Asymptotic Stability for
Volterra Intergrodifferential Systems

Shigui Ruan*

Department of Mathematics
University of Alberta
Edmonton, Alberta

Canada T6G 2G1

Transmitted by Melvin R. Scott

ABSTRACT

In this paper, the successive overrelaxation iteration and the variation of parame-
ters formula are used to discuss the stability of linear and nonlinear Volterra
integrodifferential equations. Some sufficient conditions are obtained, such that the
trivial solution of the Volterra integrodifferential equations is asymptotically stable;
these stability conditions are given directly from the coefficients of the equations.

1. INTRODUCTION

It is well known that the variation of parameters formula for linear and
nonlinear differential equations is an important tool in the study of qualitative
properties of perturbed equations, cf. Alekseev [1], Lakshmikantham and
Leela [11], Dannan and Elaydi [5, 6], etc. A corresponding variation of the
parameters formula for linear integrodifferential equations was developed
and utilized to investigate the perturbed integrodifferential equations by
Grossman and Miller [9).

Recently, Beesack [2] and Bernfeld and Lord [3] established a kind of
nonlinear variation of parameters formula to unperturbed systems of differen-
tial systems, which contains no integral terms. Hu, Lakshmikantham and Rao
[10] and Lakshmikantham and Rao [12] developed a nonlinear variation of
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parameters formula for perturbed integrodifferential equations. By means of
the formula established in [10] and [12], Elaydi and Rao [7] and Elaydi and
Sivasundaram [8] investigated Liapunov stabilities and Lipschitz stabilities for
the integrodifferential systems. For the Liapunov stabilities of integrodiffer-
ential equations, many interesting results can be found in Burton [4], Laksh-
mikantham and Leela [11].

In numerical analysis, iteration is one of the most important methods to
solve algebraic equations; see, for example, Ortega and Rheinbadt [13], Vorga
[16] and Young [17]. Recently in [14], from the view of large scale systems, we
used the successive overrelaxation iteration and the variation of parameters
formula of ordinary differential equations to investigate the stability of
nonlinear perturbed differential equations.

In the present paper, we use the successive overrelaxation iteration of [14]
and the variation of parameters formula of integrodifferential equations
developed in [10] to discuss the stability of linear and nonlinear Volterra
integrodifferential equations. Some sufficient conditions are obtained, such
that the trivial solution of the Volterra integrodifferential equations is asymp-
totically stable. Differing from the Liapunov functions method, we give
stability conditions directly from the coefficients of the systems.

2. LINEAR SYSTEMS
We consider the linear Volterra integrodifferential system
() = A(t)x(t) + [t:B(t, s)x(s)ds,  x(ty) =xg. £y 2 0, (2.1)
and the perturbed system of (2.1)
y'(8) = A y() + [B(t.5)y(s) db + F (2. y(2). Sy(),

y(to) = x,, (2.2)

in which A(¢) and B(#,s) are n X n matrices continuous on R, and
R,X R,, respectively, F € C[R_ X R" X R", R"] and

Sy(t) = f:K(t,s, y(s))ds, K& C[R,xR,XR" R"].

Firstly, we recall the following well-known result, which was established
originally by Grossman and Miller [9].
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LEMMA 2.1.  The unique solution y(t) of system (2.2) is given by

t
y(tto, %0) = R(t.to)xo + ['R(L.5)F(s, y(s), Sy(s)) ds, &> to,

where R(t, s) is the solution of the initial value problem

R t
—_(t.5) + R(t,5) A(s) + ['R(t,0)B(t,0)do =0, R(t,t) =1,

(2.4)

forty <s <t <, inwhich I, is an n X n identity matrix.

