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with discrete delay. We first study the distribution of zeros of a second degree transcendental
polynomial. Then we apply the general results on the distribution of zeros of the second de-
gree transcendental polynomial to various predator-prey models with discrete delay, including
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1. Introduction
Predator-prey interaction is the fundamental structure in population dynamics. Understanding the
dynamics of predator-prey models will be very helpful for investigating multiple species interac-
tions. Delayed predator-prey models were first proposed by Volterra [83, 84] in 1925 to study fish
population under harvesting. Since then delayed differential equations have been extensively used
to model population dynamics, including predator-prey interactions. We refer to the monographs
of Cushing [24], Gopalsamy [44], Kuang [56] and MacDonald [65] for general delayed biolog-
ical systems. In general, delay differential equations exhibit much more complicated dynamics
than ordinary differential equations since a time delay could cause a stable equilibrium to become
unstable and induce bifurcations.

The original delayed predator-prey models proposed by Volterra [83, 84] are described by in-
tegrodifferential equations, such delays are also called distributed delays (Cushing [24] and Mac-
Donald [65]), and discrete delays are special cases of the distributed delays when the kernels are
taken as delta functions. However, predator-prey models with discrete delays have different fea-
tures and can exhibit more complex dynamical behaviors, such as the existence of multiple equi-
libria, Hopf bifurcation, Bogdanov-Takens bifurcation, and even chaos (see, for example, Xiao and
Ruan [92], Nakaoka et al. [69], etc.).

Recently, in a book chapter [75], I reviewed some basic single specie models described by (both
discrete and distributed) delay differential equations. The purpose of this survey differs from that
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chapter. In this article, I will mainly review recent results obtained by myself and my collaborators
on predator-prey models with discrete delays.

The main ideas are as follows. We first study the distribution of zeros of a second degree tran-
scendental polynomial since for most predator-prey models with discrete delay the characteristic
equation of the linearized system is a second degree transcendental equation. Applying the general
results on the distribution of zeros of the second degree transcendental polynomial to various mod-
els, we find out that some predator-prey models with discrete delay (such as the generalized Gause-
type predator-prey model with delayed predator response (Ruan [74])) is conditionally stable when
the delay is less than a critical value, loses stability and undergoes a Hopf bifurcation when the de-
lay passes through the critical value. Some other models (such as the May-type predator-prey
model with delayed prey specific growth (Ruan [74])) can switch their stability when the delay
takes different critical values. Secondly, thanks to the theories developed by Faria and Magalhã!es
[32, 34], we can show that some delayed predator-prey models (such as the delayed predator-prey
model with nonmonotone functional response (Xiao and Ruan [92]) and the delayed predator-prey
model with predator harvesting (Xia et al. [89])) can exhibit Bogdanov-Takens bifurcations.

We first review some well-known delayed predator-prey models. The presentation is basically
taken from Ruan [74].

1.1. Lotka-Volterra Predator-Prey Models with Discrete Delay
Let x(t) and y(t) denote the population density of prey and predator at time t, respectively. The
first predator-prey model with (distributed) delay was proposed by Volterra [84]. The modified
version (see Brelot [17]) has the form

ẋ(t) = x(t)

[
r1 − a11x(t)− a12

∫ t

−∞
F (t− s)y(s)ds

]
,

ẏ(t) = y(t)

[
− r2 + a21

∫ t

−∞
G(t− s)x(s)ds− a22y(t)

]
,

(1.1)

where r1 > 0 is the growth rate of the prey in the absence of predators, a11 > 0 denotes the
self-regulation constant of the prey, a12 > 0 describes the predation of the prey by predators,
r2 > 0 is the death rate of predators in the absence of the prey, a21 > 0 is the conversion rate
for the predators, and a22 ≥ 0 describes the intraspecific competition among predators. F and
G are nonnegative continuous delay kernels defined and integrable on [0,∞), which weight the
contribution of the predation occurred in the past to the change rate of the prey and predators,
respectively. Detailed study on stability and bifurcation of system (1.1) can be found in Cushing
[24]. When F (t− s) = δ(t− s− τ1), G(t− s) = δ(t− s− τ2), where δ is the Delta function, τ1

and τ2 are positive constants, system (1.1) reduces to the following Lotka-Volterra predator-prey
model with two discrete delays

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t− τ1)],

ẏ(t) = y(t)[−r2 + a21x(t− τ2)− a22y(t)].
(1.2)
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When F (t− s) = δ(t− s) and a22 = 0, system (1.1) becomes the following model

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t)],

ẏ(t) = y(t)[−r2 + a21

∫ t

−∞ G(t− s)x(s)ds],
(1.3)

which has been studied extensively (see Cushing [24], MacDonald [65], Dai [28], Farkas et al.
[35], Stépán [81], etc.) and it has been shown that the time delay in (1.3) will destabilize the
otherwise stable equilibrium and cause fluctuations in the populations via Hopf bifurcations. The
discrete delay version of system (1.3) is

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t)],
ẏ(t) = y(t)[−r2 + a21x(t− τ)],

(1.4)

which has been considered in Kuang [56] and Beretta and Kuang [7].
Assuming that in the absence of predators the prey’s growth is governed by delayed logistic

equation, May [64] proposed the predator-prey system

ẋ(t) = x(t)[r1 − a11

∫ t

−∞
F (t− s)x(s)ds− a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t)− a22y(t)].

(1.5)

Hassard et al. [48] provided detailed bifurcation analysis of system (1.5) and showed that system
(1.5) exhibits Hopf bifurcation when the time delay passes through a critical value. May [64] gave
a very brief discussion about the following discrete delay version of system (1.5)

ẋ(t) = x(t)[r1 − a11x(t− τ)− a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t)− a22y(t)].
(1.6)

Recall that the system of ordinary differential equations

ẋ(t) = x(t)f(x(t), y(t)),

ẏ(t) = y(t)g(x(t), y(t))
(1.7)

is called a Kolmogorov-type predator-prey system if ∂f
∂y

< 0 and ∂g
∂x

> 0. We can see that systems
(1.2), (1.4) and (1.6) are of Kolmogorov-type predator-prey models. In [74], we considered three
classes of more general Kolmogorov-type predator-prey models with discrete delay, which have
systems (1.2), (1.4), and (1.6) as special cases, and studied absolute stability, conditional stability,
and bifurcations in these systems.

1.2. Non-Kolmogorov-Type Models
Bartlett [4] and Wangersky and Cunningham [86] were the first to incorporate discrete delays into
predator-prey models. Their models are not of the Kolmogorov-type. Bartlett assumed that there
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is a time lag τ1 in the growth to maturity of the prey, and there is a lag τ2 in the growth to maturity
of the predators. He modified the Lotka-Volterra system into the form:

ẋ(t) = r1x(t− τ1)− a12x(t)y(t),

ẏ(t) = −r2y(t) + a21x(t− τ2)y(t− τ2).
(1.8)

Wangersky and Cunningham’s model takes the form

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t)],

ẏ(t) = −r2y(t) + a21x(t− τ)y(t− τ).
(1.9)

This model assumes that a duration of τ time units elapses when an individual prey is killed and
the moment when the corresponding addition is made to the predator population. Wangersky and
Cunningham [86] briefly analyzed their model (1.9), Goel et al. [41] pointed out that there are
problems in Wangersky and Cunningham’s analysis and reconsidered the model, but their own
analysis is also incomplete. Some special cases of Bartlett’s model (1.8) when τ1 = 0, or τ2 = 0,
or τ1 = τ2 have been studied by Hastings [49], Nunney [70, 71], Ma [61], Yan and Li [93], etc.
Local stability analysis of Bartlett’s model (1.8) was carried out in Hastings [50]. See also Ross
[73] for a model where a delay appears only in y(t) in the second equation.

1.3. Gause-Type Predator-Prey Systems with Discrete Delay and Harvesting
Time delays can be incorporated into the generalized Gause-type predator-prey model (Freedman
[36]) in three different ways. (a) A time delay τ in the prey specific growth term g(x(t)), that is,

ẋ(t) = x(t)g(x(t− τ))− y(t)p(x(t)),

ẏ(t) = y(t)[−d + µp(x(t))],
(1.10)

where g(x) represents the specific growth rate of the prey in the absence of predation and is as-
sumed to satisfy

g(0) > 0, g(K) = 0, g′(x) ≤ 0 for x > 0.

p(x) denotes the predator response function and is assumed to satisfy

p(0) = 0, p(x) > 0 for x > 0.

System (1.10) is proposed based on the assumption that in the absence of predators the prey sat-
isfies the delayed logistic equation. We refer to May [61] for some discussion and analysis about
(1.10) and its variants. (b) A time delay τ in the predator response term p(x(t)) in the predator
equation, that is,

ẋ(t) = x(t)g(x(t))− y(t)p(x(t)),

ẏ(t) = y(t)[−d + µp(x(t− τ))].
(1.11)

The delay in system (1.11) can be regarded as a gestation period or reaction time of the predators.
System (1.11) has been studied extensively, we refer to Kuang [56], Beretta and Kuang [7] and the
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references therein. (c) A time delay τ in the interaction term y(t)p(x(t)) of the predator equation,
that is,

ẋ(t) = x(t)g(x(t))− y(t)p(x(t)),

ẏ(t) = −dy(t) + µy(t− τ)p(x(t− τ)).
(1.12)

System (1.12) assumes that the change rate of predators depends on the number of prey and of
predators present at some previous time. The well-known Wangersky-Cunningham model (1.9)
is such a model. In section 3, we will present detailed results from Ruan [74] on stability and
bifurcation about models (1.10), (1.11) and (1.12).

Predator-prey systems with constant-rate harvesting have been studied extensively and very
complex dynamical behaviors, such as the existence of multiple equilibria, homoclinic loop, Hopf
bifurcation and Bogdanov-Takens bifurcation, have been observed, see, for example, Brauer and
Soudack [14, 15, 16], Beddington and Cooke [5], Dai and Tang [27], Hogarth et al. [53], Myer-
scough et al. [68], Xiao and Ruan [91]. Brauer [11] was the first to consider the combined effects
of time delay and constant harvesting on predator-prey models. Martin and Ruan [63] and Xia
et al. [89] studied the combined effects of constant-rate harvesting and delay on the dynamics
of some predator-prey systems. Namely, (a) a generalized Gause-type predator-prey model with
prey harvesting and a time delay in the predator response function (Martin and Ruan [63]). (b)
A generalized Gause-type predator-prey model with prey harvesting and a time delay in the prey
specific growth term will be analyzed (Martin and Ruan [63]). (c) The Wangersky-Cunningham
predator-prey model with prey harvesting (Martin and Ruan [63]). (d) A generalized Gause-type
predator-prey model with predator harvesting and a time delay in the predator response function
(Xia et al. [89]). Their results will be discussed in section 5.

1.4. A Delayed Predator-Prey System with Nonmonotonic Functional Re-
sponse

In general the functional response p(x) is a monotone function. However, there are experiments in
microbial dynamics that indicate that nonmonotonic responses occur at the microbial level: when
the nutrient concentration reaches a high level an inhibitory effect on the specific growth rate may
occur. This is often seen when micro-organisms are used for waste decomposition or for water pu-
rification (see Andrews [1], Sokol and Howell [78], Bush and Cook [18]). In population dynamics,
nonmonotonic functional response occurs when the prey exhibits group defense (Freedman and
Wolkowicz [40], Wolkowicz [87]), the phenomenon whereby predation is decreased, or even pre-
vented altogether, due to the increased ability of the prey to better defend or disguise themselves
when their numbers are large enough.

Based on some experimental data, Caperon [20] observed that there is a time delay between
the changes in substrate concentration and the corresponding changes in the bacterial growth rate.
Following Caperon’s observation, Bush and Cook [18] allowed the growth rate of microorganism
to depend on the substrate concentrations τ units of time earlier and proposed a system of delayed
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differential equations of the form:

ẋ(t) = rx(t)

(
1− x(t)

K

)
− x(t)y(t)

a + x2(t)
,

ẏ(t) = y(t)

[
µx(t− τ)

a + x2(t− τ)
−D

]
,

(1.13)

where r,K, a, µ, D, and τ are positive constants.
Recently, Ruan and Xiao [77] studied the dynamics of system (1.13) with τ = 0 and found that

the model undergoes a series of bifurcations including saddle-node bifurcation, Hopf bifurcations,
and homoclinic bifurcation. Xiao and Ruan [92] carried out a bifurcation analysis of delayed
system (1.13) and showed that there is a Bogdanov-Takens singularity for any time delay value.
Their results will be introduced in section 4.

