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Abstract

In this paper we consider a two-neuron network model with multiple discrete and distributed delays, where the distributed
delays describe the neural feedback and the discrete delays describe the neural interaction history. Three special cases of
the artificial neural network model are considered. The first case corresponds to two neural interactions with instantaneous
feedback for each neuron and neural interaction history. The second case corresponds to two neural interactions with delayed
neural feedback and no neural interaction history. The last case corresponds to two neural interactions with delayed neural
feedback and neural interaction history. Local stability analyses are carried out for all three cases. Numerical simulations are
performed to illustrate the obtained results.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks are complex and large-scale nonlinear dynamical systems, while the dynamics of the delayed
neural network are even richer and more complicated[28]. For simplicity, some researchers have suggested studying
the dynamical behavior of simple systems. This is very useful since the complexity found may be carried over to
large networks. Babcock and Westervelt[1] studied a two-neuron network model with two delays and showed that
the model exhibits interesting dynamics including underdamped ringing transients, stable and unstable limit cycles,
etc. When the two delays are equal, Gopalsamy and Leung[11] showed that under certain conditions the delay
induces Hopf bifurcation. Olien and Belair[21] investigated the stability of a two-neuron system with discrete time
delays and no self-connections. Wei and Ruan[27] analyzed a simple neural network with two delays. For the case
with self-connection, they showed that Hopf bifurcation occurs when the sum of the two delays passes through
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a sequence of critical values. For other related study on two-neuron networks with discrete delays, we refer to
[3,7,9,23]and the references cited therein.

The use of constant discrete delays in modeling delayed neural feedback provides a good approximation to
simple circuits consisting of a small number of neurons. However, neural networks usually have spatial extent
due to the presence of a multitude of parallel pathways with a variety of axon sizes and lengths. Thus, there will
be a distribution of propagation delays. This means that the signal propagation is no longer instantaneous and is
better represented by a model with distributed delays. Tank and Hopfield[25] have proposed a neural circuit with
distributed delays. Gopalsamy and He[10] investigated the stability of neural networks with distributed delays.
Liao et al.[15] studied the stability switches and bifurcation of a two-neuron system with a distributed time delay.
They showed the existence of Hopf bifurcation using the mean delay as the bifurcation parameter. See also[8,16]
and the references therein.

Cowan[5] suggested that the neuron firing rate depends not only on the external input but also on the neural
interaction within the network. Sokolove[24] modified the neural model by considering neural adaptation. Ogûztöreli
[19] modified the neural model to include neural interaction history and adapted the model to describe a network
of a finite number of neurons. This latter formulation assumes that the cell’s response is driven by the input signal,
the cell’s history, and the cell’s coupling to other cells undergoing similar or different stimulation. Taking account
of these three factors, the neural network model will have both discrete and distributed delays.

In this paper we consider a two-neuron network model with multiple discrete and distributed delays, where
the distributed delays describe the neural feedback and the discrete delays describe the neural interaction history.
Three special cases of the neural network model are analyzed inSections 3–5. The first case corresponds to two
neural interactions with instantaneous feedback for each neuron and neural interaction history. The second case
corresponds to two neural interactions with delayed neural feedback and no neural interaction history. The last case
corresponds to two neural interactions with delayed neural feedback and neural interaction history. Local stability
and bifurcation analyses are performed for all three cases. To verify the theoretical analysis, numerical simulations
are given inSection 6. Finally, a conclusion is drawn inSection 7.

2. The general model

The general neural network model with delayed neural feedback and neural interaction history is described by a
system of nonlinear integro-differential difference equations of the form

1

ai0

dxi(t)

dt
+ xi(t)= F


fi(t)+

n∑
j=1

cijxj(t − σij)+
m∑
k=1

bik

∫ t

−∞
xi(τ)Kik(t − τ)dτ




for t ≥ 0,wherei = 1,2, . . . , n, (2.1)

wherexi(t) is the normalized firing rate of theith neuron at timet; n the number of the neurons in the network;
m the maximal order of the network;ai0 the rate constant characterized by the fact that a step change in input to
the ith neuron produces an exponential approach from the initial value to a steady-state firing rate with the rate
constantai0; bik an adaptation or self-inhibition factor for theith neuron in the casebik < 0 and a self-excitation
factor in the casebik > 0 with the rate constantai0 > 0; cij the interaction coefficient denoting the influence of the
jth neuron to theith neuron and represents an inhibition in the casecij < 0 and an excitation in the casecij > 0;
if the jth neuron is not connected directly to theith neuron we havecij = 0; furthermore, we always assume that
cii = 0 (for i = 1,2, . . . , n) since the self-inhibition and self-excitation in theith neuron are already considered in
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the parametersbik andai0; σij (≥ 0) is the time lag occurring in the transfer of the activity of thejth neuron toith
neuron; we assume thatσii = 0 (for i = 1,2, . . . , n); Kik(t) the delayed feedback kernel satisfying∫ ∞

0
Kik(s)ds = const.,

∫ ∞

0
sKik(s)ds <∞;

fi(t) the external input to theith neuron at timet; F the neuron activation function given by

F {u} = 1

1 + e−u . (2.2)

Let BCn+ denote the Banach space of bounded continuous functions mapping from(−∞,0] toRn+ (see[12]). By
the general theory of integral differential equations (see[2,18]), for any initial dataφ = (φ1, φ2, . . . , φn) ∈ BCn+,
there exists a unique solutionx(φ, t) = (x1(φ, t), x2(φ, t), . . . , xn(φ, t)) for all t ≥ 0 andx(φ, s) = φ(s) for
s ∈ (−∞,0].

