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Abstract. We consider plankton-nutrient interaction models consisting of  phyto- 
plankton, herbivorous zooplankton and dissolved limiting nutrient with general 
nutrient uptake functions and instantaneous nutrient recycling. For  the model 
with constant nutrient input and different constant washout rates, conditions for 
boundedness of the solutions, existence and stability of non-negative equilibria, 
as well as persistence are given. We also consider the zooplankton-phytoplank- 
ton-nutrient interaction models with a fluctuating nutrient input and with a 
periodic washout rate, respectively. It is shown that coexistence of the zooplank- 
ton and phytoplankton may arise due to positive bifurcating periodic solutions. 
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1 Introduction 

An early attempt to mathematically model profiles of  marine plankton by Riley 
et al. [39] has been followed by models varying in complexity. A number of  the 
later models were mainly concerned with phytoplankton-herbivore interactions 
(see Steele [43]). Recently, Evans and Parslow [17], Taylor [44], Wroblewski et 
al. [50] constructed models explicitly incorporating nutrient concentrations in the 
plankton-herbivore models. 

The mathematical analysis of  plankton models goes back to Hallam 
[27, 28, 29] who studied stability and persistence properties of  a family of  
non-spatial plankton models, the so-called aquatic ecosystems or nutrient con- 
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trolled plankton models. In [27], a threshold level for nutrient input required for 
persistence was given and hence, a necessary and sufficient condition for the 
persistence of an aquatic ecomodel was obtained. Arnold [ 1, 2], Arnold and V oss 
[3] also considered three component models made up of phytoplankton, 
zooplankton and organic phosphorus nutrient in a lake environment. Certain 
properties of the models such as the existence of limit cycles were discussed. In 
[24], Gard provided a simpler and sharper persistence criterion for a zooplank- 
ton-phytoplankton-nutrient model with general functional responses; he also 
showed how persistence criteria can be determined for nonautonomous type 
models in which the nutrient input rate may be time varying. In a recent article, 
Busenberg et al. [5] studied a model of a zooplankton-phytoplankton-nutrient 
interaction which was constructed by Wroblewski et al. [50]. It was shown in 
their paper that under certain conditions the coexistence of phytoplankton and 
zooplankton occurs in an orbitaUy stable oscillatory mode. 

The zooplankton-phytoplankton-nutrient models describing lakes or oceans 
are different from the chemostat models (for chemostat models, cf. Waltman 
[46, 47] and the references therein), since lakes or oceans generally have a 
residence time of nutrient and sediments measured in years (see Powell and 
Richerson [37]). Hence the regeneration of nutrient due to bacterial decomposi- 
tion of the dead biomass must be considered. Nisbet et al. [36] studied the effect 
of material recycling on ecosystem stability for closed systems. We regard 
nutrient recycling as an instantaneous term, thus neglecting the time required to 
regenerate nutrient from dead biomass by bacterial decomposition. For delay 
nutrient recycling in chemostat models, we refer to the recent articles by Beretta 
et al. [4], and Freedman and Xu [22]. 

Phytoplankton death is a gross parameterization of many processes including 
physiological death, exudation of organic substances and losses of phytoplank- 
ton due to sinking of cells through the bottom of the mixed layer (Wroblewski 
et al. [50]). Cell sinking can be an important loss especially at the end o f  the 
spring bloom when nutrients are depleted (Walsh [45]). Also, part of the 
zooplankton mortality representing the predation on zooplankton by higher 
predators are not explicitly modeled. The final destination of such dead 
zooplankton will be either ammonium, fecal pellets, or dead higher predators 
(Fasham et al. [18]). The fecal pellets and corpses of the higher predators will 
have high sinking rates and will therefore sink out from the mixed layer. 
Therefore in models of natural systems washout rate constants (or functions) 
which describe the removal of biotic components from the systems resulting from 
washout, harvesting, being buried in deep sediments (DeAngelis et al. [16]), 
soluble metabolic loss (Evans and Parslow [17]), or cell sinking (Wroblewski 
[49], Fasham et al. [ 18]) must be considered. Global dynamics of a chemostat 
model with differential death rates was recently studied by Wolkowicz and Lu 
[48]. 

In this paper, we consider three open systems which have three interacting 
components consisting of phytoplankton (P), herbivorous zooplankton (Z) and 
dissolved limiting nutrient (N). The two plankton levels are modeled in terms of 
their nitrogen, phosphorous or silicate content, N, which is assumed to be the 
nutrient primarily responsible for limiting phytoplankton reproduction. 

In the first model (Fig. 1), based on the model constructed by Wroblewski et 
al. [50], we introduce a constant input concentration of the limiting nutrient, N °, 
different constant washout rates D, ~ D1 and D2 for the nutrient, phytoplankton 
and zooplankton respectively, to the model. We suppose the zooplankton 



Persistence and coexistence 635 

[] , [] 

",,,\ // 

NO (DN, D 1 P,D2Z) 

Fig. 1. The Z - P - N  model with constant 
nutrient input (N O ) and different washout 
rates (D, D 1 and D2). Arrows indicate 
nutrient flow pathways between 
phytoplankton (P), zooplankton (Z) and 
nutrient (N) 

population feeds on both nutrient and phytoplankton (i.e., zooplankton is 
facultative or obligate), and only part of dead phytoplankton and zooplankton 
is recycled back into nutrients. We also use a general class of functions to 
describe nutrient uptake and functional response. Criteria for phytoplankton or 
zooplankton or both of them to become extinct, i.e., extinction thresholds, are 
derived. Boundedness of solutions is studied; this is essential for the model to be 
persistent. Existence of positive equilibria on both the N - P  plane and the N - Z  
plane is considered which demonstrates that for the facultative predator model, 
the phytoplankton population can survive without zooplankton, and the 
zooplankton population too, can survive without phytoplankton. It is shown 
that subject to certain constraints, the system exhibits uniform persistence. In the 
case where the predator is obligate, we obtain criteria for persistence (and hence 
coexistence of both zooplankton and phytoplankton). 

In the second model (Fig. 2), we consider the interaction involving nutrient 
with a periodic input. Similar cases for chemostat models have been studied by 
Hsu [31], Smith [42], Hale and Somolinos [26], Yang and Freedman [51]. We 
suppose that zooplankton does not take nutrient directly, i.e., the predator is 
obligate, and all dead zooplankton and phytoplankton are recycled back into 
nutrient. This model (as well as the next one) might be more applicable in 
laboratory aquaria or lakes than in oceanic regions. We show that there is an 
asymptotically stable periodic solution in the N - P  plane, from which will 
bifurcate a continuum of positive solutions of the general system, hence coexis- 
tence of all population may occur. 