2. Stability of Delay Equations and Zeros of Transcendental
Polynomials

2.1. Absolute and Conditional Stability
In this section, we review some results on the stability of delay differential equations and the
distribution of zeros of transcendental polynomials. The presentation here is mainly adapted from
Ruan [74] and Ruan and Wei [76].

Consider the following general nonlinear delay differential system

ẋ(t) = f(x(t), x(t− τ1), · · · , x(t− τm)), (2.1)

where x ∈ Rn, τj ≥ 0(1 ≤ j ≤ m) are constants, f : Rn × Cm → Rn is assumed to be
smooth enough to guarantee the existence and uniqueness of solutions to (2.1) under the initial
value condition (Bellman and Cooke [6] and Hale and Verduyn Lunel [47])

x(θ) = φ(θ), θ ∈ [−τ, 0], (2.2)

where C = C([−τ, 0], Rn), τ = max1≤i≤m{τi}. Suppose f(x∗, x∗, · · · , x∗) = 0, that is, x = x∗ is
a steady state of system (2.1).

Definition 1. The steady state x = x∗ of system (2.1) is said to be absolutely stable (i.e., asymp-
totically stable independent of the delays) if it is asymptotically stable for all delays τj ≥ 0(1 ≤
j ≤ m). x = x∗ is said to be conditionally stable (i.e., asymptotically stable depending on the
delays) if it is asymptotically stable for τj(1 ≤ j ≤ m) in some intervals, but not necessarily for
all delays τj ≥ 0(1 ≤ j ≤ m).

The linearized system of (2.1) at x = x∗ has the form:

Ẋ(t) = A0X(t) +
m∑

j=1

AjX(t− τj), (2.3)
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where X ∈ Rn, each Aj(0 ≤ j ≤ m) is an n × n constant matrix. Thus, the steady state x = x∗

of system (2.1) is absolutely stable (conditionally stable) if the trivial solution of the linearized
system (2.3) is absolutely stable (conditionally stable). Note that we are dealing with local stability
of system (2.1).

The characteristic equation associated with system (2.3) takes the form:

det

[
λI − A0 −

m∑
j=1

Aje
−λτj

]
= 0. (2.4)

The transcendental equation (2.4) and its variants have been studied by many researchers, see
Baptistini and Táboas [3], Bellman and Cooke [6], Boese [10], Brauer [13], Cooke and van den
Driessche [23], Cooke and Grossman [22], Huang [54], Mahaffy [62], Ruan and Wei [76] and the
references therein. The following result, which was proved by Chin [21] for m = 1 and by Datko
[29] and Hale et al. [46] for m ≥ 1, gives necessary and sufficient conditions for the absolute
stability of system (2.3).

Lemma 2. System (2.3) is absolutely stable if and only if

(i) Reλ(
∑m

j=0 Aj) < 0;

(ii) det[iωI − A0 −
∑m

j=1 Aje
−iωτj ] 6= 0 for all ω > 0.

Assumption (i) guarantees that system (2.3) with τj = 0 (1 ≤ j ≤ m) is asymptotically
stable while assumption (ii) ensures that iω is not a root of equation (2.4). Thus, roughly speaking,
Lemma 2 says that the delay system (2.3) is absolutely stable if and only if the corresponding ODE
system is asymptotically stable and the characteristic equation (2.4) has no purely imaginary roots.

Lemma 2 will be used to study stability and bifurcation in various delayed systems. The main
idea is as follows. If assumption (ii) does not hold, that is, if the characteristic equation (2.4) has
a pair of purely imaginary roots, say ±iω0, then system (2.3) is not absolutely stable but can be
conditionally stable. Suppose ω0 is achieved when one of the delays, say τ1, reaches a value τ 0

1 .
When τ1 < τ 0

1 the real parts of all roots of the characteristic equation (2.4) still remain negative
and system (2.3) is conditionally stable. When τ1 = τ 0

1 , the characteristic equation (2.4) has a
pair of purely imaginary roots ±iω0 and system (2.3) loses its stability. By Rouché’s theorem
(Dieudonné [30]) and continuity, if the transversality condition holds at τ1 = τ 0

1 , then when τ1 >
τ 0
1 the characteristic equation (2.4) will have at least one root with positive real part and system

(2.3) becomes unstable. Moreover, Hopf bifurcation occurs, that is, a family of periodic solutions
bifurcates from the steady state as τ1 passes through the critical value τ 0

1 .

2.2. Zeros of Transcendental Functions
In this section, we state some basic results on zeros of some transcendental functions (see Ruan
and Wei [76]).
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Theorem 3. Suppose that B ⊂ Rn is an open connected set, h(λ, µ) is continuous in (λ, µ) ∈
C×B and analytic in λ ∈ C, and the zeros of h(λ, µ) in the right half plane

{λ ∈ C : Reλ ≥ 0}
are uniformly bounded. If for any µ ∈ B1 ⊂ B, where B1 is a bounded, closed, and connected
set, h(λ, µ) has no zeros on the imaginary axis, then the sum of the orders of the zeros of h(λ, µ)
in the open right half plane (Re λ > 0) is a fixed number for B1, that is, it is independent of the
parameter µ ∈ B1.

Now we apply Theorem 3 to a general exponential polynomial

P (λ, e−λτ1 , · · · , e−λτm)

= λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ + p

(0)
n

+[p
(1)
1 λn−1 + · · ·+ p

(1)
n−1λ + p

(1)
n ]e−λτ1 + · · ·

+[p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ + p

(m)
n ]e−λτm ,

(2.5)

where τi ≥ 0(i = 1, 2, ..., m) and p
(i)
j (i = 0, 1, · · · ,m; j = 1, 2, · · · , n) are constants.

Corollary 4. As (τ1, τ2, · · · , τm) vary, the sum of the orders of the zeros of P (λ, e−λτ1 , · · · , e−λτm)
in the open right half plane can change only if a zero appears on or crosses the imaginary axis.

2.3. A Second Degree Transcendental Polynomial
For most predator-prey systems with a discrete delay, the characteristic equation of the linearized
system at a steady state is a second degree transcendental polynomial equation of the form:

λ2 + pλ + r + (sλ + q)e−λτ = 0, (2.6)

where p, r, q, s are real numbers. It is known that the steady state is asymptotically stable if all
roots of the characteristic equation (2.6) have negative real parts. In this section, we introduce the
results from Ruan [74] on the distribution of the roots of the characteristic equation (2.6).

When τ = 0, equation (2.6) becomes

λ2 + (p + s)λ + (q + r) = 0. (2.7)

Assume that all roots of equation (2.7) have negative real parts, which is true if and only if

(H1) p + s > 0;

(H2) q + r > 0.

We want to determine if the real part of some root increases to reach zero and eventually becomes
positive as τ varies. If iω is a root of equation (2.6), then

−ω2 + ipω + isω(cos τω − i sin τω) + r + q(cos τω − i sin τω) = 0.
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Separating the real and imaginary parts, we have

−ω2 + r = −q cos τω − qω sin τω,

pω = −qω cos τω + q sin τω.
(2.8)

It follows that ω satisfies

ω4 − (s2 − p2 + 2r)ω2 + (r2 − q2) = 0. (2.9)

The two roots of equation (2.9) can be expressed as follows

ω2
± =

1

2
(s2 − p2 + 2r)± 1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 . (2.10)

Thus, if

(H3) s2 − p2 + 2r < 0 and r2 − q2 > 0 or (s2 − p2 + 2r)2 < 4(r2 − q2),

then none of ω2
+ and ω2

− is positive, that is, equation (2.9) does not have positive roots. Therefore,
characteristic equation (2.6) does not have purely imaginary roots. Since (H1) and (H2) ensure that
all roots of equation (2.7) have negative real parts, by Rouché’s theorem, it follows that the roots
of equation (2.6) have negative real parts too.

We have the following lemma (Ruan [74]).

Lemma 5. If (H1)-(H3) hold, then all roots of equation (2.6) have negative real parts for all τ ≥ 0.

On the other hand, if

(H4) r2 − q2 < 0 or s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2),

then equation (2.9) has a positive root ω2
+. If

(H5) r2 − q2 > 0, s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 > 4(r2 − q2),

then equation (2.9) has two positive roots ω2
±. In both cases, the characteristic equation (2.6) has

purely imaginary roots when τ takes certain values. These critical values τ±j of τ can be determined
from system (2.8), given by

τ±j =
1

ω±
arccos

{
q(ω2

± − r)− psω2
±

s2ω2± + q2

}
+

2jπ

ω±
, j = 0, 1, 2, · · · (2.11)

The above analysis can be summarized into the following lemma (Ruan [74]).

Lemma 6. (i) If (H1), (H2) and (H4) hold and τ = τ+
j , then equation (2.6) has a pair of purely

imaginary roots ±iw+.

(ii) If (H1), (H2) and (H5) hold and τ = τ+
j (τ = τ−j respectively), then equation (2.6) has a

pair of imaginary roots ±iw+ (±iw− respectively).
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We would expect that the real part of some root to equation (2.6) becomes positive when τ > τ+
j

and τ < τ−j . To see if it is the case, denote

λ±j = α±j (τ) + iw±
j (τ), j = 0, 1, 2, · · ·

the root of equation (2.6) satisfying

α±j (τ±j ) = 0, w±
j (τ±j ) = ω±.

We can verify that the following transversality conditions hold:

d

dτ
Reλ+

j (τ+
j ) > 0,

d

dτ
Reλ−j (τ−j ) < 0.

It follows that τ±j are bifurcation values. Thus, we have the following theorem about the distribu-
tion of the characteristic roots of equation (2.6) (Ruan [74]).

Theorem 7. Let τ±j (j = 0, 1, 2, · · · ) be defined by (2.11).

(i) If (H1)-(H3) hold, then all roots of equation (2.6) have negative real parts for all τ ≥ 0.

(ii) If (H1), (H2) and (H4) hold, then when τ ∈ [0, τ+
0 ) all roots of equation (2.6) have negative

real parts, when τ = τ+
0 equation (2.6) has a pair of purely imaginary roots ±iω+, and

when τ > τ+
0 equation (2.6) has at least one root with positive real part.

(iii) If (H1), (H2) and (H5) hold, then there is a positive integer k such that

0 < τ+
0 < τ−0 < τ+

1 < · · · < τ−k−1 < τ+
k

and there are k switches from stability to instability to stability; that is, when

τ ∈ [0, τ+
0 ), (τ−0 , τ+

1 ), · · · , (τ−k−1, τ
+
k ),

all roots of equation (2.6) have negative real parts, and when

τ ∈ [τ+
0 , τ−0 ), [τ+

1 , τ−1 ), · · · , [τ+
k−1, τ

−
k−1) and τ > τ+

k ,

equation (2.6) has at least one root with positive real part.

Remark 8. We should mention that the main part of Theorem 7 was obtained by Cooke and
Grossman [22] in analyzing a general second order equation with delayed friction and restoring
force. For other related work, see Baptistini and Táboas [3], Bellman and Cooke [6], Boese [10],
Brauer [13], Cooke and van den Driessche [23], Cooke and Grossman [22], Huang [54], Mahaffy
[62], etc.
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3. Kolmogorov-type Predator-Prey Systems with Discrete De-
lay

In this section, we shall use the results in section 2 to study absolute stability, conditional stability
and bifurcation of three classes of Kolmogorov-type predator-prey systems with discrete delay
which have systems (1.2), (1.4) and (1.6) as special cases, respectively (see Ruan [74]).