Model (2.1)can be easily adapted to any neural network whenever its circuits and interactions are known. This
has led to the adoption of this model to represent a large number of studies[14,19,20].

In the next three sections we shall consider several special cases of the neural model(2.1) with two neurons
(n = 2) and a single feedback for each neuron (m = 1). Note that the simplest case in which the time lags arise in
a neural way is whenn = 2 sinceσii = 0. Therefore, system(2.1)can be written as:

1

a10

dx1(t)

dt
+ x1(t)= F

{
f1 + c12x2(t − σ12)+ b11

∫ t

−∞
x1(τ)K11(t − τ)dτ

}
,

1

a20

dx2(t)

dt
+ x2(t)= F

{
f2 + c21x1(t − σ21)+ b22

∫ t

−∞
x2(τ)K22(t − τ)dτ

}
, (2.3)

whereF(u) is given by(2.2). The initial conditions are given by

xi(s) = φi(s) for s ∈ (−∞,0], xi(+0) = φi(0) (i = 1,2), (2.4)

where the history functions(φ1(s), φ2(s)) ∈ BC2+ with 0 ≤ φi(t) ≤ 1. The external input functionsfi(t) (i = 1,2)
are piecewise continuous fort ≥ 0. System(2.3)admits a unique continuously differentiable solution{x1(t), x2(t)}
for t ≥ 0, which depends on the parametersaik, bik, cij, σij, fi andφi(t). If ai0 > 1, then solutions of system(2.3)
with the initial conditions(2.4)always satisfy

0 ≤ xi(t) ≤ 1 for t ≥ 0.

This can be shown by considering two time instancest1 andt2 such thatxi(t1) = 0 andxi(t2) = 1. Then it follows
from (2.3) that

1

ai0

dxi(t1)

dt
+ xi(t1) = F

{
fi(t1)+

∑
cijxj(t1 − σij)+ bii

∫ t1

−∞
xi(τ)Kii(t − τ)dτ

}
, (2.5)

1

ai0

dxi(t2)

dt
+ xi(t2) = F

{
fi(t2)+

∑
cijxj(t2 − σij)+ bii

∫ t2

−∞
xi(τ)Kii(t − τ)dτ

}
. (2.6)

Sinceai0 > 0 and 0< F {u} < 1 for any value ofu, we see that

dxi(t1)

dt
> 0 and

dxi(t2)

dt
< 0. (2.7)

This implies thatxi(t) increases just after the instancet = t1 and decreases just after the instancet = t2. Since
xi(+0) = φi(0) and by hypothesis 0≤ φi(t) ≤ 1, it follows thatxi(t) is bounded and 0≤ xi(t) ≤ 1 for t ≥ 0. This
shows that the saturation phenomenon is present in the neural activity in system(2.3).
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3. Instantaneous neural feedback and neural interaction history

The neural model can be simplified by considering instantaneous feedback in the neurons. This can be established
by choosing the kernels in(2.3)as the delta-function

Kii(t − τ) = δ(t − τ) =
{

0 t �= τ
1 t = τ (i = 1,2).

The model now takes the form

1

a10

dx1(t)

dt
+ x1(t)= F {f1 + c12x2(t − σ12)+ b11x1(t)},

1

a20

dx2(t)

dt
+ x2(t)= F {f2 + c21x1(t − σ21)+ b22x2(t)}. (3.1)

Choosing the initial conditions as

xi(θ) = φi(θ) (i = 1,2), θ ∈ [−σm,0],

whereσm = max{σ12, σ21}, φi ≥ 0 (i = 1,2) are continuous functions on [−σm,0]. The steady-state solutions for
(3.2)are given implicitly by

x∗1 = F {f1 + c12x
∗
2 + b11x

∗
1}, x∗2 = F {f2 + c21x

∗
1 + b22x

∗
2}.

In terms of the constantsf1 andf2, we have

f1 = −c12x
∗
2 − b11x

∗
1 + ln

[
x∗1

1 − x∗1

]
, f2 = −c21x

∗
1 − b22x

∗
2 + ln

[
x∗2

1 − x∗2

]
.

Let

xi = x∗i +Xi (i = 1,2). (3.2)

The linearized system takes the form

1

a10

dX1(t)

dt
+X1(t)= q1(c12X2(t − σ12)+ b11X1(t)),

1

a20

dX2(t)

dt
+X2(t)= q2(c21X1(t − σ21)+ b22X2(t)), (3.3)

whereqi = x∗i (1 − x∗i ) (i = 1,2). The associated characteristic equation of(3.3) is∣∣∣∣∣ a10(b11q1 − 1)− λ a10q1c12 e−λσ12

a20q2c21 e−λσ21 a20(b22q2 − 1)− λ

∣∣∣∣∣ = 0. (3.4)

This characteristic equation determines the local stability of the equilibrium solution. The equilibrium solution is
stable if and only if all roots of(3.4)have negative real parts. For convenience, we introduce some notations:

ψ1 = a10(1 − b11q1), ψ2 = a20(1 − b22q2), D = −a10a20q1q2c12c21, σs = σ12 + σ21.