In the third model (Fig. 3), we consider the interaction with periodic 
washout rate (cf. see Butler et al. [8]). We suppose that the predator is 
obligate, all phytoplankton ingested by zooplankton is utilized and all 
dead P and Z are recycled back into the nutrient. It is shown that coexistence 
exists for phytoplankton and zooplankton in the form of positive periodic 
solutions. 

[]  , []  

\ \  / 
N O + Ae(t) (DN,DP,DZ) 

, [ ]  

Fig. 2. The Z - P - N  model with 
periodic nutrient input (NO+ Ae(t))  

and constant washout rate (D) 
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/ 
(D(t)N,D(t)P,D(t)Z) 

Fig. 3. The Z - P - N  model with constant 
nutrient input (N o ) and periodic 
washout rate (D(O) 
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Persistence in biological systems in a context related to this paper has been 
discussed by many authors. We utilize the definitions of persistence developed by 
Butler et al. [7], and Butler and Waltman [9], namely if x(t) is such that x(t) > O, 
we say that x(t) persists if l im~fx ( t )>0 .  Further, we say that x(t) persists 

uniformly if there exists 6 > 0 such that lim inf x(t) >~ 6. Finally, a system persists 
(uniformly) if all components persist (uniformly). 

2 Z - P - N  model with constant nutrient input and washout rates 

The instantaneous zooplankton-phytoplankton-nutrient (Z-P-N)  model consist- 
ing of three interacting components, herbivorous zooplankton (Z), phytoplank- 
ton (P) and dissolved limiting nutrient (N), is given by the following set of 
ordinary differential equations 

dN 
--~ = D(N ° - N) - aPu(N) - bZv(N) + (1 - ~)cZw(P) + ya P + 81Z 

dP 
d--i = a e u ( N )  - c Z w ( P )  - (7 + D 1 ) P  (2.1) 

dZ 
- ~  = Z[bv(N) + 6cw(P) - (8 + D2)]. 

We assume that all parameters are non-negative and are interpreted as follows: 

a -maximal nutrient uptake rate for the phytoplankton 
b -maximal nutrient uptake rate for the zooplankton 
c -maximal zooplankton ingestion rate 
N o -input concentration of the nutrient 
D -washout rate of the nutrient 
D1 -washout rate of the phytoplankton 
D2 -washout rate of the zooplankton 
7 -phytoplankton mortality rate 
8 -zooplankton death rate 
71 -nutrient recycle rate after the death of the phytoplankton, 71 ~< 7 
el -nutrient recycle rate after the death of the zooplankton, 81 ~< e 
6 - the fraction of zooplankton nutrient conversion, 0 < 6 ~< 1. 

Functions u(N) and v(N) describe the nutrient uptake rates of phytoplankton 
and zooplankton, respectively. We assume the following general hypotheses on 
the nutrient uptake functions (Hale and Somolinos [26]). 

(i) The functions are non-negative, increasing and vanish when there is no 
nutrient. 

(ii) There is a saturation effect when the nutrient is very abundant. 

That is, we assume that u(N) and v(N) are continuous functions defined on 
[0, ~) ,  and satisfy 

du 
u(0)=0 ,  ~ > 0  and u-,~lim u ( N ) = l ,  (2.2) 

dv 
v(0)=0 ,  ~ > 0  and N-~oolim v (N)=I .  (2.3) 



Persistence and coexistence 637 

In particular, these kinds of functions include the Michaelis-Menten func- 
tions (Caperon [11]), Wroblewski et al. [50], Busenberg et al. [5]) 

N N 
u(N)  - kl + ~  ', v(N) = k2 + N '  

where kl and k2 are the half-saturation constants or Michaelis-Menten con- 
stants. 

w(P) represents the response function describing herbivore grazing. It is also 
assumed that w(P) is continuous on [0, oo) and satisfies 

dw 
w(0) = 0, ~-~ > 0 and e-~lim w(P) = 1. (2.4) 

Usually, Ivlev's functional response formulation [32] 

w(P) = 1 - e -~1, 

is used to describe the zooplankton grazing, where 2 is the rate at which 
saturation is achieved with increasing phytoplankton levels (per unit concentra- 
tion). 

We assume that only a fraction of the dead phytoplankton, 71 (71 ~< 7), is 
recycled into dissolved nutrient. The zooplankton dynamics includes growth as 
assimilated ingested ration and a loss rate of  e due to high level predation, 
physiological death, etc. Also, we assume that only a fraction, gl (~1 ~ ~) of the 
dead zooplankton is recycled into dissolved nutrient within the mixed layer. 

During consumption only a fraction of  the phytoplankton removed through 
zooplankton predation, 6 (6 ~< 1), is assumed to be assimilated by zooplankton, 
the remainder goes directly to the available nitrate. 

D, D1 and D2 are washout rates (or removal rates, diffusive rates) of  biotic 
components from the system resulting from washout, diffusion, harvesting, being 
buried in deep sediments, soluble metabolic loss or cell sinking, for example. 
Those processes in general do not take place at the same time, so we suppose 
that D, D1 and D2 are different. 

Note that E0 = (N °, 0, 0) is always an equilibrium for system (2.1). We first 
give criteria for phytoplankton or zooplankton or both of them to become 
extinct. 

Theorem 2.1 Let  the inequality 

a ~< 7 + D1 (2.5) 

hold. Then limt ~ 0o P(t) = O. 

P r o o f  From system (2.1), we have that 

dP 
--~ = aPu(N)  - cZw(P)  - (~ + D1)P 

<~ P[au(N) - (7 + D1)] 

<<, P[a - (7 + D i)] 

~<0 by (2.5). 

Since there is no invariant set such that P > 0 is constant, the theorem follows. 
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provided 

Theorem 2.1 demonstrates that if the maximal nutrient uptake rate is less 
than or equal to the loss rate, then the phytoplankton population is eliminated. 

Similarly, we can prove the following theorem. 

Theorem 2.2 Let the inequality 

b + 6c <<. ~ + D 2 (2.6) 

hoM. Then lim Z(t)  =0. 
t ~ o o  

This result shows that the zooplankton population cannot exist if the 
summation of its maximal nutrient uptake rate and its net ingestion rate is less 
than or equal to its loss rate. 

Corollary 2.3 I f  (2.5) and (2.6) hold, then lim (N(t), P(t), Z(t)) =Eo. 
t---~ O0 

By Corollary 2.3, if (2.5) and (2.6) hold, then both of the phytoplankton 
population and zooplankton population become extinct. In this case, it is not 
feasible for persistence of system (2.1). 

If phytoplankton is the top trophic level, and zooplankton is set at zero, then 
we have the subsystem 

dN 
dt - D(N° - N)  - aPu(N) + 71P 

(2.7) 
dP 
d t  = P[au(U) - (7 + D1)]. 

