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Abstract In this paper, we construct an infection-age model to study the interaction between
viruses and the immune system within the host. In the model, the mortality rate of infected
cells, the rate that cytotoxic T lymphocytes (CTL) kill infected cells, the rate that infected
cells produce new virus, and the CTL proliferate rate may depend on the infection-age. The
basic reproduction number and the threshold for the existence of steady states are obtained.
Local stability of both the infection-free and infection steady states is studied by analyz-
ing the linearized systems. Global stability of the infection-free steady state is obtained by
investigating a renewal integral equation and global stability of the infection steady state
is obtained by constructing a Liapunov functional. Numerical simulations are presented to
verify the theoretical results.

Keywords Age-structured model · Viral dynamics · Integrated solution · Liapunov
functional · Local and global stabilities

1 Introduction

In the last two decades, many mathematical models have been proposed to investigate the
within-host dynamics of viruses and immune cells interactions. A basic model describing the
response of cytotoxicT lymphocytes (CTL) to viral infectionwasfirst proposedbyNowakand
Bangham [24]. Since then, various models have been developed to study immune responses
to different viral infections in vivo [3,25,27,33,34,36–39]. Wodarz et al. [37] proposed an
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ordinary differential equation model to study the important role of lytic and nonlytic immune
responses in viral infections. Besides the immune response of CTL, researchers have also
studied the humoral immunity response of B cells (see [38]). The purpose of constructing
and studying these models is to understand how CTL responses work to fight the viral infec-
tions. These modeling studies have demonstrated that such mathematical and computational
approaches are valuable when coupled with experimental work through collaborations [36].

Taking the latent period into account, delay differential equations have been employed to
study the dynamical behavior of viruses and the immune system, in which viruses need times
to infect susceptible cells, or the immune system needs times to make an immune response
[26,29,32]. In these delay differential equations, the time period of delay is supposed to
be a constant. Age-structured models have been used extensively to study the population
dynamics and transmission dynamics of infectious diseases (see [9,21,31]). Most recently,
age-structured models have been employed to describe viral infections based on the fact
that the death rate of infected cells varies over their life span [1,8,12]. In addition, the
production rate of viruses is initially low and increases with the age of the infected cells
[12,40]. Therefore, it is more reasonable to assume that the mortality of infected cells and
the production rate of viruses are functions depending on the age of infected cells. This type
of age-structured models has drawn attention of many researchers (see [1,4,5,12,16,23,28,
40]). Most studies on this topic are based on a coupled ODE–PDE system incorporating
target cells, infected cells, and free viruses as the state variables. As discussed above and
as in references [25,27,33,34,36–39], CTL play a crucial role in host defense against viral
infections. Therefore, an introduction of the immune cells to the model is necessary in order
to better understand virus infections.

In this paper, we propose an infection-agemodel to study the interactions of the viruses and
immune response of CTL within the host. This model may be used to study the interactions
between pathogens and the immune system in viral infections such as HIV, HBV, HCV and
so on. The model takes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= b − d1x(t) − βx(t)v(t),

∂y(t, τ )

∂t
+ ∂y(t, τ )

∂τ
= −d2(τ )y(t, τ ) − p(τ )y(t, τ )z(t),

dv(t)

dt
=

∫ ∞

0
k(τ )y(t, τ )dτ − d3v(t),

dz(t)

dt
=

∫ ∞

0
c(τ )y(t, τ )dτ − d4z(t)

(1.1)

with initial and boundary conditions

y(t, 0) = βx(t)v(t), (1.2)

x(0) = x0 > 0, y(0, ·) = y0 ∈ L1+(R+,R+), v(0) = v0 > 0, z(0) = z0 > 0, (1.3)

where x(t), v(t), z(t) are the numbers of uninfected target cells, free viruses, and CTL at
time t , respectively. y(t, τ ) is the number of infected cells at time t with an infection-age τ ,
which is the time since the moment of being infected. Uninfected target cells are assumed to
be produced at a constant rate b and die out with a rate d1. When the susceptible cells meet
free viruses, they become infected with a rate β. Infected cells at age τ die out with a rate
d2(τ ). Infected cells are killed by CTL with a rate p(τ ), where p(τ ) represents the strength
of the CTL killing the infected cells. The viruses die out with a rate d3, and the mortality
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rate of CTL is d4. Infected cells produce new viruses with a rate k(τ ). The CTL proliferate
in response to antigenic stimulation with a rate c(τ ). Here, k(τ ), c(τ ) ∈ L1+(R+,R+).

Let

T (t) := x(t) +
∫ ∞

0
y(t, τ )dτ, (1.4)

C(t) :=
∫ ∞

0
k(τ )y(t, τ )dτ, (1.5)

E(t) :=
∫ ∞

0
c(τ )y(t, τ )dτ. (1.6)

Thus, T (t) is the total number of organ cells, C(t) represents the proliferate rate of viruses
at time t , and E(t) represents the rate of CTL expansion at time t . We assume that all the
parameters in (1.1) are positive.

The paper is organized as follows. In Sect. 2 we discuss the existence and uniqueness of
solutions to the model. The existence of (both infection-free and infection) steady states is
considered in Sect. 3. Section 4 deals with the local and global stabilities of the infection-free
steady state. We then establish the uniform persistence of the model system in Sect. 5. Sec-
tion 6 is devoted to the local and global stabilities of the infection steady state. Somenumerical
simulations are given in Sect. 7. The paper ends in Sect. 8 with some brief discussions.

2 Existence and Uniqueness of Solutions

In this section, we study the fundamental properties of model (1.1) including the existence
and uniqueness of solutions.

In order to study the existence of solutions for system (1.1), we denote

X = R × L1(R+,R) × R × R × R,

X0 = {0} × L1(R+,R) × R × R × R,

X+ = R+ × L1+(R+,R) × R+ × R+ × R+,

and

X0+ = X+ ∩ X0.