Then,Eq. (3.4)becomes

λ2 + (ψ1 + ψ2)λ+D e−λσs + ψ1ψ1 = 0. (3.5)
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Eq. (3.5)has been studied in[22], see also[7,23,27]. The stability and bifurcation of system(3.1)can be summarized
as the following theorem.

Theorem 3.1. For system (3.1), assume ψ1 + ψ2 > 0 and ψ1ψ2 +D > 0.

(i) If ψ1ψ2 − D > 0, then the steady-state solution (x∗1, x
∗
2) is asymptotically stable for all discrete delays

σs = σ12 + σ21 ≥ 0.
(ii) Ifψ1ψ2 −D < 0, there is a critical value σs,0 of the discrete delay so that if σs ∈ [0, σs,0), then the steady-state

solution (x∗1, x
∗
2) is asymptotically stable. If σs > σs,0, then (x∗1, x

∗
2) is unstable. Hopf bifurcation occurs when

σs = σs,0.

4. Delayed neural feedback and no neural interaction history

Another case of interest is when the kernels take the form of exponential function

Kii(t − τ) = e−αii(t−τ) (i = 1,2),

whereαii > 0 (i = 1,2) is the distributed delay coefficient indicating the adaptation of the neuron to its feedback.
If the history of the neural interaction is not considered, the discrete delaysσ12 = σ21 = 0 in (2.3). Under these
conditions, the nonlinear neural network model takes the form:

1

a10

dx1(t)

dt
+ x1(t)= F

{
f1 + c12x2(t)+ b11

∫ t

−∞
x1(τ)e

−α11(t−τ) dτ

}
,

1

a20

dx2(t)

dt
+ x2(t)= F

{
f2 + c21x1(t)+ b22

∫ t

−∞
x2(τ)e

−α22(t−τ) dτ

}
. (4.1)

Note that the phase space for system(4.1) is BC2+ defined inSection 2and the initial conditions are given in(2.4).
The steady-state solution(x∗1, x

∗
2) of system(4.1)with constantf1 andf2 is implicitly given by

x∗1 = F
{
f1 + c12x

∗
2 + b11

α11
x∗1

}
, x∗2 = F

{
f2 + c21x

∗
1 + b21

α22
x∗2

}
. (4.2)

Using the linear chain trick (see[17]) on the integro-differential equation, we define

xii(t) =
∫ t

−∞
xi(τ)e

−αii(t−τ) dτ (i = 1,2). (4.3)

The nonlinear system becomes

1

a10

dx1(t)

dt
+ x1(t)= F {f1 + c12x2(t)+ b11x11(t)}, dx11(t)

dt
= x1(t)− α11x11(t),

1

a20

dx2(t)

dt
+ x2(t)= F {f2 + c21x1(t)+ b22x22(t)}, dx22(t)

dt
= x2(t)− α22x22(t). (4.4)

Note that the equilibrium of(4.4)takes the form(x∗1, x
∗
11, x

∗
2, x

∗
22), whereα11x

∗
11 = x∗1 andα22x

∗
22 = x∗2. The results

in [17] indicate that the stability of(x∗1, x
∗
2) of system(4.1) is equivalent to the stability of(x∗1, x

∗
11, x

∗
2, x

∗
22) of the

ODE system(4.4). To determine the stability of(x∗1, x
∗
11, x

∗
2, x

∗
22), let

xi = x∗i +Xi (i = 1,2). (4.5)
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The linearized system takes the form:

1

a10

dX1(t)

dt
+X1(t) = q1{c12X2(t)+ b11X11(t)}, dX11(t)

dt
= X1(t)− α11X11(t),

1

a20

dX2(t)

dt
+X2(t) = q2{c21X1(t)+ b22X22(t)}, dX22(t)

dt
= X2(t)− α22X22(t), (4.6)

whereqi = x∗i (1 − x∗i ) (i = 1,2). The associate characteristic equation of the system is∣∣∣∣∣∣∣∣∣∣

−a10 − λ a10b11q1 a10c12q1 1

1 −α11 − λ 0 0

a20c21q2 0 −a20 − λ a20b22q2

0 0 1 −α22 − λ

∣∣∣∣∣∣∣∣∣∣
= 0. (4.7)

For convenience, we introduce some notations:

Bi = ai0biiqi (i = 1,2), C = a10c12q1a20c21q2. (4.8)

Then, by expanding(4.7)and using the notation in(4.8), the characteristic equation becomes

[(a10 + λ)(α11 + λ)− B1][(a20 + λ)(α22 + λ)− B2] − C(α11 + λ)(α22 + λ) = 0. (4.9)

We now consider two special cases.

