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Abstract

In this paper we consider a two-neuron network model with multiple discrete and distributed delays, where the distributed
delays describe the neural feedback and the discrete delays describe the neural interaction history. Three special cases o
the artificial neural network model are considered. The first case corresponds to two neural interactions with instantaneous
feedback for each neuron and neural interaction history. The second case corresponds to two neural interactions with delayed
neural feedback and no neural interaction history. The last case corresponds to two neural interactions with delayed neural
feedback and neural interaction history. Local stability analyses are carried out for all three cases. Numerical simulations are
performed to illustrate the obtained results.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks are complex and large-scale nonlinear dynamical systems, while the dynamics of the delayed
neural network are even richer and more complicf28§ For simplicity, some researchers have suggested studying
the dynamical behavior of simple systems. This is very useful since the complexity found may be carried over to
large networks. Babcock and Westen|jéltstudied a two-neuron network model with two delays and showed that
the model exhibits interesting dynamics including underdamped ringing transients, stable and unstable limit cycles,
etc. When the two delays are equal, Gopalsamy and L§utigshowed that under certain conditions the delay
induces Hopf bifurcation. Olien and Beld#1] investigated the stability of a two-neuron system with discrete time
delays and no self-connections. Wei and R[23t} analyzed a simple neural network with two delays. For the case
with self-connection, they showed that Hopf bifurcation occurs when the sum of the two delays passes through
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a sequence of critical values. For other related study on two-neuron networks with discrete delays, we refer to
[3,7,9,23]and the references cited therein.

The use of constant discrete delays in modeling delayed neural feedback provides a good approximation to
simple circuits consisting of a small number of neurons. However, neural networks usually have spatial extent
due to the presence of a multitude of parallel pathways with a variety of axon sizes and lengths. Thus, there will
be a distribution of propagation delays. This means that the signal propagation is no longer instantaneous and i
better represented by a model with distributed delays. Tank and Ho[fflg|thiave proposed a neural circuit with
distributed delays. Gopalsamy and H®] investigated the stability of neural networks with distributed delays.

Liao et al.[15] studied the stability switches and bifurcation of a two-neuron system with a distributed time delay.
They showed the existence of Hopf bifurcation using the mean delay as the bifurcation parameter. [Bek6also
and the references therein.

Cowan[5] suggested that the neuron firing rate depends not only on the external input but also on the neural
interaction within the network. Sokoloy24] modified the neural model by considering neural adaptatiofiz@geli
[19] modified the neural model to include neural interaction history and adapted the model to describe a network
of a finite number of neurons. This latter formulation assumes that the cell’s response is driven by the input signal,
the cell’s history, and the cell's coupling to other cells undergoing similar or different stimulation. Taking account
of these three factors, the neural network model will have both discrete and distributed delays.

In this paper we consider a two-neuron network model with multiple discrete and distributed delays, where
the distributed delays describe the neural feedback and the discrete delays describe the neural interaction histon
Three special cases of the neural network model are analyZé€dcitions 3—5The first case corresponds to two
neural interactions with instantaneous feedback for each neuron and neural interaction history. The second cas
corresponds to two neural interactions with delayed neural feedback and no neural interaction history. The last case
corresponds to two neural interactions with delayed neural feedback and neural interaction history. Local stability
and bifurcation analyses are performed for all three cases. To verify the theoretical analysis, numerical simulations
are given inSection 6 Finally, a conclusion is drawn i8ection 7

2. The general model

The general neural network model with delayed neural feedback and neural interaction history is described by a
system of nonlinear integro-differential difference equations of the form

1 dx;(z " ” !
2O L o= A0+ s —ap + Zbik/ xi(OKik(t — 1 dr
a;o dr =1 k=1 —00
for t > 0,wherei =1,2,... ,n, (2.1)

wherex; () is the normalized firing rate of thigh neuron at time; n the number of the neurons in the network;

m the maximal order of the networl;g the rate constant characterized by the fact that a step change in input to
the ith neuron produces an exponential approach from the initial value to a steady-state firing rate with the rate
constantu;o; bik an adaptation or self-inhibition factor for tlig neuron in the caskk < 0 and a self-excitation

factor in the caseéjk > 0 with the rate constanto > 0; cjj the interaction coefficient denoting the influence of the

jth neuron to theth neuron and represents an inhibition in the agse: 0 and an excitation in the casg > 0;

if the jth neuron is not connected directly to ttik neuron we havej; = 0; furthermore, we always assume that
c¢i=0(fori=1,2,...,n)since the self-inhibition and self-excitation in thik neuron are already considered in
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the parametersix anda;o; ojj (= 0) is the time lag occurring in the transfer of the activity of fitle neuron tath
neuron; we assume that = 0 (fori = 1, 2, ... , n); Kjk(¢) the delayed feedback kernel satisfying

o0 o
/ Kik(s) ds = const, / sKik(s) ds < oc;
0 0

f;(v) the external input to th&h neuron at time; F the neuron activation function given by

