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ABSTRACT 

Gause-type models of a three-species food web with group defense are analyzed. 

Persistence criteria are derived for both the case of no mutual interference and the case 

when there is mutual interference of predators. 

1. INTRODUCTION 

Group defense in a predator-prey interaction is a term used to describe 
a phenomenom whereby predation is decreased or even prevented alto- 
gether by the ability of the prey population to better defend or disguise 
themselves when their numbers are large. A classical example is described 
by Tener [25]. A lone musk-ox or pairs of musk-oxen can be successfully 
attacked by wolves, but groups of six or more are rarely if ever successfully 
attacked. Many other examples can be found in Holmes and Bethel [19], 
Yang and Humphrey [27], and May and Robinson [21]. 

In [14], Freedman and Wolkowicz considered a predator-prey system in 
which the prey population exhibited group defense. They claimed that in 
the case of no mutual interference among predators, if the carrying capacity 
of the prey population is sufficiently large, the predator population is 
almost always driven to extinction. Biologically, this is intuitive, because the 
environment is such that the prey population can increase to the point 
where group defense prevents the predator population from increasing at 
any level. This is also related to the paradox of enrichment as described in 
Rosenzweig [24]. Freedman and Wolkowicz [14] proposed a mechanism 
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that prevents the predator from becoming extinct when the prey exhibits 
group defense, namely, mutual interference among the predators. Subse- 
quently, Freedman and Quan [lo] considered another way in which the 
predator is prevented from heading to extinction, which is through interac- 
tions of the predator-prey system with a third population. For other work 
related to models of predator-prey systems with group defense, see [22] 
and [26]. 

Hassell [17] and Rogers and Hassell [23] introduced the notion of mutual 
interference of predators searching for prey (also see [l]). A predator-prey 
model with mutual interference was analyzed in [8]. Further analyses 
extending the results to food chains with mutual interference were carried 
out in [4] and [5]. However, the case of food chains with mutual interfer- 
ence and group defense has not previously been considered. 

In general, three (or higher)-dimensional models are difficult to analyze 
as far as the detailed behavior of their solutions is concerned. Conse- 
quently, the notion of persistence has been used to describe the situation 
when all interacting populations in a given system survive. Persistence of 
various types (weak, strong, uniform, etc.) can be defined in an abstract 
manner for abstract metric spaces [2,3, 6, 9, 151. However, for our purposes 
we may define persistence with respect to R" and the coordinate planes as 
follows. A population N(t) is said to be (strongly) persistent if N(t,) > 0 
implies that N(t) > 0 and lim, em inf N(t) > 0. A system is said to (strongly) 
persist if each component population persists. Clearly, persistence is equiv- 
alent to population survival in deterministic population models. For papers 
on persistence in this setting, see [lo]-[13], [16], [18], and [20]. 

In the present paper, we consider models of three-species food chains 
with group defense that are of the Gause-type. Gause-type predator-prey 
models have been discussed in [7] and [8] and food chains in [ll]. We first 
consider the case of no mutual interference and derive utilizable criteria for 
persistence. We then consider the case when the predators at both levels 
exhibit mutual interference. In [4], a technique was developed to transform 
such a system into a dynamical system for mutual interference parameters 
greater than or equal to l/2. In this paper we extend these results to the 
model with group defense. We conclude with a brief discussion. 

2. THE MODELS 

We consider two models of a three-species food chain with group 
defense by the prey. The first model is of the form (where the dot 
represents the derivative with respect to time) 

i=.Xg(x,K)-y_D(x)-zh(x), X(0) = X” > 0, 

Y = Y[ - r + cP(x)l- z4( Y), Y(0) = Yo 2 0, 

i = z[ - s + &(y) + eh(x)], z(0) = zo > 0, (1) 
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where at time t > 0, x(t) represents the prey population; y(t) the interme- 
diate population, which feeds upon x and is in turn fed upon by z; and 
z(t) the top predator population, which feeds upon y and may also feed 
upon x. We assume that the functions g, p, q, and h are continuously 
differentiable and that r, c, d, K, and e are positive constants. Then 
solutions of system (1) exist and are unique and continuable for all t 3 0. 

In the following, a prime denotes the derivative with respect to the 
argument, that is, f’(x) = df(x)/dx. 

