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1. I N T R O D U C T I O N  

Recently, Beretta et al. [1] studied a chemostat-type model to simulate the growth of planktonic 
communities of unicellular algae in lakes, where the plankton feeds on a limiting nutrient 
supplied at a constant rate. They supposed that the limiting nutrient is partially recycled after the 
death of the organisms and they used a distributed delay to model the nutrient recycling in order 
to study its effect on the stability of the positive equilibrium. In [2], Bischi investigated the effects 
of the time delay involved in nutrient recycling on resilience, that is, the rate at which a system 
returns to a stable steady state following a perturbation. Their results show that when a system 
is characterized by oscillatory behavior, an increase in the distributed time delay can have a 
stabilizing effect. This is a counter-intuitive result, because in general it has been found that the 
introduction of time delays is a destabilizing process, in the sense that increasing the time delay 
could cause a stable equilibrium to become unstable and/or cause the populations to fluctuate 
(see Cushing [3], Freedman and Rao [4], Gopalsamy and Aggarwala [5] and MacDonald [6]). 

The mathematical analysis of chemostat-type models has been studied by many authors. 
In the case of instantaneous dynamics, we refer to a recent survey paper by Waltman [7] and 
the references cited therein. Chemostat-type models incorporating discrete delays have been 
investigated by Freedman et al. [8]. We refer to Cushing [3], MacDonald [6], Gopalsamy [9, 10] 
and Kuang [11] for further references to delayed models in population biology. 

In this paper, we introduce a discrete time delay term to the model of Beretta et al. [1], 
this term may be considered as delay due to gestation, and we also allow the washout rates 
for nutrient and plankton to be different. By using the "linear chain trick technique" of 
MacDonald [6], we can transform the two dimensional integrodifferential system into a three 
dimensional one with a discrete time delay. Using the discrete time delay as a bifurcation 
parameter, we show that the model undergoes a Hopf bifurcation. We also consider the 
question of persistence. It is shown that conditions for uniform persistence are the same as 
those for the instantaneous case. Hence, both the discrete time delay and the distributed time 
delay are "harmless" (a term coined by Gopalsamy [9]) in our model. 
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We now recall the definitions of persistance given in Butler et al. [12]. A component x(t) of 
a given ODE system is said to be persistent if for any x(0) > 0 it follows that x(t) > O, t > 0 
and l i m i n f x ( t ) >  0. If  there exists 8 > 0 (independent of x(0)) such that x(t) is persistent 

t ~  
and lim i n f x ( t ) >  8, then x(t) is said to be uniformly persistent. For a FDE system, a 

t ~ o ~  

component x(t) is persistent if for any ~(s) > 0, -oo < s < to, it follows that x(t) > O, t > 0 
and lim i n f x ( t ) >  0. If  there exists 8 > 0 (independent of ~b(t)) such that x(t) is persistent 

and lim infx(t)  > 8, then x(t) is said to be uniformly persistent. A system is uniformly 
t ~ o O  

persistent if each component is uniformly persistent. 
A system is dissipative if for any solution y(t), there is a positive number M such that 

lim sup ly(t)l < M. To verify this property for a given system, usually Liapunov functions 
t - - ~  

(functionals) and differential inequalities are employed. We refer readers interested in appro- 
priate techniques to Haddock et al. [13] and Zhang [14] on functional differential equations 
with infinite delay. 

The rest of this paper is organized as follows. In Section 2 the integrodifferential model with 
a discrete time delay and a distributed time delay is described. We will review some previous 
results on some special cases of our model in Section 3. In Section 4 we prove that the system 
is dissipative and that a Hopf  bifurcation occurs at the positive equilibrium if the discrete delay 
is increased past a critical value. Persistence is also discussed in this section. Finally, some 
concluding remarks and discussions are given in Section 5. 

2. AN INTEGRODIFFERENTIAL MODEL 

We consider the following integrodifferential system as a model of  plankton-nutrient 
interaction with a discrete time delay due to gestation and a distributed time delay involved 
in nutrient recycling 