2.2)

Let BC| denote the Banach space of bounded continuous functions mapping-femo0] to R, (se€[12]). By
the general theory of integral differential equations (&&8]), for any initial datap = (¢1, ¢2, ... , ¢,) € BC",
there exists a unique solutiof(g, 1) = (x1(¢, 1), x2(d, 1), ... , x,(¢, 1)) for all + > 0 andx(¢,s) = ¢(s) for
s € (—o0, Q]
Model (2.1) can be easily adapted to any neural network whenever its circuits and interactions are known. This
has led to the adoption of this model to represent a large number of sfidj&8,20]
In the next three sections we shall consider several special cases of the neura(2rdeith two neurons
(n = 2) and a single feedback for each neuran=£ 1). Note that the simplest case in which the time lags arise in
a neural way is when = 2 sinceo;j = 0. Therefore, systerf?.1) can be written as:

1d t
1 x1(2) +x1()=F {fl + c1ox2(t — 012) + b11/ x1(0)K11(t — 1) d‘f} )
aipo dr —
1d t
o xjt(t) +x2(t)=F {fz + co1xa(t — 021) + b22/ x2(DK22(t — 1) df} ’ (2:3)

whereF(u) is given by(2.2). The initial conditions are given by
xi(s) = ¢i(s) fors € (—o0,0], xi(+0) = ¢:(0) (1 =1,2), (2.4)

where the history function@1(s), ¢2(s)) € BCi with 0 < ¢;(r) < 1. The external input functiong(®) i = 1, 2)
are piecewise continuous for= 0. Systen(2.3)admits a unique continuously differentiable solutien(z), x2(1)}
for ¢ > 0, which depends on the parametess bix, cij, gij, f; andg;(¢). If a;o > 1, then solutions of syste(2.3)
with the initial conditionq?2.4) always satisfy

0<uxi(t) <1 fort>0.

This can be shown by considering two time instangesdz, such thaty;(¢1) = 0 andx;(t2) = 1. Then it follows
from (2.3) that

1 dx;(z n
4+ (t1) +xi(t) = F {ﬁ(tl) + Zci]x.i(tl — 0ij) + bii / xi(DKi(t — 1) d‘[} , (2.5)
a;o dr —00
1 dx;(z 12
4+ (2) +xi(t2) = F {f,(tz) + ZCinj(fz — aij) + bii / xi (DKt — 1) d‘L’} . (2.6)
a;o dr —00
Sincea;p > 0 and O< F{u} < 1 for any value of, we see that
dx; (1) dx; (t2)
o >0 and o < 0. (2.7)

This implies that;(7) increases just after the instance- 11 and decreases just after the instance . Since
x;(4+0) = ¢;(0) and by hypothesis & ¢;(r) < 1, it follows thatx;(¢) is bounded and & x;(r) < 1 fort > 0. This
shows that the saturation phenomenon is present in the neural activity in $2s8&m
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3. Instantaneous neural feedback and neural interaction history

The neural model can be simplified by considering instantaneous feedback in the neurons. This can be establishe
by choosing the kernels i{2.3) as the delta-function

t#1

r=r1

Ki(t—1) =8(t—1) = (i=1,2).

The model now takes the form

1 dx1(d)
— + x1() = F{f1 + c1ox2(t — 012) + b11x1()},
alo dr
1d
1 &0 + x2(1) = F{ f2 + c21x1(t — 021) + boox2(1)}. (3.1)
ayo dr

Choosing the initial conditions as
xi(0) = ¢i(0) (=12),0¢€[-on 0]

whereo;,, = maxXo12, 021}, ¢; > 0(i = 1, 2) are continuous functions or-p;,, 0]. The steady-state solutions for
(3.2)are given implicitly by

x] = F{f1+ c12x5 + b11x7}, x5 = F{f2 + co1x] + boox5}.