As in Ruan [14], we suppose that system (2.1) can be decomposed as
follows:

/(1) = Au(t)x,(t) + [B,,(t s)x,(s) ds + 2 Ay(t)x,(t)
j=Lj#i

+ Y fB,](t s)x;(s) ds, %, (ty) =x?, (2.5)

j=1,j#i to

where

-
x; € R%, i=1,2,...,r,Zn=

i=1

and A,;(t), B,(t, s) are n, X n, matrices continuous on R, and R,X R,,
respectlvely We also consider tfle subsystems

x!(t) = Ay(t)x,(¢) +fttBii(t,s)x,(s)ds, i=1,2...,r (26)
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Letting
F(t, x(t), Sx(t)) = j=lij*i[A,-j(t)xj(t) + /:Bij(t,s)xj(s) ds], (2.7)
we can rewrite system (2.3) as the following:

x/(t) = A, (1) x, () + j;:B”(t, syx,(s)ds + F(t, x(t), Sx(t)),

x,(tp) =« (2.8)

Now system (2.8) can be considered as the perturbed system of system (2.7);
hence, by Lemma 2.1, the solution of system (2.8) is given by

x(t) = Ry(t,1)x? + [R(t,)F(s, x(5), 5x(s)) ds,  (2.9)
to
where R,(¢, ¢,) is the solution of the initial value problem
IR, .
—=(t.5) + By(t,5) Au(s) + [R(t. 0)By(o,5)do =0,
S s

R(t,t) = I,

forty<s<t <o i=12...,r Asin[17], using the successive overrelax-
ation iteration on (2.9), we obtain that

K1) = (1= @) (1) + 0B (1, 1,) !
+/;Ri(t, S)E(s, M(s), ..., 2mM(s),
V]

xmTI(s), L, 2 Y(s), 8™ (), . L, Sxi™i(s),

lef'"_l)(s),...,Sxﬁ'"‘”(s))ds, (2.10)
where m = 1,2,...;i=1,2,...,r; 0 < w < 2, and we choose
xO(t) = wBR(t, t)x), i =1,2,...,7. (2.11)

Then we have the following result.
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THEOREM 2.1.  Suppose that

(i) there exist positive constants o and M, (i = 1,2,..., r), such that
R, (¢, t)ll < Mye™ 1) ¢ > ¢, (2.12)

(i) there exist functions A,; € C[R,, R.] B; € CI[R,XR,, R,Lij=
1,2,..., r, such that

r

IE (2, x(), Sx(eNll < X [Aij(t)nxjn + f:ﬁij(t,s)llx,-(s)llds]; (2.13)

j=1

(iii)  there exist positive constants b, i G,j=1,2,...,r), such that
¢ ¢ s
Mi/; [/\ij(s) + j;ea(a )ﬁij(o-, s) dO'] ds < bij; (2.14)
0 :
(iv)  the spectral radius p(D,) < 1, where

D, = (I, - wB.) '((1 - w)I,, + wB*),

w

and 0 < o < 2, 1, is an r X r identity matrix, B = (b B* =B

ij/rXr>
B*, B* iS the le’i lowe1 i1 iangl@ mtﬂx O_fB.

Then the trivial solution of system (2.1) is asymptotically stable.

ProoF. From (2.11) and hypothesis (i), we have

def
le@()ll < oMllxllle™ ¢~ = lyO(e)l, e3¢, i=1,2,...,r.
(2.15)
Writing (2.15) in the vector form, we get
col (= Q) ..., 1 @)

< Lcol( M2, ..., M,llx2))e* ¢, (2.16)
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By (2.10) and (2.11) we have
lx{P(2) — =(2)ll

< (1 = o)lIxO(e)ll

Fof Mo T a0

tg

+ /t:'BU(t’ u)" x](.o)(u) ” du] ds

< (1 - @)Iz@()l + wf Mye™ =9 z WMl
j=1

'[Alj(s)e_“('_"’) + ftﬂlj(s, u)e” *=t) du] ds
to
< (1 - o)llx

+ oM, Z oM; ”x()”f Talt=a (s)e als—to) Jo
j=1

-
t S
+ oM, Y, wMijjon e_“('"s)f Bij(s,u)e™ "1 duds.
j=1 to to
Using Fubini’s Theorem, we obtain that

