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Based on the mechanism and characteristics of measles transmission, we propose a
susceptible-exposed-infectious-recovered (SEIR) measles epidemic model with vaccination
and investigate the effect of vaccination in controlling the spread of measles. We obtain
two critical threshold values, lc1 and lc2, of the vaccine coverage ratio. Measles will be
extinct when the vaccination ratio l > lc1, endemic when lc2 < l < lc1, and outbreak
periodically when l < lc2. In addition, we apply the optimal control theory to obtain an
optimal vaccination strategy l�ðtÞ and give some numerical simulations for those
theoretical findings. Finally, we use our model to simulate the data of measles cases in
the U.S. from 1951 to 1962 and design a control strategy.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Measles is a highly contagious disease caused by the measles virus. It is spread by coughing and sneezing via close
interpersonal contact or direct contact with secretions. Symptoms usually develop 10–12 days after exposure to an
infectious person ([28]). There is no specific treatment for measles. Routine measles vaccination for children is the key public
health strategy to prevent the disease. Today measles is still a common and often fatal disease in the world.

Data from the U.S. Centers for Disease Control and Prevention (CDC) [10] indicate that there were about 500,000 cases and
500 deaths reported annually in the U.S. before 1963, with epidemic cycles every 2–3 years. Following vaccine licensing in
1963, the incidence of measles decreased by over 98% and the 2–3-year epidemic cycles no longer occurred. But a dramatic
increase in cases occurred between 1989 and 1991, during which a total of 55,622 cases was reported (18,193 in 1989;
27,786 in 1990; 9643 in 1991). In fact, the major cause of the resurgence of 1989–1991 was low vaccination coverage. In
general, vaccination protects not only those who are vaccinated but also their neighbors. As a result, many others in the com-
munity can also be benefited. However, whether or not to vaccinate largely depends on the perceived risk of infection and
the vaccination behavior of neighboring individuals [4,5,38]. Hence, the low risk of infection and the free-rider effects maybe
be main factors which caused a low measles vaccination coverage rate before 1989. Since the measles vaccination was
popularized in 1993, less than 500 cases have been reported per year and fewer than 200 cases annually since 1997. In
2004, a total of 37 cases was reported, mainly U.S. citizens traveling abroad and foreign visitors. Measles was eliminated
from U.S. since 2002 (see Fig. 1(A)). In other countries, especially in developing countries, measles vaccination has not been
C-Talent
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extensively popularized. According to the report by the World Health Organization (WHO), in 2012 there were 122,000
measles deaths globally [33]. From available data reported by the Chinese Center for Disease Control and Prevention (CCDC)
[11], there were 70,549 measles cases in China in 2004 and 6183 measles cases in 2012 (see Fig. 1(B)). Consequently, it is still
very important to model the transmission dynamics of measles and investigate the effect of vaccination on the spread of
measles.

Mathematical modeling has become an important and useful tool in studying the spread and control of infection diseases
(Anderson and May [1], Zhang and Sun [35], Xia et al. [42], Diekmann and Heesterbeek [14], Zhang et al. [39], Keeling and
Rohani [24], Boccaletti et al. [6], Wang and Li [31,32]). Vaccination, is one of the most effective strategies in preventing mor-
bidity and mortality associated with various infectious diseases, has also been included in modeling. Bauch and Earn [4]
investigated the impacts of vaccination policy on the level of vaccination coverage and found that voluntary vaccination
was unlikely to reach the group-optimal level. Zhang et al. [37] studied the epidemic spreading with voluntary vaccination
strategy on both Erdos–Renyi random graphs and Barabasi–Albert scale-free networks and Zhang et al. [36] investigated
effects of behavioral response and vaccination policy on epidemic spreading. The transmission dynamics of measles epidem-
ics have been extensively studied. In 1957, Bartlett [2] observed that the number of localized extinctions of measles was
related to the population size of the community. In small communities epidemics are often followed by extinction of disease
as the chain of transmission breaks down by mass vaccination (Bartlett [3], Bolker and Grenfell [9]). The critical community
size above which measles can persist may depend on the spatial structure and connectedness of the regional population
(Bolker and Grenfell [7,8], Keeling and Grenfell [23]). Complex dynamics such as oscillations and chaos in measles epidemic
models have also attracted attentions of many researchers (Bolker and Grenfell [7], Earn et al. [16], Grenfell [19]) which are
believed to be strongly related to the seasonal forcing (Conlan and Grenfell [12]). In 1960, Bartlett [3] gave an estimate of the
critical community size for measles for the United States in terms of total population. Since then, various mathematical mod-
els have been developed to investigate the transmission dynamics of measles in different countries and regions (Bolker and
Grenfell [9], Earn et al. [16], Ferrari et al. [17]).