3.1. Delayed Inter-specific Interactions
We first consider a Kolmogorov-type predator-prey model with discrete delays appearing in the
inter-specific interaction terms of both equations:

ẋ(t) = x(t)f(x(t), y(t− τ1)),

ẏ(t) = y(t)g(x(t− τ2), y(t)),
(3.1)

where τi ≥ 0(i = 1, 2) is a constant. Denote C = C([−τ, 0], R), where τ = max{τ1, τ2}. Assume
that f : R× C → R and g : C ×R → R satisfy the following assumptions:

(A1) there exists a point (x∗, y∗) with x∗ > 0, y∗ > 0 for which f(x∗, y∗) = g(x∗, y∗) = 0;

(A2) f and g are continuously differentiable such that

∂f

∂x
< 0,

∂f

∂y
< 0,

∂g

∂x
> 0,

∂g

∂y
< 0.

Note that the assumptions in (A2) ensure that system (3.1) is a Kolmogorov-type predator-prey
system. See also assumption (A′

2) in section 3.2. The initial values of system (3.1) are

x(θ) = φ(θ) ≥ 0, y(θ) = ψ(θ) ≥ 0, θ ∈ [−τ, 0], (3.2)

where φ and ψ are continuous functions.
Assumption (A1) ensures that (x∗, y∗) is a positive equilibrium of system (3.1).

Definition 9. The positive equilibrium (x∗, y∗) is said to be asymptotically stable if there exists a
δ > 0 such that

sup
−τ≤θ≤0

[|φ(θ)− x∗|+ |ψ(θ)− y∗|] < δ

implies
lim
t→∞

(x(t), y(t)) = (x∗, y∗),

where (x(t), y(t)) is the solution of system (3.1) with initial values (3.2).
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The equilibrium (x∗, y∗) of system (3.1) is asymptotically stable if the zero equilibrium (0, 0)
of the linearized system at (x∗, y∗) is asymptotically stable. Let

X(t) = x(t)− x∗, Y (t) = y(t)− y∗. (3.3)

Then the linearized system at (x∗, y∗) is

Ẋ(t) = (ax∗)X(t) + (bx∗)Y (t− τ1),

Ẏ (t) = (cy∗)X(t− τ2) + (dy∗)Y (t),
(3.4)

where
a =

∂f

∂x
(x∗, y∗), b =

∂f

∂y
(x∗, y∗), c =

∂g

∂x
(x∗, y∗), d =

∂g

∂y
(x∗, y∗). (3.5)

The characteristic equation is

λ2 − (ax∗ + dy∗)λ + adx∗y∗ − bcx∗y∗e−λ(τ1+τ2) = 0.

Let τ = τ1 + τ2. Then it can be written as

λ2 + pλ + r + qe−λτ = 0, (3.6)

where
p = −2(ax∗ + dy∗) > 0, r = 4adx∗y∗ > 0, q = 4bcx∗y∗ < 0.

Equation (3.6) is a special case of equation (2.6) with s = 0. Clearly, we can see that (H1) is
satisfied. Since ad− bc > 0, we have

q + r = 4(ad− bc)x∗y∗ > 0,

which implies that (H2) is satisfied. We also have

−p2 + 2r = −4(a2(x∗)2 + d2(y∗)2) < 0, r2 − q2 = 16(x∗)2(y∗)2(ad + bc)(ad− bc).

So (H3) is satisfied if ad+bc > 0. By Theorem 7, all roots of the characteristic equation (3.6) have
negative real parts if and only if ad + bc > 0. Therefore, we have the following theorem (Ruan
[74]).

Theorem 10. Suppose that f and g satisfy the assumptions (A1) and (A2). Then the positive
equilibrium (x∗, y∗) of the delayed predator-prey system (3.1) is absolutely stable if and only if
ad + bc > 0.

Remark 11. System (3.1) with τ1 = τ2 was studied by Gopalsamy [43] who showed that the delay
is “harmless” in the sense that the positive steady state is asymptotically stable independent of the
delay. Our result not only supports Gopalsamy’s claim but also generalizes his to the case with two
delays.
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Example 12. As an example, consider the Lotka-Volterra predator-prey model with two discrete
delays:

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t− τ1)],

ẏ(t) = y(t)[−r2 + a21x(t− τ2)− a22y(t)],
(3.7)

where ri, aij(i, j = 1, 2) are positive constants. If

r1a21 − r2a11 > 0, (3.8)

then system (3.7) has a positive equilibrium E∗ = (x∗, y∗), where

x∗ =
r1a22 + r2a12

a11a22 + a12a21

, y∗ =
r1a21 − r2a11

a11a22 + a12a21

. (3.9)

The condition ad + bc > 0 becomes a11a22 − a12a21 > 0. Thus, by Theorem 10, we have the
following result on the stability of E∗ = (x∗, y∗).

Corollary 13. If condition (3.8) is satisfied, i.e., if the positive equilibrium E∗ = (x∗, y∗) of system
(3.7) exists, then it is absolutely stable if and only if a11a22 − a12a21 > 0.

Remark 14. By the results in He [51] and Lu and Wang [60] we can see that the positive equilib-
rium E∗ = (x∗, y∗) of system (3.7) is indeed globally stable.

The above stability result depends on the assumption that a11a22 − a12a21 > 0. If a11a22 −
a12a21 < 0, then Theorem 7 can be used to show that when one of the delays varies, the positive
equilibrium E∗ loses its stability and a Hopf bifurcation can occur. In fact, Faria [32] proved the
following result (see also Song et al. [79]).

Corollary 15. If a11a22 − a12a21 < 0 and a11a22 6= 0, then there is a critical value τ2,0 > 0, such
that E∗ of system (3.7) is asymptotically stable when τ2 < τ2,0 and unstable when τ2 > τ2,0. A
Hopf bifurcation exists at E∗ when τ2 = τ2,0 in a two-dimensional stable local center manifold.

3.2. Delayed Predator Response
Next we consider a Kolmogorov-type predator-prey model with a discrete delay appearing in the
inter-specific interaction term of the predator equation:

ẋ(t) = x(t)f(x(t), y(t)),

ẏ(t) = y(t)g(x(t− τ), y(t)),
(3.10)

where τ ≥ 0 is a constant, C = C([−τ, 0], R), f : R2 → R and g : C × R → R satisfy the
assumptions (A1) and

(A′
2) f and g are continuously differentiable such that

∂f

∂x
< 0,

∂f

∂y
< 0,

∂g

∂x
> 0,

∂g

∂y
≤ 0.
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The initial values of system (3.10) are

x(θ) = φ(θ) ≥ 0, θ ∈ [−τ, 0], y(0) = y0 ≥ 0.

By the assumption (A1), (x∗, y∗) is a positive equilibrium of system (3.10). The stability of (x∗, y∗)
can be defined analogously as in the previous model. Using (3.3), we have the linearized system:

Ẋ(t) = (ax∗)X(t) + (bx∗)Y (t),

Ẏ (t) = (cy∗)X(t− τ) + (dy∗)Y (t),
(3.11)

where a < 0, b < 0, c > 0 and d ≤ 0 are defined in (3.5). The characteristic equation is

λ2 − (ax∗ + dy∗)λ + adx∗y∗ − bcx∗y∗e−λτ = 0. (3.12)

Compared with (2.6), we have

p = −(ax∗ + dy∗) > 0, r = adx∗y∗ ≥ 0, s = 0, q = −bcx∗y∗ > 0.

Hence, conditions (H1) and (H2) are satisfied. Also,

−p2 + 2r = −(ax∗)2 − (bx∗)2 < 0, r2 − q2 = (ad + bc)(ad− bc)(x∗y∗)2.

It follows that if ad + bc > 0, then condition (H3) holds; if ad + bc < 0, then conditions (H4)
holds. Denote

ω+ =

{
1

2
(2r − p2) + [

1

4
(2r − p2)2 − (r2 − q2)]

1
2

} 1
2

(3.13)

and

τ+
j =

1

ω+

arccos

{
ω2

+ − r

q

}
+

2jπ

ω+

, j = 0, 1, 2, · · · (3.14)

By Theorem 7, we have the following theorem (Ruan [74]).

Theorem 16. Suppose that f and g satisfy the assumptions (A1) and (A′
2). Let ω+ and τ+

j be
defined by (3.13) and (3.14), respectively.

(i) If ad + bc > 0, then the positive equilibrium (x∗, y∗) of the delayed predator-prey system
(3.10) is absolutely stable.

(ii) If ad + bc < 0, then (x∗, y∗) of system (3.10) is conditionally stable: it is asymptotically
stable when τ ∈ [0, τ+

0 ) and unstable when τ > τ+
0 . Moreover, system (3.10) undergoes

Hopf bifurcations at (x∗, y∗) when τ = τ+
j (j = 0, 1, 2, · · · ).

Remark 17. The above theorem can be used to study stability and bifurcation in some other
delayed predator-prey models which are in the form of system (3.10), such as the delayed predator-
prey model with mutual interference analyzed in Cao and Freedman [19] and Freedman and Rao
[38], the generalized Gause-type predator-prey model with delay studied by Zhao et al. [94], the
delayed predator-prey models with ratio-dependent functional response in Arditi et al. [2], Beretta
and Kuang [8] and Xiao and Li [90], the delayed predator-prey models with Beddington-DeAngelis
functional response in Liu and Yuan [59], etc.
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Example 18. As an example, consider the delayed Lotka-Volterra type predator-prey model:

ẋ(t) = x(t)[r1 − a11x(t)− a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t− τ)],
(3.15)

where r1, r2, a11, a12 and a21 are positive constants. If (3.8) holds, then system (3.15) has a positive
equilibrium (x∗, y∗), where

x∗ =
r2

a21

, y∗ =
r1a21 − r2a11

a12a21

.

Since d = 0, we have ad + bc = −a12a21 < 0 and

p = a11x
∗ > 0, r = 0, s = 0, q = a12a21x

∗y∗ > 0.

Thus,

ω+ =

{
−1

2
(a11x

∗)2 +

[
1

4
((a11x

∗)4 + (a12a21x
∗y∗)2

] 1
2

} 1
2

(3.16)

and

τ+
j =

1

ω+

arccos

{
ω2

+

a12a21x∗y∗

}
+

2jπ

ω+

, j = 0, 1, 2, · · · (3.17)

Corollary 19. Suppose (3.8) holds. Then the positive equilibrium (x∗, y∗) of system (3.15) is
conditionally stable: it is asymptotically stable when τ ∈ [0, τ+

0 ) and unstable when τ > τ+
0 ,

where τ+
0 is defined by (3.17). Moreover, when τ = τ+

0 Hopf bifurcation occurs at (x∗, y∗).

3.3. Delayed Prey Specific Growth
Now we consider a Kolmogorov-type predator-prey model with a discrete delay appearing in the
intra-specific interaction term of the prey equation:

ẋ(t) = x(t)f(x(t− τ), y(t)),

ẏ(t) = y(t)g(x(t), y(t)),
(3.18)

where τ ≥ 0 is a constant, C = C([−τ, 0], R), f : C × R → R and g : R2 → R satisfy the
assumptions (A1) and (A2). The initial values of system (3.18) are

x(θ) = φ(θ) ≥ 0, θ ∈ [−τ, 0], y(0) = y0 ≥ 0.

System (3.18) has the same positive equilibrium (x∗, y∗) as system (3.1). Using the change of
variables (3.3), the linearized system of (3.18) at (x∗, y∗) is

Ẋ(t) = (ax∗)X(t− τ) + (bx∗)Y (t),

Ẏ (t) = (cy∗)X(t) + (dy∗)Y (t),
(3.19)
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where a < 0, b < 0, c > 0 and d < 0 are defined by (3.5). The characteristic equation of the linear
system (3.19) has the form:

λ2 − dy∗λ− bcx∗y∗ + (−ax∗λ + adx∗y∗)e−λτ = 0. (3.20)

It is of the form of equation (2.6) with

p = −dy∗, r = −bcx∗y∗, s = −ax∗, q = adx∗y∗.

Clearly, (H1) and (H2) hold. If we assume that

s2 − p2 + 2r = (ax∗)2 − (dy∗)2 + 2bcx∗y∗ < 0 (3.21)

and
ad + bc < 0, (3.22)

then
r2 − q2 = −(ad + bc)(ad− bc)(x∗y∗)2 > 0

by assumption (A2), that is, (H3) is satisfied. Therefore, all roots of characteristic equation (3.20)
have negative real parts (Ruan [74]).

