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Abstract. The dynamics of delayed systems depend not only on the parameters
describing the models but also on the time delays from the feedback. A delay system is
absolutely stable if it is asymptotically stable for all values of the delays and conditionally
stable if it is asymptotically stable for the delays in some intervals. In the latter case, the
system could become unstable when the delays take some critical values and bifurcations
may occur. We consider three classes of Kolmogorov-type predator-prey systems with
discrete delays and study absolute stability, conditional stability and bifurcation of these
systems from a global point of view on both the parameters and delays.

1. Introduction. Let z(t) and y{t) denote the population density of prey and preda-
tor at time ¢, respectively. The first predator-prey model with (distributed) delay was
proposed by Volterra [43]. With the modification of Brelot [8], the model has the form

&(t) = z(t) [’rl ~ a112(t) — a2 /t Ft - s)y(s)ds} ,
. (1.1)
y(t) = y(t) [—Tg + @o1 /_m G(t — s)x{s)ds — aggy(t)} .

where r; and a;; (i, 7 = 1,2) are positive constants; F and (& are nonnegative continuous
delay kernels defined and integrable on [0, 00). It is known that system ( 1.1) has a locally
asymptotically stable steady state under some suitable assumptions on the parameters
and delays. Further detailed study on stability and bifurcation of system (1.1) can be
found in Cushing [13]. When F(t—5) = 8(t—s— 1), Gt — ) = 5(t — s — 72), where § is
the delta function, r; and 7 are positive constants, system (1.1) becomes the following
Lotka-Volterra predator-prey model with discrete delays:

&(t) = x(t)[r1 — anz(t) — aroy(t - 1},
y(f) = y(t)[-—’f'g + aglﬂ?(t - Tg) - Gggi}(f)],

(1.2)
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A special case of system (1.1} is the following model:

;f:(f-) = .1:(1‘.)[1‘, — (1] 1.’L.‘(t) - a;gy{t)],
‘ . i (1.3)
y(t) = y(t) |72 + aa / Gt — s)x{s)ds],

which has been studied extensively; see Cushing [13], MacDonald [38], Dai [14], Farkas et
al. [17], Stépdn [42], etc. It is known that the time delay in (1.3) will destablize the oth-
erwise stable equilibrium and cause fluctuations in the populations via Hopf bifurcations.
The discrete delay version of system (1.3) is

£(t) = z(t}[r1 ~ anx(t) — ay(t)],
y(t) = y(t)[—rs + anz(t — 7)),

which has been considered in Kuang [33] and Beretta and Kuang [4].
Assuming that in the absence of predators they prey’s growth is governed by Hutchin-
son’s ([32]) logistic equation, May [37] proposed the following predator-prey system:

(1.4)

T(t) = z(1) !:Tl — a1 / F(t = s)x(s)ds — aray(t)

Yt} = y()[—r2 + agrz(t) — anay(t)]:
Detailed bifurcation analysis of system (1.5} was carried out in Hassard, Kazarinoff and
Wan {27]. It has been found that system (1.5) exhibits Hopf bifurcations when the time
delay passes through a critical value. The disciete delay version of system (1.5) is

(t) = z(t)[r1 — ezt ~ 1)} — a;2y(t)],
9{t) = y(t}[-r2 + az12(t) — azy(t)].
A Drief discussion about system (1.6) can be found in May [37].
For most of the predator-prey systems with discrete delays such as {1.2), (1.4), and
(1.6), the characteristic equation of the linearized system at a steady state is a transcen-
dental polynomial equation of the following form:

AN tph4r+(sA+qle” =0, (1.7)
where p, 7, q, s are real numbers. It is known that the steady state is asymptotically stable
if all roots of the characteristic equation (1.7) have negative real parts For a nonlinear
delay equation, there are two types of stabilities: absolute stability (independent of the
delay) and conditional stability {depending on the delay).