I t dN D(NO N )  aPu(N) + Yl F(t s)P(s)ds 
dt _~ 

(2.1) 
dP 
d-T = P[alu(N(t  - r)) - (y + DO] 

with initial conditions 

N(s) = ~b(s), s e [ -  r, 0], 

P(s) = ~u(s), s ~ (-oo, to], 

where N is the concentration of a limiting nutrient and P is a measure of plankton population. 
In system (2.1), all parameters are positive constants. D is the washout rate of  nutrient, 1/D 

has the physical dimension of time and represents the average time that nutrient and waste 
products spend in the system (see Smith [15]). D1 is the washout rate of plankton, and we 
assume that D # D1 (see Wolkowicz and Lu [16] and Ruan [17]). N O is the input concentration 
of the limiting nutrient, a is the maximum uptake rate of nutrient and al (-< a) is the maximum 
specific growth rate of plankton, y is the death rate of plankton and y~ (<  y) is the nutrient 
recycle rate after the death of  plankton. There is a delay of  time r due to gestation, which we 
model following Bush and Cook [18]. 
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The function u(N) describes the nutrient uptake rate of plankton. We assume the following 
general hypotheses on u(N) (see Hale and Somolinos [19]): 

(i) u(N) is nonnegative, increasing and vanishes when there is no nutrient; 
(ii) there is a saturation effect when the nutrient is very abundant. 

That is, u(N) is a continuous function defined on [0, ao) and 

du 
u(0) = 0, - -  > 0, lim u(N) = 1. 

d N  N-ooo 

In particular, these hypotheses are satisfied by the Michaelis-Menten function (Caperon [20]) 

N 
u ( N )  - 

k + N '  

where k > 0 is the half-saturation constant or Michaelis-Menten constant. 
The delay kernel F(s) is a nonnegative bounded function defined on [0, ~ )  and describes the 

contribution of the plankton population dead in the past to the nutrient recycled at time t. The 
presence of the distributed time delay must not affect the equilibrium values, so we normalize 
the kernels such that 

l *°F(s) = (2.2) ds 1. 
0 

According to MacDonald [6], we define the average time lag as 

T = sF(s) ds. (2.3) 
o 

In particular, the exponential kernel 

F(s) = ~ e -s ' ,  c~ > 0 (2.4) 

is usually used (see Cushing [31, Cuningham and Nisbet [211); the average time lag is 

f 0° 1 T =  s e-~'S ds = - .  
o oL 

Note that E0 = (N °, 0) is always an equilibrium for system (2.1), and if 

Y+ Vl < ax and u - l (  y- + DI~ < N O , (2.5) 
\ al / 

system (2.1) has a positive interior equilibrium E* = (N*, P*) with 

N *  = u - l (  ~ q'- D l )  P*  = a l D ( N  ° -  N*)  (2.6) 
\ al / a(y + D1)  - a 1Yl" 

3. S O M E  S P E C I A L  C A S E S  

In this section we consider some special cases of system (2.1). 

Case 1. r = 0, F(s) = 8(s). When the time delays are neglected, that is, the discrete delay 
z = 0 and the delay kernel is a delta function F(s) = 8(s), we get the following instantaneous 
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model 

d N  D(NO N )  a P u ( N )  + Yl P 
dt  

dP 
d--[ = P [ a l u ( N )  - (y + D0I. 

(3.1) 

Model (3.1) was studied by Beretta et al. [1] and Ruan [17]. According to theorem 2.6 of [17], 
we first have the following proposition. 

PROPOSITION 3.1. System (3.1) is dissipative. 

System (3.1) has the same equilibria E0 and E* as system (2.1). By theorem 3.1 of [1], 
we have the following proposition. 

PROPOSITION 3.2. If u ( N  °) < (y + D l ) / a  1 , then lim (N(t), P(t))  = E °. 
t ---~ 0o 

This result indicates that if the maximum growth rate of the plankton population is less than 
or equal to its loss rate, i.e. al < Y + D1, or the plankton population does not have enough 
nutrient, i.e. al > y + DI but u ( N  °) < (y + D1) /a l ,  then the plankton population becomes 
extinct. 

By theorem 3.2 of [1], we have the following proposition. 

PROPOSITION 3.3. If the positive equilibrium E* exists, it is globally asymptotically stable in R 2. 

Comparing the results in chemostat models in Waltman [22], we can see that the nutrient 
recycling term plays a stabilizing role for the positive equilibrium. Since possessing a globally 
asymptotically stable equilibrium is sufficient for persistence, we have the following 
proposition. 

PROPOSITION 3.4. If the inequalities in (2.5) hold, then system (3.1) is uniformly persistent. 

Propositions 3.3 and 3.4 show that if the maximum growth rate of plankton is greater than 
its loss rate and plankton has enough nutrient, then the plankton population can survive in the 
long term. 