System (2.7) has an interior equilibrium (N~, P~), where 

el  = 
7 +D1-:7~ 

and 

7 --I- D 1 < a (2.8) 

u 

So we have the following theorem. 

Theorem 2.4 I f  the inequalities (2.8) and (2.9) hold, then system (2.1) has a 
non-negative equilibrium E 1 = (NI ,  P 1 , 0 )  where N 1 and P1 are defined as above. 

Similarly, we have 

Theorem 2.5 I f  the inequalities 

and 

+ D2 < b (2.10) 
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hold, then system (2.1) has a non-negative equilibrium E2 = (N2, O, Z2) where 

Theorem 2.4 indicates that if (2.8) and (2.9) hold, then the phytoplankton 
population can survive on the nutrient, while Theorem 2.5 demonstrates that the 
predator zooplankton mag be able to survive on the nutrient without the prey 
phytoplankton if (2.10) and (2.11) hold. This is not true if (2.11) fails, and the 
equilibrium E2 does not exist. 

Theorem 2.6 All solutions of system (2.1) are bounded. 

Proof We have 
d 
dt (N + P + Z) = DN ° - DN + ?1P -b ~1 Z - -  7P -- D1P -- eZ -- D2Z 

<~ -Do(N  + P + Z) + DN °, 

where D O = min{D, D1, O2}. The theorem follows. [] 

Theorem 2.7 I f  the non-negative equilibria E1 and E2 exist, then (N 1, P1) and 
(N2, Z2) are globally asymptotically stable in the N-P plane and N-Z  plane, 
respectively. 

Proof We only prove the global asymptotic stability of (N1, P1) in the N-P 
plane; the stability of (N2, P2) in the N-Z plane can be proved similarly. Define 
a Liapunov function (cf. Harrison [30]) 

fN ru(x) -u(N1)  au(N1)-~l  f ~  X - P l  dx. (2.12) V(N, P) = 1 u(~ dx -I- au(N1) ~ 

Then, if (2.8) holds, u(N~) - 71 > O, V(N, P) = 0 if and only i f N  = N1, P = P1 
and V(N, P) >>. 0 in the N-P plane. The time derivative of V along the trajectories 
of the subsystem (2.7) is 

dV u(N) - u(Nl) [D(N 0 _ N) - aPu(N) + ?tP] 
dt u(N) 

au(N1) - 71 
+ ~u(NO (P--P1)[au(U) --(7 +D1)] 

F D ( N ° - N )  ( 7, ) 
= (u(N) -- u(N,)) L -~(2v) a -- u - ~  P 

= (u(N) - u(N1) ) [ D(N°u(N)u(N~)- N1) + ~1P 

= _ D(N ° -- Nx) + 7~P [u(N) - u(N1)] 2 - D 
u(N)u(NI ) u(N) 

D(N - N, ) ] 
(u(g)  - u(N~)) u(N)  J 

(N -- N~)(u(N) - u(N~ )). 



640 s. Ruan 

Since N1 < N °, the first term is negative. The second term is negative because 
u(N) is an increasing function. Thus, dV/dt  <<, 0 and dV/dt  = 0 if and only if 
N = N1. The largest invariant subset of  the set of the point where dV/dt  = 0 is 
(N1, P1). Therefore by LaSalle's theorem (LaSalle and Lefschetz [34]), (N1, P1) 
is globally asymptotically stable in the N-P plane. [] 

Theorem 2.8 I f  the inequalities (2.8)-(2.11) hold and 

by(N1) + 6cw(el) - (5 + D2) > 0 (2.13) 

au(U2) - cZzw'(O) - (7 + D1) > 0, (2.14) 

then system (2.1) is persistent. 

Proof  By Theorems 2.4 and 2.5, there are three equilibria on all the coordinate 
planes, i.e., E0 = (N °, 0, 0), El = (NI, P1,0) and E2 = (N2, 0, Z2). We first show 
that all equilibria are saddle points. 

For Eo = (N °, 0, 0), the variational matrix of  system (2.1) at Eo is 

I i  D - a u ( N ° ) + 7 1  -bV(oN°)+e I ] 
au(N°) - (7 + 91) 

0 bv(N °) - (5 + O2)J 

By inequalities (2.9) and (2.11), the eigenvalues of the variational matrix are 
21 ~- - D  < O, 2 2 = au(N °) - (7 + DI) > 0, 23 = bv(N °) - (5 + D2) > 0, SO E0 is a 
saddle point. 

The variational matrix of  system (2.1) at E1 = (N1, P~, 0) has the form 

- O  --aPlu'(N1) --au(N1) + Yl -by (N1)  + ( 1  -6 ) cw(PO +51]  
aP1 u'(N1 ) 0 - cw(P1 ) ] , 

0 0 by(N1) + 6cw(P1) - (5 + D2) ] 

and the eigenvalues of the variational matrix are 41,22 which are the roots of  the 
equation 

2 2 + (D + aPlu'(Nl))4 + aPlu'(N1)(au(Nl) - 71) = 0 

and 

23 = by(N1) + 6cw(P1) - (5 + D2). 

Clearly, 41 and 42 have negative real parts, and )~3 > 0  by condition (2.13). 
Therefore E1 is a saddle point, and since 4 3 > 0, El is unstable in the direction 
orthogonal to the N-P coordinate plane. 

The variational matrix of system (2.1) at E2 = (N2, 0, Z2) has the form 

I - D - b Z : v ' ( N 2 )  - a u ( N z ) + ( 1 - f ) e Z 2 w ' ( O ) + Y a  - b y ( N 2 ) + 5 1 ]  
au(N2) - (7 + D1) - eZ2w'(O) 0 . 

~. - bZ2v (N2) 6cg2w'(O) 0 

By analogous arguments to those analyzing E1 and condition (2.14), we can 
prove that E2 is a saddle point, and it is unstable in the direction orthogonal to 
the N - Z  coordinate plane. 

Now let 

cZw(P) 
G(N, P, Z)  = au(N) p (7 + D,), 

H(N, P, Z)  = by(N) + 6cw(P) - (5 + D2). 
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We have that 

H(N1, P1, O) = by(N1) + 6cw(P1) - (5 + D2) > 0 

G(N2, 0, Z2) = au(N2) - cZ2w'(O) - (~ + Da) > O. 

According to Theorem 5.1 of Freedman and Waltman [20], system (2.1) is 
persistent. This completes the proof. [] 

Condition (2.13) in Theorem 2.8 means that near the positive equilibrium 
(Na, P1) in the N-P plane, the growth rate of the zooplankton population is 
positive, and condition (2.14) means that near the positive equilibrium (N2, Z2) 
in the N-Z  plane, the growth rate of the phytoplankton population is positive. 
Theorem 2.8 shows that if inequalities (2.8)-(2.11) hold (which guarantee the 
existence of (NI, Pa) and (N2, Z2)), then the positive growth rates of zooplank- 
ton and phytoplankton near (N~, P~) and (N2, Z2) respectively, imply the 
survival of all three components. 