4.1. Identical neurons

If the two neurons in the network exhibit the same linear behavior in response to the same outputs, then we have a
network of identical neurons; i.e.a10 = a20, α11 = α22, andB1 = B2. Under these assumptions,Eq. (4.9)becomes

[(a10 + λ)(α11 + λ)− B1]2 − C(α11 + λ)2 = 0, (4.10)

from which the four roots may be determined. IfC > 0, thenEq. (4.10)requires that either

[(a10 + λ)(α11 + λ)− B1] =
√
C(α11 + λ) (4.11)

or

[(a10 + λ)(α11 + λ)− B1] = −
√
C(α11 + λ). (4.12)

FromEq. (4.11)the rootsλ1 andλ2 are

λ1,2 = 1

2

[
−

(
a10 + α11 −

√
C

)
±

√(
a10 − α11 −

√
C

)2 + 4B1

]
. (4.13)

Note thata10, α11 andC are all greater than zero whileB1 can be positive or negative. Thus, if

a10 + α11 −
√
C > 0, (4.14)(

a10 −
√
C

)
α11 − B1 > 0, (4.15)

then the real parts ofλ1 andλ2 are negative. FromEq. (4.12)the rootsλ3 andλ4 are

λ3,4 = 1

2

[
−

(
a10 + α11 +

√
C

)
±

√(
a10 − α11 +

√
C

)2 + 4B1

]
. (4.16)
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Similarly, if(
a10 +

√
C

)
α11 − B1 > 0, (4.17)

then the rootsλ3 andλ4 will have real parts.
To have stability of the steady state, all three conditions,(4.14), (4.15) and (4.17), have to be satisfied. However,

if any of these three conditions fails, then the steady state becomes unstable. This can occur for large positive values
of B1 (self-excitation) such that either(

a10 −
√
C

)
α11 − B1 < 0 or

(
a10 +

√
C

)
α11 − B1 < 0. (4.18)

If B1 is negative (self-inhibition) so that(4.15) and (4.17)hold, choose the distributed delay coefficientα11 as a
bifurcation parameter. Ifa10 + α11 − √

C < 0 for a certain value ofα11, then the steady state becomes unstable.
This can be summarized into the following theorem.

Theorem 4.1. Assume the two neurons are identical. The steady state (x∗1, x
∗
2) of system (4.1) is asymptotically

stable if conditions (4.14), (4.15)and (4.17)are satisfied. The stability of (x∗1, x
∗
2) can be lost either at the occurrence

of large self-excitation in the neurons (large positiveB1) when (4.18)holds or in the case of self-inhibition (B1 < 0)
if

a10 + α11 −
√
C < 0

for a certain value of α11.

4.2. Non-identical neurons

Taking the distributed delay coefficientα11as the bifurcation parameter, we study the existence of Hopf bifurcation
in system(4.1). The characteristicequation (4.9)can be written as follows:

λ4 + c1λ3 + c2λ2 + c3λ+ c4 = 0, (4.19)

wherec1, c2, c3, andc4 are defined as follows:

c1(α11) = a10 + α11 + a20 + α22 > 0,

c2(α11) = (a10 + α11)(a20 + α22)+ a10α11 + a20α22 − B1 − B2 − C,
c3(α11) = (a10 + α11)(a20α22 − B2)+ (a20 + α22)(a10α11 − B1)− α11C − α22C,

c4(α11) = (a10α11 − B1)(a20α22 − B2)− Cα11α22. (4.20)

Assumec2(α11) > 0, c3(α11) > 0, c4(α11) > 0. Define

Ψ(α11) = c1(α11)c2(α11)c3(α11)− c23(α11)− c21(α11)c4(α11). (4.21)

The Routh–Hurwitz criterion states that the equilibrium of the system(4.6) is locally asymptotically stable if and
only if Ψ(α11) > 0. Note thatΨ(α11) > 0 implies thatc1(α11)c2(α11)− c3(α11) > 0.

Let λi (i = 1,2,3,4) be the roots of the characteristicequation (4.19). Then we have

λ1 + λ2 + λ3 + λ4 = −c1, λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = c2,
λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4 = −c3, λ1λ2λ3λ4 = c4. (4.22)

If there existsα∗
11 ∈ R such thatΨ(α∗

11) = 0, then by the Routh–Hurwitz criterion at least one root, sayλ1, has real
part equal to zero. From the fourth equation of(4.22), it follows that Imλ1 = ω0 �= 0, and hence there is another
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root, sayλ2, such thatλ2 = λ̄1. SinceΨ(α11) is a continuous function of its roots,λ1 andλ2 are complex conjugates
of a11 in an open interval includingα∗

11. Therefore the equation in(4.22)have the following form atα∗
11:

λ3 + λ4 = −c1, ω2
0 + λ3λ4 = c2, ω2

0(λ3 + λ4) = −c3, ω2
0λ3λ4 = c4. (4.23)

If λ3 andλ4 are complex conjugate, from the first equation of(4.23), it follows that 2 Reλ3 = −c1 < 0. If λ3 and
λ4 are real, from the first and the fourth equations of(4.23)it follows thatλ3 < 0 andλ4 < 0. Also, differentiating
(4.11)with respect toα11, we have

dλ

dα11
= − (dc1/dα11)λ

3 + (dc2/dα11)λ
2 + (dc3/dα11)λ+ dc4/dα11

4λ3 + 3c1λ2 + 2c2λ+ c3 (4.24)

Also, fromEq. (4.21), we have

dΨ

dα11
= c2c3 dc1

dα11
+ c1c3 dc2

dα11
+ c1c2 dc3

dα11
− 2c3

dc3
dα11

− 2c1c4
dc1
dα11

− c21
dc4
dα11

. (4.25)

Hence

d

dα11
[Reλ]α∗

11
= Re

[
− (dc1/dα11)λ

3 + (dc2/dα11)λ
2 + (dc3/dα11)λ+ dc4/dα11

4λ3 + 3c1λ2 + 2c2λ+ c3

]
α∗

11

= Re

[
−−i(dc1/dα11)ω

3 − (dc2/dα11)ω
2 + i(dc3/dα11)ω + dc4/dα11

−4iω3 − 3c1ω2 + 2c2iω + c3

]
α∗

11

= −1

2

c1

c31c3 + ω2(2c3 − c1c2)2
(

dΨ

dα11

)
α∗

11

. (4.26)

Note that(4.23) and (4.25)were used to obtain(4.26). Thus, we have the following result.