Denote R = (—00,00). Consider the following general nonlinear delay differential
systemn:

(15)

(1.6)

i(t) = flalt) alt ~ 1), .2t — 1)), (18)

where z € R", r; > 0 (1 £ j < m) are constants, f: R" x C"" — R" is smooth enough
to guarantee the existence and uniqueness of solutions to (1.8) under the initial value
condition

:’E(Q) = (f’(g)a RS [_T’ O]) (19)

where C = C{[—r,0, R"), 7 = maxi<i<m{r:} Suppose f(z*,z*,...,2*) = 0, that is,
T = x" is a steady state of system (1.8).
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DEFINITION 1.1. The steady state x = z* of system (1.8) is called absolutely stable
(ie., asymptotically stable independent of the delays) if it is asymptotically stable for
all delays 73 > 0 (1 < j < m). o =" is called conditionally stable (i.e., asymptotically
stable depending on the delays) if it is asymptotically stable for r; (1 < j < m) in some
intervals, but not necessarily for all delays r; > 0 (1 < j £ m).

The linearized system of {1.8) at x = z* has the following form:

X(t) = ApX (1) +ZAX —7;), (1.10)

where X € R™ and each 4; (0 < j < m) is an n x n constant matrix. Thus, the steady
state £ = z* of system (1.8) is absolutely stable (conditionally stable) if the linearized
system (1.10) is absolutely stable (conditionally stable).

The characteristic equation associated with system (1.10) takes the form:

m
det | A~ Ag— »_ Aj;e™* | =0. (1.11)

F=1

The location of the roots of some transcendental equations such as (1.11) has been studied
by many researchers; see Baptistini and Tédboas [1], Bellman and Cooke [3], Boese [5],
Brauer [7), Cooke and van den Driessche [12], Cooke and Grossman [11], Huang [31],
Mahaffy [36], Ruan and Wei [41] and the references therein. The following result, which
was proved by Chin [10] for m = 1 and by Datko [15] and Hale, Infante and Tsen [25]
for m > 1, gives necessary and sufficient conditions for the absolute stability of system
(1.10).

LEMMA 1.2. The system (1.10) is absolutely stable if and only if

(i) ReA(3iLoA;) <0 |
(i) detfiw] — Ag — 3 7-; Aje™™77] # 0 for all w > 0.

Note that assumption (i) means that system (110) with r; = 0 (1 < j < m) is
asymptotically stable and assumption (ii) means that iw is not aroot of Eq. (1.11). Thus,
roughly speaking, Lemma 1.2 says that the delay system (1.10} is absolutely stable if and
only if the corresponding ODE system is asymptotically stable and the characteristic
equation (1.11) has no purely imaginary roots. Using Lemma 1.2, one could derive
absolute stability conditions for some delayed predator-prey systems.

On the other hand, if assumption (ii) does not hold, that is, if the characteristic
equation {1.11) has a pair of purely imaginary roots, say £iwg, then system (1.10) is not
absolutely stable but could be conditionally stable. Suppose wy is achieved when one of
the delays, say 1, reaches a value 9. Hence, when r < 70, the real parts of all roots of
the characteristic equatlon (1.11) still remain negative and system (1.10) is conditionally
stable. When 1 = 77, the characteristic equation (1.11) has a pair of purely imaginary
roots =iwg and system (1.10) loses its stability. By Rouché’s theorem (Dieudonné [16])
and continuity, if the transversality condition holds at r; = 7P, then when r, > 7{,
the characteristic equation (1.11) will have at least one root with positive real part and
system (1.10} becomes unstable. Moreover, Hopf bifurcations occur, that is, a family of
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periodic solutions bifurcates from the steady state as r; passes through the critical value
7.

The effect of time delays on stability of predator-prey systems has been investigated by
many researchers; see the monogiaphs of Cushing [13], Gopalsamy [24], Kuang [33], and
MacDonald [38] and references cited therein. For various types of delayed predator-prey
systems, many researchers have been interested either in studying absolute stability of
these models (see Brauer [6], Gopalsamy [22], Ma [35], Nunney [40], etc.) or in determin-
ing conditional stability and bifurcation of these models (see Hastings {38], MacDonald
[38], May [37], Nunney [39], etc.). However, there are few papers dealing with absolute
stability, conditional stability and Hopf bifurcation altogether from a global point of view
on the parameters and delays.