In model (2.1), since the predator zooplankton is facultative, competition for 
the nutrient between phytoplankton and zooplankton exists in some sense, but 
Theorem 2.8 shows that competitive exclusion does not occur in the Z-P-N 
models. 

Note that from the theorem of Butler et al. [7] we can obtain uniform 
persistence for our system. We now are able to state criteria which guarantee the 
existence of an interior equilibrium, by the corollary of [7]. 

Theorem 2.9 Suppose the hypotheses of  Theorem 2.8 hoM. Then system (2.1) has 
an interior equilibrium E* = (N*, P*, Z*). 

As an example, we consider the following model 

dN aNP bNZ 
- ~  = D ( N ° - N )  k l + N  k 2 + N  + ( 1 - ~ ) c Z ( 1 - e - ' t e ) + 7 1 P + ~ 1 Z  

dP aNP 
c Z ( 1 - e  ze) _(~ + D,)P (2.15) 

dt " k~ + N 

dZ Z ~  bN + -~e) ] 
=  c(l--e - ( 5 + D 2 ) ,  

where all parameters are positive. Now inequalities (2.8) and (2.9) become 

7 + D1 N O 
--. NO, (2.16) a kl + 

and inequalities (2.10) and (2.12) become 

e + D 2 N O 
< k2 + N ~ "  (2.17) 

System (2.15) has the following equilibria 

1 - ~ , 0 "  / \ 1 - ~ '  7+D~ ~1 
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and 

E2=  ,0, ~ + D2  El 

on the coordinate planes where ~ = (7 + D~)/a, fl = (~ + D2)/b. By Theorem 2.8, 
we have 

Theorem 2.10 Suppose inequalities (2.16) and (2.17) hoM, if  

kj 

k 2 + ( k l - k 2 ) ~  

k2/  
ka + (kz - kl)fl 

Then system (2.15) is persistent. 

- e x p  -7~ D( - - -~  

c2D ( N °  fl k2) 

a 1 - f l  >or. 

In Theorem 2.8, persistence criteria are given when the predator is facultative 
(bv(N °) > e + D2); in that case the zooplankton population can survive without 
the phytoplankton population. Actually, if the predator is obligate 
(bv(N °) < e + D2), even though zooplankton cannot survive without phytoplank- 
ton, persistence may occur. In the following we consider the case where the 
predator is obligate. 

If  we suppose that the zooplankton population does not take nutrient 
directly, i.e., b = 0, then system (2.1) takes the following form 

dN 
--~ = D(N ° - N)  - aPu(N) + (1 - 6)cZw(P) + 71P + I~lZ 

dP 
- ~  = aPu(N) - cZw(P) - (7 + D,)P (2.18) 

dZ  
d-T = Z[6cw(P) - (~ + D2) ]. 

If  6c <<. e + D2, then the zooplankton population cannot exist; if a ~< 7 + D1, 
then phytoplankton and hence zooplankton cannot exist. Hence system (2.18) 
does not persist if any of  the above inequalities holds. In the following, we 
suppose that the inverse direction inequalities, i.e. (2.8) and 

-F D2 < 6c (2.19) 

hold. 
Notice that E0 = (N °, 0, 0) is an equilibrium for system (2.18) and is globally 

asymptotically stable in N-axis direction. If  (2.8) and (2.9) hold, then 
E1 = (N1, P~, 0) given by Theorem 2.4 is also an equilibrium of (2.18) and is 
globally asymptotically stable with respect to the N-P plane. Also all solutions of 
system (2.18) are bounded. 

If  (2.19) holds, then E0 is a saddle point and is unstable in the direction 
orthogonal to the N - Z  plane. If  the inequality 

+ D  2 
w(PO > -  (2.20) 

de 
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holds, then E 1 is a saddle point and is unstable in the direction orthogonal to the 
N-P  plane. Hence by Butler-McGehee lemma (cf. [21]), inequality (2.20) implies 
the persistence of system (2.18). It is known that persistence of the Z component 
is equivalent to entire system persistence (Gard and Hallam [25]) for models of 
the form (2.18). Following the similar arguments by Hallam [27, 28] and Gard 
[24], we know that condition (2.20) is also necessary for persistence in system 
(2.18). The result in [7] implies that system (2.18) processes an interior equi- 
librium E* = (N*, P*, Z*) with 

p ,  = w_l  (e "l- D2 "] 
\ ~ - c  f "  (2.21) 

Theorem 2.11 Assume (2.8), (2.9) and (2.19) hold. Then system (2.18) persists i f  
and only i f  (2.20) holds. Furthermore, under (2.20) system (2.18) has a positive 
interior equilibrium. 

This result indicates that solutions of system (2.18) are uniformly ultimately 
bounded and have components which do not tend to zero under certain 
conditions. Condition (2.20) means that near the positive equilibrium (N1, P1) in 
the N-P  plane, the growth rate of zooplankton is positive. 

Notice also that the right hand side of inequality (2.20) is the value of the 
function w(P) at P* by (2.21). So condition (2.20) is equivalent to 
w(P1) > w(P*). Since w(P) is increasing by (2.4), it is also equivalent to P1 > P*. 

Now we consider (2.15) with b = 0, kl = k, namely 

dN aNP 
--~ = D ( N  ° - N )  - k +----N + (1 - 6 ) c Z ( 1  - e - ' t e )  + 7 1 P  + •1 z 

dP aNP 
cZ(1 - e-he) _ (7 + D1)P (2.22) 

dt - k  + N  
dZ 
--~ = Z[6c( 1 - e -he) _ (e + D2)]. 

System (2.22) has two equilibria on the boundary, 

E o = ( N  O ,0,0) and E1 = ~ k, 1 - e  ,0 
7 +D1 -71 

provided (2.16) holds, where ~ = (7 +D1)/a.  The persistence condition (2.20) 
becomes 

1 e x p  1 - ~ e + D 2 - > - -  (2.23) 
7 + D1 - 71 66' 

and the positive interior equilibrium E* = (N*, P*, Z*) is given by 

1 6e 
P* = ~ In 6e - (e + D2) ' 

6P* ~ N* -] 
z * =  + D=Lak---+--~-(7 + D1)J , 
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and N* is the positive root of  

where 

DN .2 + BN* - C = O, (2.24) 

. o1, (, )J. .  

Therefore, we have the following result. 