Theorem 4.2. Assume that c2(α11) > 0, c3(α11) > 0, c4(α11) > 0. If Ψ(α11) > 0, then the steady state (x∗1, x
∗
2) of

system (4.1) is locally asymptotically stable. If there exists α∗
11 ∈ R such that Ψ(α∗

11) = 0 and (dΨ/dα11)|α∗
11

�= 0,
then as α11 passes through α∗

11, Hopf bifurcation occurs at the steady state (x∗1, x
∗
2).

5. Delayed neural feedback and neural interaction history

The last case of interest is when the kernels take the form of exponential functionsKii(t−τ) = e−αii(t−τ) (i = 1,2)
and when the discrete delaysσ12 �= 0 andσ21 �= 0. This indicates the adaptation of the neuron to its feedback and
the existence of neural interaction history in the model. Under these conditions, the nonlinear neural model takes
the form:

1

a10

dx1(t)

dt
+ x1(t)= F

{
f1 + c12x2(t − σ12)+ b11

∫ t

−∞
x1(τ)e

−α11(t−τ) dτ

}
,

1

a20

dx2(t)

dt
+ x2(t)= F

{
f2 + c21x1(t − σ21)+ b22

∫ t

−∞
x2(τ)e

−α22(t−τ) dτ

}
. (5.1)

The phase space for system(5.1) is BC2+. The equilibrium(x∗1, x
∗
2) of (4.1) is also an equilibrium of(5.1). Define

xii(t) =
∫ t

−∞
xi(τ)e

−αii(t−τ) dτ (i = 1,2). (5.2)
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The nonlinear system becomes

1

a10

dx1(t)

dt
+ x1(t)= F {f1 + c12x2(t − σ12)+ b11x11(t)}, dx11(t)

dt
= x1(t)− α11x11(t),

1

a20

dx2(t)

dt
+ x2(t)= F {f2 + c21x1(t − σ21)+ b22x22(t)}, dx22(t)

dt
= x2(t)− α22x22(t). (5.3)

The linearized model about the steady-state solution takes the form:

1

a10

dX1(t)

dt
+X1(t)= q1{c12X2(t − σ12)+ b11X11(t)}, dX11(t)

dt
= X1(t)− α11X11(t),

1

a20

dX2(t)

dt
+X2(t)= q2{c21X1(t − σ21)+ b22X22(t)}, dX22(t)

dt
= X2(t)− α22x22(t), (5.4)

whereqi = x∗i (1 − x∗i ) (i = 1,2). The associate characteristic equation of the system is∣∣∣∣∣∣∣∣∣∣

−a10 − λ a10b11q1 a10c12q1 e−σ12λ 0

1 −α11 − λ 0 0

a20c21q2 e−σ21λ 0 −a20 − λ a20b22q2

0 0 1 −α22 − λ

∣∣∣∣∣∣∣∣∣∣
= 0. (5.5)

For convenience, we use the same notation used inSection 4

Bi = ai0biiqi (i = 1,2), C = a10c12q1a20c21q2. (5.6)

Then the characteristic equation becomes

[(a10 + λ)(α11 + λ)− B1][(a20 + λ)(α22 + λ)− B2] − C(α11 + λ)(α22 + λ)e−(σ12+σ21)λ = 0. (5.7)

Assuming that the two neurons are identical, thenEq. (5.7)becomes

[(a10 + λ)(α11 + λ)− B1]2 − C(α11 + λ)2 e−(σ12+σ21)λ = 0

which can be factored into

{[(a10 + λ)(α11 + λ)− B1] −
√
C(α11 + λ)e−(1/2)(σ12+σ21)λ}

× {[(a10 + λ)(α11 + λ)− B1] +
√
C(α11 + λ)e−(1/2)(σ12+σ21)λ} = 0. (5.8)

So the characteristic equation becomes two transcendental equations

[(a10 + λ)(α11 + λ)− B1] ±
√
C(α11 + λ)e−(1/2)(σ12+σ21)λ = 0. (5.9)

We shall consider the positive case first

[(a10 + λ)(α11 + λ)− B1] +
√
C(α11 + λ)e−(1/2)(σ12+σ21)λ = 0. (5.10)

For convenience, we introduce some notations

a10 + α11 = A, a10α11 − B1 = D,
√
Cα11 = E,

√
C = F, 1

2(σ12 + σ21) = σ. (5.11)



332 S. Ruan, R.S. Filfil / Physica D 191 (2004) 323–342

Fig. 1. Behavior of the first neuron in system(3.1)with small discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4, f1 = 4.5,
f2 = −4.5 andσs = 0.55.