Valuable information on how to more effectively prevent the outbreaks of measles and accordingly adopt appropriate
vaccination policies are very important. In this article, we study the effect of vaccination by mathematical modeling and
analysis and determine the level of vaccination coverage that can the most effectively prevent the spread of measles. Note
that when an individual becomes infected with the measles virus, the virus begins to multiply within the cells. After an incu-
bation period about 8 to 12 days, early measles symptoms begin. The exposed individual is not contagious during the incu-
bation period and has life time immunity after recovery from the disease. To set up the model, we divide the total population
size NðtÞ into four distinct categories which are the susceptible, the exposed, the infectious and the recovered, with size
denoted by SðtÞ; EðtÞ; IðtÞ and RðtÞ at time t, respectively. We assume that the growth of the susceptible population admits
a logistic process (Kar and Batabyal [21], Wang et al. [30], Zhang and Chen [40]) in the absence of infection. The incidence
rate is bilinear, i.e., proportional to the product of the number of infective individuals and the number of susceptible indi-
viduals. The model takes the following form:
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Fig. 1. Reported measles cases in the United States from 1950 to 2010 (CDC [10]) and in China from 2004 to 2012 (CCDC [11]).
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where r is the intrinsic growth rate of the susceptible population, 1
b is the carrying capacity of the susceptible population in

the absence of infection, b is the infective rate, l (l < r) is the effective vaccination coverage ratio of the susceptible, d is the
natural death rate, 1

a is measles incubation period, d is the recovered rate of the infective individuals.
We will study the nonlinear dynamics of the SEIR measles epidemic model (1.1) and investigate the effect of vaccination

in controlling the spread of measles. We will obtain two critical threshold values lc1 and lc2 of vaccine coverage ratio and
show that measles will be extinct when the vaccination ratio l > lc1, will be endemic when lc2 < l < lc1, and will be
outbreak periodically when l < lc2. In addition, we will apply the optimal control theory to obtain an optimal vaccination
strategy l�ðtÞ and give some numerical simulations for those theoretical findings. Finally, we will use our model to simulate
the data of measles cases in the U.S. from 1951 to 1962 and give a brief discussion.

2. Basic reproduction number

Since all the parameters and state variables of model (1.1) are non-negative for t P 0, it is easy to show that the state
variables of (1.1) remain non-negative for non-negative initial conditions. Considering the biologically feasible region
X1 ¼ ðS; E; I;RÞ 2 R4
þ : N ¼ Sþ Eþ I þ R 6

ðr þ dÞ2

4bdr

( )
;

we have the following conclusion.

Lemma 2.1. The closed set X1 is positively invariant for model (1.1).

Proof. Considering a function N ¼ Sþ Eþ I þ R and taking the time derivative of N along solutions of model (1.1), we have
dN
dt
¼ dS

dt
þ dE

dt
þ dI

dt
þ dR

dt
¼ rSð1� bSÞ � dðEþ I þ RÞ:
It follows that
dN
dt
þ dN ¼ ½rð1� bSÞ þ d�S 6 maxf½rð1� bSÞ þ d�Sg ¼ ðr þ dÞ2

4br
:

Note that NðtÞ ¼ ð1� e�dtÞ ðrþdÞ2
4bdr þ N0e�dt is the solution of dN

dt ¼ �dN þ ðrþdÞ2
4br with initial value Nð0Þ ¼ N0 > 0. Applying the

well-known comparison theorem, we have
NðtÞ 6 ð1� e�dtÞ ðr þ dÞ2

4bdr
þ N0e�dt;
which yields that limt!þ1NðtÞ 6 ðrþdÞ2
4bdr . Thus, all solutions of model (1.1) with initial values in X1 remain in the region X1.

Hence, the region X1 is a positively invariant set of model (1.1). h

Since the first three equations in model (1.1) are independent of the variable RðtÞ, it is sufficient to consider the reduced
model. Substituting x ¼ bS; y ¼ bE and z ¼ bI, we have the corresponding simplified model
dx
dt ¼ rxð1� xÞ � xz� lx;
dy
dt ¼ xz� a1y;
dz
dt ¼ a2y� a3z;

8><
>: ð2:1Þ
where a1 ¼ dþ a;a2 ¼ ab
b and a3 ¼ dþ d.

It is easy to see that model (2.1) has up to three equilibria. In fact, the trivial equilibrium E0ð0;0;0Þ and the disease-free
equilibrium E1ðr�l

r ; 0;0Þ always exist and the endemic equilibrium E�ðx�; y�; z�Þ exists if and only if
R0 ¼
ra2

la2 þ ra1a3
> 1; ð2:2Þ
where
x� ¼ a1a3

a2
; y� ¼ a3ðla2 þ ra1a3ÞðR0 � 1Þ

a2
2

; z� ¼ ðla2 þ ra1a3ÞðR0 � 1Þ
a2

:

R0 is called as the basic reproduction number ([15,29]) of model (2.1). The derivative of R0 with respect to the vaccination
ratio l is
dR0

dl
¼ � ra2

2

ðla2 þ ra1a3Þ2
< 0:
It follows that increasing the vaccination ratio l can reduce the basic reproduction number R0. In order to facilitate the
following discussion, we introduce a new quantity which is given by



134 L. Pang et al. / Applied Mathematics and Computation 256 (2015) 131–147
R1 ¼
ra2

2

la2
2 þ ra1a2a3 þ rða1 þ a3Þða1a2 þ a2a3 þ ra1a2a3Þ

: ð2:3Þ
It is easy to see that R0 > R1.