Define an operator A : D(A) ⊂ X → X by

A

⎛

⎜
⎜
⎜
⎜
⎝

(
0
ϕ

)

ϕ1

ϕ2

ϕ3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

( −ϕ(0)
−ϕ′ − d2(τ )ϕ

)

−d1ϕ1

−d3ϕ2

−d4ϕ3

⎞

⎟
⎟
⎟
⎟
⎠

(2.1)

with D(A) = {0} × W 1,1(0,∞) × R × R × R. If λ ∈ C with Re(λ) > −d (here d =
min

0≤τ<∞{d2(τ )}), then λ ∈ ρ(A) (ρ(A) is the resolvent set of A), and the resolvent of A is

given by the following formula:
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(λI − A)−1

⎛

⎜
⎜
⎜
⎜
⎝

(
α

ψ

)

ψ1

ψ2

ψ3

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

(
0
ϕ

)

ϕ1

ϕ2

ϕ3

⎞

⎟
⎟
⎟
⎟
⎠

(2.2)

⇔

⎛

⎜
⎜
⎝

ϕ

ϕ1

ϕ2

ϕ3

⎞

⎟
⎟
⎠ (τ ) =

⎛

⎜
⎜
⎜
⎝

e−λτ e− ∫ τ
0 d2(σ )dσ α + ∫ τ

0 e−λ(τ−s)e− ∫ τ
s d2(σ )dσ ψ(s)ds

ψ1(τ )
λ+d1
ψ2(τ )
λ+d3
ψ3(τ )
λ+d4

⎞

⎟
⎟
⎟
⎠

.

(2.3)

Now we rewrite system (1.1) as the following abstract Cauchy problem:
⎧
⎨

⎩

du(t)

dt
= Au(t) + F(u(t)), t ≥ 0,

u(0) = u0 ∈ D(A),

(2.4)

where

u(t) =

⎛

⎜
⎜
⎜
⎜
⎝

(
0

y(t, ·)
)

x(t)
v(t)
z(t)

⎞

⎟
⎟
⎟
⎟
⎠

, F(u(t))(τ ) =

⎛

⎜
⎜
⎜
⎜
⎝

(
βx(t)v(t)

−p(τ )y(t, τ )z(t)

)

b − βx(t)v(t)∫ ∞
0 k(τ )y(t, τ )dτ∫ ∞
0 c(τ )y(t, τ )dτ

⎞

⎟
⎟
⎟
⎟
⎠

. (2.5)

F is a nonlinear map defined from D(A) to X . One can see that it is Lipschitz continuous
on bounded sets. Based on this fact, we have the following theorem by applying the results
given in [6,10,15,17,19].

Theorem 2.1 There exists a uniquely determined semiflow {U (t)}t≥0 on X0+, such that for
each ζ ∈ X0+, there exists a unique continuous map U ∈ C([0,+∞), X0+) which is an
integrated solution of the abstract Cauchy problem (2.4); that is,

∫ t

0
U (s)ζds ∈ D(A), ∀t ≥ 0 (2.6)

and

U (t)ζ = ζ + A
∫ t

0
U (s)ds +

∫ t

0
F(U (s)ζ )ds, ∀t ≥ 0. (2.7)

Moreover, the semiflow {U (t)}t≥0 is asymptotically smooth and bounded dissipative.

Let

� =
{(

(0, y), x, v, z
) ∈ X0+ | T (t) ≤ b

r
, v(t) ≤ k̄b

rd3
, z(t) ≤ c̄b

rd4

}
, (2.8)

where r = min(d1, d2), d2 = inf
τ≥0

d2(τ ), k̄ = sup
τ≥0

k(τ ), c̄ = sup
τ≥0

c(τ ). We have the following

theorem.

Theorem 2.2 � is a positively invariant set under semiflow {U (t)}t≥0; that is U (t)� ⊂ �.
Moreover, � attracts all positive solutions of (2.4).
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Proof Let d̄2 = sup
τ≥0

d2(τ ), p̄ = sup
τ≥0

p(τ ), a = max(d1, d̄2+ p̄c̄b
rd4

). For any
(
(0, y), x, v, z

) ∈
� and t ≥ 0, we have

dT (t)

dt
≤ b − d1x(t) − d2

∫ ∞

0
y(t, τ )dτ ≤ b − rT (t). (2.9)

It follows that

T (t) ≤ b

r
+

(
T (0) − b

r

)
e−r t . (2.10)

Therefore, T (t) ≤ b
r if ((0, y0), x0, v0, z0) ∈ �. Moreover,

− d3v(t) ≤ dv(t)

dt
≤ k̄

∫ ∞

0
y(t, τ )dτ − d3v(t) ≤ k̄

b

r
− d3v(t). (2.11)

Thus,

v0e
−d3t ≤ v(t) ≤ k̄b

rd3
+

(
v0 − k̄b

rd3

)
e−d3t . (2.12)

Similarly, we have

z0e
−d4t ≤ z(t) ≤ c̄b

rd4
+

(
z0 − c̄b

rd4

)
e−d4t . (2.13)

In addition,

dT (t)

dt
= b − d1x(t) −

∫ ∞

0

(
d2(τ ) + p(τ )z(t)

)
y(t, τ )dτ ≥ −aT (t), (2.14)

hence,
T (t) ≥ T (0)e−at . (2.15)

Therefore, U (t)� ⊂ � and � is a positively invariant set. Moreover, it is easy to see that �
attracts all positive solutions of (2.4) by (2.10), (2.12) and (2.13). �


3 Existence of Steady States

System (1.1) always has an infection-free steady state E0 = (x0, 0, 0, 0), where x0 = b
d1
.

There may exist an infection steady state E∗ = (x∗, y∗(τ ), v∗, z∗) satisfying the following
equations ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b − d1x
∗ − βx∗v∗ = 0,

dy∗(τ )

dτ
= −(d2(τ ) + p(τ )z∗)y∗(τ ),

∫ ∞

0
k(τ )y∗(τ )dτ − d3v

∗ = 0,
∫ ∞

0
c(τ )y∗(τ )dτ − d4z

∗ = 0,

y∗(0) = βx∗v∗.