In terms of the constantf and f2, we have

*

X x5
fi= —Clzx; - b;|_;|_)c>‘1< + In 1 ~ |- fo= —621)61 — bzzx; + In 2 — |-
1-x3 1—x

Let
X = x;-k +X; (i=12. (32)

The linearized system takes the form

1 dX1(r)
— + X1(0) = q1(c12X2(t — 012) + b11X1(?)),
alo dr
1 dXo(
L IO | ) = galcarXatt — o21) + b2aXa(), (3.3)
azo dr

whereg; = x7 (1 — x}) (i = 1, 2). The associated characteristic equatio3o8) is

aro(b1igr —1) — A aipqicip€ 12

Y =0. (3.4)
az0q2c21€ "2t azxo(baoqz — 1) — A

This characteristic equation determines the local stability of the equilibrium solution. The equilibrium solution is
stable if and only if all roots of3.4) have negative real parts. For convenience, we introduce some notations:

V1 = a10(1 — b11g1), V2 = a20(1 — b22q2), D = —a10a209192¢12¢21, 0y = 012 + 021.
Then,Eq. (3.4)becomes

224+ (Y1 + Y2)h + D€ + Yy = 0. (3.5)
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Eq. (3.5)has been studied [22], see als§7,23,27] The stability and bifurcation of systefd.1)can be summarized
as the following theorem.

Theorem 3.1. For system(3.1), assume vyr1 + ¥ > 0and Y1y + D > 0.

(i) If Y12 — D > O, then the steady-state solution (x7, x5) is asymptotically stable for all discrete delays
oy =012+ 021> 0.

(i) Ify1y2— D < 0,thereisacritical value o, g of thediscrete delay so that if o € [0, o, 0), then the steady-state
solution (x7, x3) isasymptotically stable. If o5 > 05,0, then (x7, x3) is unstable. Hopf bifurcation occurs when
Oy = Oy, 0-

4. Delayed neural feedback and no neural interaction history

Another case of interest is when the kernels take the form of exponential function
Kiit =7 =& @0 (i=1,2),

wherewj; > 0(i = 1, 2) is the distributed delay coefficient indicating the adaptation of the neuron to its feedback.
If the history of the neural interaction is not considered, the discrete defays o1 = 0 in (2.3). Under these
conditions, the nonlinear neural network model takes the form:

l t
1 @ +x1(=F {fl + c12x2(1) + bllf xy(z) € n? df} ’
aipo dr —00
1 t
Ldu) { £y + ca1® + bas / xa(1) €220 dt}. 4.1)
aso dr -0

Note that the phase space for syst@m)is BC?F defined inSection 2and the initial conditions are given {&.4).
The steady-state solutiany, x3) of system(4.1) with constantf; and f> is implicitly given by

b b
xﬂi =F {fl + c12x§ + a—]:xi} s x; =F {fz + Cz]_xi + a—zlx;} . (4.2)

Using the linear chain trick (sg&7]) on the integro-differential equation, we define

t
m®=/ xi(e @l Ddr (i=12). (4.3)
—0Q
The nonlinear system becomes
1 dxi(z dx11(z
1 du@ + x1(0) = F{f1 + c1ox2(t) 4 b11x11()}, draa(®) = x1() — a11x11(0),
aip dt dr

1d -
1 dra() + x2() = F{ fo + c21x1(0) + baox22(D)}, xzi(t)

= x2(f) — ax22(). (4.4)
azo dr

Note that the equilibrium of4.4)takes the forntx7, x7, x5, x5,), wherea1x7; = x7 andagox3, = x5. The results
in [17] indicate that the stability ofx7, x5) of system(4.1)is equivalent to the stability afc], x7,, x5, x3,) of the
ODE systen(4.4). To determine the stability af}, x7,, x5, x3,), let

Xi = x;" +X; (i=12). (45)
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The linearized system takes the form:

1 dXx dx
1 axa + X1(0) = ga{c12X2(0) + b11X11(0)}, 1)

= X1(0) — a11X12(0),

alo dr dr
1 dXo(z dXoo(t
a) d2t( ) + Xo(t) = g2{c21X1(?) 4+ b22X22(1)}, %() = Xo(t) — a22X22(0), (4.6)

whereg; = x7 (1 — x}) (i = 1, 2). The associate characteristic equation of the system is

—ai10— A aioh1191  aioc1291 1
1 —11 — A 0 0
=0. 4.7)
a20c2192 0 —axo— A axob22q2
0 0 1 —0i22 — A
For convenience, we introduce some notations:
B; = ajobiigi (i=1,2), C = a10c1291a20¢2142. (4.8)

Then, by expandin¢4.7) and using the notation if4.8), the characteristic equation becomes
[(a10 + ) (@11 + A) — Bil[(az0 + 1) (@22 + A) — B2] — Cla11 + A)(a22+A) = 0. (4.9)

We now consider two special cases.
4.1. Identical neurons

If the two neurons in the network exhibit the same linear behavior in response to the same outputs, then we have ¢
network of identical neurons; i.e;g = a2g, @11 = w22, andB1 = Ba. Under these assumptiors. (4.9)becomes