I5(t) = 20(2)]

< (1= )l=P()ll
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+ oM, Z oM, ||x°||e_"(' ’°)f/\ (7)dr
i=1

+ wMIZwM lxflle™ =~ 'O)ff T ng (u, 7) dudr
j=1

= (1 - )0 + 0 X M,

j=1

‘ft[)‘lj(s) + jte*a(u—s)ﬁlj(u, s) du] ds - wMj”x](.)He'“(t—fo)
ty i

Ziyd(e) - g ()l (2.17.1)
Similar to the above procedure and the proof of Theorem 1 in [15], we have
I2(0) = =00

< (1 = o)lly@ () + by llyP(2) — (1)l

t o Z b2]” y]())(t)“
j=2

Yly0(t) = y@ ()l (2.17.2)
and
Ix®P(t) — xO(t)ll
< (1 = o)y (D)l

+ b llyP(8) = y OOl + -+ +ob,, lyO(D)]

= ||y V() - yO()l. (2.17.r)
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Rewriting (2.17.1), (2.17.2), ..., and (2.17.r) in the vector form

< wBwool(1y0(t) = y@(O, .. () = y@(e))

+((1 - @)1, + @B*)col(lyS (), ..., ly@()0). (2.18)

1ol (ly () = y @)l Iy (2) = y@()l)

then we have
col(llxV(t) — xO(D)1, ..., lx®O(2) — xO(1)]]
< col(Ily$"(t) =y (). MyP(t) ~ y()N)

= (1 - wB.) (1 = @)1, + wB*)col(lly®(D)Il,.... ly@())

Y Dol (ly @Ol My @(e)). (2.19)
Let
col(lx§P () — xO(H,. .., () = @)l
< col(lly$P(t) = gD NyP(2) — (D))
< DEcol(ly(D)l, - 1y @)1,

where D) = (d{{"),,,, m = 1,2,..., we have the following inequalities:

g™ D(t) = <™ ()]

< |(1 - 0) + X wby | 2 dIlyO())
j=1 k=1
def
=Ny 0(e) =yl (2.20.1)

7 0(8) = 24

< wbylly{" " V(t) = y{ (1)l

+ 1 (1= @) + by )lly™(2) — g™ P(2)ll
j=2

Zigm 0(e) = g ()l (220.2)
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and
5 0(e) - 2
< wh,llgf"D(e) = g+ wbgllgh e) — g0 +
+((1 = @) + wb )iy "2(e) ~ yr(0)
(Zf“yﬁ"””(t) -yl (2.20.r)
Writing (2.20.1), (2.20.2), ..., and (2.20.r) in the vector form
col(Hx%’”+ D) =), . () ~ xﬁ'”)(t)H)
< D, D col(IlyP (), ... 1y (e)ll)
< wDJ ool (MlIx0N, .., M Ix0l)e e, (2.21)
which follows from (2.16), we have that
col(lx{" ()l ..., =" D))
< col(lx{" () = <N, . = D) — =)l + -
< col(xP(t) = Q) ..., 1xO(e) = xO(2)l)
+ col(IxV (I, ..., ||x(ro)(t)||)
<o(Dy''+ D+ 4D, + 1,
Xcol(Mllxll, ..., M llx)ll)e~ =t

<w(l-D,)"" max Mcol(I1xll, ... [Tx?([)e ™ fo, (2.22)

<igr

Since the spectral radius p(D,) < 1 and ¥, _,D” = (1 — D)~ is conver-
gent, by the mathematical induction, (2.21) and (2.22) hold for any natural
number m.
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On any finite interval (¢,, T'], the uniform convergence of the series
Y Drcol(llx}ll, ... lIx2l)e >t
m=0

implies the uniform convergence of the series

%]

Y col(lx™(t) — xm D), .., Hxim(E) — x D)1

m=0
+ col(llx{1l, ..., ()l

and hence, also implies the uniform convergence of the series

-]

T col(x{™(y) = 2" 7O(1). ... x(t) = < (t))

m=0

+ ool (x0(2), ..., xO(¢)).