Theorem 20. Suppose that f and g satisfy the assumptions (A1) and (A2). If conditions (3.21) and
(3.22) are satisfied, then the positive equilibrium (x∗, y∗) of system (3.18) is absolutely stable.

If we assume that
ad + bc > 0, (3.23)

then
r2 − q2 = −(ad + bc)(ad− bc)(x∗y∗)2 < 0

and (H4) is satisfied. It follows that the characteristic equation (3.20) has a pair of purely imaginary
roots ±iω+, where

ω+ ={1

2
[(ax∗)2 − (dy∗)2 − 2bcx∗y∗

+ (((ax∗)2 − (dy∗)2 − 2bcx∗y∗)2 − 4(b2c2 − a2d2)(x∗y∗)2)
1
2 ]} 1

2 .
(3.24)

Denote

τ+
j =

1

ω+

arccos

{
bcd(y∗)2

a[ω2
+ + (dy∗)2]

}
+

2jπ

ω+

, j = 0, 1, 2, · · · (3.25)

By Theorem 7, we have the following result on the stability of the positive equilibrium (x∗, y∗) of
system (3.18) (Ruan [74]).

Theorem 21. Suppose that f and g satisfy the assumptions (A1) and (A2) and condition (3.23)
holds. Let ω+ and τ+

j (j = 0, 1, 2, · · · ) be defined by (3.24) and (3.25), respectively. The the
positive steady state (x∗, y∗) of system (3.18) is conditionally stable. More precisely, we have
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(i) if τ ∈ [0, τ+
0 ), then (x∗, y∗) is asymptotically stable;

(ii) if τ > τ+
0 , then (x∗, y∗) is unstable;

(iii) if τ = τ+
j (j = 0, 1, 2, · · · ), then system (3.18) undergoes Hopf bifurcations at (x∗, y∗).

Finally, if we assume that condition (3.22),

s2 − p2 + 2r = (ax∗)2 − (dy∗)2 + 2bcx∗y∗ > 0 (3.26)

and

(s2 + sr − p2)2 − 4(r2 − q2)

= [(ax∗)2 − (dy∗)2 + 2bcx∗y∗]2 + (ad + bc)(ad− bc)(x∗y∗)2 > 0
(3.27)

hold, then the characteristic equation (3.20) has two pairs of purely imaginary roots ±iω±, where
ω+ is given in (3.24) and ω− is defined as follows

ω− ={1

2
[(ax∗)2 − (dy∗)2 − 2bcx∗y∗

− (((ax∗)2 − (dy∗)2 − 2bcx∗y∗)2 − 4(b2c2 − a2d2)(x∗y∗)2)
1
2 ]} 1

2 .
(3.28)

Denote

τ−j =
1

ω−
arccos

{
bcd(y∗)2

a[ω2− + (dy∗)2]

}
+

2jπ

ω−
, j = 0, 1, 2, · · · (3.29)

Again by Theorem 7, we have the following theorem on the switch of stability in system (3.18)
(Ruan [74]).

Theorem 22. Suppose that f and g satisfy the assumptions (A1) and (A2) and conditions (3.22),
(3.26) and (3.27) hold. Let ω+ and τ+

j (j = 0, 1, 2, · · · ) be defined by (3.24) and (3.25), respectively
and ω− and τ−j (j = 0, 1, 2, · · · ) be defined by (3.28) and (3.29), respectively. Then there is a
positive integer k such that when τ ∈ [0, τ+

0 ), (τ−0 , τ+
1 ), · · · , (τ−k−1, τ

+
k ), the positive equilibrium

(x∗, y∗) of system (3.18) is asymptotically stable; when τ ∈ [0, τ+
0 ), (τ−0 , τ+

1 ), · · · , (τ−k−1, τ
+
k ) and

τ > τ+
k , (x∗, y∗) is unstable.

Remark 23. We would like to mention that switching of stabilities in delayed predator-prey models
has been observed and studied in Cushing [25] and Cushing and Saleem [26].

Example 24. As an example, consider the delayed Lotka-Volterra predator-prey model proposed
by May [64]:

ẋ(t) = x(t)[r1 − a11x(t− τ)− a12y(t)],

ẏ(t) = y(t)[−r2 + a21x(t)− a22y(t)],
(3.30)
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where ri, aij(i, j = 1, 2) are positive constants. If (3.8) holds, then system (3.30) has a positive
equilibrium (x∗, y∗) given by (3.9). Condition ad + bc > 0 again becomes a11a22 − a12a21 > 0.
Also,

ω± ={1

2
[(a11x

∗)2 − (a22y
∗)2 − 2a12a21x

∗y∗

±[(a11x
∗)2 + (a22y

∗)2)2 − 4((a11x
∗)2 − (a22y

∗)2)a12a21x
∗y∗]]

1
2} 1

2

(3.31)

and

τ±j =
1

ω±
arccos

{ −a22(y
∗)2

a11[ω2± + (a22y∗)2]

}
+

2jπ

ω±
, j = 0, 1, 2, · · · (3.32)

We have the following result on the stability of system (3.30).

Corollary 25. Let ω± and τ±j be defined by (3.31) and (3.32), respectively.

(i) If (a11x
∗)2 − (a22y

∗)2 + 2a12a21x
∗y∗ < 0 and a11a22 − a12a21 < 0, then the equilibrium

(x∗, y∗) of system (3.30) is absolutely stable.

(ii) If a11a22 − a12a21 > 0, then (x∗, y∗) is conditionally stable: it is asymptotically stable when
τ ∈ [0, τ+

0 ) and unstable when τ > τ+
0 . A Hopf bifurcation occurs when τ = τ+

0 .

(iii) If (a11x
∗)2 − (a22y

∗)2 + 2a12a21x
∗y∗ > 0 and a11a22 − a12a21 < 0, then there is a positive

integer k, such that the equilibrium (x∗, y∗) switches k times from stability to instability to
stability; that is, (x∗, y∗) is asymptotically stable when

τ ∈ [0, τ+
0 ), (τ−0 , τ+

1 ), · · · , (τ−k−1, τ
+
k )

and unstable when

τ ∈ [τ+
0 , τ−0 ), [τ+

1 , τ−1 ), · · · , [τ+
k−1, τ

−
k−1) and τ > τ+

k .

Using a global Hopf bifurcation result due to Wu [88], Song and Wei [80] showed that for
the delayed Lotka-Volterra predator-prey model (3.30) local Hopf bifurcation implies global Hopf
bifurcation after the second critical delay value. They considered a numerical example

ẋ(t) = x(t)[1− x(t− τ)− y(t)],

ẏ(t) = y(t)[−1 + 3x(t)− y(t)],
(3.33)

which has a positive equilibrium E∗ = (0.5, 0.5). One can find that τ+
0 = 2.2143, τ−0 = 4.4288, τ+

1

= 8.4975, τ−1 = 13.3286, τ+
2 = 14.7807, τ−2 = 22.2142, τ+

3 = 21.0639, . . . . Notice that τ+
3 <

τ−2 . Thus, the positive equilibrium E∗ = (0.5, 0.5) switches stability 2 times, which is stable for
τ ∈ (0, 2.2143), (4.4288, 8.4975), (13.3286, 14.7807), unstable for τ ∈ [2.2143, 4.4288), [8.4975,
13.3286) and for τ ≥ τ+

2 = 14.7807. They also presented some numerical simulations to show the
stability switch.
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4. A Delayed Predator-Prey System with Nonmonotonic Func-
tional Response

In this section, we consider the delayed predator-prey system with nonmonotone functional re-
sponse (1.13) and investigate the effect of the time delay on bifurcations of the system. When
τ = 0, there exist some parameter values such that system (1.13) has a positive equilibrium which
is a stable multiple focus in the interior of the first quadrant and there are some other parameter val-
ues of r,K, a, µ, and D such that system (1.13) exhibits Bogdanov-Takens bifurcation (see Ruan
and Xiao [77]). Xiao and Ruan [92] showed that when τ > 0 this equilibrium becomes unstable
and Hopf bifurcation always occurs for some τk > 0. Moreover, the delayed system (1.13) still has
a Bogdanov-Takens singularity for any τ > 0. We now introduce the results from Xiao and Ruan
[92].

4.1. Hopf Bifurcation
It has been shown in [77] that in the model (1.13) with τ = 0, when µ2 > 4aD2 and K >
µ+
√

µ2−4aD2

2D
, there are two positive equilibria: a focus (x1, y1) and a hyperbolic saddle (x2, y2).

Moreover, when K =
2µ−
√

µ2−4aD2

2D
the focus (x1, y1) is a multiple focus, at which the third focal

value (i.e. the Liapunov number) α3 is equal to zero if and only if µ = 18+2
√

6
3

aD2. Thus, (x1, y1)
can be a multiple focus of multiplicity at least two for some parameter values. Notice that when

4aD2 < µ < 18+2
√

6
3

aD2 and K =
2µ−
√

µ2−4aD2

2D
, (x1, y1) is a multiple focus of multiplicity one,

which is stable. We will consider the effect of the delay on the stability of (x1, y1) when it is a
stable multiple focus of multiplicity one as τ = 0 and will show that a small delay can change
the stability of the equilibrium. Choosing τ as the bifurcation parameter, we will discuss the Hopf
bifurcation of system (1.13) for a class of parameters a, µ,K, and D by using the normal form
theory developed by Faria and Magalhães [32, 34].

The following lemma ensures that (x1, y1) is a stable focus of multiplicity one and there are no
nontrivial closed orbits (periodic orbits or homoclinic orbits) when τ = 0 (Xiao and Ruan [92]).

Lemma 26. If 4aD2 < µ2 ≤ 16
3
aD2 and K =

2µ−
√

µ2−4aD2

2D
, then system (1.13) with τ = 0 has

an interior equilibrium (x1, y1), which is stable, and there are no nontrivial closed orbits (periodic
orbits or homoclinic orbits) in the interior of the first quadrant, where

x1 =
µ−

√
µ2 − 4aD2

2D
, y1 = r(1− x1

K
)(a + x2

1).

In fact, the equilibrium (x1, y1) is a focus of multiplicity one for small positive τ, which be-
comes unstable (Xiao and Ruan [92]).

Theorem 27. Suppose that 4aD2 < µ2 ≤ 16
3
aD2 and K =

2µ−
√

µ2−4aD2

2D
. Then system (1.13) has

an interior equilibrium (x1, y1) which is unstable for 0 < τ ¿ 1.
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Proof. Let X1 = x− x1, X2 = y − y1. Then system (1.13) becomes

Ẋ1(t) = − x1

a + x2
1

X2(t) +
∑

i+j≥2

1

i!j!
h

(1)
ij X i

1(t)X
j
2(t),

Ẋ2(t) =
µy1(a− x2

1)

(a + x2
1)

2
X1(t− τ) +

∑
i+j≥2

1

i!j!
h

(2)
ij X i

1(t− τ)Xj
2(t),

(4.1)

where i, j ≥ 0,

h
(1)
ij =

∂i+jh(1)

∂ix∂jy

∣∣∣∣
(x1,y1)

, h
(2)
ij =

∂i+jh(2)

∂ix∂jy

∣∣∣∣
(x1,y1)

,

h(1) = rx

(
1− x

K

)
− xy

a + x2
, h(2) = y

(
µx

a + x2
−D

)
.

To study the stability of the origin, consider the linearized system at (0, 0)

Ẋ1(t) = − x1

a + x2
1

X2(t),

Ẋ2(t) =
µy1(a− x2

1)

(a + x2
1)

2
X1(t− τ).

(4.2)

System (4.2) has the characteristic equation

∆(λ, τ) = λ2 + qe−λτ , (4.3)

where

q =
µx1y1(a− x2

1)

(a + x2
1)

3
> 0.

It is clear that the characteristic equation (4.3) has no real roots and ∆(λ, 0) = 0 has only a pair of
conjugate purely imaginary roots ±i

√
q.

Assume that λ = u + iv is a root of (4.3) for τ > 0. Then we have

H1(u, v, τ) = u2 − v2 + qe−uτ cos vτ = 0,

H2(u, v, τ) = 2uv − qe−uτ sin vτ = 0.