Case 2. F(s) = J(s). When the distributed time delay in the nutrient recycling term is neglected, 
i.e. F(s) = 3(s), model (2.1) becomes 

d N  = D(NO _ N )  - aPu(N)  + y l P  
dt 

dP (3.2) 
d--t = P[al  u(N( t  - 0) - (Y + D0]. 

This model also has the same equilibria Eo and E* as system (2.1) if the inequalities in (2.5) 
hold. A similar chemostat type model was studied by Freedman et  aL [8]. Analogous to the 
procedures in [8], one can prove the following results. 
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PROPOSITION 3.5. System (3.2) is dissipative. 

PROPOSITION 3.6. There exists ro > 0 such that a family of periodic solutions of  system (3.2) 
bifurcates f rom E* for r near To. 

Similarly to the proof  of theorem 5.5 of Zhao [23], we can prove the following persistence 
result about the discrete delay model. 

PROPOSITION 3.7. If the inequalities in (2.5) hold, then system (3.2) is uniformly persistent. 

Case 3. r = 0. When the discrete time delay due to gestation is neglected, i.e. r = 0, the model 
has the following form 

d N  D(NO N )  aPu(N) + Yl F(t s)P(s) ds 
dt _o0 

(3.3) 
dP 
d---[ = P[a lu (N)  - (y + D1)]. 

Again system (3.3) has the same equilibria E 0 and E* as system (2.1) provided the inequalities 
in (2.5) are satisfied. System (3.3) was studied by Beretta et al. [1] and Bischi [2]. By theorem 
2.1 of  [1] or theorem 1 of  [2], we have the following proposition. 

PROPOSITION 3.8. System (3.3) is dissipative. 

Similarily to theorems 4.1 and 4.2 in [1], we have the following stability criteria independent 
of  the value of distributed time delay. 

PROPOSITION 3.9. If  (D + aP*u'(N*))  2 >_ 2aP*u'(N*)(y + D1), then the positive equilibrium 
E* of system (3.3) is locally asymptotically stable. In particular, if F(s) = c~ e - ~ ,  then E* is 
always asymptotically stable. 

If F(s) = o~ e - ~ ,  then model (3.3) is a special case of model (4.1) in Section 4 when r = 0. 
Hence, by theorem 4.3 in Section 4, we have the following proposition. 

PROPOSITION 3.10. If F(s) = c~ e -~' and the inequalities in (2.5) are satisfied, then system (3.3) 
is uniformly persistent. 

4. THE GENERAL CASE 

From now on, we suppose F(s) = o~ e -=s for o~ > 0, i.e. we consider the following model It 
d N  D(NO N )  aPu(N) + Yl ot e-"~t-s)P(s) ds 
dt _~ 

dP 
d----t = P[al u(N(t - r)) - (y + D1)]. 

(4.1) 
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The following result shows that solutions of  system (4.1) are bounded and, hence, lie in a 
compact set and are continuahle for all positive time. 

THEOREM 4.1. System (4.1) is dissipative. 

P r o o f .  We choose 

V(t, N ( t ) ,  P ( . ) )  = N ( t )  + a P( t )  + )I 1 Ol e - ~  d~ P(s)  ds. 
a l  - ~  t - s  

The derivative of  V along the trajectories of  (4.1) is 

f' d V D(NO N )  a P u ( N )  "t- 71 Ol e-~(t-~)P(s) ds 
d t  _~ 

+ a P u ( N ( t  - r)) a(y + D O  p 
a 1 

l + y l P  o~e-~d~ - yx a e - ~ ( t - s ) p ( s ) d s  
,)0 - ~  

= D ( N  ° - N )  - a ( y  + D 1 )  - y ~ a l p  

a 1 

- a P [ u ( N ( t ) )  - u ( N ( t  - r))l 

<_ - D N  - a(y + D1) - ) ' 1 a l p  + D N  o 
al 

if N(O -< N ( t )  for t - r _< ( _< t. By a classical Liapunov-Razumikhin theorem about bounded- 
ness (see, Zhang [14]), we know that system (4. l) is dissipative. This completes the proof.  