The function g(x, K) represents the specific growth rate of the prey in 
the absence of predation and is assumed to satisfy [8, 141 

g(O, K) > 0, g(K,K)=O, g,(K, K) < 0, 

gx(x, K) G 0 and g,(x> K) > 0 for any x > 0. (2) 

The function p(x) denotes the predator response function and is as- 
sumed to satisfy [8] 

P(0) = 0, p(x)>0 forx>O 

and there exists A4 > 0, such that p(M) > r/c. (3) 

In order to model group defense, it is assumed as well [14] that for the 

above A4 > 0, 

p’(x)>0 forO<x<M and p’(x)<0 forx>M. (4) 

The function h(x) denotes the fact that the predator z feeds upon x 
directly and has properties similar to those of p(x); that is, 

h(0) = 0, h(x)>0 forx>O 

and there exists A4 > 0 such that h(M) > s/e (5) 

and 

h’(x)>0 forO<x<M and h’(x)<0 forx>M. (6) 

The function q(y) is interpreted as a predator functional response of z 
on y. Therefore we assume that 

q(O)=O, q(y)>0 and q’(y)>0 fory>O. (7) 

The existence of A4 > 0 is precisely the assumption that models group 
defense, and we assume that the same A4 holds for both p(x) and h(x), 
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which means that the prey population x has the same group defense ability 
with respect to both of the predator populations y and z. We assume that 
p(M) > r/c because otherwise the predator y could not survive on the 
prey at any density in the absence of the predator z. Therefore, there exists 
A, < M such that p(h,) = r/c, and we assume that A, < K, or again the 
predator y cannot survive on the prey in the absence of z. Similarly, we 
assume h(M) > s/e and there exists pi < M (and pi < K) such that 

h&l = s/e. 
We note from techniques used in [ll] that there exists a region & of the 

form 

such that J%’ is an attractor, that is, there exists T(x,, y,,z,) such that 
(x(t), y(t), z(t)) E & for t > T, where [x(t), y(t), z(t>lr is a solution of 

system (1). 
The second model is a modification of the first so as to incorporate 

mutual interference among the predators in their search for and handling 

of prey. It takes the form 

i = xg(x, K) - Y"P(X) - zk+), x(0) = x0 2 0, 

9=-v+cYmP(x)-zkq(Y), Y(0) = Y, 2 0, 

i=-sz+ffzkq(y)+ezkh(x), z(0) = 20 2 0. (8) 

The functions g, p, q, h have the same meanings and properties as for 
system (1). m and k are the mutual interference parameters and satisfy 
O<m<l,O<k<l. 

Under the above assumptions, solutions to system (81 exist and are 
continuable for all t > 0. However, uniqueness of the solutions is no longer 
guaranteed. This will be dealt with in Section 4. 

The existence of an G? for system (8) follows by considerations similar to 
those for system (1). 

3. ANALYSIS OF SYSTEM (1) 

In this section, we proceed to analyze system (1). We first recall the 
subsystem analyses. We then determine the equilibria and their stabilities. 
Finally, we derive utilizable persistence criteria. 
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Clearly, the subsystem of system (1) restricted to the yz plane has 

completely trivial dynamics; that is, if x0 = 0, then lim,,, y(t) = 
lim t +_ z(t) = 0. 

The subsystem in the xy plane has the form 

i=xg(x,z+YP(x), x(0) = x0 > 0, 

+=Y(-r+cP(x)), y(0) = yo 2 0. (9) 

This is a special case of a model considered in [14]. Given our assumptions, 
there is always an equilibrium of the form F,(h,,cr-‘h,g(h,,K)), where 
p(h,)= rc-’ and p’(A,)> 0. F, may be stable or unstable, and there may 
be one or more limit cycles surrounding it. 

There may also be an equilibrium of the form F2(A2, cr-‘A,g(A,, K)), 
where p(A,) = rc-’ and p’( A,) < 0. In this case, it follows that A, > A,. If it 
is also the case that A, < K, then F2 is a saddle point, and extinction of the 
predator population may occur in conjunction with statements in [24]. 

The subsystem in the xz plane is of the form 

i=xg(x,K)-Zh(X), x(0) = x0 > 0, 

i = z[ - s + e/z(x)], z(0) = zo > 0. (10) 

Similar statements may be made about system (10) with respect to equilib- 
ria Gi(pi, es- ‘~ig(/Li, K), i = 1,2. 