The Implicit Function Theorem implies that (H1(u, v, τ), H2(u, v, τ)) = (0, 0) defines u, v as
functions of τ, i.e. u = u(τ) and v = v(τ), in a neighborhood of τ = 0 such that

u(0) = 0, v(0) =
√

q,
d

dτ
u(τ)

∣∣∣∣
τ=0

> 0.

Therefore, u(τ) > 0 as τ > 0. This completes the proof of the theorem.
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Thus, there exist

τk =
2kπ√

q
, k = 0, 1, 2, ...

such that the characteristic equation (4.3) has two simple complex roots u(τ)± iv(τ) which cross
the imaginary axis transversely at τ = τk :

u(τk) = 0, v(τk) =
√

q > 0, u′(τk) > 0,

and (4.3) has no other roots when τ = τk in the imaginary axis which are multiples of i
√

q. Hence,
Hopf bifurcation may occur at τ = τk.

Next, choosing τ as a bifurcation parameter and following the normal form theory developed
by Faria and Magalhães [34], we discuss the explicit expressions of the normal form of system
(4.1) in terms of the original parameters in a small neighborhood of τk. For τ > 0, rewrite system
(4.1) as follows:

Ẋ1(t) = τ

[
− x1

a + x2
1

X2(t) +
∑

i+j≥2

1

i!j!
h

(1)
ij X i

1(t)X
j
2(t)

]
,

Ẋ2(t) = τ

[
µy1(a− x2

1)

(a + x2
1)

2
X1(t− 1) +

∑
i+j≥2

1

i!j!
h

(2)
ij X i

1(t− 1)Xj
2(t)

]
,

(4.4)

and the linearized system is

Ẋ1(t) = − τx1

a + x2
1

X2(t),

Ẋ2(t) =
τµy1(a− x2

1)

(a + x2
1)

2
X1(t− 1).

(4.5)

Let A be the generator of the linear semigroup corresponding to (4.5). When τ = τk, A has a pair
of purely imaginary characteristic roots±i2kπ, which are simple, and no other characteristic roots
with zero real part. Define ν = τ − τk. System (4.4) can be written as

Ẋ1(t) = − τkx1

a + x2
1

X2(t)− νx1

a + x2
1

X2(t) + (τk + ν)
∑

i+j≥2

1

i!j!
h

(1)
ij X i

1(t)X
j
2(t),

Ẋ2(t) =
τkµy1(a− x2

1)

(a + x2
1)

2
X1(t− 1) +

νµy1(a− x2
1)

(a + x2
1)

2
X1(t− 1)

+ (τk + ν)
∑

i+j≥2

1

i!j!
h

(2)
ij X i

1(t− 1)Xj
2(t)

(4.6)

or in the vector form

Ẋ(t) =

(
0 − τkx1

a+x2
1

τkµy1(a−x2
1)

(a+x2
1)2

0

) (
X1(t− 1)

X2(t)

)
+ H0(Xt, ν).
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For any ν, system (4.6) has an equilibrium at (0, 0). The phase space is C1 = C([−1, 0]; R2). Fix
a k ∈ N = {1, 2, ...} and define Λ = {−i2kπ, i2kπ}. We apply the normal form theory in [34] to
system (4.6).

Let the phase space C1 be decomposed by Λ as C1 = P ⊕ Q, where P is the generalized
eigenspace associated with Λ. Consider the bilinear form (·, ·) associated with the linear system

Ẋ1(t) = − τkx1

a + x2
1

X2(t),

Ẋ2(t) =
τkµy1(a− x2

1)

(a + x2
1)

2
X1(t− 1).

(4.7)

Let Φ and Ψ be bases for P and P ∗ associated with the eigenvalues±i2kπ of the adjoint equations,
respectively. Normalize them so that (Φ, Ψ) = I. Here, it is convenient to combine one complex
coordinate and two complex conjugate basis vectors to describe a two-dimensional real subspace
P. Consider system (4.6) in C([−1, 0];C), still denoted by C1.

Note that Φ̇ = ΦB, where B = diag(i2kπ,−i2kπ) is a diagonal matrix. Therefore, Φ and Ψ
are 2× 2 matrices of the form

Φ(θ) = [φ1(θ), φ2(θ)], φ1(θ) = ei2kπθv, φ2(θ) = φ1(θ), −1 ≤ θ ≤ 0,

Ψ(s) =

(
ψ1(s)
ψ2(s)

)
, ψ1(s) = e−i2kπsuT , ψ2(s) = ψ1(s), 0 ≤ s ≤ 1,

where the bar means complex conjugation, uT is the transpose of u, and u, v are vectors in C2,

u =

(
u1

u2

)
=

(
1

2+i2kπ
ix1√

q(a+x2
1)(2+i2kπ)

)
, v =

(
v1

v2

)
=

(
1

−i
√

q(a+x2
1)

x1

)
.

Enlarging the phase space C1 by considering the space BC and using the decomposition Xt =
Φz(t) + yt, z ∈ C2, yt ∈ Q′, we decompose system (4.6) as follows

ż = Bz + Ψ(0)H0(Φz + y, ν),

ẏ = AQ′y + (I − π)X0H0(Φz + y, ν).
(4.8)

Following the procedure of reducing normal forms in [34], we consider

Ψ(0)H0(Φz + y, ν) =
1

2
h2(z, y, ν) +

1

3!
h3(z, y, ν) + h.o.t.,

where hj(z, y, ν)(j = 1, 2) are homogeneous polynomials in (z, y, ν) of degree j with coefficients
in C2 and h.o.t. stands for higher order terms. Thus, in a finite dimensional locally invariant
manifold tangent to the invariant subspace P of (4.7) at x = 0, ν = 0, the normal form of (4.8) is
given by

ż = Bz +
1

2
h̄2(z, 0, ν) +

1

3!
h̄3(z, 0, ν) + h.o.t., (4.9)
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where h̄2, h̄3 are the second and third order terms in (z, ν), respectively. Using the notation in [34],
we have

h̄2(z, 0, ν) = ProjKer(M ′
2)h2(z, 0, ν),

where

Ker(M ′
2) = span

{(
z1ν
0

)
,

(
0

z2ν

)}
,

h2(z, 0, ν) =

(
2i
√

quT vz1ν + a20z
2
1 + a11z1z2 + a02z

2
2

−2i
√

qūT v̄z2ν + ā20z
2
1 + ā11z1z2 + ā02z

2
2

)
,

in which

a20 = τk(h
(1)
20 u1 + h

(1)
11 v2u1 + h

(2)
20 e−4ikπu2 + h

(2)
11 e−2ikπv2u2),

a11 = τk(2h
(1)
20 u1 + 2h

(2)
20 u2 + h

(2)
11 (e−2ikπv̄2 + e2ikπv2)u2),

a02 = τk(h
(1)
20 u1 + h

(1)
11 v̄2u1 + h

(2)
20 e4ikπu2 + h

(2)
11 e2ikπv̄2u2).

Therefore,
1

2
h̄2(z, 0, ν) =

(
i
√

quT vz1ν
−i
√

qūT v̄z2ν

)
.

To eliminate these nonresonant terms in the quadratic terms h2(z, 0, ν), we have to make a series
of transformations of variables, which can change the coefficients of the cubic terms of h3(z, 0, ν).
Notice that

Ker(M ′
3) = span

{(
z2
1z2

0

)
,

(
z1ν
0

)
,

(
0

z1z
2
2

)
,

(
0

z2ν
2

)}
.

However, the terms O(|z|ν2) are irrelevant to determine the generic Hopf bifurcation. Hence, we
only need to compute the coefficient of z2

1z2. After some computations we find that the coefficient
of z2

1z2 is

c =
i

4kπ
(a20a11 − 2|a11|2 − 1

3
|a02|2) +

1

2
a21,

where
a21 = τk[3h

(1)
30 u1 + h

(1)
21 v2u1 + 3h

(2)
30 e−2ikπu2 + h

(2)
21 (e−4ikπv̄2 + 2v2)u2].

Thus,
1

3!
h̄3(z, 0, ν) =

(
cz2

1z2

c̄z1z
2
2

)
+ O(|z|ν2).

The normal form (4.9) relative to P can be written in real coordinates (x, y), through the change of
variables z1 = x− iy, z2 = x+ iy. Followed by the use of polar coordinates (r, θ), x = r cos θ, y =
sin θ, this normal form becomes

ṙ = c1νr + c2r
3 + O(ν2r + |(r, ν)|4),

θ̇ = −2kπ + O(|(r, ν)|), (4.10)

where c1 =
kπ
√

q

1+k2π2 , c2 = Re(c).
Summarizing the above analysis, we have the following theorem (Xiao and Ruan [92]).
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Theorem 28. If c2 6= 0 and τk > 0, then system (4.6) exhibits a generic Hopf bifurcation. The
periodic orbits of system (4.6) bifurcating from the origin and ν = 0 satisfy

r(t, ν) =

√
−c1ν

c2

+ O(ν), θ(t, ν) = −2kπt + O(|ν| 12 )

so that

(i) if c1c2 < 0 (c1c2 > 0 respectively), there exists a unique nontrivial periodic orbit in a
neighborhood of r = 0 for ν > 0 (ν < 0 respectively) and no nontrivial periodic orbits for
ν < 0 (ν > 0 respectively);

(ii) the nontrivial periodic solutions in the center manifold are stable if c2 < 0 and unstable if
c2 > 0. They are always unstable in the whole phase space C1 since the center manifold are
unstable for τk > 0.

4.2. Bogdanov-Takens Bifurcation
System (1.13) with τ = 0 has a unique interior equilibrium (x0, y0) if and only if µ2 − 4aD2 = 0
and µ < 2KD. Furthermore, when µ = KD the equilibrium (x0, y0) is a cusp of codimension 2
(i.e. a Bogdanov-Takens singularity) as shown in [77], and x0 = µ/2D, y0 = ra. Since time delay
does not affect the number and location of equilibria, (x0, y0) is still a unique interior equilibrium
for the delayed system (1.13) when µ2 − 4aD2 = 0 and µ = KD. We will show that the interior
equilibrium (x0, y0) is also a Bogdanov-Takens singularity for system (1.13). Denote by µ0, a0, D0,
and K0 if they satisfy µ2 − 4aD2 = 0 and µ = KD.

Consider the delayed model

ẋ(t) = rx(t)

(
1− x(t)

K0

)
− x(t)y(t)

a0 + x2(t)
,

ẏ(t) = y(t)

(
µ0x(t− τ)

a0 + x2(t− τ)
−D0

) (4.11)

in the phase space C := C([−τ, 0]; R2), here τ > 0 is a constant. It is convenient to reparametrize
system (4.11) so that it becomes

ẋ(t) = τ

[
rx(t)

(
1− x(t)

K0

)
− x(t)y(t)

a0 + x2(t)

]
,

ẏ(t) = τ

[
y(t)

(
µ0x(t− 1)

a0 + x2(t− 1)
−D0

)]
.

(4.12)

The advantage is that we can work in a fixed phase space C1 := C([−1, 0]; R2) when τ varies.
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First of all, we translate the equilibrium (x0, y0) of system (4.12) to the origin. Let x1 =
x− x0, x2 = y − y0. Then system (4.12) becomes

ẋ1(t) = τ

[
− x0

a0 + x2
0

x2(t) +
∑

i+j≥2

1

i!j!
f

(1)
ij xi

1(t)x
j
2(t)

]
,

ẋ2(t) = τ

[ ∑
i+j≥2

1

i!j!
f

(2)
ij xi

1(t− 1)xj
2(t)

]
,

(4.13)

where i, j ≥ 0,

f
(1)
ij =

∂i+jf (1)

∂ix∂jy

∣∣∣∣
(x0,y0)

, f
(2)
ij =

∂i+jf (2)

∂ix∂jy

∣∣∣∣
(x0,y0)

,

f (1) = rx

(
1− x

K0

)
− xy

a0 + x2
, f (2) = y

(
µ0x

a0 + x2
−D0

)
.