Now we define a new variable 

Y(t)  = e~ e-~(t-s)P(s) ds, (4.2) 

then by the linear chain trick technique (MacDonald [61), the two dimensional integro- 
differential system (4.1) can be transformed into an equivalent three dimensional one with a 
discrete delay 

= D ( N  ° - N )  - a P u ( N )  + 71 Y 
d t  

= P [ a ~ u ( N ( t  - r)) - (y + D~)I (4.3) 
dP  

dt 

dY 
- c ~ P -  c~ Y, 

dt 

where the variable Y(t)  can be interpreted as an intermediate component which causes the 
delay, such as the dead plankton in the sediments. 
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System (4.3) has two equilibria provided the inequalities in (2.5) hold. If confusion does not 
arise, they are still denoted by E0 = (N °, 0, 0) and E* = (PC*, P* ,  Y*) with P*  = Y*. 

The linearized system of (4.3) at the equilibrium E* has the form 

dn(t) 

dt 
- -  - ( D  + a P * u ' ( N * ) ) n ( t )  - a u ( N * ) p ( t )  + Y l Y ( t )  

dp(t) 

dt 

dy(t) 

dt 

- -  = a l P * U ' ( N * ) n ( t  - r) (4.4) 

- -  = a p ( t )  - c~y(t), 

where n ( t )  = N ( t )  - N*, p ( t )  = P ( t )  - P *  and y ( t )  = Y ( t )  - Y * .  This leads to the character- 
istic equation 

2 3 + p 2  2 + f12 = d~ e -×" + r/2 e-×L (4.5) 

where 

p = cl + D + a P * u ' ( N * )  > O, 

fl  = ot(D + a P * u ' ( N * ) )  > O, 

3 = - ~ a l P * U ' ( N * ) ( a u ( N * )  - YI) < 0, 

rl = - a a l P * u ( N * ) u ' ( N * )  < O. 

The stability of E* can be determined according to the sign of  the real parts of  the solutions 
A of  equation (4.5). Let 2 = g + iv ,  we consider ~. and, hence, g and v as functions of  the delay 
r. Substituting into (4.5), we obtain the following equations 

#3 __ 3/.iV2 + p(/./2 __ ,i/2) + fl,/./ = [(~ + ?.H.,/) COS "rY n t- /~.' sinrv] e -~ ,  
(4.6) 

- v 3 + 3gZv + 2p#v +/~v = [r/v cos rv - (~ + r//0 sin rv] e -~ .  

A necessary condition for a stability change of  E* is that the characteristic equation has a 
pure imaginary solution A = iv .  Let ~ be such that ~(f) = 0. Then we can reduce equations (4.6) 
to (where f = v(f)) 

- -p l )  2 = 6COS'~V + t/~3 sin ?f,  
(4.7) 

__Q3 + B, ~ = ~YCOS'~V -- Js in  ?f. 

Equations (4.7) give an equation in f of the form 

¢032) = ~6 + (p2 _ 2fl)94 + (f12 _ r/2)~2 _ ~2 = 0. (4.8) 

Since when f = 0, O(0) < 0 and for sufficiently large values of ~, • > 0, hence, the cubic 
equation (4.8) has one or more real roots f2. From equations (4.7), we can solve for ?, 
which is 

1 , ~ 3 ( ~  _ p r / )  - ~fl~ 2nx 
rn = ~ arcsin ?/2~2 + ~2 + V̂ , n = 0, 1, 2 . . . . .  (4.9) 
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In order  to establish H o p f  bifurcat ion at r = f,  we need to show that  ( d / d O g ( f )  ~ 0. 
F rom (4.6), differentiat ing with respect to r and setting r = f,  v = 13,/U = 0, and solving for  
d/u/dz and d v / d r ,  we get 

d/u(f) A C  - BD 
d----~ = A 2 + B 2 '  (4.10) 

where 

Using (4.7), we have 

A = 3132 - f l  - r / f13 sin f13 + ( r / -  d r )  cos f13, 

B = 2p13 + (r/ - d f ) s i n  f13 + r/f13 cos ~ ,  

C = 8 f s i n  f13 - r/132 cos f13, 

D =/7132 sin f13 + 813 cos 1313. 

A C -  BD = 13213134 + 2(p 2 -- 2fl)132 + ( f 1 2  _ /12) ]  

= 132 d ~  
d132" 

Hence,  if 130 is the first positive root  o f  (4.8), we have 

d/u(fo) 13o 2 d(b 2 
d r  = A 2 + B 2 d132(13o) > 0, 

where 

1 13o3(t~ - P q )  - 13ofl~ 
ro = -;- arcsin 

V 0 /72132 -I'- ¢~2 

By the H o p f  Bifurcat ion theorem (see [24, 25]), we have the following theorem.  

THEOREM 4.2. A H o p f  bifurcat ion occurs f rom E *  for  r near  f0. 