ThenEq. (5.9)becomes

λ2 + Aλ+D+ E e−σλ + Fλeσλ = 0. (5.12)

Following the results in[22], we know that if(4.17)is satisfied and either

D2 − E2 > 0, F2 − A2 + 2D < 0 (5.13)

or

(F2 − A2 + 2D)2 < 4(D2 − E2), (5.14)

holds, then all roots ofEq. (5.12)have negative real parts for all discrete delaysσ12 + σ21 = σ ≥ 0. If

D2 − E2 < 0 (5.15)

Fig. 2. Behavior of the second neuron in system(3.1) with small discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5,
c21 = 4, f1 = 4.5, f2 = −4.5 andσs = 0.55.
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Fig. 3. Phase portrait of system(3.1)with small discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4, f1 = 4.5, f2 = −4.5
andσs = 0.55.

or

F2 − A2 + 2D > 0, (F2 − A2 + 2D)2 = 4(D2 − E2), (5.16)

thenEq. (5.12)has a pair of purely imaginary roots±iω+ (ω+ > 0) whenσ = σ1
n,1. If

D2 − E2 > 0, F2 − A2 + 2D > 0, (F2 − A2 + 2D)2 > 4(D2 − E2) (5.17)

are satisfied, thenEq. (5.12)has one pair of purely imaginary roots±iω+, respectively±iω−, whenσ = σ1
n,1,

respectivelyσ = σ1
n,2, with ω+ > ω− > 0, where

ω2
± = 1

2(F
2 − A2 + 2D)± [ 1

4(F
2 − A2 + 2D)2 − (D2 − E2)]1/2, (5.18)

Fig. 4. Behavior of the first neuron in system(3.1)with large discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4, f1 = 4.5,
f2 = −4.5 andσs = 0.65.
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Fig. 5. Behavior of the second neuron in system(3.1) with large discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4,
f1 = 4.5, f2 = −4.5 andσs = 0.65.

σ1
n,1 = 1

ω+
cos−1

{
E(ω2+ −D)− AFω2+

F2ω2+ + E2

}
+ 2nπ

ω+
,

σ1
n,2 = 1

ω−
cos−1

{
E(ω2− −D)− AFω2−

F2ω2− + E2

}
+ 2nπ

ω−
(n = 0,1,2, . . . ). (5.19)

Therefore, when there is only one pair of purely imaginary root±iω+, only crossing of the imaginary axis from left
to right is possible asσ increases, and stability of the zero solutions can only be lost but not regained. When there
are two pairs of purely imaginary roots±iω±, crossing of the imaginary axis from left to right occurs whenever
σ assumes a value corresponding toω+ and crossing of the imaginary axis from right to left occurs wheneverσ

assumes a value corresponding toω−.

Fig. 6. Phase portrait of system(3.1)with large discrete delay:a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4, f1 = 4.5, f2 = −4.5
andσ = 0.65.
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Fig. 7. Behavior of the first neuron in system(4.1) with large distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7,
c12 = 8, c21 = 12, f1 = 1, f2 = −2.5 andα11 = α22 = 1.5.

Note that if the system(5.4)is stable forσ = 0, then necessarilyσ1
0,1 < σ

1
0,2 (since the multiplicity of roots with

positive real parts cannot become negative). Since

σ1
n+1,1 − σ1

n,1 = 2π

ω+
<

2π

ω−
= σ1

n+1,2 − σ1
n,2, (5.20)

there can exist only a finite number of switches between stability and instability. Hence, there existk switches from
stability to instability to stability when the parameters are such that

σ1
0,1 < σ

1
0,2 < σ

1
1,1 < σ

1
1,2 < · · · < σ1

k−1,1 < σ
1
k−1,2 < σ

1
k,1 < σ

1
k+1,1 < σ

1
k,2 < · · · , (5.21)

wherek is an integer.
Now we shall consider the negative case inEq. (5.8)

[(a10 + λ)(a1 + λ)− B1] −
√
C(a1 + λ)e−(1/2)(σ12+σ21)λ = 0. (5.22)

Fig. 8. Behavior of the second neuron in system(4.1) with large distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7,
c12 = 8, c21 = 12, f1 = 1, f2 = −2.5 andα11 = α22 = 1.5.
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Fig. 9. Phase portrait of system(4.1)with large distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7, c12 = 8, c21 = 12, f1 = 1,
f2 = −2.5 andα11 = α22 = 1.5.

Using the same notation used for the positive case,Eq. (5.22)becomes

λ2 + Aλ+D− E e−σλ − Fλe−σλ = 0. (5.23)

Similar to the positive case, when(4.14) and (4.15)are satisfied and either(5.13)or (5.14)holds, then all roots of
Eq. (5.23)have negative real parts for all discrete delaysσ12+σ21 = σ ≥ 0. If (5.15)or (5.16)holds, thenEq. (5.23)
has one pair of purely imaginary roots±iυ+ (υ+ > 0) whenσ = σ2

m,1. If (5.17)holds, thenEq. (5.23)has one pair

of purely imaginary roots±iυ+, respectively±iυ−, whenσ = σ2
m,1, respectivelyσ = σ2

m,2, with υ+ > υ− > 0,
where

υ2
± = 1

2(F
2 − A2 + 2D)± [ 1

4(F
2 − A2 + 2D)2 − (D2 − E2)]1/2, (5.24)

Fig. 10. Behavior of the first neuron in system(4.1) with small distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7, c12 = 8,
c21 = 12, f1 = 1, f2 = −2.5 andα11 = α22 = 1.3.