We now examine the equilibria for the full system (1) under assumptions 

(2)-(7). Clearly, E,(O,O,O) and E,(K, 0,O) always exist. By the above, we 
have established the existence of one or two equilibria in the interior of 

each of the xy and xz coordinate planes, E,~Ai,cr-‘Aig(Ai, K),O) in the xy 
plane, and EP(pi,O, esP1p,g(pi, K)) in the xz plane. 

For an equilibrium point E*(x*,y*,z*) in the interior of the first 
octant, we need to solve the algebraic equations 

xg(x,K)-YP(X)-z~(x)=O, 

Y[ - r + v(x)] - w(Y) = 0, 

- s + dq( y) + eh( x) = 0. 

(11) 

(12) 

(13) 

From Equation (13), we have 

q( y*) = d-‘[ s - eh( x*)]. 
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Substituting into Equation (12), we get 

z* = dY*[- r +4x*)1 
s-eh(x*) ’ 

and then, substituting in Equation (II), we get 

x*g(x*,K)[s-eh(x*)] 
‘*= [s-eh(x*)]p(x*)+d[-r+cp(x*)]h(x*)’ (14) 

yielding 

dx*g(x*,K)[ - r +cp(x*)] 

‘*= [s-eh(x*)]p(x*)+d[-r+cp(x*)]h(x*)’ (15) 

For y* > 0 and z* > 0, it follows that g(x*,K)> 0, s - eh(x*)> 0, and 
- r + cp(x*> > 0, which imply that x* < K, x* < pl, and x* > A,, respec- 
tively, or pz <x* < K and x* < A,. Thus, if E*(x*,y*, z”) exists, it 
follows that 

or 

hl<x*<p,<<<KK, (16a) 

M</.L~<x* <A,< K. (16b) 

The above analysis shows that if E” exists, then inequality (16) must 
hold for x*, and then y” and z* are given by (14) and (15), respectively. 
However, we have not yet given criteria that guarantee that E* exists. This 
will be done following our persistence analysis. 

Hence we now assume that E* exists, and we analyze the local stability 
of all possible equilibria. We do this by computing the variational matrices 
about these equilibria. The general variational matrix is given by 

V(X,Y,Z) 

g(x,K)+ Jx,(x,K)- yd(x)- Zh’(X) -p(x) 
= CYP'(X) -r +cp(x)- w’(Y) 

ezh’(x) dzq’(y) 

-h(x) 
-q(Y) 

- s + dq(y)+ eh(x) 1 
Let V, denote I/(x, y, z) at E, (1= 0, K, Ai, pi, and * 1, i = 1,2, respectively. 
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g(O,K) 0 0 
VI?= [ 0 -r 0 I 2 

0 0 --s 

v, = I @AK, K) -P(K) 
0 -r +cp(K) 

0 0 

g(Aia K) + Aigx(A,, K) 

- rP’cAjg(hi, K)p’(A,) 

5, = r-'c2A,g(Ai, K)p’(A,) 

g(ki, K) + p;gx(p,> K) 

- s-‘w;g(p;,K)h’(pi) 

v,, = I 
0 

S-‘e*pig(p;,K)h’(P;) 

g(x*,K)+x*g,(x*,K) 
- y*p’(x*) - z*h’(x*) 

- h(K) 
0 

-s+eh(K) 

- P(A,) - h(h) 

1 
0 - q( r-‘cAs(A,,K)) , 
0 -s+dq(r-‘cA,g(A,,K)) 

+ 4A,) I 

-P(k) - &I) 

- r + cph) 0 2 - ~-lem(~;,Wd@) s-‘dep;g(pi,K)d(O) 0 1 - P(x*) - h(x*) 
1 

cY*P'(x*) 

ez*h’(x*) 

-r+cp(x*) - dY*) 

- z*d(Y*) 

dZ"d(Y") 0 

From the hypotheses of our model, E, is a saddle point because 
g(0, K) > 0. Since g,(K, K) < 0, E, is locally stable in the x direction and 
locally unstable in the y and .z directions. Hence E, is a hyperbolic saddle 
point. 

At any rate, because of the hyperbolic nature of both equilibria and 
because i > 0 if y and z are sufficiently small and 9 > 0 if x is sufficiently 

close to K and z is sufficiently small, neither E, nor E, can be the limit of 
a trajectory initiating in the interior of the first octant. 

If Eh, or E exists under the assumptions that A, < K or p2 <K, 
respectively, thin they are hyperbolic saddle points, because F2 and G2 
are. 