(3.1)

Calculating the first equation of (3.1) yields

x∗ = b

d1 + βv∗ . (3.2)
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Solving the second equation of (3.1), we have

y∗(τ ) = y∗(0) exp
{

−
∫ τ

0
(d2(τ ) + p(τ )z∗)dτ

}

= βx∗v∗
1(τ )
2(τ, z
∗), (3.3)

where
1(τ ) := exp{− ∫ τ

0 d2(σ )dσ },
2(τ, f ) := exp{− ∫ τ

0 p(σ ) f dσ }, f (·) ∈ L1+(R+,R).
Next, substituting (3.3) into the third equation of (3.1), it follows that

v∗ = βx∗v∗

d3

∫ ∞

0
k(τ )
1(τ )
2(τ, z

∗)dτ. (3.4)

When v∗ �= 0, it is equivalent to

1 = βx∗

d3

∫ ∞

0
k(τ )
1(τ )
2(τ, z

∗)dτ. (3.5)

This leads to

v∗ = βbG(z∗) − d1d3
βd3

, (3.6)

whereG(z∗) = ∫ ∞
0 k(τ )
1(τ )
2(τ, z∗)dτ . Similarly, substituting (3.3) into the fourth equa-

tion of (3.1), we have

z∗ = βx∗v∗

d4

∫ ∞

0
c(τ )
1(τ )
2(τ, z

∗)dτ. (3.7)

Substituting (3.2) and (3.6) into (3.7) yields

z∗ = d1d3G1(z∗)
βd4G(z∗)

(βbG(z∗)
d1d3

− 1
)
, (3.8)

where G1(z∗) = ∫ ∞
0 c(τ )
1(τ )
2(τ, z∗)dτ .

Let

�(z∗) = d1d3G1(z∗)
βd4G(z∗)

(βbG(z∗)
d1d3

− 1
)

− z∗. (3.9)

Then,

�(0) = d1d3G1(0)

βd4G(0)

(βbG(0)

d1d3
− 1

)
. (3.10)

The basic reproduction number of system (1.1) is defined as

R0 = βbG(0)

d1d3
= βb

∫ ∞
0 k(τ )e− ∫ τ

0 d2(σ )dσ dτ

d1d3
. (3.11)

Remark 3.1 The basic reproduction number R0 is the average number of newly infected
cells produced by a single infected cell during its lifetime, assuming all other cells are
susceptible [2,36]. In (3.11),β is the effective infection rate; 1/d3 denotes the average lifespan
of the virus; e− ∫ τ

0 d2(σ )dσ is the probability that an infected cell survives to age τ , hence
∫ ∞
0 k(τ )e− ∫ τ

0 d2(σ )dσ dτ represents the number of viruses that an infected cell reproduces
in its lifetime; b/d1 is the number of susceptible cells at the infection-free steady state.
Therefore, the basic reproduction number has the same biological interpretation as in the
non-age-structured epidemic models.
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On account ofG(z∗) > 0,G1(z∗) > 0 andG(z∗) ≤ G(0), we have�(z∗) ≤ 0 ifR0 ≤ 1,
and �(z∗) = 0 holds if and only if z∗ = 0. Therefore, there is no infection steady state if
R0 ≤ 1.

Equation (3.8) has at least one positive root z∗0 if R0 > 1 since �(0) > 0 and
lim

z∗→+∞ �(z∗) = −∞; that is, system (1.1) has at least one infection steady state if R0 > 1.

Furthermore,

�′(z∗) = d1d3G ′
1(z

∗)
βd4G(z∗)

(βbG(z∗)
d1d3

− 1
)

+ d1d3G1(z∗)G ′(z∗)
βd4G2(z∗)

− 1. (3.12)

By the expressions of G(z∗) and G1(z∗), we know that G(z∗) > 0, G1(z∗) > 0, G ′(z∗) < 0
andG ′

1(z
∗) < 0. In the neighborhood of the positive root z∗0, it is easy to see that

βbG(z∗)
d1d3

−1 >

0, hence, �′(z∗) < 0, which means that there is no more than one positive root for (3.8).
Hence, the following threshold property holds.

Theorem 3.2 For system (1.1), there is no infection steady state if R0 ≤ 1, and there is a
unique infection steady state if R0 > 1.

4 Stability of the Infection-Free Steady State

In this section, we discuss the local and global stabilities of the infection-free steady state
E0 = (x0, 0, 0, 0).

4.1 Local Stability of the Infection-Free Steady State

Let x1(t) = x(t) − x0, y1(t, τ ) = y(t, τ ), v1(t) = v(t), z1(t) = z(t). We can derive the
linearized equations at E0 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)

dt
= −d1x1(t) − βb

d1
v1(t),

∂y1(t, τ )

∂t
+ ∂y1(t, τ )

∂τ
= −d2(τ )y1(t, τ ),

dv1(t)

dt
=

∫ ∞

0
k(τ )y1(t, τ )dτ − d3v1(t),

dz1(t)

dt
=

∫ ∞

0
c(τ )y1(t, τ )dτ − d4z1(t)

(4.1)

with boundary and initial conditions

y1(t, 0) = βb

d1
v1(t), (4.2)

x1(0) = x10, y1(0, ·) = y10, v1(0) = v10, z1(0) = z10. (4.3)

Let

B1(t) = βb

d1
v1(t), (4.4)

C1(t) =
∫ ∞

0
k(τ )y1(t, τ )dτ, (4.5)

E1(t) =
∫ ∞

0
c(τ )y1(t, τ )dτ. (4.6)
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Then, by formal integration of (4.1), we have

x1(t) = x10e
−d1t − (l1 ∗ B1)(t), (4.7)

v1(t) = v10e
−d3t + (l3 ∗ C1)(t), (4.8)

z1(t) = z10e
−d4t + (l4 ∗ E1)(t), (4.9)

where l j (τ ) := e−d j τ ( j = 1, 3, 4). The asterisk denotes the convolution operation defined
by