S. Ruan, R.S. Filfil / Physica D 191 (2004) 323–342 337

Fig. 11. Behavior of the second neuron in system(4.1) with small distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7,
c12 = 8, c21 = 12, f1 = 1, f2 = −2.5 andα11 = α22 = 1.3.

σ2
n,1 = 1

υ+
cos−1

{
AFυ2+ − E(υ2+ −D)

F2υ2+ + E2

}
+ 2nπ

υ+
,

σ2
n,2 = 1

υ−
cos−1

{
AFυ2− − E(υ2− −D)

F2υ2− + E2

}
+ 2nπ

υ−
(n = 0,1,2, . . . ). (5.25)

with (k is an integer)

σ2
0,1 < σ

2
0,2 < σ

2
1,1 < σ

2
1,2 < · · · < σ2

k−1,1 < σ
2
k−1,2 < σ

2
k,1 < σ

2
k+1,1 < σ

2
k,2 < · · · . (5.26)

The stability and bifurcation results of(5.1)can be summarized in the following theorem.

Fig. 12. Phase portrait of system(4.1) with small distributed delay coefficient:a10 = a20 = 1, b11 = −10, b22 = −7, c12 = 8, c21 = 12,
f1 = 1, f2 = −2.5 andα11 = α22 = 1.3.
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Fig. 13. Behavior of the first neuron in system(5.1)with small discrete delay:a10 = a20 = 1, b11 = b22 = −4, c12 = c21 = 7, α11 = α22 = 1,
f1 = f2 = −1.5 andσ = 0.6.

Theorem 5.1. Assume the two neurons are identical in system (5.1). Suppose conditions (4.14) (4.15)and (4.17)
are satisfied.

1. If (5.13)and (5.14)hold, then the steady state (x∗1, x
∗
2) of (5.1) is asymptotically stable for all discrete delays

σ12 + σ21 = σ ≥ 0.
2. If (5.15)or (5.16)holds, σ ∈ [0,min{σ1

0,1, σ
2
0,1}), then the steady-state (x∗1, x

∗
2) of (5.1) is asymptotically stable.

If σ > min{σ1
0,1, σ

2
0,1}, then the steady-state (x∗1, x

∗
2) of (5.1) is unstable. σ1

n,1 and σ2
n,1 (n = 0,1,2, . . . ) are

Hopf bifurcation values of system (5.1).
3. If (5.17)holds, σ ∈ [0,min{σ1

1,0, σ
2
1,0}), then the steady-state (x∗1, x

∗
2) of (5.1) is asymptotically stable. There is

a positive integer k such that there are k switches from stability to instability and back to stability, that is, when
σ ∈ [min{σ1

n,1, σ
2
n,1},max{σ1

n,2, σ
2
n,2}) the steady-state (x∗1, x

∗
2) of (5.1) is unstable; when σ ∈ [max{σ1

n,2, σ
2
n,2},

Fig. 14. Behavior of the second neuron in system(5.1) with small discrete delay:a10 = a20 = 1, b11 = b22 = −4, c12 = c21 = 7,
α11 = α22 = 1, f1 = f2 = −1.5 andσ = 0.6.
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min{σ1
n+1,1, σ

2
n+1,1}) the steady-state (x∗1, x

∗
2) of (5.1) is asymptotically stable. If σ > min{σ1

k,1, σ
2
k,1}, then the

steady-state (x∗1, x
∗
2) of (5.1) is unstable.

6. Numerical examples

In this section, we illustrate the validity of the results by considering examples of artificial neural networks
corresponding to each of the special. All numerical simulations are carried out using the computer program XPP
[6].

Consider an example of a two-neuron network with neural interaction history and instantaneous feedback, system
(3.1), with a10 = 1, a20 = 2, b11 = −4, b22 = 5, c12 = −5, c21 = 4, f1 = 4.5, andf2 = −4.5. According to the

Fig. 15. Behavior of the first neuron in system(5.1)with large discrete delay:a10 = a20 = 1, b11 = b22 = −4, c12 = c21 = 7, α11 = α22 = 1,
f1 = f2 = −1.5 andσ = 1.

Fig. 16. Behavior of the second neuron in system(5.1) with large discrete delay:a10 = a20 = 1, b11 = b22 = −4, c12 = c21 = 7,
α11 = α22 = 1, f1 = f2 = −1.5 andσ = 1.
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Fig. 17. Behavior of the first neuron in system(5.1) with small discrete delay and small distributed delay: coefficienta10 = a20 = 1,
b11 = b22 = −4, c12 = c21 = 7, α11 = α22 = 0.8, f1 = f2 = −1.5 andσ = 0.6.

parameters chosen, we find that the steady-state solution is (0.5, 0.5) and the critical discrete delay isσs,0 = 0.6.
Choose the delaysσ12 = 0.35 andσ21 = 0.20, thenσ12 + σ21 < 0.6. Figs. 1–3show that the steady-state solution
is asymptotically stable. ByTheorem 3.1, a Hopf bifurcation occurs whenσ12 + σ21 = 0.6, and the steady-state
solution loses its stability forσ12 + σ21 > 0.6. By choosingσ12 = 0.35 andσ21 = 0.30, it is observed that the
computer simulations inFigs. 4–6support the results fromTheorem 3.1.