Theorem 2.12 I f  (2.16) and (2.19) hold, then system (2.22)persists if and only if 
(2.23) holds. Furthermore, under (2.23), system (2.22) has a unique positive interior 
equilibrium E* = (N*, P*, Z*) where N*, P* and Z* are defined as above. 

For the Michaelis-Menten function u(N) = N/(k + N) and the Ivlev func- 
tion w(P)= 1 - e  -ae, we proved in Theorem 2.12 that system (2.22) has a 
unique positive interior equilibrium; we conjecture uniqueness is also true in 
Theorem 2.11 and Theorem 2.8. 

The numerical analysis by Busenberg et al. [5] is very interesting. Using the 
parameter values reported by Wroblewski et al. [50], 

a = 2 . 0 ,  k = 0 . 2  7 = 0 . 1 ,  e = 0 . 2 ,  

2 = 0 . 5 ,  c = 0 . 5 ,  6 = 0 . 7 ,  

they showed numerically that for a special case of our model (2.22) 
when D = D I = D 2 = 0, 71 = 7, el = e, there is a periodic oscillatory coexistence 
state. 

For our model (2.22), if we use the above parameter values reported by 
Wroblewski et al. [50] and the following values 

/ i  

D = 0.4, D1 = 0.3, D2 --- 0.1, 

N O = 3.75, 71 : 0.08, el : 0.15, 

then all conditions of Theorem 1.12 are satisfied, hence system (2.22) with the 
above parameter values is persistent, and has a unique positive interior equi- 
librium E* = (0.38, 3.89, 8.17) which is unstable. 

3 Z - P - N  model With fluctuating nutrient input 

To simulate seasons or day/night cycles in a natural environment, we assume 
that the input concentration of the limiting nutrient is allowed to vary periodi- 
cally around a mean value N O > 0, with an amplitude A, A < N °, and period v; 
that is, according to the law N ° +  Ae(t), where e(t) is a v-periodic function of  
mean value zero and le(t)] ~< 1. Though the following technique works for the 
case when the predator is facultative, a mathematical simplification arises if we 
assume that the predator is obligate, i.e., b = 0. We also assume that 71---7, 
el = e and D = D 1 = D 2 ;  the latter assumption often appears in chemostat models 
(cf. Waltman [47]). 
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We consider the Z - P - N  model with periodic nutrient input 

dN 
d----[ = D(N° + Ae(t) - N) - aPu(N) + ( 1 - 6)cZw(P) + vP + eZ 

~ =  aPu(U) - cZw(P) - (~ + D)P (3.1) 

dZ 
= Z[rcw(P) - (e + D)], 

where functions u(N) and w(P), parameters D, N °, a, c, 3, 7 and e are the same 
as in Sect. 2. 

This system describes conditions for plankton growth in lakes where the 
limiting nutrients such as silica nitrate and phosphate are supplied from streams 
draining the watershed. As seasons change, stream drainage patterns change 
causing variations in the supply of nutrients. 

Let N*(t) be the unique ~-periodic solution of the equation 

dN 
- -  = - D N  ÷ D(N ° + Ae(t)), (3.2) 
dt 

that is, 

N*(t) - D eDr(N ° + Ae(t + r)) dr. (3.3) 
e D¢- 1 

It is easy to verify that N*(t) is globally exponentially stable, and moreover, 
every solution N(t) of (3.2) can be written as 

N(t) = N*(t) + C e-Dr, 

where C = N(0) - N*(0). Suppose 

el = rnin e(t), e2 = max e(t). 
O<~t<~z O<~t<~ 

Then all solutions N(t) eventually enter the interval [N°+ Ael, N ° +  Ae2] and 
remain there for all future time. 

Definition 3.1 A system of ordinary differentiM equations dy/dt =f ( t ,  y) defined 
in a domain O is dissipative if there exists a B such that all solutions y(t) with 
y(t) ~ f2 for all t satisfy lim sup [y(t)] ~< B. 

Theorem 3.2 Each solution (N(t), P(t), Z(t)) of  system (3.1) with initial value in 
R3+ will remain in R3+ for all t >>. O, and the system is dissipative in R3+. 

Proof. It is obvious that solutions (N(t), P(t), Z(t)) of (3.1) with initial data 
(No, Po, Zo) in R~_ remain in R3+ for all t ~> 0. Let 

S(t) = N(t) + P(t) + Z(t) - N*(t). (3.4) 

We have that 

dS 
- D N - D P - D Z + D N * = - D S .  

dt 

It follows that for some B 1 and t ~> 0, 

S(t) = S(O) e-Dr < B1" 
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Thus, for t ~> 0 

U(t) + P(t) + Z(t)  <<. N*(t) + B1. 

Since N*(t) is a globally exponentially stable periodic solution of (3.2), there is 
a B such that 

lim sup [N(t) +P( t )  + Z(t)] < B, (3.5) 
t ---~ o o  

that is, system (3.2) is dissipative in R 3. [] 

We know that in an Euclidean space g, a periodic ordinary differential 
equation is equivalent to a dynamical system re(x, t) on a cylinder E = g × 
with a flow ~-, where ~ = [0, z]/{0, z} is a quotient space of [0, 3] by identifying 
0 and z, or ~ can be regarded as a nontrivial circle on the plane. We think of E 
as a subset of 8 x R 2. In fact, for system (3.1), g = R × R3+. To study the 
asymptotic behavior of solutions of (3.1), we only need to study the t2-fimit sets 
of trajectories of a dynamical system n with flow ~ on E. 

For  each point x e E, we denote it by x = (N, P, Z, Q), where Q e 2. Let 
0Ee = {(N, P, Z, Q) e E [ P = 0}, aEz = {(N, P, Z, Q) e E I z = 0}. We denote 
the restrictions of flow ~ to OEe and OEz by O~e  and d ~ z ,  respectively. A + (x) 
denotes the omega limit of the orbit through x. 

Definition 3.3 An isolated invariant set M for the flow .~ is a nonempty invariant 
set which is the maximal invariant set in some neighbourhood of itself. Note that 
if M is a compact, isolated invariant set, one may always choose a compact 
isolating neighbourhood. 