3. Stability of the equilibria

In this section, sufficient conditions for the asymptotic stability of the equilibria will be derived.

Lemma 3.1. The trivial equilibrium E0 is a saddle which is unstable.
To obtain the stability of the disease-free equilibrium E1, we present the following lemma.

Lemma 3.2. X2 ¼ fðx; y; zÞ 2 R3
þ : x 6 r�l

r g is a positively invariant set for model (2.1).
Proof. It follows from the first equation of model (2.1) that
dx
dt
¼ rxð1� xÞ � xz� lx ¼ ðr � lÞx� rx2 � xz 6 ðr � lÞx 1� x

r�l
r

" #
:

Note that xðtÞ ¼
r�l

r x0

x0� x0�
r�l

r½ �e�ðr�lÞt is the solution of dx
dt ¼ ðr � lÞx 1� x

r�l
r

h i
with initial value xð0Þ ¼ x0 > 0. By the comparison

theorem, we have
xðtÞ 6
r�l

r x0

x0 � ½x0 � r�l
r �e�ðr�lÞt ;
which yields that limt!1xðtÞ 6 r�l
r . Thus, all solutions of model (2.1) with initial values in X2 remain in the region X2. That is,

the region X2 is a positively invariant set of model (2.1). h
Theorem 3.3. The disease-free equilibrium E1 is globally asymptotically stable in the set X2 if R0 < 1 and unstable if R0 > 1.
Proof. The characteristic equation of model (2.1) at E1 is given by
½kþ ðr � lÞ� ðkþ a3Þðkþ a1Þ � a2
r � l

r

h i
¼ 0:
One eigenvalue is k1 ¼ �ðr � lÞ < 0 and the other two eigenvalues are determined by
ðkþ a3Þðkþ a1Þ � a2
r � l

r
¼ k2 þ ða1 þ a3Þkþ a1a3 � a2

r � l
r
¼ 0:
Clearly, a1 þ a3 > 0 and a1a3 � a2
r�l

r ¼
ða2lþra1a3Þð1�R0Þ

r > 0 provided that R0 < 1. Therefore, the disease-free equilibrium E1 is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

To discuss the global stability of E1, we use a Lyapunov function
W ¼ a2yþ a1z:
The derivative of W along solutions of model (2.1) is calculated as follows
dW
dt
¼ a2

dy
dt
þ a1

dz
dt
¼ z a2x� a1a3ð Þ 6 z a2

r � l
r
� a1a3

� �
¼ z
ða2lþ a1a3rÞðR0 � 1Þ

r
:

Then dW
dt < 0 when R0 < 1, which indicates that E1 is globally asymptotically stable if R0 < 1. h
Theorem 3.4. The unique endemic equilibrium E� is locally asymptotically stable if R1 < 1 < R0 and unstable if R1 > 1.
Proof. The Jacobian matrix at E� of model (2.1) is
JðE�Þ ¼
�rx� 0 �x�

z� �a1 x�

0 a2 �a3

2
64

3
75:
The characteristic equation of JðE�Þ is given by
f ðkÞ ¼ k3 þ A1k
2 þ A2kþ A3 ¼ 0; ð3:1Þ
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where
A1 ¼ a1 þ a3 þ rx� > 0;

A2 ¼ ða1a3 � a2x�Þ þ rx�ða1 þ a3Þ ¼ rx�ða1 þ a3Þ > 0;

A3 ¼ rx�ða1a3 � a2x�Þ þ a2x�z� ¼ a2x�z� > 0;

A1A2 � A3 ¼ ða1 þ a3 þ rx�Þrx�ða1 þ a3Þ � a2x�z� ¼ x�½rða1 þ a3 þ rx�Þða1 þ a3Þ � ra2 þ la2 þ ra1a3�
¼ x�½rða1 þ a3 þ rx�Þða1 þ a3Þ þ la2 þ ra1a3�ð1�R1Þ:
It is obvious that A1A2 � A3 > 0 when R1 < 1, and A1A2 � A3 < 0 when R1 > 1. Hence, if R1 < 1 < R0, the endemic equilib-
rium E� is locally asymptotically stable. If R1 > 1, the endemic equilibrium E� is unstable. h
4. Hopf bifurcation at the endemic equilibrium

From Theorem 3.4, we know that if R1 ¼ 1, i.e., A1A2 � A3 ¼ 0; J has one negative eigenvalue k ¼ �A1 and two purely
imaginary eigenvalues k2;3 ¼ �xi (where x ¼

ffiffiffiffiffiffi
A2
p

> 0), which suggests that model (2.1) may have a Hopf bifurcation when
R1 ¼ 1. We explore the existence of the Hopf bifurcation. First of all, we quote a useful lemma.