[(a10+ M) (@11+2) — Bi]* = Cla11 +1)* =0, (4.10)
from which the four roots may be determinedCif> 0, thenEq. (4.10)requires that either

[(a10+ ) (@11 + 4) — Bi] = VClawr + 1) (4.11)
or

[(a10+ M) (@11+ %) — Bi] = —V/Claa1 + ). (4.12)
FromEq. (4.11)the rootsk; anda; are

o= % [— (Cllo o — JE) + \/<a10 P JE)Z + 431J . (4.13)
Note thataig, «11 andC are all greater than zero whilg; can be positive or negative. Thus, if

a10+a11 — VC > 0, (4.14)

(alo — \/E) a11— By > 0, (4.15)

then the real parts of; andi, are negative. Frorg. (4.12)the rootsigz andi4 are

A34 = % [— (alo + o011+ VE) + \/(010 —a11+ ﬁ)z + 431] . (4.16)
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Similarly, if
(alo + \/E) a11— B1 >0, (4.17)

then the roots.3 andi4 will have real parts.

To have stability of the steady state, all three conditi¢hd,4), (4.15) and (4.17have to be satisfied. However,
if any of these three conditions fails, then the steady state becomes unstable. This can occur for large positive values
of By (self-excitation) such that either

(alo — \/E) a11— B1 <0 or (alO + \/E) a11— B1 < 0. (4.18)

If By is negative (self-inhibition) so thd#.15) and (4.17hold, choose the distributed delay coefficient as a
bifurcation parameter. 1o + a11 — ~/C < O for a certain value of11, then the steady state becomes unstable.
This can be summarized into the following theorem.

Theorem 4.1. Assume the two neurons are identical. The steady state (x7, x5) of system (4.1) is asymptotically
stableif conditions (4.14) (4.15)and (4.17)are satisfied. Thestability of (x], x5) can belost either at the occurrence
of large self-excitation in the neurons (large positive B1) when (4.18)holds or in the case of self-inhibition (B1 < 0)
if

ajo + o111 — «/E <0

for a certain value of a11.
4.2. Non-identical neurons

Taking the distributed delay coefficiant; as the bifurcation parameter, we study the existence of Hopf bifurcation
in system(4.1). The characteristiequation (4.9fan be written as follows:

A+ e1d3 + eon® +eah + 4 =0, (4.19)
wherec1, c2, c3, andcy are defined as follows:

c1(a11) = a10 + o011 + azo0 + a22 > 0,

c2(a11) = (azo + o11)(azo + @22) + alp11 + azoo22 — B1 — B2 — C,

c3(a11) = (a10 + a11)(a20022 — B2) + (a20 + a22)(a1011 — B1) — @11C — a22C,

ca(o11) = (azo11 — Bi)(azox22 — B2) — Caniazp. (4.20)
Assumeca(a11) > 0, c3(a11) > 0, ca(a11) > 0. Define

W(a11) = c1(ern)ea(@1n)ea(@nr) — c3(@11) — c2(arp)ea@n). (4.21)

The Routh—Hurwitz criterion states that the equilibrium of the syq#®) is locally asymptotically stable if and
only if ¥(«11) > 0. Note that¥(«a11) > 0 implies thaic1 (w11)c2(a11) — c3(11) > O.
Letx; (i =1, 2, 3, 4) be the roots of the characterisdéquation (4.19)Then we have

A+ A2+ A3+ Ag = —cy, A1A2 + A1A3 + A1Ag + A2A3 + A2Aa + A3Ag = 2,
AA2A3 + A1A3Ag + A2A3Ag 4+ A1AoAg = —cC3, AA2A3A4 = C4. (4.22)

If there existsxj; € R such thaw(a7,) = 0, then by the Routh—Hurwitz criterion at least one root,sgyas real
part equal to zero. From the fourth equation(4£2) it follows that Imi1 = wg # 0, and hence there is another
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root, sayip, such thak, = 1. Since¥(a11) is a continuous function of its roots; anda, are complex conjugates
of az1 in an open interval including?,. Therefore the equation i#.22) have the following form a#,:

A3+rg=—c1, wi+rha=c2 03+ r) =—c3,  wiizrg = ca. (4.23)

If A3 andA4 are complex conjugate, from the first equatior{4®3) it follows that 2 Re\3 = —c; < 0. If A3 and
A4 are real, from the first and the fourth equation$sb®3)it follows thatiz < 0 andi4 < 0. Also, differentiating
(4.11)with respect tax11, we have