It follows that col(x{™(¢),..., x{™(¢)) converges uniformly to col(x(#),
..., x,(t)) as m — . Hence, we have

col(lx (&), ..., llx, . (£)Il)

<o(l-D,)"" max Mol(llx{ll,..., lx0l)e~ ¢t (2.23)

Igigr

The right hand side of (2.23) goes to zero as ¢ approaches infinity, so the zero
solution of system (2.1) is asymptotically stable. This completes the proof. B

3. NONLINEAR SYSTEMS

In this section we consider the nonlinear Volterra intergrodifferential
system

2'(t) = h(t, x(t)) -.‘-/ttg(t,s,x(s))ds, x(ty) = 10~ (3.1)

where h € C[R. X R", R"], g € C[R, X R, X R", R"], and the perturbed
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system
y'(1) = (e, y(1)) + [g(t.5.y(s)) ds + F(t, y(1), Sy(0)),

y(to) = %o, (3.2)

where F € C[R, X R" X R", R"], Sy(t) is the same as in Section 2.
We need the following lemma, which is Theorem 1.4 of Hu, Lashmikan-
tham and Rao [10].

LEMMA 3.1.  Suppose dh/dx, dg/dx exist and are continuous on R, X
R", R, X R, X R", respectively. Let x(t) = x(t,t,, x,) be the unique solu-
tion of system (3.1); then any solution y(t) = y(t,ty, xo) of system (3.2)
satisfies the integral equation

y(t) =x(6) + [@(t,5, () F(5, y(5), Sy(s)) ds

[ L1t 0, y(0) = R(t. 715, y(D]a( .5, y(s) do ds

0 S

(3.3)

fort > t, where ®(t,t,, x,) = (dx/dx Nt, ty, x,) and R(2, s; t,, x,) is the
solution of the initial value problem

JdR
——(t s3tg, x9) + R(¢, s; toxo) (s x(s, 5, xg))

+fR(t oity, xo) (0' s, x(8,ty,29))do =0,

R(t,t;ty,x0) =1,,, R(t,t5:ty, x0) = P(t,¢, %), t

A\
»
A\
st

(3.4)
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Suppose equation (3.1) can be decomposed as
x{(1) = hy(t, (1) + ['gi(t.s, x,(s)) ds
to

+Hi(t,x(t))+fttG,.(t,s,x(s))ds, 2(ty) = 2°, (3.5)

where

h,e C[R,X R", R%], g, € C[R.xR,XRY, R%],

Y
H, € C[R,X R",R%], G, €C[R,xR",R"], n, = n.
i=1
Suppose that
hi(t,0) =g, (¢t,0) =0, H(t,0)=GJ(t,0)=0, i=12,..., r.

We also consider the subsystems

x/(t) = h(t, x,(t)) + /tgi(t,s, x;(s)) ds, x,(t,) =x0,i=1,2,..., r.
to

Let
F(t, x(t), $x(t)) = H,(t, x(t)) + j;tG,.(t,s,x(s))ds, i=1,2,...,r;

then (3.5) can be considered as the perturbed system of (3.6) and can be
written as

x[(t) = hy(t, x,(t)) + fttgi(t, s, x,(s)) ds + F(t, x(t), Sx(t)),

x(tp) =« (3.7)
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Suppose that ¢h,/dx, and dg,/dx, exist and are continuous on R, X

R™, R, X R, X R™, respectively. Let ®(t,t,, x{) = (dx,/9x)Xt, t, x?)
and let R,(t, s;t,, x?) be the solution of the equation

JR, dh,
E_(t’ $:tg, xf)) + Ri(t,s;to, x?)—ﬁ-x—i(s,to, x?)