( f ∗ g)(t) :=
∫ t

0
f (t − σ)g(σ )dσ. (4.10)

Next by integrating the second equation of (4.1) along the characteristic lines, one has

y1(t, τ ) =
{
B1(t − τ)
1(τ ), t ≥ τ,

y10(τ − t)
1(t), t < τ.
(4.11)

Then,

C1(t) =
∫ ∞

0
k(τ )y1(t, τ )dτ

=
∫ t

0
k(τ )B1(t − τ)
1(τ )dτ +

∫ ∞

t
k(τ )y10(τ − t)
1(τ )dτ

= (k
1 ∗ B1)(t) + F10(t), (4.12)

where

F10(t) =
∫ ∞

t
k(τ )y10(τ − t)
1(τ )dτ. (4.13)

Therefore,

B1(t) = βb

d1

(
v10e

−d3t + (l3 ∗ C1)(t)
)

= βb

d1

(
v10e

−d3t + (l3 ∗ F10)(t) + (
(l3 ∗ k
1) ∗ B1

)
(t)

)

= G2(t) +
∫ t

0
�0(τ )B1(t − τ)dτ, (4.14)

where

G2(t) = βb

d1

(
v10e

−d3t + (l3 ∗ F10)(t)
)
, (4.15)

�0(τ ) = βb

d1
(l3 ∗ k
1)(τ ). (4.16)

Then, lim
t→+∞G2(t) = 0. In fact,

|F10(t)| =
∣
∣
∣
∣

∫ ∞

t
k(τ )y10(τ − t)
1(τ )dτ

∣
∣
∣
∣

≤ k̄‖y10‖L1

∫ ∞

t
e−d2τdτ

= 1

d2
k̄‖y10‖L1e−d2t ,

(4.17)
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when d2 �= d3,

|(l3 ∗ F10)(t)| ≤
∫ t

0
e−d3(t−τ)|F10(τ )|dτ

≤
∫ t

0

1

d2
e−d3(t−τ)k̄‖y10‖L1e−d2τdτ

= k̄‖y10‖L1
e−d3t − e−d2t

d2(d2 − d3)
,

(4.18)

and if d2 = d3,

|(l3 ∗ F10)(t)| ≤ 1

d2
k̄‖y10‖L1 te−d3t . (4.19)

It follows that lim
t→+∞G2(t) = 0. By the Paley–Wiener Theorem [13,14], we know that

lim
t→+∞ B1(t) = 0 if and only if

∫ ∞

0
�0(τ )dτ = β

b

d1

∫ ∞

0
(l3 ∗ k
)(τ)dτ

≤ β
b

d1

∫ ∞

0
(l3 ∗ k
1)(τ )dτ

= β
b

d1d3

∫ ∞

0
k(τ )
1(τ )dτ

= R0 < 1.

Therefore, lim
t→+∞ y1(t, τ ) = 0 for any τ ∈ (0,+∞), lim

t→+∞ x1(t) = b
d1
, lim
t→+∞ v1(t) = 0,

and lim
t→+∞ z1(t) = 0 if and only if R0 < 1.

By the principle of linearized stability for the evolution equation as system (1.1) (see [7],
Proposition 5.2 in [14], Appendix in [20], Corollary in [30] or Theorem 4.13 in [35]), we
have the following theorem.

Theorem 4.1 The infection-free steady state E0 is locally stable if R0 < 1 and unstable if
R0 > 1.

4.2 Global Stability of the Infection-Free Steady State

Let

B(t) = βx(t)v(t).

Then, by formal integration of (1.1), one obtains

x(t) = b

d1
+

(

x0 − b

d1

)

e−d1t − (l1 ∗ B)(t), (4.20)

v(t) = v0e
−d3t + (l3 ∗ C)(t), (4.21)

z(t) = z0e
−d4t + (l4 ∗ E)(t), (4.22)

where C(t) and E(t) are defined in (1.5) and (1.6) respectively. Next by integrating the
second equation of (1.1) along the characteristic lines, we have

y(t, τ ) =
{
B(t − τ)
1(τ )
2(τ, z(t + σ)), t ≥ τ,

y0(τ − t)
1(t)
2(t, z(τ + σ)), t < τ.
(4.23)
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Therefore,

T (t) = x(t) +
∫ ∞

0
y(t, τ )dτ

= x(t) +
∫ t

0
B(t − τ)
1(τ )
2(τ, z(t + σ))dτ

+
∫ ∞

t
y0(τ − t)
1(t)
2(t, z(τ + σ))dτ.

(4.24)

Thus for any fixed t0 > 0, we can define operators X ( f ), T ( f ), V ( f ) and Z( f ) for f (·) ∈
C([0, t0];R+) as

X ( f )(t) := b

d1
+

(

x0 − b

d1

)

e−d1t − (l1 ∗ f )(t),

T ( f )(t) := X ( f )(t) + F0(t) + F1(t),

V ( f )(t) := v0e
−d3t + (l3 ∗ f )(t),

Z( f )(t) := z0e
−d4t + (l4 ∗ f )(t),

(4.25)

where

F0(t) =
∫ t

0
B(t − τ)
1(τ )
2(τ, z(t + σ))dτ,

F1(t) =
∫ ∞

t
y0(τ − t)
1(τ )
2(t, z(τ + σ))dτ.

Hence, ⎧
⎪⎨

⎪⎩

B(t) = βX (B)(t)V (C)(t),

C(t) = (k
 ∗ B)(t) + F3(t),

E(t) = (c
 ∗ B)(t) + F4(t),

(4.26)

where


(τ) = 
1(τ )
2(τ, Z(E)(t + σ)),

F3(t) =
∫ ∞

t
k(τ )y0(τ − t)
1(τ )
2(τ, Z(E)(τ + σ))dτ,

F4(t) =
∫ ∞

t
c(τ )y0(τ − t)
1(τ )
2(τ, Z(E)(τ + σ))dτ.