. _ (de1/dar11)23 + (dez2/da1)A2 + (dez/da1n)A + dea/da1r (4.24)
do11 423 + 3c1A2 + 2coh + c3 '
Also, fromEg. (4.21) we have
dy dcy deo dcs dcs dcy o decg
Y et 2 8 20 —8 _ppqeq—t 24 4.25
dor11 cacs dor11 T dor11 e dor1g 3 dor1g caca dor11 1 dor11 (4.25)
Hence
d [Reil,: = Re|— (de1/dar11)A3 + (dez/da1)A? + (dez/da1n)r + dea/doay
doqq o1 4)3 4 3c102 4+ 2coh + 3 oty
_Rel_ —i(dcl/da11)a)3 — (dcz/daﬂ)wz + i(dc3/da11)w + deg/dagq
- —4iw3 — 3c1w? + 2c0iw + 3 ol
_ 2 “ ( i ) (4.26)
2 3e3+ 0?(2c3 — c1c2)? \dony oy . .

Note that(4.23) and (4.25)vere used to obtai(%.26) Thus, we have the following result.

Theorem 4.2. Assumethat c2(a11) > 0, c3(er11) > 0O, ca(arz1) > 0. 1f ¥(a11) > 0, then the steady state (x7, x3) of
system (4.1)is locally asymptotically stable. If there exists a7, € R such that ¥(a7,) = 0 and (dtl//dozll)|o,xl<1 #0,
then as ar11 passes through o7 ;, Hopf bifurcation occurs at the steady state (x7, x3).

5. Delayed neural feedback and neural interaction history

The last case of interestis when the kernels take the form of exponential funktionst) = e %i=? (; = 1, 2)
and when the discrete delays, # 0 ando»; # 0. This indicates the adaptation of the neuron to its feedback and
the existence of neural interaction history in the model. Under these conditions, the nonlinear neural model takes
the form:

1 dxi(¢ '
1l | x1()=F {fl + c12x2(t — 012) + bllf xy(7) €1 df} ,
ayo dr —00
1 dxo(t t
1 x2(2) +x20)=F {fz + co1x1(t — 021) + b22/ xo(7) €920~ d‘L’} . (5.1)
azo dr —00

The phase space for syst¢hl)is BCEL. The equilibrium(x7, x3) of (4.1)is also an equilibrium of5.1). Define

'
xii () = / xi(m) e dit=Ddr  (i=1,2). (5.2)

—00
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The nonlinear system becomes

1 dxa(z dna (7
i, + x1(0) = F{f1 + c12x2(t — 012) + b11x11()}, G _ x1(0) — o11x11(0),
aipo dr dr

1 dey(1) drz2(1)
— + x2(0) = F{f2 + co1x1(t — 021) + boox2o(t)}, ———— = x2(8) — a22x22(%).
azo dr dr

The linearized model about the steady-state solution takes the form:

1 dX1(¢ dX11(¢
1 9o + X1(9) = g1{c12X2(t — 012) + b11X11(H)}, 11() = X1(t) — a11X11(0),
ayp dt dr

1 dXo(p) dX22(t)
— + X2(8) = g2{c21X1(t — 021) + b22X22(1)}, = Xo(1) — a2ox22(1),
azo dt dr

whereg; = x7(1 — x7) (i = 1, 2). The associate characteristic equation of the system is

—aio— A aiob1191  aioci2qy € 712 0
1 —a11 — A 0 0 0
aoc21q42 € 2 0 —a0— A azobaoqn |
0 0 1 —a22 — A

For convenience, we use the same notation us&gation 4
B; = ajobiigi (i=1,2), C = aioc12q1a20c2192.

Then the characteristic equation becomes

[(a10 + 2) (11 + 1) — Bil[(az0 + A) (@22 + 1) — Ba] — Clang + M) (azz + A) e~ @12To20% — 0,

Assuming that the two neurons are identical, thep (5.7)becomes
[(a10+ M) (@11 + 2) — Bi]® — Clanr + 1)? e 1220 = 0
which can be factored into
([ar0+ M) (o1 +4) = Ba] = VC(oy + ) W2 (naztoaty
x {[(a10+ V(@11 + A) — B1] + v/Cloag + 1) e VA Crztoanty — o,
So the characteristic equation becomes two transcendental equations
[(a10+ M) (@11 + A) — B1] + v/Clagg + ) e" L2 1ztoavr — g
We shall consider the positive case first
[(@10+ M) (@11 + ) — B1] + V/Claag + 1) e" YD (@1zto2h — g,
For convenience, we introduce some notations

ao+a11=A, ae1—Bi=D, VCau=E, VC=F, %(0124-621):0-

331

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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Fig. 1. Behavior of the first neuron in syst¢gl)with small discrete delayio = 1, azo = 2, b11 = —4, bpp = 5, c12 = =5, c21 = 4, f1 = 4.5,

f> = —4.5 ando, = 0.55.