Lemma 4.1 ([34,27]). Let X 2 R3 be an open set containing Oðx1; x2; x3Þ and let S # R be an open set with 0 2 S. Let
f : X� S! R3 be an analytic function such that f ð0;qÞ ¼ 0 for any q 2 S. Assume that the variational matrix Df ð0;qÞ of f has one
real eigenvalue cðqÞ and two conjugate imaginary eigenvalues aðqÞ � ibðqÞ with cð0Þ < 0;að0Þ ¼ 0; bð0Þ > 0. Furthermore,

suppose that the eigenvalues cross the imaginary axis with nonzero speed, that is, dað0Þ
dq – 0. Then the following differential system
_X ¼ f ðX;qÞ
undergoes a Hopf bifurcation near the equilibrium point O at q ¼ 0.
Here we choose the intrinsic growth rate r as the perturbation parameter. By Theorem 3.4, we can see that
A1A2 � A3 ¼ x� rða1 þ a3 þ rx�Þða1 þ a3Þ � ra2 þ la2 þ ra1a3½ � ¼ x� ½rða1 þ a3Þ þ r2x��ða1 þ a3Þ � ra2 þ ra1a3 þ la2
� �

¼ x� x�ða1 þ a3Þr2 þ ½ða1 þ a3Þ2 þ a1a3 � a2�r þ la2

n o
¼ x�f ðrÞ:
Thus, the equation A1A2 � A3 ¼ 0 is equivalent to the following quadratic equation
f ðrÞ ¼ x�ða1 þ a3Þr2 þ ½ða1 þ a3Þ2 þ a1a3 � a2�r þ la2 ¼ 0; ð4:1Þ
and also implies that R1 ¼ 1. R1 ¼ 1 is, in turn, equivalent to
ra2 ¼ la2 þ ra1a3 þ rða1 þ a3Þða1 þ a3 þ rx�Þ ¼ ra1a3 þ rða1 þ a3Þ2 þ la2 þ r2ða1 þ a3Þx�

P ra1a3 þ rða1 þ a3Þ2 þ 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la2x�ða1 þ a3Þ

p
:

This shows that
a2 P a1a3 þ ða1 þ a3Þ2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la2x�ða1 þ a3Þ

p

always holds if R1 ¼ 1. Hence, the corresponding discriminant of the quadratic function of Eq. (4.1) satisfies
D ¼ a2 � a1a3 � ða1 þ a3Þ2
h i2

� 4la2x�ða1 þ a3Þ

¼ a2 � a1a3 � ða1 þ a3Þ2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la2x�ða1 þ a3Þ

ph i
a2 � a1a3 � ða1 þ a3Þ2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la2x�ða1 þ a3Þ

ph i
P 0:
Therefore, there exist two positive real roots (see Fig. 2(a))
rc1 ¼
a2 � a1a3 � ða1 þ a3Þ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða1 þ a3Þ2 þ a1a3 � a2�

2
� 4la2ða1 þ a3Þx�

q
2x�ða1 þ a3Þ

;

rc2 ¼
a2 � a1a3 � ða1 þ a3Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ða1 þ a3Þ2 þ a1a3 � a2�

2
� 4la2ða1 þ a3Þx�

q
2x�ða1 þ a3Þ

;

and when D ¼ 0 there exists one positive real root with multiplicity two (see Fig. 2(b))



Fig. 2. (a) The graph of f ðrÞ when D > 0 and (b) The graph of f ðrÞ when D ¼ 0.
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rc3 ¼
a2 � a1a3 � ða1 þ a3Þ2

2x�ða1 þ a3Þ
:

To sum up, if l < r < rc1 or r > rc2, then f ðrÞ > 0 (i.e., A1A2 � A3 > 0), which indicates that the endemic equilibrium E� is
locally asymptotically stable. While if rc1 < r < rc2, then f ðrÞ < 0 (i.e., A1A2 � A3 < 0), which implies that E� is unstable and
periodic solutions may arise from the endemic equilibrium via Hopf bifurcation.

Without loss of generality, we set riðqÞ ¼ rci þ q ði ¼ 1;2;3Þ, where rið0Þ ¼ rci satisfies that
ðA1A2 � A3Þjrið0Þ¼rci
¼ 0: ð4:2Þ
We also need to determine the sign of the real part of dk
dq at q ¼ 0 when the above equation is valid. Differentiating Eq. (3.1)

with respect to q, we have
3k2 dk
dq
þ x�k2 þ 2A1k

dk
dq
þ x�ða1 þ a3Þkþ A2

dk
dq
þ ða2 � a1a3Þx� ¼ 0;
which leads to
dk
dq
¼ � x�k2 þ x�ða1 þ a3Þkþ ða2 � a1a3Þx�

3k2 þ 2A1kþ A2
: ð4:3Þ
Thus
Vc ¼ sign Re
dk
dq

����
q¼0

 !( )
¼ sign Re ��x2x� þ x�ða1 þ a3Þxiþ ða2 � a1a3Þx�

�3x2 þ 2A1xiþ A2

� 	
 �

¼ sign Re
a2 � a1a3 � A2 þ ða1 þ a3Þxi

A2 � A1xi

� 	
 �
¼ sign a2 � a1a3 � A2 þ ða1 þ a3ÞA1f g

¼ sign a2 � a1a3 � rx�ða1 þ a3Þ þ ða1 þ a3Þða1 þ a3 þ rx�Þf g ¼ sign a2 � a1a3 � ða1 þ a3Þ2 � 2rx�ða1 þ a3Þ
n o

¼ sign �df ðrÞ
dr


 �
:

From Fig. 2, we know that Vc1 ¼ 1 – 0 if r ¼ rc1;Vc2 ¼ �1 – 0 if r ¼ rc2 and Vc3 ¼ 0 if r ¼ rc3. Hence, we have the following
result.

Theorem 4.2. If r ¼ rc1 or r ¼ rc2, then model (2.1) undergoes a non-degenerate Hopf bifurcation at the endemic equilibrium E�.
Note that if r ¼ rc3, then the real part of dk

dq jq¼0 becomes zero such that the transversality condition fails. To determine the
whether or not a degenerate Hopf bifurcation occurs, differentiate (4.3) again with respect to q, we obtain that
d2k
dq2 ¼ �

2x�kþ x�ða1 þ a3Þ½ � 3k2 þ 2A1kþ A2
� 

dk
dq

3k2 þ 2A1kþ A2
� 2

þ
ð6kþ 2A1Þ dk

dqþ 2kx� þ x�ða1 þ a3Þ
h i

x�k2 þ x�ða1 þ a3Þkþ ða2 � a1a3Þx�
� �

3k2 þ 2A1kþ A2
� 2 :
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It follows from the assumption (4.2) and the fact a2 ¼ a�22 that Reðdk
dq jq¼0Þ ¼ 0, which implies that

a2 ¼ a1a3 þ ða1 þ a3Þ2 þ 2rc3ða1 þ a3Þx� holds. Then
sign Re
d2k
dq2

�����
q¼0

0
@

1
A

8<
:

9=
; ¼ sign Re

ð2xiþ a1 þ a3Þ½�A2 þ ða1 þ a3Þxiþ ða2 � a1a3Þ�
ð�3A2

2 þ 2A1xiþ A2Þ
2

 !( )

¼ sign Re
ða1 þ a3Þða2 � a1a3 � A2Þ � 2ða1 þ a3ÞA2 þ ½2ða2 � a1a3 � A2Þ þ ða1 þ a3Þ2�xi

ðA2 � A1xiÞ2

 !( )

¼ sign ½ða1 þ a3Þ2A1 � 2ða1 þ a3ÞA2�ðA2 � A2
1Þ � 2A1A2½2ða1 þ a3ÞA1 þ ða1 þ a3Þ2�

n o
¼ sign ½ða1 þ a3ÞA1 � 2A2�ðA2 � A2

1Þ � 2A1A2½2A1 þ ða1 þ a3Þ�
n o

¼ sign ða1 þ a3ÞA1A2 � ða1 þ a3ÞA3
1 � 2A2

2 þ 2A2A2
1 � 4A2

1A2 � 2ða1 þ a3ÞA1A2

n o
¼ sign �ða1 þ a3ÞðA1A2 þ A3

1Þ � 2A2ðA2 þ A2
1Þ

n o
¼ �1 < 0:
Hence, if r ¼ rc3, then Reðdk
dq jq¼0Þ ¼ 0 and Reðd2k

dq2 jq¼0Þ < 0. That is, q ¼ 0 is local maximum point of the real part of eigenvalues

(i.e., aðqÞ < að0Þ ¼ 0 is always satisfied when 0 < jqj � 1). It indicates that the endemic equilibrium E� is locally asymptot-

ically stable when r ¼ rc3. So we obtain the following theorem.

Theorem 4.3. If D ¼ 0, there is no Hopf bifurcation for model (2.1) at the endemic equilibrium E�.
Remark 4.4. From the above theoretical analyses, we have obtained the following results. If
l >
ra2 � ra1a3

a2
, lc1;
i.e., R0 < 1, measles will be extinct eventually. If
l2 ,
ra2 � ra1a3 � rða1 þ a3Þða1 þ a2a1Þ

a2
< l < lc1;
i.e.,R1 < 1 < R0, measles will be endemic. If l < lc2 (i.e.,R1 > 1), then measles will be outbreak periodically. The outbreaks
of measles in the United States before 1963 were about 2–3 years (see Fig. 7).

To investigate the stability of the periodic solutions generated from the Hopf bifurcation of the 3-dimensional model
(2.1), we need to use the center manifold theorem, the normal form theory, and the criterion for super- or sub-critical Hopf
bifurcation in the 2-dimensional space. The stability of the periodic solution and the direction of bifurcation depend on the
sign of the value of a stability quantity K at the bifurcation point. Details for the stability quantity K are given in Appendix A.
Although we have not been able to obtain a simple express of K to find general conditions for stability, our results can be
used to calculate the stability quantity K numerically.