In a two-neuron network with delayed neural feedback and no neural interaction history, the stability of the
system around its steady-state solution is governed by the distributed delay coefficient parameter. Consider system
(4.1)with a10 = a20 = 1, b11 = −10, b22 = −7, c12 = 8, c21 = 12, f1 = 1 andf2 = −2.5. By using(4.3)and
Ψ(α11) = 0 respectively, we find the steady-state solution to be (0.5, 0.5) and the critical value for the distributed
delay coefficient to beα∗

11 = 1.4. Figs. 7–9show the asymptotic stability of the steady-state solution when the
distributed delay coefficients are chosen such thatα11 = α22 = 1.5 > α∗

11. When the distributed delay coefficient

Fig. 18. Behavior of the second neuron in system(5.1) with small discrete delay and small distributed delay: coefficienta10 = a20 = 1,
b11 = b22 = −4, c12 = c21 = 7, α11 = α22 = 0.8, f1 = f2 = −1.5 andσ = 0.6.
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decreases and passes through the critical valueα∗
11, Hopf bifurcation occurs; i.e. a family of periodic solutions

bifurcates from the steady-state solution. This is illustrated byFigs. 10–12whereα11 = α22 = 1.3.
Finally, we consider an artificial neural network consisting of two neurons with delayed neural feedback and neural

interaction history. Consider system(5.1) with a10 = a20 = 1, b11 = b22 = −4, c12 = c21 = 7, α11 = α22 = 1,
andf1 = f2 = −1.5. The steady-state solution is (0.5, 0.5) and the critical discrete delay isσ1

0,1 = 0.8. Choosing
σ12 = 0.5 andσ21 = 0.7, then we haveσ = (σ12 + σ21)/2< 0.8. Figs. 13 and 14show the asymptotic stability of
the steady-state solution. ByTheorem 5.1, Hopf bifurcation occurs when(σ12 + σ21)/2 = σ1

0,1 and the stability of
the steady-state solution is lost once the total delay passes this critical value. This is illustrated inFigs. 15 and 16
whereσ = 1. When the total discrete delay in system(5.1) is less than the critical value and the distributed delay
coefficient is altered to give large distributed delay, it is seen that the stability of the system is unchanged. This means
that the behavior of system(5.1)is governed by the discrete delay.Figs. 17 and 18show the asymptotic stability of
the steady-state solution when the parameters are chosen such thata10 = a20 = 1, b11 = b22 = −4, c12 = c21 =
7, α11 = α22 = 0.8, f1 = f2 = −1.5 andσ = 0.6.

7. Conclusions

Recently, a variety of artificial models have been established to describe neural networks with discrete delays,
distributed delays, or with both sharp and continuous delays[1–3,7–16,21,23,25–28]. A few sufficient criteria
have been established for stability of neural models with discrete or distributed delays[8–11,26,28]. Bifurcation
analysis has also been carried out for neural network models with multiple discrete delays or distributed delays
[1–3,7,9,11,15,21,23,27,28]. However, there are few papers on the stability and bifurcation of neural network models
with both discrete and distributed delays.

In this paper, we have considered a two-neuron network model with multiple discrete and distributed delays. The
distributed delays arose from the neural feedback while the discrete delays arose from the neural interaction history.
Stability of the steady-state solutions and the oscillation around the steady-state solutions have been studied. The
existence of oscillations around the steady-state solutions has been shown via Hopf bifurcation analysis.

Three special cases of the generalized artificial neural network have been considered inSections 3–5. In the case
of neural interactions with instantaneous feedback and neural interaction history, we found that when the sum of
the two delays,σ12 + σ21 = σs, varies, the steady-state solution loses its stability and Hopf bifurcation occurs, that
is, a family of periodic solutions bifurcates from the steady-state solution whenσs passes a critical value. In the
case of neural interactions with delayed neural feedback and no neural interaction history, we obtained conditions
for stability of the artificial neural network. Furthermore, using the average delay as the bifurcation parameter, we
gave the conditions under which Hopf bifurcation would occur in the neural network model. In the case of neural
interactions with delayed neural feedback and neural interaction history, it was found through numerical simulations
that the distributed delay in the system is dominated by the discrete delay. We established conditions on the average
discrete delay in the system,σ, under which the stability of the neural system is maintained. Stability switches and
bifurcation were studied by applying the results in[4,22].

In all of the cases considered, it is seen that once the critical delay is reached the two neurons in the system enter
an oscillating behavior in which the firing rate of each neuron adapts the other neuron by inhibiting or exciting
its firing rate. In the case of neural interaction with delayed neural feedback and neural interaction history, it was
found that the stability results of a system with two inhibitory connections are identical to those of a system with
two excitatory connections of the same magnitude.

Neural networks with delays exhibit very rich dynamics. From the point of view of nonlinear dynamics, analyz-
ing these neural networks is useful in solving problems of both theoretical and practical importance. Due to the
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complexity of large neural models, stability analysis is carried out for small neural networks. Such analysis is po-
tentially useful since the complexity found in these small network models might be carried over to larger networks.
They may also serve as first approximations in modeling some simple invertebrate patterns. Also, by considering
the minimum requirements for a particular pattern of activity, we can gain some insight into why some nervous
systems have so great a number of neural elements.
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