ThenEg. (5.9)becomes

M+ AL+ D+Ee ™+ FLe’ =0.

Following the results ifi22], we know that if(4.17)is satisfied and either

D?— E%2 >0,

or

F?—A2+2D <0

(F? — A2+ 2D)? < 4(D? — E?),

holds, then all roots dEq. (5.12)have negative real parts for all discrete delays+ 021 = o > 0. If

D?—E?<0

Fig. 2. Behavior of the second neuron in systél) with small discrete delayaip =
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(5.14)
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Fig. 3. Phase portrait of systef®.1) with small discrete delaytio = 1, ago = 2, b11 = —4,b22 = 5,c12 = —5,¢c01 =4, f1 =45, fo = —-45
ando; = 0.55.
or

F2 - A?+2D >0, (F? — A% + 2D)? = 4 D? — E?), (5.16)
thenEg. (5.12)has a pair of purely imaginary rootSw, (w+ > 0) wheno = a,}’l. If

D?> - E?>0, F?>— A2+2D >0, (F? — A + 2D)? > 4D? — E?) (5.17)

are satisfied, theiq. (5.12)has one pair of purely imaginary rootSw., respectivelytio_, wheno = 0,}’1,
respectivelyy = 07%,2’ with w4 > w_ > 0, where

w3 = 3(F? — A%+ 2D) £[(F? — A% + 2D)* — (D? - E?)]Y2, (5.18)
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Fig. 4. Behavior of the first neuron in systégl)with large discrete delayio = 1, a0 = 2, b11 = —4, b2 = 5,c12 = =5, ¢cp1 = 4, f1 = 4.5,
f> = —4.5 ando; = 0.65.
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Fig. 5. Behavior of the second neuron in systg11) with large discrete delaytigp = 1, azo = 2,b11 = —4, b2 = 5,¢12 = —5, c21 = 4,
f1 =45, f» = —4.5 ando, = 0.65.

1 | E(@? — D) — AFw? L2

’

1 1
0, 1= —COS

w4+ an)gr + E2 w4
1 B E(a)g — D) — AFw? 2nm
1 1
Gn,z = a)T Ccos 2w2 > + a)_7 (}’l = O, 1, 2, e ) (519)

Therefore, when there is only one pair of purely imaginary toiat , only crossing of the imaginary axis from left

to right is possible as increases, and stability of the zero solutions can only be lost but not regained. When there
are two pairs of purely imaginary rootsiow., crossing of the imaginary axis from left to right occurs whenever

o assumes a value correspondingd#p and crossing of the imaginary axis from right to left occurs whenever

assumes a value correspondinguto.
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Fig. 6. Phase portrait of systef®.1) with large discrete delayiig = 1, apo = 2, b11 = —4, b2 = 5,c12 = —5,c21 =4, f1 = 4.5, fo = —4.5
ando = 0.65.
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Fig. 7. Behavior of the first neuron in systef#.1) with large distributed delay coefficienttng = a0 = 1,b11 = —10,bp2 = -7,
c12=8,¢c21=12 f1 =1, fop =—-25andwi1 = app = 1.5.

Note that if the syster(b.4)is stable folo = 0, then necessarilq'é 1 < a& , (since the multiplicity of roots with
positive real parts cannot become negative). Since

2 2n
1 _ 1 1
Op411~0p1 = < =0,112 = Op2 (5.20)
w;  w_

there can exist only a finite number of switches between stability and instability. Hence, thekesadishes from
stability to instability to stability when the parameters are such that

1 1 1 1 1 1 1 1 1
001 <002 <011 <012<'""<0j_11<0_12<0}1<O0k411<0k2<:'", (5.21)

wherek is an integer.
Now we shall consider the negative casé&p (5.8)
[(a10+ M) (a1 + 1) — B1] — v/C(ay + 1) e Y/ orzto20r — (5.22)
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Fig. 8. Behavior of the second neuron in systéhil) with large distributed delay coefficientao = axo = 1,b11 = —10,bp = —7,
c12=8,c21=12 f1 =1, fo = —-25anda11 = azp = 1.5.
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Using the same notation used for the positive casg(5.22)becomes
M+ AL+D—Ee? —Fre? =0. (5.23)