5. Optimal vaccination strategy

Optimal control theory has been used to explore optimal control strategies for various infectious diseases, see, for exam-
ple, Kirschner et al. [25], Culshaw et al. [13], Karrakchou et al. [22], Kar and Batabyal [21], Lenhart and Workman [26], and
the references cited therein. The objective of this section is to seek an optimal vaccination strategy to prevent the spread of
measles. Specifically, the optimal vaccination strategy aims at exploring the possibility of achieving the following two goals:

(1) To make the number of infectious individuals zðtÞ as small as possible during a certain vaccination period.
(2) To keep the vaccination ratio of measles as low as possible during a certain vaccination period.

The vaccination ratio lðtÞ is not more than the intrinsic growth rate r of the susceptible, that is, lðtÞ 2 ½0; r�. For these rea-
sons, we use optimal control techniques to study the optimal vaccination rate of susceptible individuals. The vaccination rate
is chosen as a control variable and we consider the following objective functional associated with model (2.1):
min JðlÞ ¼ min
06lðtÞ6r

Z T

0
½zðtÞ þ s

2
l2ðtÞ�dt ð5:1Þ
in X3 ¼ flðtÞ 2 L1ð0; TÞj0 6 lðtÞ 6 rg, where T represents the vaccination period, s denotes a positive weight parameter.
Model (2.1) can be written as
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/t ¼
_x
_y
_z

2
64
3
75 ¼ gðt;/;lÞ ¼

rxð1� xÞ � xz� lx

xz� a1y

a2y� a3z

2
64

3
75:
We have the existence of an optimal vaccination strategy.
Theorem 5.1. For the objective functional JðlÞ associated with model (2.1) defined in X3, there exists an optimal vaccination
strategy l� minimizing JðlÞ.
Proof. To prove the existence of an optimal vaccination strategy l� minimizing JðlÞ, we apply Theorem III.4.1 from [18], that
is, we only need to check the following assumptions:

(H1) The set of controls and corresponding state variables is non-empty.
(H2) The admissible control set is convex and closed.
(H3) Each right hand side of the state system is continuous, is bounded above by a sum of the bounded control and the

state, and can be written as a linear function of l with coefficients depending on time and the state.
(H4) The integrand of the objective functional is concave.
(H5) There exist constants C1;C2 > 0, and b� > 1 such that the integrand of the objective functional satisfies

Lðt;/;lÞP C1jljb
�
� C2.

It is obvious that X3 is an nonempty set of Lebesgue integrable functions on 0 6 t 6 T with values in R. Note that the solu-
tions are bounded, so the admissible control set is bounded and convex. For the assumption (H3), it follows that
jgðt;/1;lÞ � gðt;/2;lÞj ¼

rx1ð1� x1Þ � x1Z1 � lx1 � rx2ð1� x2Þ þ x2z2 þ lx2

x1z1 � a1y1 � x2z2 þ a1y2

a2y1 � a3z1 � a2y2 þ a3z2

2
664

3
775

��������

��������

¼

ðr � lÞðx1 � x2Þ þ rðx2 þ x1Þðx2 � x1Þ þ x2ðz2 � z1Þ þ z1ðx2 � x1Þ

x2ðz1 � z2Þ þ z1ðx1 � x2Þ þ a1ðy2 � y1Þ

a2ðy1 � y2Þ þ a3ðz2 � z1Þ

2
664

3
775

��������

��������
6 ðr � lÞjx1 � x2j þ rjx2 þ x1jjx1 � x2j þ jx2jjz2 � z1j þ jz1jjx2 � x1j

þ jx2jjz1 � z2j þ jz1jjx1 � x2j þ a1jy2 � y1j þ a2jy1 � y2j þ a3jz2 � z1j

¼ fðr � lÞ þ rjx2 þ x1j þ 2jz1jgjx2 � x1j þ ða1 þ a2Þjy2 � y1j þ ð2jx2j þ a3Þjz2 � z1j

6 M1jx2 � x1j þM2jy2 � y1j þM3jz2 � z1j 6 Mðjx2 � x1j þ jy2 � y1j þ jz2 � z1jÞ ¼ Mj/1 � /2j;
where M1 ¼ ðr � lÞ þ ðrþdÞ2ðrbþbÞ
2bdr ;M2 ¼ a1 þ a2;M3 ¼ a3 þ ðrþdÞ2

2dr and M ¼ maxfM1;M2;M3g. Thus, assumption (H3) is also
satisfied.