dg,
+ftRi(t, o;ty, x?)a—gl(t,s;to, x))do =0
s X;

with the initial value R,(t,¢;ty, x%) = I, on t, < s < t, and R,(t, to; tg, x;)
= D, t,, x0). Let x,(t) = x,(t, t,, x,) be the solution of system (3.7) and
x,(t, t,, x2) be the solution of the subsystem (3.6). Then by Lemma 3.1, we
have

x,(t) = x,(t, 0, 27) + fttfbi(t, s, x;(8))F (s, x(s), Sx(s)) ds

+[ttf:[q>,.(t, o, 5(0)) = R(t, o35, x,(5))]
gi(o.s,x(s))dods (3.8)

for t > t,. Using the successive overrelaxation iteration on (3.8), we obtain
that

2M(t) = (1 — @) 2™ D(t) + wx,(t, o, x°)
+ a)ftft[q)i(t, g, xi((T)) — Ri(t, o:s, xi(s))]
to”s
glo, s, x1,(s))dods
o[t 5, x,())E (s £7(5)..... (),
fo

xD(s), o, xmTI(s), Se{™(s), L,
Sx{™(s), Sx{""V(s), ..., Sx""V(s)) ds, (3.9)

where m=1,2,...;i= 12, ..., 0 < w < 2. Then we have
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THEOREM 3.1.  Suppose that

(i) there exist positive constants a, M, and p, (i = 1,2,..., r), such that
if Izl < p,

IR(2, s5t0, xX) < Me™ ¢, |1®,(¢, 2y, )l < Me®¢™9,

t>S>t0;

(i) t}.zer.'e exist functions A,; € C[R,,R.] and B,; € C[R,XR,,R,]
Gi,j=1,2,...,r) and positive constants K,, such that if ||zl < p,,

lg.(¢, s, )l < Killxlle 2%,

r

IE(t, x(t), Sx(2))Il < Z [)‘i]’(t)”xj” + fttﬁij(t’ S)”xj(s)” d‘g]§

j=1

(iii) there exist positive constants b;; (1,j = 1,2,..., r), such that

t 2K 8, -
Mi’[t I:/\ij(s) + — 1 = alt s)+/sea(u s)B,»j(u,S) du]ds < by,

[

where

5 — 1, if i=j
W\, if i#j;

(iv) hypothesis (iii) of Theorem 2.1 holds.

Then the trivial solution of system (3.1) is asymptotically stable.
Proor. By theorem 1.5 of [10] and hypothesis (i), we have

def
Ix@()l < MlIx2lle™ ¢ = |y O(#)ll, t>t,, (3.10)
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and
() = 2001

< (1 = o)l=P()l

+ of ['2M K e e xO(s) | du ds
to”s
t —-—a -8 .

+wj;Mle « >21A1j(s)||x;°>(s)uds
0 j=

+ wftMle_“(t_S) i fsBU(s,u)lIxﬁo)(u)H du ds
to j=1"%
< (1= o)ll=()

+ w/tftQ.MlKle_"‘(’_“)e_Z"‘“IIx(lo)(s)H duds
to”s

.

t

— — 0 _ _

+ wj; Me ¢ 'le\lj(s)wMjllxj lle™=t=to) ds
o j=

,
t t

+ wft Me~ o= Zj;Blj(s,u)wMij](.)He_"'(t_t“) du ds.
[} j=1"%

By Fubini’s Theorem and hypothesis (iii), we have
Ix{°() = =2(0)l

< (1= @)lIxP()ll

—a(ty—s)

2K,
e

47

+ left i )\1]-(3) +

fo| j=1

.
t _ — —_
+wfse"‘(“ ) ‘ZIBU(u,s) du ds-wMjllx;)He alt—ty)
i-

< (1= )y + o X by ly@(2)ll
j=1

Yy e) — @),



222 SHIGUI RUAN

The rest of the proof is similar to the proof of Theorem 2.1; here we omit it.
]
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