We have the following theorem on the global stability of the infection-free steady state.

Theorem 4.2 The infection-free steady state E0 is globally asymptotically stable ifR0 < 1.

Proof Define

�ε0(τ ) := β
( b

d1
+ ε0

)
(l3 ∗ k
)(τ), ε0 ∈ R+.

Under the assumptionR0 < 1, there exists ε0 > 0 small enough, such that
∫ ∞
0 �ε0(τ ) < 1.

For the above ε0, there exists a T > 0, such that (x0 − b
d1

)e−d1t < ε0 for any t > T . Thus,
for any t > T , we have
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B(t) = βX (B)(t)V (C)(t)

= β
( b

d1
+ (x0 − b

d1
)e−d1t − (l1 ∗ B)(t)

)(
v0e

−d3t + (l3 ∗ C)(t)
)

≤ β
( b

d1
+ (x0 − b

d1
)e−d1t

)(
v0e

−d3t + (l3 ∗ C)(t)
)

= β
( b

d1
+ (x0 − b

d1
)e−d1t

)
v0e

−d3t + β
( b

d1
+ (x0 − b

d1
)e−d1t

)
(l3 ∗ C)(t)

≤ β
( b

d1
+ ε0

)
v0e

−d3t + β
( b

d1
+ ε0

)
(l3 ∗ C)(t)

= β
( b

d1
+ ε0

)
v0e

−d3t + β
( b

d1
+ ε0

)((
l3 ∗ (k
 ∗ B)

)
(t) + (l3 ∗ F3)(t)

)

= G3(t) + β
( b

d1
+ ε0

)(
(l3 ∗ k
) ∗ B

)
(t),

(4.27)

where

G3(t) := β
( b

d1
+ ε0

)(
v0e

−d3t + (l3 ∗ F3)(t)
)
. (4.28)

Similar to the proof of lim
t→+∞G2(t) = 0, we can prove that lim

t→+∞G3(t) = 0.

Let B(t) be the solution of the following renewal integral equation:

B(t) = G3(t) +
∫ t

0
�ε0(τ )B(t − τ)dτ, (4.29)

Thus B(t) ≤ B(t). Since lim
t→+∞G3(t) = 0 and

∫ ∞
0 �ε0(τ )dτ < 1 if R0 < 1, by the

Paley–Wiener Theorem [13,14], we have lim
t→+∞ B(t) = 0 which implies lim

t→+∞ B(t) = 0.

Therefore, if R0 < 1, by (4.11), lim
t→+∞ y(t, τ ) = 0 for any τ ∈ (0,+∞). By (4.20), (4.21)

and (4.22), lim
t→+∞ x(t) = b

d1
, lim
t→+∞ v(t) = 0, and lim

t→+∞ z(t) = 0. �


5 Uniform Persistence

From Theorem 4.1, one can see that E0 is unstable when R0 > 1. In this section, we will
show that system (1.1) is uniformly persistent and hence the viruses will not go extinct when
R0 > 1. Define

M0 = {(
(0, y), x, v, z

) ∈ � : v +
∫ ∞

0
y(τ )dτ > 0

}

and ∂M0 = �\M0.

Lemma 5.1 The subsets M0 and ∂M0 are both positively invariant under the semiflow
{U (t)}t≥0; that is, U (t)M0 ⊂ M0 and U (t)∂M0 ⊂ ∂M0. Moreover, for each ζ ∈ ∂M0,
U (t)ζ → e0 as t → +∞, where

e0 =

⎛

⎜
⎜
⎜
⎜
⎝

(
0R
0L1

)

x0

0
0

⎞

⎟
⎟
⎟
⎟
⎠
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is the infection-free steady state of {U (t)}t≥0.

Proof Let

J (t) = v(t) +
∫ ∞

0
y(t, τ )dτ. (5.1)

For any
(
(0, y), x, v, z

) ∈ M0, we have

d J (t)

dt
=

∫ ∞

0
k(τ )y(t, τ )dτ − d3v(t) + βx(t)v(t) −

∫ ∞

0
(d2(τ ) + p(τ )z(t))y(t, τ )dτ,

≥ −d3v(t) − (d̄2 + p̄c̄b

rd4
)

∫ ∞

0
y(t, τ )dτ,

≥ −a1 J (t), (5.2)

where a1 = max{d3, d̄2 + p̄c̄b
rd4

}. Then, J (t) ≥ J (0)e−a1t > 0. It follows thatU (t)M0 ⊂ M0.

In addition, for any
(
(0, y), x, v, z

) ∈ ∂M0, we have
∫ ∞

0
y(t, τ )dτ = β

∫ t

0
x(t − τ)v(t − τ)
1(τ )
2(τ, z(t + σ))dτ

+
∫ ∞

t
y0(τ )
1(τ )
2(t, z(τ + σ))dτ = 0.

We also have

− d3v(t) ≤ dv(t)

dt
≤ k̄

∫ ∞

0
y(t, τ )dτ − d3v(t) = −d3v(t),

which follows that v(t) = 0 if v0 ∈ ∂M0. Hence, U (t)∂M0 ⊂ ∂M0. Furthermore, v(t) = 0
means that B(t) = βx(t)v(t) = 0. Using the same argument as in the proof of Theorem 4.2,
we can see that for each ζ ∈ ∂M0, U (t)ζ → e0 as t → +∞. �


By applying the results in [11,18], we obtain the following theorem.

Theorem 5.2 If R0 > 1, the semiflow {U (t)}t≥0 is uniformly persistent with respect to the
pair (∂M0, M0); that is, there exists ε > 0 such that lim

t→∞ inf d
(
U (t)ζ, ∂M0

) ≥ ε for any

ζ ∈ M0.