Let p 2 ð0;1Þ and uðtÞ;vðtÞ 2 X3, we have
Lðt; zðtÞ; ð1� pÞuðtÞ þ pvðtÞÞ � ð1� pÞLðt; zðtÞ;uðtÞÞ � pLðt; zðtÞ;vðtÞÞ ¼ s
2
ð1� pÞ2u2ðtÞ þ p2v2ðtÞ þ 2pð1� pÞuðtÞvðtÞ
h i
� s

2
u2ðtÞ � s

2
v2ðtÞ ¼ s

2
ðp2 � pÞðuðtÞ

�vðtÞÞ2 < 0( p 2 ð0;1Þ; p2 < p:
Hence, Lðt; zðtÞ; ð1� pÞuðtÞ þ pvðtÞÞ < ð1� pÞLðt; zðtÞ; uðtÞÞ þ pLðt; zðtÞ;vðtÞÞ, which shows that the assumption (H4) holds.
Finally, notice that
zðtÞ þ s
2
l2ðtÞP s

2
l2ðtÞP C1jljb

�
� C2
with C1 ¼ s
2 ; b

� ¼ 2, and C2 > 0. So assumption ðH5Þ is satisfied. Hence, there exists an optimal vaccination strategy l� min-
imizing JðlÞ. h

We now seek for the minimal value of JðlÞ. To accomplish this, we define the Hamiltonian H for the control problem as
Hðt;/ðtÞ;lðtÞÞ ¼ zðtÞ þ s
2
l2ðtÞ þ

X3

i¼1

kigiðt;/;lÞ: ð5:2Þ
If ð/�ðtÞ;l�ðtÞÞ is an optimal solution of the optimal control problem, then there exists a non-trivial vector function
kðtÞ ¼ ðk1ðtÞ; k2ðtÞ; k3ðtÞÞ satisfying the following equalities:
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d/ðtÞ
dt ¼

@Hðt;/ðtÞ;l�ðtÞ;kðtÞÞ
@k ;

0 ¼ @Hðt;/ðtÞ;l�ðtÞ;kðtÞÞ
@l ;

k0ðtÞ ¼ � @Hðt;/ðtÞ;l�ðtÞ;kðtÞÞ
@/ :

8>><
>>:
It follows from the above derivative that
l�ðtÞ ¼ 0; if @H
@l < 0;

0 6 l�ðtÞ 6 r; if @H
@l ¼ 0;

l�ðtÞ ¼ r; if @H
@l > 0:

8>><
>>:
Now, we apply the necessary conditions to the Hamiltonian H given by (5.2). Following the results in ([26]), we have the
following conclusions.

Theorem 5.2. Let ðx�ðtÞ; y�ðtÞ; z�ðtÞÞ be an optimal orbit associated with the optimal vaccination strategy l�ðtÞ for the optimal
control problem (5.1), then there exist adjoint variables k1ðtÞ; k2ðtÞ and k3ðtÞ that satisfy
_k1 ¼ �k1ðr � l� 2rx�ðtÞ � zÞ � k2z�ðtÞ;
_k2 ¼ k2a1 � k3a2;
_k3 ¼ �1þ ðk1 � k2Þx�ðtÞ þ k3a3

8><
>:
with the boundary conditions kiðTÞ ¼ 0ði ¼ 1;2;3Þ. Moreover, the optimal vaccination strategy l�ðtÞ is given by
l�ðtÞ ¼minfr;maxf0; k1x�ðtÞ

s gg.
Proof. To determine the adjoin equations and the boundary conditions, we use the Hamiltonian (5.2). Setting
xðtÞ ¼ x�ðtÞ; yðtÞ ¼ y�ðtÞ and zðtÞ ¼ z�ðtÞ, and differentiating the Hamiltonian (5.2) with respect to x; y and z, we have
_k1 ¼ �
@H
@x
¼ �k1ðr � l� 2rx�ðtÞ � zÞ � k2z�ðtÞ;

_k2 ¼ �
@H
@y
¼ k2a1 � k3a2;

_k3 ¼ �
@H
@z
¼ �1þ ðk1 � k2Þx�ðtÞ þ k3a3:
By the optimality condition, we obtain that
@H
@l�
¼ sl�ðtÞ � k1x�ðtÞ ¼ 0; ) l�ðtÞ ¼ k1x�ðtÞ

s
:

Using the property of the control space, we have
l�ðtÞ ¼ 0; if k1x�ðtÞ
s < 0;

0 6 l�ðtÞ 6 r; if k1x�ðtÞ
s ¼ 0;

l�ðtÞ ¼ r; if k1x�ðtÞ
s > 0:

8>><
>>:
This can be rewritten in compact notation
l�ðtÞ ¼min r;max 0;
k1x�ðtÞ

s


 �
 �
: ð5:3Þ
This proves the conclusions. h

To solve the optimality system, we use the initial and boundary conditions together with the characterization of the opti-
mal control l�ðtÞ given by (5.3). In addition, the second derivative of the Lagrangian with respect to l is positive, which
shows that the optimal problem is minimum at control l�ðtÞ. By substituting the values of l�ðtÞ in the control model
(5.1), we get the following model
dx�

dt ¼ rx�ðtÞð1� x�ðtÞÞ � x�ðtÞz�ðtÞ �minfr;maxf0; k1x�ðtÞ
s ggx�ðtÞ;

dy�

dt ¼ x�ðtÞz�ðtÞ � a1y�ðtÞ;
dz�

dt ¼ a2y�ðtÞ � a3z�ðtÞ;

8>><
>>:
To find out the optimal control and states, we will numerically solve the above model.
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Fig. 3. The plot represents the variation of the number of infectious individuals IðtÞ with time when l ¼ 0:7033 (l > lc1).
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6. Numerical simulations

From Remark 4.4, we know that the measles-free equilibrium is globally asymptotically stable if the vaccination ratio of
susceptible population l > lc1, the endemic equilibrium is asymptotically stable if lc2 < l < lc1, and measles appears in
epidemic cycles if l < lc2. Hence, we choose some suitable parameters of model (2.1) to simulate the theoretical conclusions
obtained in the previous sections.