We can now state and prove our main results of this section, which give 
criteria for the persistence of system (1). 
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THEOREM 1 

Let system (1) be such that there are no nontrivial periodic or homoclinic 
solutions in the xy and xz planes. If 

- s + dq( r-‘ch,g( Ai, K)) + eh( Ai) > 0, i = 1,2, 

and 

- r + w(k) - S-*et-q(k+K)q’(O) > 0, i=1,2, 

with the understanding that the case i = 2 in (17) and (18) holds 

appropriate equilibrium exists, then the system (1) exhibits persistence. 

Proof We use Theorem 5.1 of Freedman and Waltman [13] to 
our result. Let 

F(x,y,z)= 
g(x,K)-y+-z~, X#O 

g(o, K) - YP’@) - zh’(O), x = 0, 

G(x, Y, z) = 

i 

-r+cp(x)-z+, y#O 

-r+cp(x)-zq’(O), y=O, 

H(x,y,z)=-s+dq(y)+eh(x). 

Conditions (Cl)-(C4) of the theorem in [13] are satisfied, where 

(Cl) 

aF p(x) <O aF_ h(x) <O _-- 
ay- x ' az --- 

x ’ 

aG 
- = cp’( x) > 0 
dX 

forO<x<M, 

JH 
-=eK(x)>O 
ax forOGx<M, 

aH 
- = dq’( y) > 0, 
8Y 

ZdY) 

G(O, Y, z) = -r-T’ 
Y#:o 

(17) 

(18) 

if the 

prove 

I-r-zq’(O), y=O, 
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and hence 

(C2> 

G(O, Y > z) < 0, H(O,O, z) = - s < 0. 

F(O,O,O) = g(0, K) > 0, F(K,O,O)=g(K,K)=O, 

~(x,O,O) = g,(x,K) GO 

(C3) There are no equilibria in the yz plane. 
(C4) For the equilibria 

E,,(Aj,r -‘cA,g(A;,K),O) and E,,(~i,O,s-‘e~ig(CLj,K)), 

we have 

H(hi,r-‘cAjg(Ai,K),O)=-s+dq(r-‘cA,g(Ai,K))+eh(Ai) 

and 

(+;,O,s -‘ePig(P.i, K)) = - r + V(Pi) - S-‘ePig(Pi2 K)q’(O). 

Hence by (17) and (18), all conditions of Theorem 5.1 of [13] are satisfied, 

and so system (1) persists. n 

THEOREM 2 

Suppose conditions (17) and (18) hold and there are a finite number of 
limit cycles or homoclinic orbits in the xy plane or in the xz plane. For each 

limit cycle or homoclinic orbit (q(t), 4(t)> in the xy plane, let 

-s+~/gT~w)) o dt + ;j7h(q(t)) dt > 0, (19) 

and for each limit cycle or homoclinic orbit ((p(t), q(t)) in the xz plane, let 

-r+Gi’p(@(t))dt-qL’$(t)dt>O, (20) 

where T is the appropriate period in the case of a limit cycle and where 
lim T ~30 is taken in the case of a homoclinic orbit. Then system (1) persists. 

Proof: We give the proof in the case of a periodic orbit. Let V,(t)= 
V,(cp(t), $(t),O) be the variational matrix about (q(t), 9(t), 0). Then 

v,(t) 

I 

g(cp(t),K) + V(t>gx(V(t>, K) - p(cp(t)) -h(q(t)) 

- @(t)P’(cp(t)) 
= cHt)p’(cp(t)) - r + cp(cp(t)) - q($(t)) 

0 0 - s + dq(G(t)) 

+ eh(4t)) _ 
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is the variational matrix of the system (1) about the limit cycle (cp(t),$(t)) 
in the xy plane. 

Consider now a solution of (1) with positive initial conditions ((or, CQ, as) 
sufficiently close to the limit cycle. From V,(t), ~z/&x, is a solution of the 
system 

i 

2’ = [-s + 4(+(t)) + eh(cp(t))lz 

z(0) = 1 

That is, 

i$( f,q,a2,a3) ==P 
[ j 

-sst+d o’q(ij(t))dt+ejfh(cp(t))df . 
0 1 

Hence, by Taylor’s expansion theorem, we have 

Then z increases or decreases according as 

is positive or negative. Since E,I and these limit cycles are the only possible 
limits in the xy plane of trajectories with positive initial conditions, these 

trajectories go away from the xy plane if (17) and (19) hold, and a similar 
argument applies for (18) and (20). This completes the proof. n 