In this paper, we first find conditions on the coefficients of the characteristic equation
(1.7) so that all its roots have negative real parts for all v > 0. Then we will determine
the critical value 74 so that when v < 7y the real parts of all roots of Eq. (1.7) remain
negative, when r = 7y Eq. (1.7) has a pair of purely imaginary roots, and when r > 7,
Eq. {1.7) has at least one root with positive real part. We then apply the obtained
results to analyze the absolute stability, conditional stability and Hopf bifurcation of
some delayed predator-prey systems. First, we consider the delayed Kolmogorov-type

predator-prey model
&(t) = z(t) f(x(t), y(t ~ m)),
y(t) = y(t)g(z(t — ), y(8)),
which has system (1.2) as a special case, and find that the positive steady state is

absolutely stable under some suitable assumptions on f and g. For the following predator-
prey model with a discrete delay

£(t) = o{t) f(z(2), y(t)),
y(2) = y(t)g(z(t — 7),y(t)),
which is more general than system (1.4}, we find that the positive steady state is condi-

tionally stable and the delay does cause instability and hence Hopf bifurcations occur.
Finally, we apply the obtained results to the delayed predator-prey model

¢(t) = o{t) f{z{t — 7),y(1)),
y(t) = y(t)g(z(t), (1)),
which is a generalization of May’s model (1.6). For different parameter values, the

positive steady state of system (1.14) could be absolutely stable, conditionally stable or
unstable.

(1.12)

(1.13)

(1.14)

2. The second-degree transcendental polynomials. In this section, we shall
study the distributions of the roots of the characteristic equation. Consider the second-
degree transcendental polynomial equation

M ApAtr+(sh+g)e T =0, (2.1)
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where p,7,q, § are real numbers. When r = 0, Eq. (2.1} becomes

N4 (p+s)A+(g+r) =0 (2.2)

Assume that all roots of Eq. (2.2) have negative real parts, which is true if
p+s>0; (Hy)
g+r> 0. (Hg)

We want to determine if the real part of some root increases to reach zero and eventually
becomes positive as r varies. If iw is a root of Eq. (2.1), then

—w? + ipw + isw(cos Tw + isin Tw) + 17 + g{cos Tw +isinrTw) =0.

Separating the real and imaginary parts, we have

—w? 47 = —gcos Tw + swsin Tw,
. (2.3)
Pl = —8§L COS TwW — ¢ sin Tw.
1t follows that w satisfles
wh = (5% — p? +2r)w? + (1% — ¢*) = 0. (2 4)

The two roots of Eq. (2.4) can be expressed as follows:

13k
—
bo
W11
N

Wi =L(s? —p?+2r) L (s - p7 +2r)° - 4r? — g2,
Thus, if
2—p+2r<0 and r*~-¢*>0 or (5% - p* 4+ 2r)% < 4(r? — ¢%), (Hs)

then none of w and w? is positive, that is, Eq. (2.4) does not have positive roots.
Therefore, characteristic equation (2.1) does not have purely imaginary roots. Since
(H,) and (H-) ensure that all roots of Eq. (2.2) have negative real parts, by Rouché’s
theorem, it follows that the roots of Eq. (2.1) have negative real parts too. This can be
summarized as follows,

LEMMA 2.1. If (H;)—(H3) hold, then all roots of Eq. (2.1) have negative real parts for
all 7 > 0.

On the other hand, if
P2—g?<0 or 8—p°+2r>0 and (s° —p?+2r)? = 4(r? — ¢%), (Hj)
then Eq. (2.4) has a positive root w? and if
2?0, 2-p?+2r >0 and (s%—p®+2r)% > 4(r’ ~ ¢*), (Hg)

then Eq. (2.4) has two positive roots wi. In both cases, the characteristic equation (2.1)
has purely imaginary roots when t takes certain values. These critical values T;h of 7
can be determined from system (2.3), given by

Szwi_i_qz Wi, ]_ Rt Bt -’

1
rE = —— arccos {

} m:t

From the above analysis we have the following lemma.
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LEMMA 2.2. (i) If (Hy), (H2) and (Hy) hold and r = T;L, then Eq. (2.1) has a pair
of purely imaginary roots +iw, .
(ii) If (Hy), (H») and (Hs) hold and 7 = rﬁ (7 = 7] respectively), then Eq. (2.1) has
a pair of imaginary roots £iwy (Fiw. respectively).