Proof By Lemma 5.1 and Theorem 2.1, the conditions (i)–(iii) in Theorem 4.1 in [11] are
satisfied. Applying Theorem 4.1 in [11], {U (t)}t≥0 is uniformly persistent if and only if

Ws({e0}) ∩ M0 = ∅, (5.3)

where

Ws({e0}) =
{

ζ ∈ � : lim
t→+∞U (t)ζ = e0

}

. (5.4)

Assume by contradiction that there exists ζ ∈ Ws({e0}) ∩ M0, then there exists t0 > 0 such
that v(t0) + ∫ ∞

0 y(t0, τ )dτ > 0. Since U (t)M0 ⊂ M0, we have v(t) + ∫ ∞
0 y(t, τ )dτ > 0

for any t ≥ t0. Let

ξ(t, τ ) =
∫ ∞

τ

k(σ ) exp{−
∫ σ

τ

(d2(s) + p(s)z(t))ds}dσ. (5.5)

Then ∂ξ(t,τ )
∂τ

= −k(τ ) + (
d2(τ ) + p(τ )z(t)

)
ξ(t, τ ) a.e. τ ≥ 0. Define

J1(t) = v(t) +
∫ ∞

0
ξ(t, τ )y(t, τ )dτ. (5.6)
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Since ζ ∈ Ws({e0}), we have lim
t→+∞ x(t) = x0, lim

t→+∞ z(t) = 0, and hence lim
t→+∞ ξ(t, 0) =

G(0). WhenR0 > 1, taking ε0 > 0 and ε1 > 0 small enough such that 0 <
β(x0ε1+G(0)ε0)

d3
<

R0 − 1. For the above ε0 and ε1, there exists t1 > 0 such that x(t) > x0 − ε0 and ξ(t, 0) >

G(0) − ε1 for all t ≥ t1. Then, for t ≥ t1, we have

d J1(t)

dt
≥ (βξ(t, 0)x(t) − d3)v(t)

>
(
β(x0 − ε0)(G(0) − ε1) − d3

)
v(t)

= d3
(
R0 − 1 − β(x0ε1 + G(0)ε0)

d3
+ βε0ε1

d3

)
v(t)

≥ 0, (5.7)

which implies that J1(t) is a non-decreasing function for t ≥ t1. Therefore, J1(t) ≥ J1(t2) >

0 for all t ≥ t2 with t2 = max{t0, t1}, which prevents (y(t, τ ), v(t)) converging to (0L1 , 0)
as t → +∞. A contradiction with ζ ∈ Ws({e0}). �


6 Stability of the Infection Steady State

Next, we study the stability of the infection steady state E∗ = (x∗, y∗(τ ), v∗, z∗) when
R0 > 1.

6.1 Local Stability of the Infection Steady State

We first discuss the local stability of the infection steady state and have the following result.

Theorem 6.1 The infection steady state E∗ is locally stable if R0 > 1.

Proof Let x2(t) = x(t)−x∗, y2(t, τ ) = y(t, τ )−y∗(τ ), v2(t) = v(t)−v∗, z2(t) = z(t)−z∗.
Then we obtain the linearized equation at E∗ as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx2(t)

dt
= −d1x2(t) − βv∗x2(t) − βx∗v2(t),

∂y2(t, τ )

∂t
+ ∂y2(t, τ )

∂τ
= −(d2(τ ) + p(τ )z∗)y2(t, τ ) − p(τ )y∗(τ )z2(t),

dv2(t)

dt
=

∫ ∞

0
k(τ )y2(t, τ )dτ − d3v2(t),

dz2(t)

dt
=

∫ ∞

0
c(τ )y2(t, τ )dτ − d4z2(t)

(6.1)

with the boundary condition

y2(t, 0) = βv∗x2(t) + βx∗v2(t). (6.2)
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We assume that x2(t) = x2e� t , y2(t, τ ) = y2(τ )e� t , v2(t) = v2e� t , and z2(t) = z2e� t ,
then ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v2 = − (� + d1 + βv∗)x2
βx∗ ,

dy2(τ )

dτ
= −(d2(τ ) + p(τ )z∗ + �)y2(τ ) − p(τ )y∗(τ )z2,

(� + d3)v2 =
∫ ∞

0
k(τ )y2(τ )dτ,

(� + d4)z2 =
∫ ∞

0
c(τ )y2(τ )dτ,

y2(0) = β(v∗x2 + x∗v2).

(6.3)

Solving the second equation of (6.3), one has

y2(τ ) = 
1(τ )
2(τ, z
∗)e−�τ

(
β(v∗x2 + x∗v2) − z2

∫ τ

0

p(s)y∗(s)e� s


1(s)
2(s, z∗)
ds

)

= F5(τ ) − F6(τ ),

(6.4)

where

F5(τ ) = 
1(τ )
2(τ, z
∗)β(v∗x2 + x∗v2)e−�τ , (6.5)

F6(τ ) = z2

∫ τ

0
p(s)y∗(s)
1(τ − s)
2(τ − s, z∗)e−�(τ−s)ds. (6.6)

From the third and fourth equations of (6.3), we have

z2 = β(x∗v2 + v∗x2)G4

� + d4 + G3
, (6.7)

where

G3 =
∫ ∞

0

∫ τ

0
k(τ )p(s)y∗(s)
1(τ − s)
2(τ − s, z∗)e−�(τ−s)dsdτ,

G4 =
∫ ∞

0
c(τ )
1(τ )
2(τ, z

∗)e−�τdτ.

Substituting (6.4), (6.7) and the first equation of (6.3) into the third equation of (6.3), and
recalling that βx∗ = d3∫ ∞

0 k(τ )
1(τ )
2(τ,z∗)dτ
, we have

(d1 + � + βv∗)(1 + �

d3
+ (d1 + �)G4G3

(� + d4 + G3)βx∗(d1 + � + βv∗)
)

= (d1 + �)

∫ ∞
0 k(τ )
1(τ )
2(τ, z∗)e−�τdτ

∫ ∞
0 k(τ )
1(τ )
2(τ, z∗)dτ

.