Linearization at the zero equilibrium yields

ẋ1(t) = − τx0

a0 + x2
0

x2(t),

ẋ2(t) = 0,
(4.14)

which has λ = 0 as a double characteristic value and no other characteristic values.
Now we consider the normal form of system (4.13) at the singularity (0, 0). For simplicity, we

rewrite system (4.14) as
Ẋ(t) = L(Xt),

here X(t) = (x1(t), x2(t)), L(φ) = L

(
φ1(−1)
φ2(0)

)
, and φ = (φ1, φ2). According to the normal

form theory developed by Faria and Magalhães [33] we know that the center manifold of system
(4.14) at the origin is two dimensional and system (4.13) can be reduced to an ODE in the plane.

Let A0 be the infinitesimal generator of the linear system (4.14). Consider Λ = {0} and
denote by P the invariant space of A0 associated with the eigenvalue λ = 0. Using the formal
adjoint theory of RFDE in [33], we know that the phase space C1 can be decomposed by Λ as
C1 = P ⊕ Q. Let Φ and Ψ be the bases for P and P ∗, the space associated with the eigenvalue
λ = 0 of the adjoint equation, respectively, and be normalized so that (Φ, Ψ) = I, where (·, ·) is
the bilinear form defined in section 2 of [33]. We refer to [33] for the unexplained notation and
definitions. Φ and Ψ are 2× 2 matrices of the form:

Φ(θ) =

(
1 θ

0 −a0+x2
0

τx0

)
=

(
1 θ
0 − µ0

τD0

)
, −1 ≤ θ ≤ 0,

Ψ(s) =

(
1 τD0

µ0
s

0 − τD0

µ0

)
, 0 ≤ s ≤ 1.

165



S. Ruan Predator-prey models with discrete delay

The matrix B satisfying Φ̇ = ΦB is given by

B =

(
0 1
0 0

)
.

Enlarging the phase space C1 by considering the space BC = {φ : [−1, 0] → R2; φ is con-
tinuous on [−1, 0) with a jump discontinuity at 0}, we can see that the projection of C1 upon P,
associated with the decomposition C1 = P ⊕Q, is now replaced by π : BC → P, which leads to
the decomposition

BC = P ⊕Kerπ

following [33]. Now decompose x in system (4.13) according to the preceding decomposition of
BC, in the form x = Φz + y, with z ∈ R2 and y ∈ Kerπ ∩D(A0) = Q′. Hence, system (4.13) in
the center manifold is equivalent to the system

ż = Bz + Ψ(0)F (Φz), (4.15)

where

F (φ) =

(
τ

∑
i+j≥2

1
i!j!

f
(1)
ij [φ1(0)]i[φ2(0)]j

τ
∑

i+j≥2
1

i!j!
f

(2)
ij [φ1(−1)]i[φ2(0)]j

)
,

where φ = (φ1, φ2). Writing F in its Taylor expansion up to the second order terms in the form
F (z) = 1

2!
F2(z) + O(|z|3), we have

ż1 = z2 +
1

2!
τf

(1)
20 z2

1 + τP1(z1, z2),

ż2 = − 1

2!

τ 2D0

µ0

f
(2)
20 (z1 − z2)

2 + τP2(z1, z2),
(4.16)

where f
(1)
20 = − rD0

µ0
, f

(2)
20 = −rD0, P1 and P2 are C∞ functions in (z1, z2) at least of the third order.

In a neighborhood of the origin, we make the inverse transformation

z̄1 = z1, z̄2 = z2 +
τ

2
f

(1)
20 z2

1 + τP1(z1, z2).

After dropping the bars, system (4.16) becomes

ż1 = z2,

ż2 = αz2
1 + βz1z2 + γz2

2 + P3(z1, z2),
(4.17)

here

α =
rτ 2D2

0

2µ0

, β = −rτD0 + rτ 2D2
0

µ0

, γ =
rτ 2D2

0

2µ0

,

and P3 is a C∞ function in (z1, z2) at least of the third order whose coefficients are functions of
τ, r,D0, µ0, a0, and K0. By the nonresonance conditions among the set Λ, we can eliminate the z2

2

term in the second equation of system (4.17) and obtain the following

ż1 = z2,

ż2 = αz2
1 + βz1z2 + P4(z1, z2),

(4.18)
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where P4 is a C∞ function in (z1, z2) at least of the third order. By the above argument, we have
the following result (Xiao and Ruan [92]).

Theorem 29. For any τ > 0, the equilibrium (x0, y0) of system (4.11) is a Bogdanov-Takens
singularity, the dynamics in a neighborhood of (x0, y0) is generically determined by the quadratic
terms of system (4.11).

Now we determine a versal unfolding for the original system (4.11) or system (4.12) with a
Bogdanov-Takens singularity, i.e., to determine which of the parameters r,K, D, a, µ, and τ can
be chosen as bifurcation parameters such that system (4.11) exhibits Bogdanov-Takens bifurcation.
We cannot get any versal unfoldings of this Bogdanov-Takens singularity if we require that system
(4.12) always has an equilibrium (x0, y0), as stated in [33], for all bifurcation parameters. However,
if we give up this restraint and assume the following condition instead

(H) System (4.12) has a Bogdanov-Takens singularity (x0, y0) when all bifurcation parameters
equal to zero,

then we can obtain a versal unfolding of this Bogdanov-Takens singularity depending on all param-
eters of the original system. For this purpose, choose K and D in system (4.12) as the bifurcation
parameters, i.e. consider 1

K0
+ λ1 and D0 + λ2, where λ1 and λ2 vary in a small neighborhood of

(0, 0). Adding these perturbations to system (4.12), we obtain

ẋ(t) = τ

[
rx(t)

(
1− x(t)

K0

)
− x(t)y(t)

a0 + x2(t)
− rλ1x

2(t)

]
,

ẏ(t) = τy(t)

(
µ0x(t− 1)

a0 + x2(t− 1)
−D0 − λ2

)
.

(4.19)

When λ1 = λ2 = 0, system (4.19) has a Bogdanov-Takens singularity (x0, y0) and there exists a
two-dimensional center manifold.

Let y1 = x− x0, y2 = y − y0. Then system (4.19) becomes

ẏ1(t) = −rτx2
0λ1 − 2rτx0λ1y1(t)− τx0

a0 + x2
0

y2(t) +
∑

i+j≥2

1

i!j!
τg

(1)
ij yi

1(t)y
j
2(t),

ẏ2(t) = −τy0λ2 − τλ2y2(t) +
∑

i+j≥2

1

i!j!
τg

(2)
ij yi

1(t− 1)yj
2(t),

(4.20)

where i, j ≥ 0,

g
(1)
ij =

∂i+jg(1)

∂ix∂jy

∣∣∣∣
(x0,y0,λ1)

, g
(2)
ij =

∂i+jg(2)

∂ix∂jy

∣∣∣∣
(x0,y0,λ2)

,

g(1) = rx

(
1− x

K0

)
− xy

a0 + x2
− rλ1x

2, g(2) = y

(
µ0x

a0 + x2
−D0 − λ2

)
.
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Decompose the enlarged phase space BC of system (4.20) as BC = P ⊕Kerπ. Then y in system
(4.20) can be decomposed as y = Φz + u with z ∈ R2 and u ∈ Q′. Hence, system (4.20) is
decomposed as follows

ż = B1 + B2z + Ψ(0)G(Φz + u),

u̇ = AQ′u + (I − π)X0[B0 + B2(Φ(0)z + u(0)) + G(Φz + u)],
(4.21)

where

X0(θ) =

{
I, θ = 0
0, −1 ≤ θ < 0,

B0 =

( −rx2
0τλ1

−τy0λ2

)
, B1 = Ψ(0)B0, B2 =

( −2rτx0λ1 1
0 −τλ2

)
,

and

G(φ) =

( ∑
i+j≥2

1
i!j!

τg
(1)
ij [φ1(0)]i[φ2(0)]j∑

i+j≥2
1

i!j!
τg

(2)
ij [φ1(−1)]i[φ2(0)]j

)
,

here φ = (φ1, φ2).
To compute the normal form of system (4.20) at (x0, y0), consider

ż = B1 + B2z + Ψ(0)G(Φz),

that is,

ż1 = −rτa0λ1 − 2rτx0λ1z1 + z2 − (rτλ1 +
rτD0

2µ0

)z2
1 + τR1(z1, z2),

ż2 =
1

2
rτ 2x0λ2 − τλ2z2 +

1

2

rτ 2D2
0

µ0

(z1 − z2)
2 + τR2(z1, z2),

(4.22)

where R1 and R2 are C∞ functions in (z1, z2) at least of the third order. Following the procedure
of deriving normal form in Kuznetsov [57], system (4.22) can be reduced to

ż1 = z2,

ż2 = γ1 + γ2z2 + αz2
1 + βz1z2 + R(z1, z2, γ1, γ2),

(4.23)

here γ1 = 1
2
rτ 2x0λ2, γ2 = −τλ2 + rτx0

2
(rτ 2D0 − 4)λ1, and R = O(|γ|2) + O(|γz|3).

Hence, when τ 2rD0 6= 4, system (4.19) exhibits Bogdanov-Takens bifurcation (Xiao and Ruan
[92]).

Theorem 30. When τ 2rD0 6= 4, there exists a unique smooth curve HL corresponding to ho-
moclinic bifurcation and a unique smooth curve H corresponding to Hopf bifurcation, such that
system (4.19) has a unique and hyperbolic stable cycle for parameter values inside the region
bounded by H and HL in the lower half plane λ2 < 0 and no cycles outside this region. The local
representations of these bifurcations curves are given by

HL = {(λ1, λ2); γ2 − 5

7
β

√
−γ1

α
= 0, γ1 < 0}
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and

H = {(λ1, λ2); γ2 − β

√
−γ1

α
= 0, γ1 < 0}.

5. Predator-Prey Models with Delay and Harvesting
In this subsection we review some results in Martin and Ruan [63] and Xia et al. [89] about the
combined effects of constant-rate harvesting and delay on the dynamics of predator-prey systems.
Firstly, we consider a generalized Gause-type predator-prey model with prey harvesting and a time
delay in the predator response function. Secondly, a generalized Gause-type predator-prey model
with prey harvesting and a time delay in the prey specific growth term is analyzed. Thirdly, we
study the Wangersky-Cunningham predator-prey model with prey harvesting. Finally, we analyze
a generalized Gause-type predator-prey model with predator harvesting and a time delay in the
predator response function.

5.1. Gause Models with Prey Harvesting and Delay in the Predator Re-
sponse

In this section, we consider the system

x′(t) = x(t)g(x(t))− y(t)p(x(t))−H,

y′(t) = y(t)[−d + µp(x(t− τ))],
(5.1)

where µ > 0 is the rate of conversion of consumed prey to predator, d > 0 is the death rate of
the predator in the absence of the prey, H is the constant-rate harvesting of the prey species x.
Also, g(x) is the specific growth rate of the prey in the absence of predators where g(0) ≥ 0 and
g(x) is continuous and decreasing in x. The capture rate of prey per predator, that is the functional
response is given by p(x) where p(x) > 0 and p′(x) > 0. The delay τ ≥ 0 is a constant.

When H = 0, the system has been studied by many researchers, see Beretta and Kuang [7],
Ruan [74] and the references cited therein.

The positive equilibrium (x∗, y∗) is given by

x∗ = p−1(
d

µ
), y∗ =

d

µ
[x∗g(x∗)−H].

The y∗ value implies that x∗g(x∗) > H . Let X = x − x∗, Y = y − y∗. We then obtain the
linearized system

X ′(t) = [g(x∗) + x∗g′(x∗)− y∗p′(x∗)]X(t)− p(x∗)Y (t),

Y ′(t) = µy∗p′(x)X(t− τ).
(5.2)

The characteristic equation takes the form

λ2 + pλ + re−λτ = 0, (5.3)
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where
p = −[g(x∗) + x∗g′(x∗)− y∗p′(x∗)], r = µx∗y∗p(x∗)p′(x∗).

Define

ω2
± =

−p2 ±
√

p4 + 4r2

2
(5.4)

and

τ+
j =

1

ω+

arctan

(
p

ω+

)
+

2jπ

ω+

, j = 0, 1, 2, . . . (5.5)

By Theorem 7, we have the following result (Martin and Ruan [63]).

Corollary 31. Let τ+
j be defined by equation (5.5). If p > 0 and r > 0, then the equilibrium

(x∗, y∗) of system (5.1) is stable for τ < τ+
0 and unstable for τ > τ+

0 . The system undergoes Hopf
bifurcation at τ+

0 .