Then we would expect that the real part of some root to Eq. (2.1) becomes positive

- . To see if it is the case, denote

when 7 > T;_ and 7 < 7;

* _ o * T S
AF =ai(r)+iwy(r), j=0,12..,

the root of Eq. (2.1) satisfying
a'-i(“r-i) =0, w?-i(rf:)zwi.

We can verify that the following transversality conditions hold:

d d o
it follows that ‘rji are bifurcation values. Thus, we have the following theorem about the

distribution of the characteristic roots of Eq. (2.1).

THEOREM 23. Let 7 (j =0,1,2,...) be defined by (2.6).
(i) If (H;)-(H3) hold, then all roots of Eq. (2.1) have negative real parts for all r > 0.
(i) If (Hy), (H2) and (H,) hold, then when r € [0,77) all roots of Eq. (2.1) have
negative real parts, when r = ;" Eq. (2.1) has a pair of purely imaginary roots
+iw,, and when 7 > 75" Eq. {2.1) has at least one root with positive real part.
(iil) If (H,), (Ha) and (Hs) hold, then there is a positive integer k such that there are
k switches from stability to instability to stability; that is, when

7€ (0,75, (o, i) (Tl T ),
all roots of Eq. (2.1) have negative real parts, and when
TE [TJ’TE)’[T;’TI")'I""?[T.fj‘—}.’Tl:—l) a'nd T> T:)
Eq. {2.1) has at least one root with positive real part.

REMARK 2.4. We should mention that the main part of Theorem 2.3 was obtained
by Cooke and Grossman [11] in analyzing a general second-order equation with delayed
friction and delayed restoring force. For other related work, see Baptistini and Téboas
{1], Bellman and Cooke [3], Boese [5], Brauer [7], Cooke and van den Driessche [12],
Cooke and Grossman [11], Huang [31], Mahaffy [36], etc.

3. Delayed Kolmogorov-type predator-prey systems. In this section, we shall
use the results in Sec. 2 to study absolute stability, conditional stability, and bifurcation
of thiee classes of Kolmogorov-type predator-prey systems with delay. Let x(t) and y(f)
denote the population density of prey and predator at time ¢, respectively.
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3.1. Model 1. We first consider the following Kolmogorov-type predator-prey model
with discrete delays appearing in the inter-specific interaction terms of both equations:

£(t) = () f (2(t), y(t — 1)),
y(t) = y{t)g(z(t ~ 72), y(t)),
where 1; > 0 (i = 1,2) is a constant. Denote C = C([—,0], R}, where 7 = max{r, 2}
Assume that f: R x C — R and g: C x R — R satisfy the following assumptions:
(A;) there exists a point (z*,y*) with z* >0, y* >0 for which flz* y")=glz" y")=0;
(A2) f and g are continuously differentiable such that

(3.1)

af af dg dg
5 <0 5<% & >0, 5 <0
The initial values of system (3.1) are
z(0) = ¢(6) 2 0, y(8)=v(f) =0, #¢€[-7.0] (3.2)

where ¢ and ¥ are continuous functions.
Assumption {4;) ensures that (z*, y*) is a positive equilibrium of system (3.1). (z*,y*")
is called asymptotically stable if there exists a § > 0 such that

sup {|¢(8) ~ ="+ [(8) —y*[) < &

—T<6<0

implies that
tiim (z(t), y(t)) = (=", ¥"),
— 00

where (z(t),y(t)) is the solution of system (3.1) with initial values (3.2) {z*,y*) is
absolutely stable if it is asymptotically stable for all delays r; 2 0 (i = 1,2) and is
conditionally stable if it is asymptotically stable for ; (i = 1,2) in some intervals. It is
well known that the equilibrium (z*,y*) of system (3.1) is asymptotically stable if the
zero equilibrium (0, 0) of the linearized system at (z*,y") is asymptotically stable. Let

X(t)y==(t)-a", Y()=ylt)-y" (3.3)
Then the linearized system at (z*,y") is
X(t) = (ax™)X () + (bx™)Y (t — 71),