(6.8)

It is easy to see that the modulus of left hand side of (6.8) is greater than that of the right
hand side for all complex roots � with non-negative real parts. Therefore, all roots of (6.3)
have negative real parts. By the principle of linearized stability for the evolution equation as
system (1.1), it follows that the infection steady state E∗ is locally stable if R0 > 1. �

6.2 Global Stability of the Infection Steady State

Now, we discuss the global stability of the infection steady state by constructing a Liapunov
functional.
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Define a positive function

α(τ) =
∫ ∞

τ

k(σ ) exp{−
∫ σ

τ

(d2(s) + p(s)z∗)ds}dσ. (6.9)

Denote

N =
∫ ∞

0
k(σ ) exp

{ −
∫ σ

0
(d2(s) + p(s)z∗)ds

}
dσ.

Notice that α(0) = N , α ′(τ ) = −k(τ ) + (d2(τ ) + p(τ )z∗)α(τ), and α(τ) is bounded.

Theorem 6.2 The infection steady state E∗ is globally asymptotically stable ifR0 > 1 and
c(τ ) = εp(τ )α(τ) for any constant ε > 0.

Proof Define a function

g(x) = x − 1 − ln x, x ∈ (0,∞). (6.10)

Then g is nonnegative and has a unique minimum at 1 satisfying g(1) = 0.
Next, we define a Liapunov functional

H(t) = Hx (t) + Hy(t) + Hv(t) + Hz(t), (6.11)

where,

Hx (t) = x∗g
( x(t)

x∗
)
,

Hy(t) = 1

N

∫ ∞

0
α(τ)y∗(τ )g

( y(t, τ )

y∗(τ )

)
dτ,

Hv(t) = 1

N
v∗g

(v(t)

v∗
)
,

Hv(t) = 1

2εN
(z(t) − z∗)2.

Recall that Eq. (3.1) holds at the infection steady state E∗. Calculating the time derivatives
of Hx (t), Hy(t), Hv(t) and Hz(t) along (1.1), we have

dHx (t)

dt
= (

1 − x∗

x(t)

)
(b − d1x(t) − βx(t)v(t))

= (
1 − x∗

x(t)

)
(d1x

∗ + βx∗v∗ − d1x(t) − βx(t)v(t))

= − d1
x(t)

(x(t) − x∗)2 + βx∗v∗ − βx(t)v(t) − βx∗v∗ x∗

x(t)
+ βx∗v(t),

dHy(t)

dt
= − 1

N

∫ ∞

0
α(τ)

(
1 − y∗(τ )

y(t, τ )

)(∂y(t, τ )

∂τ
+ d2(τ )y(t, τ ) + p(τ )y(t, τ )z(t)

)
dτ

= − 1

N
α(τ)y∗(τ )

( y(t, τ )

y∗(τ )
− 1

)∣
∣
∣
∞
0

+ 1

N

∫ ∞

0

(
1 − y∗(τ )

y(t, τ )

)
y(t, τ )(−k(τ ) + p(τ )z∗α(τ))dτ

− 1

N

∫ ∞

0
α(τ)y∗(τ )d ln

y∗(τ )

y(t, τ )
− 1

N

∫ ∞

0

(
1 − y∗(τ )

y(t, τ )

)
α(τ)p(τ )y(t, τ )z(t)dτ
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= − 1

N
α(τ)y∗(τ )

( y(t, τ )

y∗(τ )
− 1 − ln

y(t, τ )

y∗(τ )

)∣
∣
∣
∞
0

− 1

N

∫ ∞

0
k(τ )y∗(τ )g

( y(t, τ )

y∗(τ )

)
dτ

− 1

N

∫ ∞

0
p(τ )α(τ)

(
y(t, τ ) − y∗(τ )

)
(z(t) − z∗)dτ

= − 1

N
α(τ)y∗(τ )

( y(t, τ )

y∗(τ )
− 1 − ln

y(t, τ )

y∗(τ )

)∣
∣
∣
τ=∞ + βx(t)v(t) − βx∗v∗

−βx∗v∗ ln x(t)v(t)

x∗v∗ − 1

N

∫ ∞

0
k(τ )y∗(τ )g

( y(t, τ )

y∗(τ )

)
dτ

− 1

N

∫ ∞

0
p(τ )α(τ)

(
y(t, τ ) − y∗(τ )

)
(z(t) − z∗)dτ

dHv(t)

dt
= 1

N

(
1 − v∗

v(t)

)( ∫ ∞

0
k(τ )y(t, τ )dτ − d3v(t)

)

= 1

N

∫ ∞

0
k(τ )y(t, τ )dτ − v∗

Nv(t)

∫ ∞

0
k(τ )y(t, τ )dτ

− v(t)

Nv∗

∫ ∞

0
k(τ )y∗(τ )dτ + 1

N

∫ ∞

0
k(τ )y∗(τ )dτ,

and

dHz(t)

dt
= 1

εN
(z(t) − z∗)

( ∫ ∞

0
c(τ )y(t, τ )dτ − d4z(t)

)

= 1

εN
(z(t) − z∗)

( ∫ ∞

0
c(τ )(y(t, τ ) − y∗(τ ))dτ − d4(z(t) − z∗)

)

= 1

N

∫ ∞

0
p(τ )α(τ)(y(t, τ ) − y∗(τ ))(z(t) − z∗)dτ − d4

1

εN
(z(t) − z∗)2.

By (3.3), it follows that
1

N

∫ ∞

0
k(τ )y∗(τ )dτ = βx∗v∗.