For  an isolated invariant set M c E, we define 

W +(M)  = {x e E [  A+(x) n M  ~ ~ }  

as the weak stable set and 

W + ( M )  = {x e E IA+(x)  v~ ~ and A +(x) c M}  

as the stable set, and we denote 

~ ( M )  = U A+(x)  • 
x E M  

Define M = {(N*(t), 0, 0, Q) e E I Q e ~}, then M is a compact invariant set 
for ~ .  It is easy to verify that the boundaries ~Ee, ~Ez and hence 
~E = aEe LJ aEz are invariant. Moreover, we have 

Lemma 3 . 4 0 E e  c W + ( M )  such that if x e ~E?\M,  then 

Ll (x, t)II °0 a s  t - , -  

Proof. Since Z(t)  = Z(0) e-(,+D)t whenever x = (No, 0, Zo, 0) e OE~, we have 
re(x, t) = (N(t), O, Z(t), t mod(z)) -o (N*(Q(t)), O, O, Q(t)) as t ~ oo, Q e [0, z], i.e., 
OEe c W+(E). On the other hand, for x e dEe\M, since N(t) = N*(t) + C e -Dr 
for some constant C 4 0  whenever N ( t o ) # N * ( t o )  for any to e [0, z], then 
N(t) # U*(t). Therefore II (x, t)I[ ~ oo as t-~ -- ~ .  [] 

Let B(z) denote the Banach space of continuous z-periodic real valued 
functions x : R -~ R under the supremum norm 

Ixl0= sup Ix(t)]. 
O <~ t <~ "r 
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Let B+ (z) = {x • B(O Ix(t) > 0 for all t} and 

1 x(t) dt. (x(t)  ) z 

The following result indicates that if the phytoplankton population has 
positive growth rate near the stable periodic solution N*(t) of  (3.2), then it is 
persistent. 

Theorem 3.5 I f  

~o = a(u(N*(t)))  - (7 + D) > 0, (3.6) 
\ 

then 

lira inf P( t) > O. 
t ~ O O  

Proof First we prove that M is isolated. Since ao > 0 and u(N) is continuous, 
there is Ao > 0 such that for some ~ > 0 

a(u(N*(t  + ~) - Ao) ) - (7 + D + Ao)/> ? > 0. (3.7) 

Since o~ is dissipative, we can find ~ > 0 and to ~> 0 such that 0 ~< P(t) <<. ~ for all 
t ~> to. Define 

Ao 
L = c  max w(P)>O and A = - L  >0" 

0 <~ P(t) <~ 

Then .Ar~ = {x ~ EIQ(x, M) < A } is an isolating neighbourhood of  M, where ~ is 
the metric of  E. Otherwise, there is an invariant set G containing M in JV'~ with 
G \ M  ¢ ~ .  Lemma 3.3 implies that ( G \ M ) n O E e  = ~ .  Therefore for any 
x • G \M,  then x ¢ OEp, i.e., P0 > 0. Since G is invariant, ~+(x) c G c ~/'~ where 
7 +(x) is the positive semiorbit through x. Now we have 

d 
[ln P(t)] ~> au(N*(t) - Ao) - (7 + O + Ao) in Jlr a . 

From (3.7) it follows that 

P(nz)>~Poexp ~ n z  ~ o e  asn--*o% 

a contradiction to ~(x, nz) e G for all n ~> O. So M is isolated. 
Now for any x • E and re(x, t) = (Nx(t), Px(t), Zx(t), t mod(~)), if lira inf 

t ~ o o  

Px(t)=O, then A + ( x ) n O E e C f g , - a n d  hence M c A + ( x ) , s o  Ww+(M)= 
{x • E l l iminfP~( t  ) =0}. We claim that for any x • E\~Ee,  if A +(x) e M, then 

there exists e > 0 such that 

IN~(t) - N * ( t  + a ) l ~ 0  as t ~ o o .  

In fact, if A +(x) = M, then Px(t) and Zx(t) tend to zero as t ~ o% which implies 
Nx(t) - N*(t  + ~) tends to zero for some c~ > 0. Hence 

lim [a (u (N( t ) ) ) - (7  + D)] = a 0 > 0 
l ~ o O  

and l iminfP~(t)  >0,  a contradiction to A +(x) ~OEp # ~ ,  i.e., x ¢ W+(M),  by 

Lemma 3.4 we have W+(M) = OEe, so x • W + ( M ) \ W + ( M ) .  Hence by Theo- 
rem 4.1 of  Butler and Waltman [9], A +(x) n ( W + ( M ) \ M )  # (g. It follows from 
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Lemma 3.4 that A +(x) is unbounded, a contradiction to the dissipativeness of 
f t .  Hence A +(x)~OEe = ~ ,  and A÷(x )  is compact, so Q(A +(x), OEe)> O, 
i.e., lim inf P( t) > O. [] 

t - - ~  

Theorem 3.6 I f  o- o > 0, then there ex&ts a nontrivial asymptotically stable z-peri- 
odic orbit on OEz. 

Proof Define a Poincar6 map T from P - Z  plane to itself by 
T(No, Po) = (N(z), P(z)). By Theorem 3.5 and the dissipativity for each (No, Po) 
in the interior of  R2+, {Tn(N0, Po)} has a convergent subsequence. So by 
Massera's fixed point theorem (see Sansone and Conti [41]), there exists a fixed 
point (N, P) of T in the interior of  R2+, which gives a nontrivial periodic orbit 
on OEz. 

We observe that v(N, P, t) -- N + P is a solution of the initial-boundary value 
problem 

I 
v, + [D(N ° + Ae(t) - N) - (au(N) - 7)P]vN 

+ [(au(N) -- (~ + D)P]u e + Du = D(N ° + Ae(t)) 

v(N, 0, t) = N*(t), v(N, P, O) = v(N, P, z), t ~ [0, z], N/> 0, P >~ 0. 

By Theorems 3.7 and 3.8 of Yang and Freedman [51], the nontrivial z-periodic 
orbit on ~Ez is asymptotically stable. This completes the proof. [] 

Let (N, P) be the asymptotically stable z-periodic solution of the reduced 
system 

dN 
dt - D(N° + Ae(t) - N)  - aPu(N) + 7P 

aP (3.8) 
d-t = P[au(N) - (y + D)] 

in Theorem 3.6. We will show in the following that this solution of  (3.8) yields 
a solution (N, P, Z)  = (N, P, 0) ~ B3+ (z) of system (3.1) from which will bifur- 
cate a continuum of positive solutions of  (3.1) using ~ as the bifurcating 
parameter. 

To do this by means of  Theorem 1 of  Cushing [14], it is necessary that the 
solution (N, P) of the reduced system (3.8) be noncritical; i.e., that the linearized 
system of (3.8) at (N, P) have no Floquet exponents with zero real part. We 
assume throughout that (N, P) is stably noncritical, i.e., that these Floquet 
exponents have negative real parts. 

Theorem 3.7 Assume ao > 0 and that (N, P ) E  B 2 (z) is a stably noncritical 
solution of  (3.8). Then there exists a set 11+ = {(N, P, Z, #) ~ B3+ (z) x R} with 
(N_, P , Z ) > 0  solving (3.1), the closure of  1I + is a continuum which connects 
(N, P~ 0,/~) 6 B3(z) x R,/~ = - (cw@)) ,  to a solution of  the form 
(N, P, 0,/~) ~ B3(z) × R, where (N, P, O, ~t) v~ (N, P, O, ~t), N > 0 and P > O. 