Y(t) = (cy*) X (t ~ r2) + (dy*)Y (8), .
where
=Ly, b=Fe ), = By d=Few) 69)
The characteristic equation is
A% — (az* + dy" )X + adz™y" — bex*y*em (1t = )
Let v = 7 + 5. Then it can be written as
A4 pA4T A4 ge ™ =0, (3.6)

where

p=-2ez"+dy") >0, r=dads’y" >0, g=4dbez’y" <0
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Equation (3.6) is a special case of Eq. (2.1) with s = 0. Clearly, we can see that (H;) is
satisfled. Since ad ~ be > 0, we have

g+ 71 =4{ad — bc)z"y"* >0,
which implies that (H») is satisfied. We also have
~p? 4+ 2r = —4(a®(z*)? + P (¥ V) <0, rP-g°= 16(z*)* (y*)? (ed + be)(ad — be).

So (H3) is satisfied if ad+be > 0. By Theorem 2.3, all roots of the characteristic equation
(3.6) have negative real parts if and only if ad+ be > 0. Therefore, we have the following
theorem.

THEOREM 3.1. Suppose that f and g satisfy the assumptions (4;) and (A4,). Then the
positive equilibrium (z*,y*) of the delayed predator-prey system (3.1) is absolutely stable
(asymptotically stable for all r; > 0 (i = 1,2)) if and only if ad + bc > 0.

REMARK 3.2. System (3.1) with r, = r, was studied by Gopalsamy (23] who showed
that the delay is “harmless” in the sense that the positive steady state is asymptotically
stable independent of the delay. Our result not only supports Gopalsamy’s claim but
also generalizes his to the case with two delays.

REMARK 3.3. There was a typo in the proof of Theorem 1 in [23]. Equation (2.19)
should read

L) =1 r{(a—¢*)? +a’p?} 3.

The negative sign in the power term was missing in [23] and the mistake was not corrected
in the monograph of Gopalsamy [24] (p. 207, Eqg. (3.5.17)).
As an example, consider the Lotka-Volterra predator-prey model with two discrete

delays:
:B(t) = .’E(t)[?‘l - anx(t) — a12y(i —_ Tl)],

) 3.7)
§8) = yO=r2 + anzlt — 1) — emy(t)], (
where ry, a;; (4,7 = 1,2) are positive constants. If
71821 — T2a11 > 0, (3.8)
then system (3.7) has a positive equilibrium E* = (2*,y*), where
T1l92 + Tal ridgy ~ Toa
o e 1022 ¥ 72012 oy = 1021~ T201y (3.9)

1 Y -
11023 + a1202 ajiags + a120z

The condition ad -+ bc > 0 becomes a;1a90 — a12a21 > 0. Thus, by Theorem 3.1, we have
the following result on the stability of E* = (z*, y*).

CoROLLARY 3.4. If condition (3.8) is satisfied, i.e., if the positive equilibrium E* =
(z*,y") exists, then it is absolutely stable (asymptotically stable for all r; > 0 (i = 1, 2))
if and Oﬂl}' if a;1a00 — ajzaz > 0.

REMARK 3.5. By the results in He [30] and Lu and Wang [34] we can see that the
positive equilibrium E* = (z”, y*) of system (3.7) is indeed globally stable.
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3.9. Model 1I. Next we consider the following Kolmogorov-type predator-prey model
with a discrete delay appearing in the inter-specific interaction term of the predator
equation:

(t) = 2(t)f(z(8), y(t)),

y(t) = y()g(z(t — 7). u(8),
where 7 > 0 is a constant, C = C{{~7,0],R), f: R* - Rand g: Cx R— R satisfy the
assumptions (A;) and
(A%) f and g are continuously differentiable such that

af dg dg
ar el ot 24 <o
5<% 7y < 0, >0 F < 0

The initial values of system (3.10) are

z(f) = ¢(0) =0, 0€[-7.0, ¥(0)=w=0
By the assumption (41}, (z*,y*) is a positive equilibrium of system (3.10). The stability
of (x*,y*) can be defined analogously as in Model 1. Using (3.8), we have the linearized
system:

(3.10)

X() = (az"} X () + (bz*)Y (1),
Y(t) = (cy")X (¢ - 7) + (dy")Y(8),
where a < 0,b < 0,¢ > 0, and d <0 are defined in (3.5). The characteristic equation is
A%~ (az® + dy* )\ + adz*y" — bez*y*e T = 0. (3.12)

(3.11)

Compared with (2.1), we have
p=—(az* +dy*) >0, r=ade’y" 20, s=0, g= —bez*y* > 0.
Hence, conditions (H) and (H,) are satisfied. Also,
—p? + 2 = —(az*)? — (bz*)* < 0, 12 — g% = (ad + be)(ad — be)(z*y")*.