Similar to the positive case, whé#.14) and (4.15are satisfied and eith€s.13)or (5.14)holds, then all roots of
Eq. (5.23)have negative real parts for all discrete deleyst+ 021 = o > 0. If (5.15)or (5.16)holds, therEq. (5.23)
has one pair of purely imaginary roatsv, (vy > 0) wheno = 031)1. If (5.17)holds, therEq. (5.23)has one pair
of purely imaginary rootstiv,, respectivelytiv_, wheno = ‘731,1' respectivelys = 31,2, withvy > v_ > 0,

where

2 1,2 2 1,2 2 2 2 2\11/2
vi = 3(F? — A% + 2D) £ [(F? — A® 4+ 2D)* — (D* — E?)]Y?, (5.24)
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Fig. 10. Behavior of the first neuron in systém1) with small distributed delay coefficiendio = azo = 1, b11 = —10, b2 = —7,c12 = 8§,
co1=12 f1 =1, fop = —2.5anda11 = ap» = 1.3.
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Fig. 12. Phase portrait of systef@#.1) with small distributed delay coefficientio = azo = 1,b11 = —10, b2 = —7,c12 = 8,¢21 = 12,
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Fig. 13. Behavior of the first neuron in syst¢ml)with small discrete delayiio = azo = 1, b11 = bop = —4,ci1o=co1 = 7,11 = app = 1,
fi= fo =—15ando = 0.6.

Theorem 5.1. Assume the two neurons are identical in system (5.1). Suppose conditions (4.14) (4.15)and (4.17)
are satisfied.

1. If (5.13)and (5.14)hold, then the steady state (x7, x3) of (5.1) is asymptotically stable for all discrete delays
012+ 021 =0 > 0.

2. If (5.15)or (5.16)holds, o € [0, min{ag 1, 05 ;}), then the steady-state (x}, x3) of (5.1)is asymptotically stable.
If & > min{og 1, 0§}, then the steady-state (x}, x3) of (5.1)is unstable. o, ; and o7, (n = 0,1,2,...) are
Hopf bifurcation values of system (5.1).

3. If (5.17)halds, o € [0, min{a7 , 0% ,}), then the steady-state (x}, x3) of (5.1)is asymptotically stable. Thereis
a positive integer k such that there are k switches from stability to instability and back to stability, that is, when
o € [min{o} 1, 021}, max(o; 5, 07 ,}) the steady-state (x}, x3) of (5.1)isunstable; when o € [max{o,} ,. o2 ,}.
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Fig. 14. Behavior of the second neuron in systél) with small discrete delayzig = azo = 1,b11 = by = —4,c12 = ¢21 = 7,
a1 =axp =1 fi = fo=—-15andoc = 0.6.
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1}, thenthe

2
k,

19

min{orL, 1 1. 02, ; 1)) the steady-state (x}, x3) of (5.1)is asymptotically stable. If o > min{o}.

steady-state (x7, x3) of (5.1)isunstable.

6. Numerical examples

In this section, we illustrate the validity of the results by considering examples of artificial neural networks
corresponding to each of the special. All numerical simulations are carried out using the computer program XPP

(6].

Consider an example of a two-neuron network with neural interaction history and instantaneous feedback, system

andf, = —4.5. According to the

f1 =45,

(3.1), withayp = 1,a20 = 2, b11 = —4,b22 = 5,c12 = =5, c1 =4,
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Fig. 15. Behavior of the first neuron in syst¢m1)with large discrete delayng = axo = 1, b11 = bop = —4,c12=co1 = 7,11 = a2 = 1,

fi=f=-15ando = 1.
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Fig. 17. Behavior of the first neuron in systgi. 1) with small discrete delay and small distributed delay: coefficiegt = azp = 1,
bi1=bypp=—4,c12=co1="7,011 = a2 = 0.8, f1 = fo = —1.5ando = 0.6.

parameters chosen, we find that the steady-state solution is (0.5, 0.5) and the critical discreteodelay @56.
Choose the delays;» = 0.35 ando1 = 0.20, thenoi2 + 021 < 0.6. Figs. 1-3show that the steady-state solution
is asymptotically stable. Byheorem 3.1a Hopf bifurcation occurs whesy, + 021 = 0.6, and the steady-state
solution loses its stability fotr12 + 021 > 0.6. By choosingr12 = 0.35 ando2; = 0.30, it is observed that the
computer simulations ifigs. 4—6support the results fromheorem 3.1