Example 32. As an example, we consider the system

dx

dt
= x(t)

{
2

[
1− x(t)

50

]
− y(t)

x(t) + 40

}
− 10,

dy

dt
= y(t)

[
−3 +

6x(t− τ)

x(t− τ) + 40

]
.

(5.6)

The positive equilibrium is (x∗, y∗) = (40, 12). By Corollary 31, there is a critical value τ0 =
8.205. The equilibrium (x∗, y∗) = (40, 12) is asymptotically stable for τ < 8.205, becomes unsta-
ble for τ > 8.205, and there is a bifurcating periodic solution. Figure 1 shows that the equilibrium

10.5

11

11.5

12

12.5

13

13.5

y

39.4 39.6 39.8 40 40.2 40.4 40.6
x

Figure 1: The equilibrium (x∗, y∗) = (40, 12) of system (5.6) is an asymptotically stable focus for
τ = 7.

point (40, 12) is a stable focus for τ = 7 and Figure 2 shows that for τ = 9 a limit cycle is present.
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5
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25

y

35 36 37 38 39 40 41 42 43
x

Figure 2: There is a bifurcating periodic solution of system (5.6) for τ = 9.

We can also vary the harvesting constant H to see how it affects the dynamics. Notice that
the equilibrium value y∗ depends on H : the more a prey population is harvested, the lower is
the number of predators at the equilibrium, and the less a prey population is harvested, the higher
is the number of predators y∗. In this example, the critical harvesting rate is H = xg(x) = 16.
Therefore, for H < 16 the equilibrium is positive and stable, but for H ≥ 16 the prey population
is driven to extinction and the system collapses. Thus, a variation in H can change the stability
of the model (5.6). For example, choose τ = 9 (a value at which the equilibrium is unstable),

30
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45

50

x
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t-time

H=10

H=15

0
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20

25

y

0 20 40 60 80 100 120 140
t-time

H=10

H=15

Figure 3: Behaviors of the prey and predator populations of system (5.6) for different values of H
with τ = 9.

when H = 10 both the prey and predator populations oscillate about the equilibrium values; when
H = 15 (a value close to the critical harvesting rate) both the prey and predator populations
converge to the equilibrium values (see Figure 3). Therefore, the system regains its stability when
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the prey harvesting constant is increased but less than the critical harvesting. This indicates that
the harvesting rate has an effect of stabilizing the equilibrium of the model.

5.2. Gause Models with Prey Harvesting and Delayed Prey Specific Growth
Consider the system

x′(t) = x(t)g(x(t− τ))− y(t)p(x(t))−H,

y′(t) = y(t)[−d + µp(x(t))].
(5.7)

When τ = 0, the ODE model was studied by Brauer and Soudack [14, 15]; when H = 0, the
delayed predator-prey model has been analyzed by May [61], Hassard et al. [48], Ruan [74], etc.
The stability of system (5.7) was investigated by Brauer [17].

The positive equilibrium E∗ = (x∗, y∗) has the same expression as that for model (5.1). The
linearized system about the equilibrium point is given by

X ′(t) = x∗g′(x∗)X(t− τ) + (g(x∗)− y∗p′(x∗))X(t)− p(x∗)Y (t),

Y ′(t) = µy∗p′(x∗)X(t).
(5.8)

The characteristic equation is

λ2 + pλ + qλe−λτ + α = 0, (5.9)

where
p = −[g(x∗)− y∗p′(x∗)], q = −x∗g′(x∗), α = µy∗p(x∗)p′(x∗).

Define

ω2
± =

q2 − p2 + 2α±
√

(q2 − p2 + 2α)2 − 4α2

2
(5.10)

and

τ±j =
1

ω±
arctan

(
ω2
± − α

pω±

)
+

2jπ

ω±
, j = 0, 1, 2, ... (5.11)

Applying Theorem 7, we have the following theorem (Martin and Ruan [63]).

Corollary 33. Let τ±j be defined by equation (5.11).

(i) If p + q > 0, α > 0 and p2 − q2 − 2α > 0, then the equilibrium (x∗, y∗) of system (5.7) is
asymptotically stable for all τ ≥ 0.

(ii) If p + q > 0, α > 0, q2 − p2 + 2α > 0 and (q2 − p2 + 2α)2 = 4α2, then the equilibrium
(x∗, y∗) of system (5.7) is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0.
Hopf bifurcation occurs when τ = τ0; that is, a family of periodic solutions bifurcates from
(x∗, y∗) as τ passes through the critical value τ ∗.
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(iii) If p+ q > 0, α > 0, q2−p2 +2α > 0 and (q2−p2 +2α)2 > 4α2, then there exists a positive
integer k such that there are k switches from stability to instability and to stability. In other
words, when

τ ∈ [0, τ+
0 ), (τ−0 , τ+

1 ), ..., (τ−k−1, τ
+
k ),

the equilibrium (x∗, y∗) of system (5.7) is stable, and when

τ ∈ [τ+
0 , τ−0 ), (τ+

1 , τ−1 ), ..., (τ+
k−1, τ

−
k ),

(x∗, y∗) is unstable. Therefore, there are bifurcations at (x∗, y∗) for τ = τ±j , j = 0, 1, 2, ...

Example 34. As an example, consider the system

dx

dt
= x(t)

{
2

[
1− x(t− τ)

40

]
− y(t)

x(t) + 10

}
− 10,

dy

dt
= y(t)

[
x(t)

x(t) + 10
− 2

3

]
.

(5.12)

There is a positive equilibrium (x∗, y∗) = (20, 15). By Corollary 33, there is a critical value τ0 =
0.8256, the equilibrium (x∗, y∗) is stable when τ < 0.8256. A Hopf bifurcation occurs when
τ = 0.8256; and the equilibrium becomes unstable and a bifurcating periodic solution exists when
τ > 0.8256. Figure 4 shows that both the prey and predator populations reach periodic oscillations
around the equilibrium (x∗, y∗) = (20, 15) in finite time.
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Figure 4: The oscillations of the prey and predator populations in time for τ = 0.826
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We can also see that varying H will affect the dynamics of the model. For τ = 0.826, varying
the value of the harvesting constant H changes the y∗ value of the equilibrium point (x∗, y∗) :
increasing H decreases y∗ but does not change the frequencies of these oscillations (see Figure 5).
However, as in Example 32, increasing H further can decrease y∗ to reach zero and thus drive the
species to extinction.

5

10

15

20

y

0 20 40 60 80 100
t-time

Figure 5: Behavior of the predator population for different values of H = 10 (top ) and H = 15
(bottom) for τ = 0.826.

5.3. Wangersky-Cunningham Model with Prey Harvesting
Consider the system:

x′(t) = x(t)[r1 − ax(t)− by(t)]−H,

y′(t) = −r2y(t) + cx(t− τ)y(t− τ),
(5.13)

where r1 is the rate of increase of the prey population, r2 is the death rate of the predator population,
b is the coefficient of effect of predation on x, c is the coefficient of effect of predation on y, H is the
constant-rate harvesting of the prey species x. Also, a = r1/Kx where Kx, a density-dependent
term, represents the limitation upon the growth of the prey other than by predation. The delay
τ ≥ 0 is a constant based on the assumption that the change rate of predators depends on the
number of prey and of predators present at some previous time.

The model when H = 0 was proposed and analyzed by Wangersky and Cunningham [86] and
their analysis was criticized by Goel et al. [41]. However, as pointed out by Nunney [71], the
analysis of Goel et al. is incomplete either. Notice that our results hold if H = 0.

The interior equilibrium (x∗, y∗) is given by

x∗ =
r2

c
, y∗ =

cr1r2 − ar2
2 −Hc2

bcr2

(5.14)

if cr1r2 − ar2
2 − Hc2 ≥ 0. We can see that as H increases, y∗ decreases continuously until it

reaches zero at the critical harvest rate

H = x∗(x∗r1 − ax∗).
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Let X = x− x∗, Y = y − y∗. We obtain the linearized system

X ′(t) = (r1 − 2ax∗ − by∗)X(t)− bx∗Y (t),

Y ′(t) = cy∗X(t− τ)− r2Y (t) + cx∗Y (t− τ).
(5.15)

The characteristic equation is

λ2 + pλ + r + (sλ + q)e−λτ = 0, (5.16)

where

p = r2 − r1 + 2ax∗ + by∗, q = cx∗(r1 − 2ax∗ − by∗) + bcx∗y∗,

r = −r2(r1 − 2ax∗ − by∗), s = −cx∗.

Define

ω2
± =

s2 − p2 + 2r ±
√

(s2 − p2 + 2r)2 − 4(r2 − q2)

2
(5.17)

and

τ±j =
1

ω±
arctan

(
ω±(pq − rs + sω2

±)

psω2± + (r − ω2±)q

)
+

2jπ

ω±
, j = 0, 1, 2, ... (5.18)

By Theorem 7, we have the following theorem (Martin and Ruan [63]).

Corollary 35. Let τ±j be defined by equation (5.18).

(i) If p + s > 0, q + r > 0, p2 − s2 − 2r > 0, and r2 − q2 > 0, then the equilibrium (x∗, y∗) of
system (5.13) is asymptotically stable for all τ ≥ 0.

(ii) If p + s > 0, q + r > 0, and r2 − q2 < 0, then the equilibrium (x∗, y∗) of system (5.13)
is asymptotically stable for τ < τ0 and unstable for τ > τ0. Hopf bifurcation occurs when
τ = τ0.

(iii) If p+ s > 0, q + r > 0, r2− q2 > 0, s2−p2 +2r > 0, and (s2−p2 +2r)2 > 4(r2− q2), then
there exists a positive integer k such that there are k switches from stability to instability and
to stability. In other words, when

τ ∈ [0, τ+
0 ), (τ−0 , τ+

1 ), ..., (τ−k−1, τ
+
k ),

the equilibrium (x∗, y∗) of system (5.13) is stable, and when

τ ∈ [τ+
0 , τ−0 ), (τ+

1 , τ−1 ), ..., (τ+
k−1, τ

−
k ),

(x∗, y∗) is unstable. Therefore, there are bifurcations at (x∗, y∗) when τ = τ±j , j = 0, 1, 2, ...
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Example 36. As an example, we consider the following system

dx

dt
= x(t) [20− x(t)− y(t)]− 7,

dy

dt
= −15y(t) + 3x(t− τ)y(t− τ),

(5.19)

which has a positive equilibrium (x∗, y∗) = (5, 68/5). By Corollary 35 there is a critical value
τ0 = 0.0385, when τ < 0.0385 the equilibrium (5,68/5) is asymptotically stable; when τ = 0.0385
the equilibrium (5,68/5) loses its stability; and when τ > 0.0385 the equilibrium (5,68/5) becomes
unstable and there is a bifurcating periodic solution (see Figure 6).
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Figure 6: There is a bifurcating periodic solution for τ = 0.05.

To see whether varying H will affect the dynamics of the model, we calculate that for H = 1,
y∗ = 74/5, compared to y∗ = 68/5 for H = 7. Therefore, increasing H will decrease y∗ but does
not change the frequency of the oscillations (Figure 7). However, once again increasing H further
will decrease y∗ to zero.
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Figure 7: Behavior of the predator population for different values of H for τ = 0.05.
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5.4. Predator Harvesting and Delayed Predator Response
Finally, we consider a predator-prey model with Holling II functional response in which the preda-
tor population is harvested at a constant rate and there is a delay in the predator response term (see
Xia et al. [89]): {

dx
dt

= rx(t)(1− x(t)
K

)− x(t)y(t)
A+x(t)

,
dy
dt

= y(t)(−D + x(t−τ)
A+x(t−τ)

)−H.
(5.20)

When τ = 0, system (5.20) was studied in details by Xiao and Ruan [91]. We know that system
(5.20) has a unique interior equilibrium E = (x0, y0) provided that

(D − 1 +
AD

K
)2 − 4

(1−D)(ADr + H)

Kr
= 0 and K >

AD

1−D
(5.21)

hold and (x0, y0) is given by

x0 =
K(1−D)− AD

2(1−D)
, y0 = r(1− x0

K
)(A + x0).