It follows that if ad + be > 0, then conditions (H3) hold; if ad + be < 0, then conditions
(H4) hold. Denote

Wy = {:?1_(2?. _ p2) + {%(27. _ p2)2 _ (7"2 - q2)11/2}1/2 (3"13)
and
2 .
r;*”m—lmarccos{w"*' T}_i_?ﬁ.f, i=0,1,2, ... (3.14)
' (W4 q W

By Theorem 2.3, we have the following theorem.

THEOREM 3.6. Suppose that f and g satisfy the assumptions (A4;) and (45). Let wy
and 7;" be defined by (3.13) and (3.14), respectively.
(i) If ad + be > 0, then the positive equilibrium (z*,y*) of the delayed predator-prey
system (3.10) is absolutely stable.
(i) If ad + bc < 0, then (z*,y") of system (3.10) is conditionally stable: it is asymp-
totically stable when 7 € [0,7") and unstable when 7 > sF. Moreover, system
(3.10) undergoes Hopf bifurcations at (z*,y") when 7 = TJT‘" (j=012...)
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As an example, consider the following delayed Lotka-Volterra type predator-prey
model:

&(t) = z(t)[ry — anz(t) — aray(t)),
y(t) = y(t)[-r2 + azz(t — 1)},
where 11,72, a11, a2, and as; are positive constants. If (3.8) holds, then system (3.15)
has a positive equilibrium (z*, y*), where
T

(3.15)

® 2 " 1031 = Tal)1
€T = —_ TR |
an) G12Q9;

Since d = 0, we have ad + bc = ~aj209; < 0 and

p=anz” >0, r=0, s=0, ¢=apanz"y" >0

Thus,
w_i_ = ——%-(anm”’)‘? - [:11*((&1;.’13*)4 + algaglm*y*)z]”g}l/z (3«16)
and
2 B
T?miarccos{———u—)i—*—}—}—:d—n, J7=012.... (3.17)
: Wy @iz ¥ Y" Wy

COROLLARY 3.7. Suppose (3.8) holds. Then the positive equilibrium (z*, y*) of system
(3.15) is conditionally stable: it is asymptotically stable when 7 € [0, 75") and unstable
when 7 > 75, where 7" is defined by (3.17). Moreover, when 7 = r;" a Hopf bifurcation
occurs at (z*,y*).

REMARK 3.8. Corollary 3.7 can be derived from the analysis in Sec. 3.3 of Kuang {33];
see also Sec. 4 in Beretta and Kuang [4].

REMARK 3.9. Theorem 3.6 can be used to study stability and bifurcation in some
other delayed predator-prey models which are in the form of system (3.10), such as the
delayed predator-prey model with mutual interference analyzed in Cao and Freedman 9]
and Freedman and Rao [19), the generalized Gause-type predator-prey model with delay
studied by Zhao, Kuang and Smith [45], etc.

3.3. Model I11. We consider the Kolmogorov-type predator-prey model with a discrete
delay appearing in the intra-specific interaction term of the prey equation:

E(L) = z(t) f(z(t - 7),y(t)),
y(t) = y(t)g(a(t), y(t)),

where 7 > 0 is a constant, C = C{{-7,0,R), f: C x R — R and g: R% — R satisfy the
assumptions (A1) and (Az). The initial values of system (3.18) are

(@) =¢0) 20, #<c[-10], 0=y >0

(3.18)

System (3.18) has the same positive equilibrium (z*,y*) as system (3.1). Using the
change of variables (3.3), the linearized system of (3.18) at (z*,y*) is

X(t) = (az™) Xt — 7) + (bs*)Y (£),

- (3.19)
Y(t) = (cy™) X (t) + (dy") Y (),
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where g < 0, b < 0, ¢ > 0, and d < 0 are defined by (3.5). The characteristic equation of
the linear system (3.19) has the form:

A2 e dy* A — bez'y" 4 (—az A+ adzty)e ™ = 0. (3.20)
It is of the form of Eq. (2.1} with
p=—dy*, r=-bex'y", s=-—az", gq=adz"y".
Clearly, (H;) and (H-») hold. If we assume that
s — p? +2r = (az")® — (dy*)* + 2bcz’y* < 0 {3.21)
and
ad + be < 0, (3.22)
then
r2 — ¢* = —(ad + be)(ad — be)(z*y*)* > 0

by assumption (As), that is, (H3) is satisfed. Therefore, all roots of the characteristic
equation (3.20) have negative real parts.