In addition,

ln
x(t)v(t)

x∗v∗ + ln
y∗(τ )

y(t, τ )
= ln

x(t)

x∗ + ln
v(t)y∗(τ )

v∗y(t, τ )

holds. Subsequently,

dH(t)

dt
= − d1

x(t)
(x(t) − x∗)2 − βx∗v∗g

( x∗

x(t)

)

− 1

N

∫ ∞

0
k(τ )y∗(τ )g

( v∗y(t, τ )

v(t)y∗(τ )

)
dτ − d4

1

εN
(z(t) − z∗)2 ≤ 0,

the equality holds if and only if

x(t) = x∗, z(t) = z∗, v∗y(t, τ )

v(t)y∗(τ )
= 1. (6.12)

x(t) = x∗ implies that dx(t)
dt = 0. Hence,

0 = b − d1x
∗ − βx∗v(t)

= βx∗(v∗ − v(t)).
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Since x∗ �= 0, it is obvious to obtain v(t) = v∗. Thus, y(t, τ ) = y∗(τ ). Therefore, the largest
invariant set that (6.12) holds includes only the infection steady state. This completes the
proof. �


7 Numerical Simulations

In this section, we perform some numerical simulations to illustrate the theoretical results
obtained above. Itwas shown that the solutions of system (1.1) tend to the infection-free steady
state when the basic reproduction numberR0 < 1 and tend to the infection steady state when
R0 > 1. The stability of the steady states are also confirmed by numerical simulations. In
addition, simulation results of the age-structured model and the non-age-structured model
are compared.

First of all, we fix the values of some parameters based on the estimated values from the
references about hepatitis B virus (HBV) [22,25,27] as follows: b = 252666, d1 = 0.00379,
β = 0.00018, d3 = 0.67, d4 = 0.05. We compare two different cases in Figs. 1, 2 and 3.

Case 1:We consider themodel in a constant environment. This indicates that the values for
the death rate of infected cells, the rate that CTL kill infected cells, the rate that infected cells
produce new virus and the CTL proliferate rate are all constants: d2(τ )=0.01, p(τ ) = 0.01,
k(τ ) = 0.001 and c(τ ) = 0.001.

Case 2: The parameters d2(τ ), p(τ ), k(τ ) and c(τ ) are infection-age dependent with the
following forms:

d2(τ ) =
{

0.11 + 0.1 cos πτ
50 , τ ≤ 100,

0.21, τ > 100.
(7.1)

p2(τ ) =
{

0.11 + 0.1 cos πτ
50 , τ ≤ 100,

0.21, τ > 100.
(7.2)

k(τ ) =
{

0.001 + 0.01 sin πτ
100 , τ ≤ 100,

0, τ > 100.
(7.3)

c(τ ) =
{

0.001 + 0.01 sin πτ
100 , τ ≤ 100,

0, τ > 100.
(7.4)

It is noticed that the number of infected cells in Fig. 1a is larger than that in Fig. 1b, and it
approaches the steady state faster. Similar conclusion can be observed in Fig. 2, which shows
the number of infected cells at different ages. It implies that the number of infected cells
reduces as the infection-age increases. The viral load in Fig. 3a is larger than that in Fig. 3b
at the same time. That means that the infection-age would significantly affect the viral load
in the host.

In Fig. 4, we perform the numerical simulations to show the global stability of steady
states. Figure 4a illustrates the global stability of the infection-free steady state when R0 =
0.8646 < 1. Meanwhile, Fig. 4b presents the global stability of the infection steady state
when R0 = 162.8189 > 1.

Wearemore interested in the stability of infection-free steady statewhen the virus infection
dynamics are concerned. In Theorems 4.1 and 4.2, we obtained that the infection-free steady
state is global stability when R0 < 1 and unstable when R0 > 1. Figure 5a depicts the age
distribution of infected cells whenR0 = 0.8646 < 1, and Fig. 5b depicts the viral load when
R0 < 1.
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Fig. 1 a The age distribution of infected cells in Case 1; b the age distribution of infected cells in Case 2
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Fig. 2 a Time series of infected cells in Case 1; b time series of infected cells in Case 2. Red dotted lines
represent the number of the new infected cells, that is the infected sells with 0 age. The thin green lines and
thick black lines represent older infected cells, respectively (Color figure online)
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Fig. 3 a Viral load as time changes in Case 1; b viral load as time changes in Case 2
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Fig. 4 a The global stability of the infection-free steady state whenR0 = 0.8646 < 1; b the global stability
of the infection steady state when R0 = 162.8189 > 1
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Fig. 5 a The age distribution of infected cells whenR0 = 0.8646 < 1; b viral load whenR0 = 0.8646 < 1

8 Discussion

The interaction between pathogens and the immune system is a very broad and diverse topic
[36]. The CTL response against viral infections has been investigated intensively through
mathematical models and numerical approaches.

In this paper, we have considered an infection-age dependent model of viral infections
with immune system. The basic reproduction numberR0 and the threshold for the existence
of the steady states are obtained. Local stability of the steady states was established by
linearizing the system. Furthermore, we obtained global stability of the infection-free steady
state by investigating a renewal integral equation under the assumptionR0 < 1. Meanwhile,
sufficient conditions for the global stability of the infection steady state were obtained by
constructing a Liapunov functional.

The age distribution of the infected cells and the viral load in a constant environment
and an infection-age dependent environment were compared by numerical simulations. The
simulation results show that although the incorporation of infection-age may not change the
dynamics of the model, the distribution of the infected cells and the viral load have a lot of
varieties. The number of infected cells would decrease with age, and the viral load would
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also decrease as d2(τ ), p(τ ), k(τ ) and c(τ ) depend on infection-age. Therefore, it is more
realistic to incorporate the age of infection in the virus dynamics for better understanding of
the interactions between viruses and the immune system.

Many results about immune system dynamics were obtained to understand the importance
of CTL responses (we refer to [36–39]). In these studies, the CTL response can be described
under various assumptions. Some of researchers assumed that the rate of CTL expansion
saturates as the number of CTL grows to relatively high numbers [39]. Some assumed that the
rate of CTL expansion is simply proportional to the amount of antigen, but not to the number
of CTL [37]. Moreover, modeling lytic and nonlytic CTL responses ([37]) or modeling
competition between CTL and antibody responses ([38]) is also important and interesting.
It remains challenging to study age-structured models between the viruses and the immune
system when the above assumptions are taken into consideration.
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