,β,κ), the denomi-
nator of ã20, is less than 0 in the case when α+β < min{1, κ} as defined and proved after (4.4) in the
proof of Theorem 4. Since we assume in Theorem 8 that α +β < 1, the other case is κ < α +β < 1 by
(3.7). In this case it is obvious that δ(α,β,κ) < 0 under (5.1). Moreover, ã20 < 0 by (4.4) and 1−α > 0
as implied by (5.1). Thus the coefficient of x2 in the quadratic function h(x) is positive. On the other
hand, (5.18) implies that the discriminant � of h(x) satisfies

� = 4ã2
20

(
2βμ1 + (β + 2α − 2)μ2

)2 + 4

(
ã20δ

1 − α

)(
β(κ − α − β)μ1 + α(1 − α − β)μ2

)
= 4

(
ã20δ

1 − α

){
β(κ − α − β)μ1 + α(1 − α − β)μ2 + O

(|μ|2)} < 0.

This implies that h(x) > 0 for all x ∈ R, i.e., (d/dx)( f (x)/g(x)) < 0 for 0 < x �= x0, by (5.20). Together
with (5.19) it proves condition (iii) in Theorem 1.1 in [16]. Therefore, system (3.6) has at most one
closed orbit which is hyperbolic if it exists. Furthermore, conditions (5.1) and (5.18) imply that the
equilibrium C0 is an unstable focus or node as shown in the proof of Theorem 4. Hence, the limit
cycle is stable if it exists. �
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Fig. 2. Bifurcation diagram in case (C1) when β < κ , α < 1, ακ + β − κ < 0 and 1 < α + β < κ .

6. Heteroclinic loops

Notice that (5.18) describes a region below the line μ2 = (β(κ − α − β)/α(α + β − 1))μ1 in the
(μ1,μ2)-plane and the Hopf bifurcation curve QH is tangent to this line at the origin. Since exact one
limit cycle can be produced from the Hopf bifurcation, we assure by Theorem 8 that in the region SL
system (3.6) has exact one limit cycle when α+β < 1. From Theorem 4 we know that the slope of the
curve Q A0C0 is larger than that of the line under (5.1). Thus we also assure the uniqueness of a limit
cycle in the subset of the third quadrant between the negative μ2-axis and the curve Q A0C0 , as shown
in Fig. 2, when α + β < 1. If this limit cycle exists, it lies between the vertical lines �0: x = x+ (resp.
the positive y-axis) and �1: x = x− if A0 = (x+,0) exists (resp. not) in the first quadrant, because
ẋ = (α − 1)x+ y < 0 on �0\{A0} and ẋ = (α − 1)x− y < 0 on �1\{A1}.

Up to now, the existence of limit cycles remains unclear for (μ1,μ2) in the open subset S3
L of

the third quadrant between QA0C0 and the negative μ2-axis. In the other case, i.e., 1 < α + β < κ ,
which has not been dealt with previously, the Hopf bifurcation curve QH lies in S3

L but the result of
existence of limit cycles is also uncomplete in S3

L .
The following theorem gives a further answer.

Theorem 9. Under condition (5.1) there exists a curve QL in the (μ1,μ2)-plane on which the limit cycle of
system (3.6) arising from the Hopf bifurcation disappears, while a heteroclinic loop of (3.6) connecting A0 with
A1 exists. The curve QL lies in the region S3

L . In particular, it lies between QA0C0 and QH in the third quadrant
if 1 < α + β < κ .

Proof. We still discuss two cases: (i) κ < α + β < 1 or α + β < min{1, κ} and (ii) 1 < α + β < κ .
As known in Theorem 4, for (μ1,μ2) ∈ QA0C0 system (3.6) has no equilibria in the interior of the
first quadrant, implying that no closed orbits exist in the first quadrant. On the other hand, for μ :=
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(μ1,μ2) ∈ SL system (3.6) has a closed orbit in the first quadrant by Theorem 6. Thus, the continuity
of the vector field implies that in case (i) there exists a parameter boundary QL between the curves
QA0C0 and QH in S3

L , as shown in Fig. 2, on which the closed orbit disappears. Obviously, QL cannot
coincide with QH . In what follows we prove that QL does not coincide with QA0C0 and a heteroclinic
loop ΓL exists when μ ∈ QL .

For μ ∈ S3
L , both A0 and A1 are saddles. Let Γ (μ) denote the limit cycle of system (3.6) for a given

μ ∈ SL . By the continuous dependence of solutions on parameters, the limit Γ (μ̂) = limμ→μ̂∈QL
Γ (μ)

is an invariant set. Obviously, Γ (μ̂) is also connected. Since Theorem 8 implies that Γ (μ) is stable,
i.e., the ω-limit set of an orbit, we can see that Γ (μ̂) is also an ω-limit set of an orbit, whose positive
semi-orbit is bounded because the two equilibria at infinity in the first quadrant are both repellent.
A corollary of the Poincaré–Bendixson Theorem (Theorem 1.3, Chapter II, [11]) implies that Γ (μ̂) is
either a single equilibrium which has to be C0, a closed orbit, or a closed curve containing equilibria
and a set of orbits connecting these equilibria. However, Γ (μ̂) is not C0 because C0 remains an
α-limit set of an orbit. The definition of QL prevents Γ (μ̂) from being a closed orbit. For the third
option, the only candidates of equilibria in the closed curve Γ (μ̂) are O , A0 and A1. By the qualitative
properties of these equilibria, the curve Γ (μ̂) contains a heteroclinic orbit from A1 to either O or A0.
Assume it contains the orbit from A1 to O . Then the saddle A0 has a stable manifold W s

A0
connecting

with C0. As μ is sufficiently close to the curve QL on the side of existence, the limit cycle Γ (μ)

exists and passes through a sufficiently small neighborhood of A0 close to the curve Γ (μ̂), but the
stable manifold W s

A0
(μ) of the saddle A0 is also close to W s

A0
. It turns out to contradict the fact

that W s
A0

(μ) ∩ Γ (μ) �= ∅. Therefore, Γ (μ̂) is a closed curve consisting of saddles A1 and A0 and
the heteroclinic orbits as shown in Fig. 2, called a heteroclinic loop and denoted by ΓL . Actually, the
boundary QL defines a bifurcation curve for the heteroclinic loop.