As an example,  let u(N) be the Michael is -Menten uptake funct ion.  We consider the system 

dN I O N P  
- - = 0 . 1 ( 2 0 - N )  
dt 6 + N  i 

t 
+ 3.2 0.2 e-°'2(t-s)P(s) ds 

-oo 
(4.11) 

dP [ 9 N ( t -  O 4 .1 ) ] .  
-d-[ = P 6 + N ( t -  z) 

I f  r = 0, with the same parameters  the numerical  simulations o f  Beretta et al. [1] suggest that  the 
positive equil ibrium is "p rac t i ca l ly"  globally stable (Fig. 1). 

By theorem 4.2, we can find that  ~o = 0.39. Thus the positive equil ibrium loses its stability and 
a family o f  periodic solutions bifurcates f rom it as r passes th rough  ~o = 0.39. A t ra jec tory  o f  
model  (4.11) when r = 0.41, is depicted in Fig. 2. 
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We know that E0 is the only boundary equilibrium of system (4.3). At E 0 the characteristic 
equation has the form 

(2 + D)(A + o0[2 - ( a t u ( N  °) - ()q + D0)] = 0. (4.12) 

It follows that two of the eigenvalues A 1 = - D  and A2 = -o~ are negative. If the inequalities 
in (2.5) hold, then the third eigenvalue 23 = al u ( N  °) - 0'1 + D1) is positive. Also, in a 
sufficiently small half-disc neighbourhood of E °, d P / d t  is positive by the second equation of 
system (4.3), so there is no trajectory approaching Eo from the P direction. Hence, Eo is locally 
stable in the N and Y directions and is locally unstable in the P direction, that is, Eo is a saddle 
point. Solutions initiating on the N -  axis tend to Eo and the stable set of Eo does not intersect 
the positive cone. Hence, Eo is the only compact invariant set on the boundary, and there are 
no cycles in the boundary. 

Therefore, according to the main theorem of Hale and Waltman [26], we have the following 
result. 

THEOREM 4.3. If the inequalities in (2.5) hold, then system (4.3) and, hence, system (4.1) is 
uniformly persistent. 

Note that by proposition 3.4 the inequalities in (2.5) are also persistence conditions for the 
instantaneous model (3.1). 
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Table 1. The effects of  delays 

Dissipativity Stability of E* Uniform persistence 

r = 0 True Global asymptotic stability True under (2.5) 
F(s) = t~(s )  (proposition 3.1) (proposition 3.3) (proposition 3.4) 

r ~ 0 True Hopf  bifurcation True under (2.5) 
F(s) = ~(s) (proposition 3.5) (proposition 3.6) (proposition 3.7) 

r = 0 True Local asymptotic stability True under (2.5) 
F(s) = a e -~s (proposition 3.8) (proposition 3.9) (proposition 3.10) 

r ;~ 0 True Hopf  bifurcation True under (2.5) 
F(s) = a e -a" (theorem 4.1) (theorem 4.2) (theorem 4.3) 

5. D I S C U S S I O N  

We have considered a plankton-nutrient model with a discrete time delay and a distributed 
time delay. The discrete time delay is regarded as the lag due to gestation and the distributed 
time delay is used to describe the nutrient recycling. 

We have studied the boundedness of solutions of the model. By choosing the discrete 
delay as a difurcation parameter, we have shown that a Hopf bifurcation may occur when the 
discrete delay passes its critical value. This is parallel to the case with only a discrete time delay 
(proposition 3.6). Note that in the case with only a distributed time delay, Hopf bifurcation 
does not occur (Beretta et ai. [1]). Our result shows that the effect of the discrete time delay on 
the model is somehow stronger than that of the distributed time delay. 

We have also investigated persistence of the model. It is interesting that the conditions for 
uniform persistance are the same as that for the instantaneous model (proposition 3.4 and 
theorem 4.3), which are also the same conditions for existence of a positive equilibrium. The 
first equivalent can be explained as that both the discrete time delay and the distributed time 
delay are "harmless" for persistance in our model. Similar phenomena have been observed by 
Wang and Ma [27] for models with discrete time delay, and by Burton and Hutson [28] for 
models with continuous (infinite) delay. Even though the stability of the interior equilibrium 
cannot be determined in our model, our result shows that existence conditions of the interior 
equilibrium are enough to ensure uniform persistance of the model. 

The effect of both the discrete delay and the distributed delay on dissipativity, stability of the 
interior equilibrium and persistence are summarized in Table 1. 
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