Proof Define 123 = {(N, P, Z)  e R 3 I N > 0}, by Theorem 1 of Cushing [14] with 
d2(t) = - # = - ( e + D ) ,  there is a continuum C+ c B 3 ( z ) x R  of solutions 
of (3.1) which contains the bifurcating point (N, P, 0, fi) and which connects 
to the boundary of the set O 3 x R c B 3 ( z ) x  R, where f2~ = {(N, P , Z )  
B3(~) I N + N > 0}. And in an open neighborhood of (N, P, 0, fi), the set C+/ 
{(N, P, 0,/~)} consists of positive solutions of (3.1). The continuum C ÷ cannot 



Persistence and coexistence 649 

consist entirely of positive solutions, otherwise, in order to connect to the 
boundary of  0 3 × R, C + would have to be unbounded which would contradict 
Theorem 3.2. Thus C + must leave the positive cone B 3 (r) × R at a point other 
than the bifurcating point. 

Denote by C + the maximal subcontinuum of  C + which connects (N, P, 0, fi) 
to the boundary of B 3 (z) x R and define H + = C + ~ (B3+ (z) × R). Then the 
closure of H + is a continuum which connects (N, P, 0, ~) to the boundary of 
B3+(v) × R, i.e., the closure of  H + contains (N,P,O,~t )  and a point 
(N, P, 0, fi) # (N, P, 0, fi) where N ~> 0 and /3 ~> 0. 

~ Let (Nn, Pn, O, ktn)~H + b e a  sequence which converges in B3('C)xR to 
(N, P, 0,/~). If  (N, P, Z )  = (N, P, 0), dividing the second equation of  (3.1) by 
P,  > 0 and taking average, we obtain 

( a u ( N , ) )  = 7 + D. (3i9) 

If  _N = 0, let n ~ o0 in (3.9), then we get a contradiction to 7 + D  > 0. Hence 
it must be the case N > 0. 

I f /~  - 0, then from the first equation of (3.1) in the limit as n --* 0% we see 
that N e B+ (z) solves the periodic equation (3.2) and hence N = N*. From (3.9), 
i t  follows that ( a u ( N * ) )  = 7 + D, a contradiction to a0 > 0. Hence N > 0 and 
P > 0 .  [] 

Since % > 0 is the persistence condition for the phytoplankton population by 
Theorem 3.5, Theorem 3.7 demonstrates that coexistence of  all components could 
occur if phytoplankton is persistent and if the death rate of  zooplankton is 
reasonably low. This is reminiscent of  a similar phenomenon for the chemostat 
models in a periodic environment studied by Smith [42] and Cushing [ 15]. For  the 
Michaelis-Menten function u(N)  = N / ( k  + N )  and the Ivlev function 
w(P) = 1 - e -he, one can determine the stability of  the bifurcating solutions in 
Theorem 3.7, following the procedures by Smith [42], Cushing [ 15] or Keener [33]. 

4 Z-P-N model with periodic washout rate 

Consider the zooplankton-phytoplankton-nutrient model with periodic washout 
rate 

d N  
d--t = D( t ) (N°  - N )  - aPu(N)  + yP + eZ  

dP 
d t  = aPu(N)  - cZw(P)  - (~ + O(t ) )P (4.1) 

d Z  
- ~  = Z [ c w ( e )  - (~ + D(t))], 

where the periodic washout rate D(t) is a positive, continuous function with 
period r, all parameters and other functions are same as in Sect. 2. It is 
convenient to scale time by the mean value of  D(t), i.e., 

;o 1 D(t) at. ( D ( t ) )  = z 

We assume that all the phytoplankton removed through zooplankton predation 
is assimilated by zooplankton, and all dead phytoplankton and zooplankton are 
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recycled to nutrient completely, i.e., 6 = 1, 71 = 7, e, --- e- Similar to the procedure 
in Sect. 3, we know that the positive cone and the boundaries dEe, ~Ez  are 
invariant, and the system is dissipative, i.e., we have 

lim [N(t) + P(t) + z ( t ) ]  = N °, 
t --~ OO 

where the convergence is exponential. 
Firstly we consider the two dimensional system 

dN 
dt - D(t)(N° - N)  - aPu(N) + 7P 

dP (4.2) 
-d~ = P[au(U) - (7 + D(t))]. 

For any solution of (4.2), N ( t ) +  P ( t ) =  N ° +  R(t)  where R ( t ) =  O(e -~t) as 
t ~ ~ for some ~ > 0. Then P(t) is a solution of 

dx(t) = x(t)[au(NO _ x(t)) - (7 + D(t))] + r(t), (4.3) 
dt 

where r(t) = O(e - ' t )  as t ~ ~ and ~ >0. In turn, (4.3) is a perturbation of 

dy(t) _ y(t)[au(N o _ y(t)) - (? + D(t))]. (4.4) 
dt 

It was shown by Butler and Freedman [6] using Massera's theorem that Eq. (4.4) 
has a unique positive z-periodic solution ~0(t) which is globally asymptotically 
stable. It is not difficult to show that ~p(t) is exponentially asymptotically stable. 
A simple Gronwall's inequality argument shows that if x(t) is any solution of 
(4.3), then x(t) = q)(t) + O(e-#t)  for some fl > 0. Note that (p(t) is independent of 
the choice of P(t), although (4.3) is not; in particular, P(t) converges exponen- 
tially to q~(t) as t--* oe. Define O( t )=N O-  q~(t). Then N(t)  converges exponen- 
tially to O(t) as t ~  oo. And 

do(t) _ q)(t)[au(N o _ q)(t)) - (7 + D(t))] = q)(t)[au(#/(t)) - (? + D(t))], 
dt 

dry(t) dq~( t) 
dt - dt - aqg(t)u(~k(t)) + (N  O - ~b(t))(? 4- D(t)). 

Thus (~(t), ~o(t)) is a solution of (4.2) and is globally exponentially stable. 
Referring back to Theorems 2.1 and 2.2, since <D) = 1 we need a > ? + 1 

and c > e + 1. Hence we have the following result. 

Theorem 4.1 Assume that a > 7 + 1. There are positive z-periodic functions N(t)  
and q~(t), such that the solution (N(t), q~(t)) of (4.2) is exponentially stable for  (4.2), 
and ¢p(t) is globally asymptotically stable for  (4.4). 

Now for the three dimensional system (4.1), there may be two periodic 
solutions on the boundary of the non-negative cone, the constant solution 
Eo = (N °, 0, 0) and solution E1 = (N(t), q~(t), 0). 

Our main purpose in this section is to prove the following theorem. 