THEOREM 3.10. Suppose that f and g satisfy the assumptions (A;) and (Az). If con-
ditions (3.21) and (3.22) are satisfied, then the positive equilibrium (z”,y") of system
(3.18) is absolutely stable.

If we assume that
ad + be > 0, (3.23)
then
2 — g% = —(ad + bc){ad — be)(z"y*)* < 0

and (Hy) is satisfied. It follows that the characteristic equation (3.20) has a pair of purely
imaginary roots Tiw,, where

wy = {3(as")? — (@) — hez"y"

3.24
(@@ — (@) - b = a2 — ey, O
Denote
1 bed(y*)? 2jm
T = " ar B T | o s 2, 2
it arccos{a[wi i + o 0,1,2, (3.25)

By Theorem 2.3, we have the following result on the stability of the positive equilibrium
(z*,y*) of system (3.18).

THEOREM 3.11. Suppose that f and g satisfy the assumptions (A4;) and (A4z) and that
condition (3.23) holds. Let wy and r;*‘ (j=0,1,2,...) be defined by {3.24) and (3.25),
respectively. Then the steady state (z*,y*) of system (3.18) is conditionally stable. More
precisely, we have

(i) if 7 € [0,7]), then (z*,y*) is asymptotically stable;

(ii) if 7 > 73", then (z*,y”) is unstable;
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(iif) if T = Tf (j = 0,1,2,...}, then system (3.18) undergoes Hopf bifurcations at
(z*, ¥*).
Finally, if we assume that condition (3.22),
8% — p? + 2r = (az*)? ~ (dy*)? + 2bez*y* > 0, (3.26)
and
(82 + 57 — p*)? — 4(r* — ¢®)
= [(az*)? ~ (dy*)? + 2bcx*y*]* + (ad + be)(ad — be)(z*y*)? > 0
hold, then the characteristic equation (3.20) has two pairs of purely imaginary roots
+iwy, where w. is given in (3.24) and w. is defined as follows:

w = {}[(az*)? ~ (dy")? - Zbez*y"

(3.27)

3.28
_ (((CL(E*)2 _ (dy*)Q _ cha:*y*)z - 4(5202 - aZdQ)(m*y*)z)},/ﬂ}l/;}q ( )
Denote
.1 bed(y*)? 2jn .
= arccos{a[w:i T (@ + = 0,1,2,.... (3.29)

Again by Theorem 2.3, we have the following theorem on the switching of stability in
system (3.18).

THEOREM 3.12. Suppose that f and g satisfy the assumptions (A1) and (A2) and that
conditions (3.22), (3.26), and (3.27) hold. Let w. and 7;-"” (7 =0,1,2,...) be defined
by (3.24) and (3.25), respectively, and w_ and 7; (j = 0,1,2,...) be defined by (3.28)
and (3.29), respectively. Then there is a positive integer k such that when 7 € [0, "),
(ra s )y -y (To_q. 72), the positive equilibrium (z*,y*) of system (3.18) is asymptoti-
cally stable; when r € [0,75"), (v, 71 ooy (7_y, 7o) and 7 > 1, (2, y") is unstable.
As an example, consider the delayed Lotka-Volterra predator-prey model proposed by

May [37}:

&(t) = z(t)r1 — anz(t — 7) — a129(t)},

y(t) = y(t} -T2 + an1z(t) ~ any(t)],
where r;,a4; (3, § = 1,2) are positive constants. If (3.8) holds, then system {3.30) has

a positive equilibrium {z*,y*) given by (3.9). Condition ad + bc > 0 again becomes
@112 ~ G1pa9; > 0. Also,