Now we can see that the bifurcation curve QL cannot coincide with the bifurcation curve QA0C0 .
Otherwise, when parameters lie on QA0C0 , the equilibrium C0 coincides with the unstable node A0.

Therefore, the unstable manifold of the saddle A1 in the first quadrant has to extend to the equilib-
rium O at the origin, which implies that the heteroclinic loop ΓL connecting A0 and A1 does not
exist. This contradicts the existence of heteroclinic loop ΓL when parameters lie on QL .

Case (ii) can be discussed similarly. The proof is completed. �

7. Bifurcation diagrams

Summarizing the above theorems, we can give bifurcation diagrams for parameters μ1,μ2 and the
corresponding phase portraits for system (3.6) in terms of α,β and κ.

(C1) β < κ , α < 1, ακ + β − κ < 0 and 1 < α + β < κ (see Fig. 2).
(C2) β < κ , α < 1, ακ + β − κ < 0 and κ < α + β < 1 (see Fig. 3).
(C3) β < κ , α < 1, ακ + β − κ < 0 and α + β < min{1, κ} (see Fig. 4).
(C4) β < κ , α < 1 and ακ + β − κ > 0 (see Fig. 5).
(C5) β < κ , α > 1, ακ + β − κ > 0 and ã20 < 0 (see Fig. 6).
(C6) β < κ , α > 1, ακ + β − κ > 0 and ã20 > 0 (see Fig. 7).
(C7) κ < β , α < 1, ακ + β − κ > 0 and ã20 > 0 (see Fig. 8).
(C8) κ < β , α < 1, ακ + β − κ > 0 and ã20 < 0 (see Fig. 9).
(C9) κ < β , 1 < α, ακ + β − κ > 0 (see Fig. 10).

Conditions in cases (C1)–(C4) and (C9) naturally imply ã20 < 0.
In the case that the non-degenerate conditions (H2) and (H3) (or equivalently the condition (3.7))

are invalid, the versal unfolding of system (2.13) is of codimension � 3. However, those cases of α,β

and κ which satisfy (3.7) may include some deformations of such a higher degenerate vector field.
So our discussion as above actually gives results of those versal unfoldings of higher codimensions
partially.

It has been demonstrated (see [4,5,13,17,18,22,26]) that predator–prey systems with ratio-
dependent functional response exhibit very rich and complex dynamics. These dynamical behaviors
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Fig. 3. Bifurcation diagram in case (C2) when β < κ , α < 1, ακ + β − κ < 0 and κ < α + β < 1.

Fig. 4. Bifurcation diagram in case (C3) when β < κ , α < 1, ακ + β − κ < 0 and α + β < min{1, κ}.
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Fig. 5. Bifurcation diagram in case (C4) when β < κ , α < 1 and ακ + β − κ > 0.

Fig. 6. Bifurcation diagram in case (C5) when β < κ , α > 1, ακ + β − κ > 0 and ã20 < 0.
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Fig. 7. Bifurcation diagram in case (C6) when β < κ , α > 1, ακ + β − κ > 0 and ã20 > 0.

Fig. 8. Bifurcation diagram in case (C7) when κ < β , α < 1, ακ + β − κ > 0 and ã20 > 0.
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Fig. 9. Bifurcation diagram in case (C8) when κ < β , α < 1, ακ + β − κ > 0 and ã20 < 0.

Fig. 10. Bifurcation diagram in case (C9) when κ < β , 1 < α, ακ + β − κ > 0.



Author's personal copy

S. Ruan et al. / J. Differential Equations 249 (2010) 1410–1435 1435

are very sensitive to the initial values and the system parameters. These small changes can be under-
stood as small perturbations of the system but are difficult to estimate. An effective approach is to
discuss all possible small perturbations and explore its all possible phase portraits. That is the reason
we investigate its versal unfoldings.

In the case (C3), for example, the bifurcation diagram is shown in Fig. 3. If (μ1,μ2) lies above
the bifurcation curve QA0C0 but below the μ1-axis, all orbits starting from an initial point in the
interior of the first quadrant eventually go to the origin. Hence, both the predators and the prey go
to extinction. If (μ1,μ2) lies below QB0C0 and to the right of the μ2-axis, the predators and the
prey coexist in a regime of fixed populations or periodic oscillations because all orbits in the interior
approach an equilibrium C0 or a stable limit cycle. If (μ1,μ2) lies between QL and the μ2-axis, the
orbits above the stable manifold of the saddle A0 go to the origin but those below approach a stable
limit cycle or the heteroclinic loop ΓL formed with the stable manifold. Therefore, the predators and
the prey either both go to extinction or coexist in a regime of bounded oscillations. If (μ1,μ2) lies
between QA0C0 and QL , all orbits go to the origin except the one at the source C0 or on the stable
manifold of the saddle A0. That is, the predators and the prey generically go to extinction. Similarly,
we can explain the other cases (C1)–(C9).
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