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Connective Stability for Large Scale Systems Described 
by Functional Differential Equations 

RUAN SHIGUI 

Abstract-In this note we employ the decomposition-aggregation 
method, the comparison principle, and vector Lyapunov functionals to 
investigate the stability of large scale systems described by functional 
differential equations under structural perturbations. Some sufficient 
conditions are given such that the zero solution is connectively and 
uniformly asymptotically stable. An example to illustrate the main results 
is given. 

I. INTRODUCTION 

During the last decade, quite a few authors have been concerned with 
the qualitative analysis of large scale systems, especially stability 
analysis. Many of the results dealing with stability can be found in the 
books by Michel and Miller [7] and Siljak [9].  

The connective stability concept was introduced in [2], [8 ]  to study 
large scale systems, and was developed by Ladde [4] for functional 
differential systems. In this note the decomposition-aggregation method, 
the comparison principle, and vector Lyapunov functionals are used to 
derive sufficient conditions for stability of large scale systems described 
by functional differential equations under structural perturbations. Some 
results of Michel and Miller [7] are extended to the connectiveness 
property of stability. 

11. NOTATION 

Let R" denote Euclidean n-space, let x T  = (x , ,  x2, . . . , x,,) denote the 

A wedge is a continuous function W : [ O ,  w) -+ [0, w) such that W(0) 

For given r > 0, H > 0, let C, = C([ - r, 01, R"),  for 4 E C,, define 

Consider the large scale systems described by functional differential 

transpose of x E R", let J = [to, + w), to 2 0. 

= 0, W(r) is strictly increasing and W(r) + 00 as r -+ m. 

11411 = s u p - r ~ e ~ o 1 4 ( e ) l ,  let Cf = {4 E Cn:I1411 < W .  
equations 

X ( t )  =f(t, X / )  ( 1 )  

wheref:J X Cf + R" is continuous andf(t, 0) = 0. We suppose that 
for every 4 E C, and for every to 2 0, system (1) possesses a unique 
solution x,(to, 4) with xlo = 4 and we denote by x(t) = x(t; to, 4) the 
value of x,(to, 4) at t. 

Let V( t ,  4) be a continuous nonnegative functional defined on J X Cf; 
the upper right-hand derivative of V along the solution of (1) is defined as 

D( , )V( t ,  $)= lim SUP l / h { V ( t + h ,  xr+,,(tO, 4))- V ( t ,  x&, $))I. 
h-O+ 

Now, we decompose (1) into m interconnection subsystems described by 
the equations 

X ' W  = h,U, x : )  +g&, x,)  (2) 

wherei E Z,,, = { I ,  2 ,  ..., m } ,  C z l n ,  = n,J  E C ( J  X C: ,Rn9 ,g ,  
E C(J  x Cp, R"9. 

We assume that interconnection functions g, ( t ,  x t )  depend on the m X 

m interconnection matrices Er = (e ; )  

def 

g,(t, x,)=g,(t, eilx:, ei'x;, . . . , e;"x?) (3) 

for i E I,, where e: E C(  [ - r, 01, [0, 11) are coupling functions which 
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are elements of an m x m hereditary interconnection matrix function E,, 
= e'/ , , ( t  + e)xf(t + e) for e E [ - r ,  01. 

When E/ = 0, from (3) we obtain the isolated subsystem 

X ' ( t ) =  h,(t, x ; ) .  (4) 

111. CONNECTIVE STABILITY 

Theorem I :  Suppose that the following conditions are satisfied. 
i) There exist functional V(t,  4) E C(J X Cp, RT),  V ( t ,  0) = 0, 

V ( t ,  6) is locally Lipschitzian in 4 for t E J; two wedges W , ,  Wz, and 
positive constants a, such that 

m 

Wl(ll$II) < a , V , ( f ,  4) < WZ(ll4ll) ( 5 )  
I =  I 

for all t E J ,  6 E Cf, where 

V ( t ,  t~)=(vl(t, $1, VAt, $), ..., Vm(t, (6) 

ii) There exist a function w E C(J x RY,  RY) ,  w(t, 0) = 0, and w(t,  
U) is quasi-monotone nondecreasing in U, and 

D(i)V( t ,  4) < w(t ,  v(t, 4)) (7) 

for all ( t ,  4) E J x Cf and all interconnection matrices E, E I?/. 
iii) The zero solution U = 0 of the comparison system 

U(t)=w(t ,  U), u(to)=u0>O (8) 

is uniformly asymptotically stable. 

asymptotically stable. 

here we omit it. 