We assume throughout this section that 0 < D < 1.
We translate the equilibrium (x0, y0) of system (5.20) to the origin. Setting z1(t) = x(t) −

x0, z2(t) = y(t)− y0, system (5.20) can be written as the following system




ż1(t) = α1z1(t) + α2z2(t) +
∑

i+j≥2
1

i!j!
f

(1)
ij zi

1(t)z
j
2(t),

ż2(t) = β1z1(t− τ) + β2z2(t) +
∑

i+j≥2
1

i!j!
f

(2)
ij zi

1(t− τ)zj
2(t),

(5.22)

where

α1 = r − 2x0r

K
− Ay0

(A + x0)2
, α2 = − x0

A + x0

,

β1 =
Ay0

(A + x0)2
, β2 = −D +

x0

A + x0

,

f
(1)
ij =

∂i+jf (1)

∂xi∂yj

∣∣∣∣
(x0,y0)

, f
(2)
ij =

∂i+jf (2)

∂xi∂yj

∣∣∣∣
(x0,y0)

, i, j ≥ 0,

f (1) = rx(1− x

K
)− xy

A + x
, f (2) = y(−D +

x

A + x
)−H.

Consider the linearized system of (5.22) at the zero equilibrium
{

ż1(t) = α1z1(t) + α2z2(t),
ż2(t) = β1z1(t− τ) + β2z2(t).

(5.23)

The characteristic equation for system (5.23) takes the form

λ2 − λ(α1 + β2) + α1β2 − α2β1e
−λτ = 0. (5.24)
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By means of the software Maple, we can compute α1β2 − α2β1 = 0. We can see that (5.24) has
two zero eigenvalues and no other eigenvalues if and only if τ = α1+β2

α2β1
and τ 6=

√
2

α2β1
. Because

τ > 0 and α2β1 < 0, we know that τ 6=
√

2
α2β1

.

Normalizing the delay τ in system (5.20) by scaling the time t → t/τ , system (5.20) is trans-
formed into 




ẋ(t) = τ [rx(t)(1− x(t)
K

)− x(t)y(t)
A+x(t)

],

ẏ(t) = τy(t)[−D + x(t−1)
A+x(t−1)

]− τH.
(5.25)

Setting z1(t) = x(t) − x0, z2(t) = y(t) − y0, system (5.25) can be rewritten as a functional
differential equation in C := C([−1, 0],R2)





ż1(t) = τ [α1z1(t) + α2z2(t) +
∑

i+j≥2
1

i!j!
f

(1)
ij zi

1(t)z
j
2(t)],

ż2(t) = τ [β1z1(t− 1) + β2z2(t) +
∑

i+j≥2
1

i!j!
f

(2)
ij zi

1(t− 1)zj
2(t)].

(5.26)

Using the normal form theory developed by Faria and Magalhães [32, 34], following the tech-
niques in Xiao and Ruan [92] or in section 4, we obtain that the normal form for (5.26) is as follows
(see Xia et al. [89]) {

ẋ1 = x2 + O(|(x1, x2)|3),
ẋ2 = B1x

2
1 + B2x1x2 + O(|(x1, x2)|3),

where
B1 =

1

2
τα2

2(ef
(1)
20 + ff

(2)
20 )− τα1α2(ef

(1)
11 + ff

(2)
11 ),

B2 = τα2
2(gf

(1)
20 +hf

(2)
20 +ef

(1)
20 )−τα1α2(2gf

(1)
11 +2ef

(1)
11 +2hf

(2)
11 +ff

(2)
11 )+ττ−1

0 α2(ef
(1)
11 +ff

(2)
11 )

and e, f , g, h satisfy the following equations




α2e + β2f = 0,

τ0α2g + τ0β2h = f,

h(α1 − τ0α2β1)− α2g +
1

2
τ0α2β1f = 1,

h(α1 − τ−1
0 − 1

2
τ0β1α2)− α2g +

1

3
τ0β1α2f = 0,

− eα2 + f(α1 − τ−1
0 − 1

2
τ0β1α2) = 1.

(5.27)

The above arguments imply the following result (Xia et al. [89]).

Theorem 37. Suppose that (5.21) holds. Then the equilibrium (x0, y0) of system (5.20) is a
Bogdanov-Takens singularity when τ = α1+β2

α2β1
.
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Next, we are interested in determining a versal unfolding for system (5.20) with the Bogdanov-
Takens singularity (x0, y0). Note that α1β2 − α2β1 = 0. We introduce two bifurcation parameters
µ = (µ1, µ2) by setting τ = τ0 + µ1, β1 = α1β2

α2
+ µ2. System (5.26) is rewritten as

ż(t) = L0(zt) + L1(µ)zt + F̃ (zt, µ), (5.28)

where

L1(µ)ϕ = µ1L(ϕ) + τ0µ2

(
0

ϕ1(−1)

)
, (5.29)

F̃ (ϕ, µ) = µ1µ2

(
0

ϕ1(−1)

)
+ (τ0 + µ1)F (ϕ) for ϕ =

(
ϕ1

ϕ2

)
. (5.30)

Therefore, following the techniques in Xiao and Ruan [92] or in section 4, we obtain the normal
form of (5.28) on the center manifold

{
ẋ1 = x2 + h.o.t.,
ẋ2 = λ1x1 + λ2x2 + B1x

2
1 + B2x1x2 + h.o.t.,

(5.31)

where
λ1 = −τ0α2fµ2, λ2 = β2α1fµ1 − τ0α2hµ2 (5.32)

and
B1 =

τ0

2

[
α2

2(ef
(1)
20 + ff

(2)
20 )− 2α1α2(ef

(1)
11 + ff

(2)
11 )

]
,

B2 = τ0

{
α2

2(gf
(1)
20 + hf

(2)
20 )− 2α1α2(gf

(1)
11 + hf

(2)
11 ) + α2

2ef
(1)
20

− α2

[
(2α1 − τ−1

0 )f
(1)
11 e + (α1 − τ−1

0 )f
(2)
11 f

]}
.

(5.33)

We have the following result on Bogdanov-Takes bifurcation (see Xia et al. [89]).

Theorem 38. Let µ1, µ2 be defined by τ = τ0 +µ1, β1 = α1β2

α2
+µ2, where τ0 = α1+β2

α2β1
. For (x0, y0)

and µ1 = 0, µ2 = 0, system (5.20) exhibits Bogdanov-Takes bifurcation.

As an example, we consider system (5.20) with r = 1, K = 2, A = 1, D = 1
3
, that is,

{
ẋ(t) = x(t)(1− x(t)

2
)− x(t)y(t)

1+x(t)
,

ẏ(t) = y(t)(−1
3

+ x(t−τ)
1+x(t−τ)

)−H.
(5.34)

Using Theorem 37, we know that system (5.34) has a Bogdanov-Takens singularity point (x0, y0) =
(5

4
, 27

32
) when (H0, τ0) = ( 3

16
, 21

10
). Theorem 38 implies that system (5.34) undergoes Bogdanov-

Takens bifurcation when τ and H vary in a small neighborhood of τ0 and H0. Now introduce two
bifurcation parameters µ1, µ2 by setting τ = 21

10
+µ1, β1 = α1β2

α2
+µ2, i.e. H = H0 +µ2. Following

the analysis in this section, we obtain the versal unfolding for system (5.34) as follows
{

ẋ1 = x2 + h.o.t.,
ẋ2 = λ1x1 + λ2x2 + B1x

2
1 + B2x1x2 + h.o.t.,

(5.35)
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where
λ1 = −2.034602076µ2, λ2 = 0.1614763552µ1 + 1.919613031µ2,

B1 = 0.3767781622, B2 = −0.715752274.

Therefore, system (5.34) exhibits Bogdanov-Takens bifurcation when the parameters µ1, µ2 vary
in a small neighborhood of the origin. On the lines H±, there exists stable Hopf bifurcation, while
there exists curves HL± corresponding to homoclinic bifurcation. The bifurcation diagram is
depicted in Figure 8.

Figure 8: The Bogdanov-Takens bifurcation diagram and phase portraits for system (5.34).

Remark 39. Similarly, we can study Bogdanov-Takens bifurcation in the following predator-prey
model with predator harvesting and delayed prey specific growth

{
dx
dt

= rx(t)(1− x(t−τ)
K

)− x(t)y(t)
A+x(t)

,
dy
dt

= y(t)(−D + x(t)
A+x(t)

)−H.
(5.36)

6. Discussion
Predator-prey models play a crucial role in studying population dynamics and the management
of renewable resources. The effect of constant-rate harvesting or time delay on the dynamics
of predator-prey systems has been investigated extensively. Very rich and interesting dynamical
behaviors, such as the existence of multiple equilibria, Hopf bifurcation, limit cycles, homoclinic
loops, and Bogdanov-Takens bifurcations, have been observed in predator-prey system with time
delay or constant-rate harvesting. In this article, I have reviewed some recent results obtained by
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myself and my collaborators on predator-prey system with time delay or with both time delay and
constant-rate harvesting.

Basically, time delay can be incorporated into a predator-prey model in four different ways:
(i) delayed inter-specific interactions (such as model (3.1)); (ii) delayed predator response (such
as model (3.10)); (iii) delayed prey specific growth (such as the May-type model (3.18)); and (iv)
delayed predation (such as the Wangersky-Cunningham type model (1.9)). It has been observed
that time delay can induce oscillations via Hopf bifurcation in all four types of models. Moreover,
May-type and Wangersky-Cunningham-type predator-prey models can exhibit switch of stability
when the time delay takes a sequence of critical values. Furthermore, codimension 2 bifurcations
can occur in predator-prey models with delayed predator response when the functional response
function is nonmonotonic.

Constant-rate harvesting could induce more complex dynamics in delayed predator-prey sys-
tems, depending on which species is harvested. When the prey is selectively harvested, the dynam-
ics are similar to that of the models without harvesting and Hopf bifurcation usually occurs. Of
course over-harvesting can always drive both species to extinction. On the other hand, constant-rate
harvesting on the predators can induce bifurcation on the number of positive equilibria, multiple
positive equilibria and degenerate equilibria can exist, and Bogdanov-Takens bifurcation can oc-
cur. The codimension 2 bifurcation diagram in the predator-prey models with predator harvesting
demonstrates that there are some parameter regions in which both predator and prey species can
be driven to extinction, leading to the catastrophe or overexploitation scenario. This indicates that
appropriate harvesting of predator population is crucial in the long term survival of both predator
and prey species.

Research on the dynamics of predator-prey models with discrete delay is still very active. For
example, relative amount of attention has been paid to delayed predator-prey models with stage
structure, either in the prey or in predators (Wang and Chen [85], Liu et al. [58], Gourley and
Kuang [45], Qu and Wei [72]). Most of these models can be simplified into two-dimensional
systems with delay-dependent coefficients which can be treated by the techniques in Beretta and
Kuang [9].

From a biological point of view, it will be very interesting and helpful to collaborate with
biologists on applying the existing models and results to some biological data. For example, the
results on codimension 2 bifurcation in delayed predator-prey models with predator harvesting may
provide some explanations for the collapse of the Atlantic cod stocks in the Canadian Grand Banks
(Hutchings and Myers [55], Myers et al. [66]) and may be useful in designing fishing policies for
the fishery industry (Myers and Worm [67]).

From the point of view of new dynamical behaviors, I think two classes of models worth
study. (i) Predator-prey systems with multiple delays (see Freedman and Rao [39], Boese [10] and
He [52] for Kolmogorov-type models and Bartlett model (1.8), Hastings [49], Nunney [70, 71],
and Ma [61] for non-Kolmogorov-type models). As Nakaoka et al. [69] showed that a Lotka-
Volterra predator-prey model with delays in the specific growth terms for both species can exhibit
chaotic behavior, I expect that other predator-prey models with multiple delays could have similar
complex dynamics. (ii) Delayed predator-prey models with both predator and prey harvesting
(see Brauer and Soudack [14, 15], Myerscough et al. [68], and Hogarth et al. [53] for some
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ODE models). I suspect that more degenerate bifurcations, such as fold-Hopf, Hopf-Hopf, and
degenerate Bogdanov-Takens bifurcations (Kuznetsov [57]), may occur.
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