Theorem 4.2 Let  a and ? be given such that a > ? + 1. I f  there exists ~ = ct(a, 7) 
such that for  any c > ~, the bifurcation parameter e can be chosen such that 
<w(q~(t)) > > (e + 1)/c, where ¢p(t) is the positive z-periodic solution o f  (4.4), then 
system (4.1) possesses a positive z-periodic solution (N(t),  P(t), Z(t))  near E1 and 
bifurcating f rom El .  
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P r o o f  We may  restrict our  a t tent ion to the .  invariant triangle 
A: N + P + Z = No, N, P, Z ~> 0. Eliminating N f rom (4.1) restricted to A,  we 
have the equat ions 

dxl 
= X l f l ( t ,  Xl, X2) 

dt 
dx2 (4.5) 
dt = xzf2(t, Xa, x2), 

where 

f l ( t ,  Xl, x2) = au(N ° - -  x 1 - x2) -- c x  2 W(Xl) - (7 "[- D(t)), 
Xl 

f2(t ,  Xl, x2) = cw(xl )  -- (~ + D(t)). 

System (4.5) is a predator-prey  model  with periodic coefficients. We verify that  
condit ions o f  Theorem 2.2 o f  Butler and Freedman [6] are satisfied. 

dfl w'(xa) W(Xl) 
(H1) f l l  - - au' - cx2 + c x 2 - - ,  

~ x l  x I X1 

f12 Of 1 W(X,) ~f2 Ofz 
- O x ~ 2 -  a u ' - c  , f 2 , -  = c w ' ( x , ) ,  f 22= - = 0 .  

X 1 OX 1 OX 2 

Hence f j ( i , j  = 1, 2) exist and are cont inuous for (t, Xl, x 2 ) ~  R x R2+, where 
= {(x, ,  R 2, x, i> 0, x2/> 0}. 

(H2) In the absence of  predator ,  there is a seasonally varying carrying capacity 
for  the prey, say the funct ion K*(t) ,  such that  [ X l -  K*(t)] f l ( t ,  Xl, O ) =  
[xl - K*(t)][au(N ° - Xl) - (7 + D(t))] < 0 for  all Xl > 0 and Xl ~ K*(t) .  

(H3) T h e r e  exists a critical popula t ion  density for  the predator ,  say K*(t) ,  above 
which it cannot  survive in the absence of  prey, such that  

Ix2 - K * ( f ) ] f l ( t ,  0, x2) = [x2 - K*(t)][au(N ° - x2) - cx2w'(O) - (7 + D(t)] < 0 

for  all x2 ~> 0 and x2 ~ K* (t). 

W(X1) 
(H4) f12 = - - a t / '  - C < 0 for  all (t, x l ,  x2) ~ R × R2+. 

X1 

(Hs) xtf11 + xzf22 = - a ( x l  + x2)u'  - cx2w' (x l )  < 0 for  all (t, x l ,  x2) ~ R × R 2 . 

(H6) There is a minimum level for  the prey populat ion,  say/£1 (t), at which the 
preda tor  can survive when its own popula t ion density is at a low level, this/~1 (t) 
is such that  [Xl -2 R~(t)]f2(t, x~, 0) = [Xl - Rl(t)][cw(x~) - (~ + D(t))] > 0 for  all 
Xl >t 0 and Xl # KI(0 .  

(H7) f22 = 0 for  all (t, Xl, x2) ~ R × R2+. 

(Hs) Xlf21 "~ x2f22 = C X l W * ( X l )  > 0  for  all (t, Xx,X2) ~ R  x R2+. 

And we have 

(f2 (t, O, O) ) = ( - (e + D(t ) ) )  = -- e - 1 ~< O, 

(f2(t, g0(t), 0 ) )  = (cw(go(t)) ) -- (e + D(t)) = c(w(go(t)) ) -- (g + 1) > 0 .  

By Theorem 2.2 o f  Butler and Freedman [6], system (4.5) has a periodic solution 
(¢~(t), ¢2(t)) with ¢1(0  > 0 and ¢2(t) > 0 .  As in [6], (f2(t, 0, 0 ) )  = - ~  - 1, so 
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can be chosen as a bifurcation parameter such that system (4.1) has a positive 
z-periodic solution (N(t), P(t), Z(t)) near E1 and which bifurcates from E 1 . This 
completes the proof. [] 

This result indicates that if the growth rate of phytoplankton is positive 
and the death rate of zooplankton is relatively low, then a positive periodic 
solution in the three dimensional space will bifurcate from the asymptotically 
stable periodic solution in the N-P plane, hence predator-prey coexistence could 
o c c u r .  

5 Discussion 

In this paper we have discussed several zooplankton-phytoplankton-nutrient 
models with general uptake functions and instantaneous nutrient recycling terms. 
Different from the model studied by Wroblewski et al. [50] and Busenberg et al. 
[5], we introduce nutrient concentration input and washout rates to the plank- 
ton-nutrient interacting models. 

Firstly, we have considered a model with a constant nutrient input and 
different constant washout rates, the zooplankton population could be faculta- 
five or obligate. We have given conditions for boundedness of solutions, exis- 
tence and stability of the equilibria and persistent criteria for the system. 
Competition for the nutrient exists in some sense if zooplankton is facultative, 
but competitive exclusion does not happen. For the case where zooplankton is 
obligate, persistence has been studied. 

As a consequence of the persistence Theorem 2.11, we note that model (2.18) 
has a dynamic persistence threshold; that is, there exists a number above which 
the system persists, below which it does not. From persistence condition (2.20) 
we get the non-dimensional persistence threshold in terms of the nutrient input 
concentration 

+ w . ( 5 . 1 )  
a D 6c 

This inequality demonstrates that the model is nutrient controlled (Hallam [28]). 
Persistence occurs more likely if the nutrient input concentration (N °) is in- 
creased or the death rate of the zooplankton population (~) is relatively low. 
Since enriching the environment may destablize the system, that is, "enrichment 
paradox" may happen (see Busenberg et al. [5], also Ruan and Freedman [40] 
and Freedman and Ruan [20]), it is natural to seek oscillatory coexistence of all 
components. 

Next we have considered the plankton-nutrient interacting models with 
periodic nutrient input and periodic washout rate, respectively. The persistence 
inequality (5.1) is not always true for the two periodic models (3.1) and (4.1), 
hence we cannot get persistence. However, it is shown that in both cases, there 
are positive periodic solutions in the three dimensional spaces bifurcating from 
stable periodic solutions in the N-P plane with the death rate of zooplankton 
used as the bifurcating parameter. Therefore, as in (5.1), if the death rate of 
zooplankton is relatively low, coexistence of all three components could occur. 

The discrete delay due to ingestion and the distributed delay in the nutrient 
recycling can be introduced to the above zooplankton-phytoplankton-nutrient 
models. We leave this to future study. 
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