In a two-neuron network with delayed neural feedback and no neural interaction history, the stability of the
system around its steady-state solution is governed by the distributed delay coefficient parameter. Consider systen
(4.1)with a10 = azo = 1, b11 = —10, b2 = —7,¢12 = 8,¢21 = 12, f1 = 1 and f> = —2.5. By using(4.3)and
¥(a11) = O respectively, we find the steady-state solution to be (0.5, 0.5) and the critical value for the distributed
delay coefficient to bej; = 1.4. Figs. 7-9show the asymptotic stability of the steady-state solution when the
distributed delay coefficients are chosen suchdhat= a2 = 1.5 > o7;. When the distributed delay coefficient
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Fig. 18. Behavior of the second neuron in systg@ni) with small discrete delay and small distributed delay: coefficiapt= azo = 1,
b11=byp=—4,c1p=co1=7,011 = a2 = 0.8, f1 = fo = —1.5ando = 0.6.
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decreases and passes through the critical vafygHopf bifurcation occurs; i.e. a family of periodic solutions
bifurcates from the steady-state solution. This is illustrate#igg. 10—12vherex;; = a2 = 1.3.

Finally, we consider an artificial neural network consisting of two neurons with delayed neural feedback and neural
interaction history. Consider systg.1)with a1g = azo = 1, b11 = b2 = —4,c12 = ¢21 = 7, 011 = @22 = 1,
and f1 = f» = —1.5. The steady-state solution is (0.5, 0.5) and the critical discrete dab%;iis— 0.8. Choosing
o012 = 0.5 andop; = 0.7, then we have = (012 + 021)/2 < 0.8. Figs. 13 and 14how the aéymptotic stability of
the steady-state solution. Biheorem 5.1Hopf bifurcation occurs whe(riz + 021)/2 = ‘73,1 and the stability of
the steady-state solution is lost once the total delay passes this critical value. This is illustfatesd b and 16
whereo = 1. When the total discrete delay in systébnl)is less than the critical value and the distributed delay
coefficient is altered to give large distributed delay, itis seen that the stability of the system is unchanged. This means
that the behavior of syste(b.1)is governed by the discrete del&ygs. 17 and 18how the asymptotic stability of
the steady-state solution when the parameters are chosen suglptBatiog = 1, b1y = boo = —4,c12 = ¢21 =
7,011 =a22=0.8, f = fo=—-15ando = 0.6.

7. Conclusions

Recently, a variety of artificial models have been established to describe neural networks with discrete delays,
distributed delays, or with both sharp and continuous deJ&ay8,7-16,21,23,25-28A few sufficient criteria
have been established for stability of neural models with discrete or distributed {fdyls26,28] Bifurcation
analysis has also been carried out for neural network models with multiple discrete delays or distributed delays
[1-3,7,9,11,15,21,23,27,28Jowever, there are few papers on the stability and bifurcation of neural network models
with both discrete and distributed delays.

In this paper, we have considered a two-neuron network model with multiple discrete and distributed delays. The
distributed delays arose from the neural feedback while the discrete delays arose from the neural interaction history.
Stability of the steady-state solutions and the oscillation around the steady-state solutions have been studied. The
existence of oscillations around the steady-state solutions has been shown via Hopf bifurcation analysis.

Three special cases of the generalized artificial neural network have been considetians 3-5In the case
of neural interactions with instantaneous feedback and neural interaction history, we found that when the sum of
the two delaysg12 + 021 = oy, varies, the steady-state solution loses its stability and Hopf bifurcation occurs, that
is, a family of periodic solutions bifurcates from the steady-state solution wheasses a critical value. In the
case of neural interactions with delayed neural feedback and no neural interaction history, we obtained conditions
for stability of the artificial neural network. Furthermore, using the average delay as the bifurcation parameter, we
gave the conditions under which Hopf bifurcation would occur in the neural network model. In the case of neural
interactions with delayed neural feedback and neural interaction history, it was found through numerical simulations
that the distributed delay in the system is dominated by the discrete delay. We established conditions on the average
discrete delay in the system, under which the stability of the neural system is maintained. Stability switches and
bifurcation were studied by applying the resultg4r22].

In all of the cases considered, it is seen that once the critical delay is reached the two neurons in the system enter
an oscillating behavior in which the firing rate of each neuron adapts the other neuron by inhibiting or exciting
its firing rate. In the case of neural interaction with delayed neural feedback and neural interaction history, it was
found that the stability results of a system with two inhibitory connections are identical to those of a system with
two excitatory connections of the same magnitude.

Neural networks with delays exhibit very rich dynamics. From the point of view of nonlinear dynamics, analyz-
ing these neural networks is useful in solving problems of both theoretical and practical importance. Due to the
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complexity of large neural models, stability analysis is carried out for small neural networks. Such analysis is po-
tentially useful since the complexity found in these small network models might be carried over to larger networks.
They may also serve as first approximations in modeling some simple invertebrate patterns. Also, by considering
the minimum requirements for a particular pattern of activity, we can gain some insight into why some nervous
systems have so great a number of neural elements.
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