(3.30)

wr = {§[{a112")* — (a22y*)? - 20100 2"Y"

* * * w Ak (331)
+ [(a132*)? + (a224")%)? = 4((@n13")? — (agey™ ) arpanz™y" ||/ *}1/2
and
1 ~ag(y*)* } L
& 22
=~ 3ICCOS + =0,1,2,.... 3.32
T oy {ﬂ-n[mft + {a22y*)?) we ' 7 (3:32)

We have the following result on the stability of system (3.30).
COROLLARY 3.13. Let wy and Tf be defined by (3.31) and (3.32), respecéivelyn
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(1) If (a1127)? — (azy*)® + 2a12a012*y* < 0 and ajjase — appan; < 0, then the
equilibrium (z*, y*) of system (3.30) is absolutely stable.

(i) If ajjame — aizas > 0, then (z*,y") is conditionally stable: it is asymptotically
stable when 7 € [0,7) and unstable when 7 > 77". A Hopf bifurcation occurs
when 7= 17".

(iii) If (@112*)? — (agey*)? + 2a12a012*y" > 0 and ajjass — aizap < 0, then there
is a positive integer k, such that the equilibrium (z*,y*) switches k times from
stability to instability to stability; that is, (z*,y") is asymptotically stable when

Te 0 (g s (M T )
and unstable when

relr, rﬁ_),{rf', rl_),”,,[?',j_,i, T..,) and 7> 7“,?”.‘

4. Discussion. We have studied absolute stability, conditional stability, and bifurca-
tion in three classes of Kolmogorov-type predator-prey systems with discrete delays. For
the first type of models, there are two delays in the inter-specific interaction terms of both
equations. It has been shown that the positive steady state of such a system is absolutely
stable under some assumptions on the interaction terms. In the second type of models,
a delay appears only in the inter-specific interaction term of the predator equation. We
have seen that the system is only conditionally stable for the delay in some interval and
Hopf bifurcations could occur when the delay takes some critical values. The third type
of model is a generalization of May's predator-prey model in which a delay appears in
the intra-specific interaction term of the prey equation. It is very interesting that under
various assumptions on the interaction terms, the positive steady state of this type of
models could be absolutely stable, conditionally stable, and unstable. Moreover, when
the delay varies, the steady state switches from stability to instability a finite number of
times.

The delayed predator-prey systems we have studied are all of the Kolmogorov-type.
Bartlett [2] and Wangersky and Cunningham [44] were the first to propose delayed
predator-prey models that are not of the Kolmogorov-type (in fact, they were the first
to incorporate discrete delays into predator-prey models). Bartlett assumed that there
is a time lag 77 in the growth to maturity of the prey, and similarly there is a 72 for the
predators. He then modified the Lotka-Volterra system into the following form:

E(t) =zt — 1) — arez(t)y(t),
y(t) = —ray(t) + amz{t — 72)y(t — 72)-

Wangersky and Cunningham’s model is relatively more well known in the literature but
is a special case of {4.1), having the form

&(t) = z(t)[rs — a11x(t) — ar2w(t)],
y(t) = —roy(t) + anaz(t — 7)y(t — 7).

This model means that a duration of 7 time units elapses when an individual prey
is killed and the moment when the corresponding addition is made to the predator
population. Wangersky and Cunningham [44] briefly analyzed their model (4.2), Goel

(4.1)

(42)
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et al. [21] pointed out that there are problems in Wangersky and Cunningham’s analysis
and reconsidered the model, but their own analysis is also incomplete (see Nunney [40]).
Some special cases of Bartlett’s model (4.1) when r; = 0, 01 72 = 0, or 1y = 7 have
been studied by Hastings (28], Nunney [39, 40], Ma [35], etc. Local stability analysis of
Bartlett's model (4.1) was carried out in Hastings [29].

Using the techniques of this paper, we can show that, under certain assumptions on
the parameters, Wangersky and Cunningham’s model (4.2) is absolutely stable (for all
delays); under another set of conditions on the parameters the model is conditionally
stable (for the delay in some intervals); when the delay takes some critical values the
system becomes unstable and bifurcations occur. It will be very interesting to determine
the detailed dynamics of the two-delay Bartlett model (4.1). We leave this for future
considerations.
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