Then the zero solution of system ( I )  is connectively and uniformly 

The proof of Theorem 1 is similar to the proof of Theorem 3 of (41; 

Now, we consider the system (1) with decompositions (2) and (3). 
Definition: The isolated subsystem (4) possesses8roperty A ,  i f  
i) there exist a functional F(t ,  4') E C ( J  x Cnlt,  R Y )  (1 < mi < 

n;), Vi(t ,  0) = 0, V,(t ,  4') is locally Lipschitzian in @ j ,  and two wedges 
Wil ,  Wi2 such that 

wil(ll$'ll) < I1 vr(t, $')I1 Q wi~(lld~'I0 (9) 

for all ( t ,  I # I ~ )  E J x C?, i E Zm, where 

W .  4i)=(Kdt,  4'), V,,(t, 4% .-., Km,( t ,  4'))r; 

ii) there exist constants U, E R + , a wedge W13, and a function wis E 
C(J x RY, R + ) ,  wjs(t, 0) = 0, and wis(t, U) is quasi-monotone 
nondecreasing in U such that 

D(4) V,( t ,  4') Q ws(t ,  vi(t, 6')) + ui Wid11 6'11) (10) 

where rno = maxjE,, { m i } ,  vj = (Vi , ,  V12, .e., Vj,,,o)T 

s < m, 

0 s > m ,  
i E Z,, s E Imo. V,= [ vs 

If, in addition, K ( t ,  4') is continuously differentiable on J x C?, 
then the isolated subsystem (4) possesses property A ,. 

Theorem 2: If the following conditions are satisfied: 
i) each isolated subsystem (4) possesses property A ;  
ii) there exist constants qJ E R ,  such that 

gj(t, ei'x,!, ei'x;, . . ., eimx?) Q ( W j 3 ( ~ ~ $ i ~ ~ ) ) 1 ~ 2  

m 

I I ~y l l~ i , cw ,3 ( l l ~ ' 11 ) )1~2  
, = I  

for all ( t ,  4') E J x C?, i E Z, and all interconnection matrices E, E 
E l  ; 
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iii) the m x m text matrix S = (s,,) defined by 

has positive successive principal minors, where L, is the Lipschitz 
constant of V,(t, 4’) in 4’; 

iv) the zero solution U = 0 of the comparison system 

l i ( t )= W ( t ,  U), u(to)=uo>O (12) 

is uniformly asymptotically stable, where 

wCs s Q m, 
i E I,, s E Ima. I 0 s > m ,  

w,At, U)= 

Then the zero solution of large scale system (1) with decomposition (2) 
and (3) is connectively and uniformly asymptotically stable. 

Proof: We choose a Lyapunov functional 

, = I  

obviously, V( t ,  4) > 0 and 

Since each isolated subsystem (4) possesses property A ,  it follows that 

, = I  , = I  

then there exist wedges W,, W, such that 

Consider 

we have 

\,=I , = I  , = I  / 

by hypotheses i) and ii), we have 

where 

Let 

Thus 

P= W‘((R+Rr) /2)WY WrSW 

where S is the text matrix given in hypothesis iii); by hypothesis iii) we 
know that P is semipositive definite, then 

m 

~ ( ~ ) v ~ t ,  4)  < wt3(r, V )  
,=I 

for all interconnection matrices E, and s E Imo. Therefore, 

By inequalities (13), (14), hypothesis iv) and Theorem 1,  we know that 
the zero solution of system (2)  is connectively and uniformly asymptoti- 
cally stable, and this completes the proof. 