Before proceeding with the analysis, we illustrate the above theorem 
with a numerical example. Consider the system 

i =x(1.3- x -2ePXy), 

)j = y( -0.36+ xePX -8zePY), 

i=z(-l+5ePY). (21) 

Boundary equilibria are E,(O, 0, O), E,(1.3,0, O), E&0.81,0.55,0), and 
E,(1.22,0.135,0), correct to two decimal places. The variation matrix about 
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E,, i = 1,2, is given by 

Xi( 2e -x,y, - 1) - 2x,,-“1 0 

Mj= [ y,ePX,(l-xi) 0 -gy,,-y1 1 . 

0 0 -l+5eeYc 

Letting f(yi) = - 1 + 5ePYc, one gets that f(0.55) = 1.885 > 0 and f(O.135) 
= 3.37 > 0. Hence if time averages along any and all periodic or homoclinic 
orbits, if they exist in the xy plane, are positive, Theorem 2 will give that 

persistence occurs. 
To show that this is the case, consider the submodel in the xy plane 

given by 

i=x(1.3-x-2e-“y) 

j = y( -0.36+ xc-X). (22) 

From the first of these by standard comparison, lim, em x(t) < 1.3. Consider 

now 

&+y)=-0.36(;x+y)+$(1.66-x) 

< -0.36(+x + y) +0.42. 

Then lim t ,&x + y) < 1.2. H ence any closed-path solution, should one 
occur, must lie in the box given by G?= {(x, y): 0 < x < 1.3,O < ix + y < l.Z}. 
But if (x, y) E &‘, then - 1 f 5ePY 2 0.5 > 0. Hence all time averages are 
positive. 

We now are able to state criteria that guarantee the existence of E”. 

This is given in the following theorem, the result of which is valid from the 

corollary in [2]. 

THEOREM 3 

Suppose the hypotheses of Theorem 1 or Theorem 2 hold but that 

homoclinic orbits do not exist. Then E* exists. 
Note that from the theorem of [2], we obtain uniform persistence for our 
system. The characteristic equation of the variational matrix I/* is 

mll-A ml2 m13 

m21 m2,-h m23 =O, 

m31 m32 -A 

(23) 
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m,,=g(x*,K)+~*g,(X*,K)-y*p’(X*)-Z*h’(X*), 

m ,*=-p(x*)<o, m,j=-h(x*)<o, 

m2, = CY*P’(~*), 11122=cp(x*)-[r+z*q’(y*)l, 

m 23 = -q(y*)<O, m3,=ez*h’(x*), m32=dz*q’(y*)>0. 

Then (23) has the form 

A3 + a,h2 + a,A + a3 = 0, 

where 

al = -Cm,, +m22), 

a2 = me22 - (m12m21 + m,3m3l + m23m32b 

a3 = (mllm23m32 + m22m213m3,) -(m,2m23m3, + m13m32m2,). 

Hence 

ala2 - a3 = - [(ml, + m22)(m,,m22 - m12m2,) + m,1m13m31 + m22m23m321 

+(m,2m23m3, + m,3m32m2,). 

Let m,, < 0, m22 < 0. If inequality (16a) holds, then m2, > 0, m3, > 0, 

hence a, > 0, a2 > 0, and the terms in the first parentheses of a3 and the 
first square brackets of a,a2 - a3 are positive. If inequality (16b) holds, 
then m2, < 0, m3, < 0. Using the Routh-Hurwitz criteria, we have the 
following theorem. 

THEOREM 4 

Suppose E*(x*, y*, z*) exists, and let m,, < 0, m22 =G 0. 

(a> Let (16a) hold and any one of the following conditions be satisfied. 

6) o ( m,2m23m3, + m,3m32m2, < m,,m23m32+ m22m,3m3,~ Or 

(ii) m,2m23m3, + m13m32m2, = 0, or 
(iii) 0 < - m,2m23m32 - m,3m32m2, 

<[-Cm,, + m22Xm,zm22 - m12m2,)+ m11m13m3, 

+m22m23m321; 
then E* is asymptotically stable. 

(b) Let (16b) hold and the following conditions be satisfied: 

64 m,,m23m32 - ml3m23m3, > m13m32m2, - m22m,3m31y 

(4 m22m23m32 + ml3m32m2, -(ml, + m22)m,,m22 > - mllm13m31 

-m12m23m31 -cm,, +m22)m,2m2,. 
Then E* is asymptotically stable. 
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4. ANALYSIS OF SYSTEM (8) 

As mentioned previously, uniqueness of solutions for system (8) does not 
necessarily hold. The reason for this is that 0 < m, k < 1, making the system 
sublinear. 