Theorem 3: If the following conditions are satisfied: 
i) eash isolated subsystem (4) possesses property A I ;  
ii) there exist constants a, E R such that 

for all interconnection matrices E,; 
iii) the rn x m text matrix S = (s,,) defined by 

is negative definite; 

cally stable. 

and (3) is connectively and uniformly asymptotically stable. 

it. 

iv) the zero solution of comparison system (12) is uniformly asymptoti- 

Then the zero solution of large scale system (1) with decomposition (2) 

The proof of Theorem 3 is similiar to that of Theorem 2 ;  here we omit 

IV. EXAMPLE 

Consider a large scale system described by the delay equation 

1 m 

x ’ ( t ) =  - - x ‘ ( t - r ) + c  J = I  e~a,,(f)xJ(Z-r), r>O. (15) 
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The isolated subsystem of (15) has the form 

1 
X ’ ( t )  = - - x‘(t  - 7) 

and subsystem (16) can be written in the integral form as 

1 0  
e -, x‘ ( t ;  to, $)= Y,(O, t )&(O) - -  1 Y,(s+7, t )$ ’ (s )  ds 

where Y,(s, t) is defined as 

exp [ - ( t - s ) ]  whens<t 
Y,(s, t)’ 1 when s = t 

when t < s  < t + l .  L 
Now define a functional 

VAt, +’)=lim [ I I X ; + ~ ( ~ O ,  6)lIl exp (Xis); 
S > O  

one can show, following Lakshmikantham and Leela [ 5 ] ,  that 

II V,@, 6;)- V,(t, 6;)ll < Lll+;-dJ;ll. 

The continuity of V,(t, 4’) can easily be proved, and 

D(16)V,(t, @)= lim sup I/h {SUP [ I l ~ : + ~ + , ( t + h ,   to, +))\I 
h-O+ S > O  

- IIx:+s(to, +)I11 exp ( b ) I  
= Iim sup 1/h {sup [I Ix;+,(~o, +))I exp ( M - h ) )  

- I I X : + ~ ( ~ O .  +)I( exp (hs)lJ 
h-Of S > O  

Q V,(t ,  6’) lim sup l / h  [exp ( -X,h)-  11 
h-0’ 

< - A ,  KS(ll4’ll) 

which shows that the isolated subsystem (16) possesses property A with wi 
= 0. And 

The rn x rn text matrix S = (sv) is defined by 

x,-L,Ilegll lla,,ll i=j 

- 1/2(-&llcyll Ilavll +LJllcfll Ila,,ll) i + j .  
s”= 

Therefore, if S has positive successive principal minors, then by Theorem 
2 the zero solution of system (15) is connectively and asymptotically 
stable. 
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A New Controller Design for Manipulators Using the 
Theory of Variable Structure Systems 

KAI S. YEUNG AND YON P. CHEN 

Abstract-A new controller design of manipulators using the theory of 
VSS is presented to deal with the set-point regulation problem. The major 
obstacle of VSS vector control with strong dynamic coupling is overcome 
for a class of systems with positive definite symmetric inertia matrices. 
Parameter variations can easily be considered in the design methodology, 
which is easily extendable to a higher number of links. The problem of 
chattering is solved by the introduction of sliding sectors. 
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I. INTRODUCTION 

In the conventional controller design for robotic manipulators, the 
control algorithm is based on nonlinear compensations of the plant. This 
approach requires a detailed model of the manipulator and an exact load 
forecast [ 11. In addition, such nonlinear compensations are complex and 
costly to implement. In order to avoid this difficulty, control algorithms 
using the theory of variable structure systems ( V S S )  have been developed 
[2]-[4]. The variable structure system is designed in such a way that all 
trajectories in the state space are directed toward some switching planes 
[ 5 ] ,  [6]. Once the system state reaches the switching planes, it slides along 
them and the system response depends thereafter only on the gradients of 
the switching planes and remains insensitive to a class of disturbances and 
parameter variations [7]. 

Among developed control algorithms using the theory of VSS, there 
still exist some nontrivial difficulties in the design. A major difficulty is 
related to the cross-coupling in the inertia matrix. To get around this 
difficulty, Young [2] uses the hierarchical approach and Morgan et al. [3] 
employ dynamic coupling compensation. Both approaches are not entirely 
satisfactory in that the control torques are excessive. Recent work by 
Slotine et al. [4] i s  faced with similar difficulties. The need to invert the 
inertia matrix makes the extension of the design to a higher number of 
links difficult. Another unfavorable feature of the existing VSS design is 
the large amount of chattering which is associated with the excessive 
control torques. 

In this note, we propose a new control algorithm which takes advantage 
of an important property of the inertia matrix, namely its symmetric 
positive-definiteness [8]. Consideration of this property allows a develop- 
ment of the control law without having to take the inverse of the inertia 
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