System (8) without group defense was considered in [5]. By the change of 
coordinates u = x, u = ylmrn, w = ziPk, system (8) was transformed into a 
dynamical system for which uniqueness of solutions held. However, this is 
valid only in the case 4 < m, k < 1. For 0 < m, k < i, such a transformation 
is unavailable at this time. 

The transformed system takes the form 

li=Ug(U,K)-Llm’(‘-m)p(u)-Wk’(‘-k)h(C1), U(0) = X” > 0 

i’=(l-m)[-m+cp(*) 

_ L:~m/(l-m)Wk/(l-k)q(Ul/(l-m))], c(0) = y;-" > 0 

ti=(l-k)[-sw+dq(c”‘‘-m’)+eh(u)], w(0) = zA-” > 0. 

(24) 

System (24) defines a dynamical system under our hypotheses, and the 
boundedness of solutions of system (8) implies boundedness of solutions of 
system (24) as t --f +m. 

The only boundary equilibrium of system (24) is E,(O,O,O). The uw 
plane is easily seen to be invariant, and if u = 0, then L’ + 0, w -+ 0. For 
initial conditions in the UC’ plane or the uw plane, the vector field points 
into the positive octant. Hence, we have the following theorem. 

THEOREM5 

System (8) exhibits persistence for solutions initiating in the interior of the 

positive cone. 

In the language of dynamical systems, a solution with initial conditions 
in the positive cone will persist if there are no w limit points on the 
boundary of the positive cone (i.e., on the coordinate axes and planes). We 
use the technique developed by Freedman and Waltman [13], that is, the 
Butler-McGehee lemma, to prove Theorem 5. 

Proof. Let O(X) denote the orbit through a point X, and let 0(X) 
denote the w limit set of an orbit. If P is a hyperbolic equilibrium, then 
M+(P) and M-(P) denote the stable and unstable manifolds of P. The 
Butler-McGehee lemma states that if P is an isolated hyperbolic equilib- 
rium in the w limit set R(X) of an orbit O(X), then either n(X) = P or 
there exist points Q+,Q- in n(X) with Q+ E M+(P) and Q-E M-(P). 

Since all solutions of system (8) with positive initial conditions are 
bounded in positive time, all solutions of system (24) with positive initial 
conditions are bounded in positive time. As a consequence, the w limit set 
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of such solutions is a bounded, closed, connected, and nonempty set. 
Suppose (ua,~‘a,wa) is a point in the positive octant and R is the o limit set 
of the orbit through (IA,, uO, wa). We will have proved the theorem if we can 
show that R does not intersect any of the coordinate planes. 

If E, = (O,O, 0) E R then, since E, f R and E, is a saddle point, E, 
cannot be the only point in 1R. Hence by the Butler-McGehee lemma, 
there is an orbit in the stable manifold of E,, say Q E M+(E,) c uw plane, 
that belongs to R, that is, O(Q)clR. Since M+(E,) is a one-dimensional 
manifold and E, is asymptotically stable in the direction of the u axis, 
M+(E,) contains an orbit along the u axis that comes from positive infinity 
of the 1* axis. If Q E M+(E,), since the entire orbit through Q is contained 
in R and the orbit M+(E,) is unbounded, we have a contradiction. Hence 
E, @ R. 

If E, is any other point in the coordinate planes such that E, E R, 
similarly O(E,) is unbounded, again giving a contradiction. Since there are 
no other closed orbits in the planes, there are no planar equilibria in the w 
limit set Sz; hence the orbit through (u,, u,,, wa) persists, which, translating 
back to x, y, z coordinates, implies that system (8) persists. w 

5. DISCUSSION 

In [14], a predator-prey model with group defense was considered. It 
was shown that sufficient enrichment could cause predator extinction in the 
absence of mutual interference. In [lo] it was shown that extinction could 
be averted through competition or through additional predation. 

In this paper, we tie these results together for Gause food chain models 
and give criteria for persistence of such food chains with prey group 
defense and for predators that may or may not exhibit mutual interference. 

We believe that our results in the case of mutual interference can be 
extended to n-dimensional food chains and to food webs. However, we 

leave this to a future work. 
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