Choosing the following parameters values r ¼ 0:8;a1 ¼ 0:22;a2 ¼ 0:4 and a3 ¼ 0:22, we obtain that lc1 ¼ 0:7032 and
lc2 ¼ 0:2308.

Case 1: l > lc1

When l ¼ 0:7033, measles will become extinct ultimately (see Fig. 3).
Case 2: lc2 < l < lc1

When l ¼ 0:4, measles will become endemic as shown in Fig. 4 which shows that the number of the infectious
individuals will be in a stable level.

Case 3: l < lc2

When l ¼ 0:2, measles will be outbreak periodically (see Fig. 5).
Case 4: The optimal vaccination strategy l�ðtÞ

To control the spread of measles at the lowest economical cost, we apply optimal control theory to obtain the opti-
mal vaccination strategy l�ðtÞ by numerical calculations. We take s ¼ 0:001 and the remaining parameters as
same as above. The changes of the infectious individuals and corresponding optimal vaccination strategy l�ðtÞ
with time are shown in Fig. 6. To prevent the spread of measles more effectively, we should adopt the large vac-
cination ratio at the beginning and reduce vaccination ratio gradually (see Fig. 6(B)).
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Fig. 4. The plot represents the variation of the number of infectious individuals IðtÞ with time when l ¼ 0:4 (lc2 < l < lc1).
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Fig. 5. The plot represents the oscillation of the number of infectious individuals IðtÞ with time when l ¼ 0:2 (l < lc2).
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Fig. 6. (A) The change of the number of infectious individuals IðtÞ under the optimal vaccination strategy l�ðtÞ with time, and (B) the variation of optimal
vaccination strategy l�ðtÞ with time.

Table 1
The data of measles cases from 1951 to 1962 in U.S. (thousands).

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

Cases 450 680 450 680 550 600 500 760 400 430 410 470
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Case 5: Fitting the data of measles cases in the U.S. from 1951 to 1962.
To verify the reasonableness of our model, we simulate the data of measles cases in the U.S. from 1951 to 1962 by
model (1.1). According to the report of CDC [10], the data of measles cases from 1951 to 1962 are given in Table 1.
We fix the carrying capacity of the susceptible 1

b ¼ 2:00� 1010, i.e., b ¼ 5:00� 10�11. Since the vaccine of measles
was licensed in 1963, the vaccination ratio of the susceptible is equal to 0 before 1963 (i.e., l ¼ 0). The initial val-
ues of the susceptible Sð0Þ, exposed Eð0Þ, infectious Ið0Þ, the intrinsic growth rate r, the infective rate b, the natural
death rate d, the rate of progression to infectious a and the recovered rate d are regarded as parameters. We esti-
mate those parameters by calculating the minimum sum of square (MSS) (Zhang et al. [41])
X

MSS ¼ log2ðdata per yearÞ � log2ðcases on the first monthþ � � � þ cases on the twelfth monthÞð Þ2
with Matlab tool fminsearch, which is part of the optimization of toolbox. All estimated values of those parame-
ters are obtained as follows: r ¼ 16:1526 per month, b ¼ 9:9514� 10�3 per month, d ¼ 2:0322� 10�3 per month,
a ¼ 1:6835 per month and d ¼ 1:5772 per month. The effect of fitting is exhibited in Fig. 7 which shows that the
simulation provides a good match with the data of measles cases in the U.S. from 1951 to 1962.
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Case 6: Optimal control strategy of US measles in the U.S.
According to the parameter values obtained from the real measles data in the U.S., we design a vaccination strat-
egy to prevent the outbreak of measles in the U.S. Since vaccination for measles was licensed in 1963, we use the
number of cases reported in December 1962 as the initial value of system (1.1), that is
Ið0Þ ¼ 4:7� 106=12 ¼ 3:9167� 104. In addition, we take the vaccination period T ¼ 120 months (i.e. 10 years).
In order to reduce errors, we adopt the sixth-order Runge–Kutta method to approximatively simulate the optimal
control l�ðtÞ. The change of the vaccination coverage ratio l�ðtÞwith time is shown in Fig. 8(A), and the number of
infectious individuals IðtÞ under the optimal vaccination strategy l�ðtÞ with time is exhibited in Fig. 8(B). From
Fig. 8, we know that adopting vaccination strategy l�ðtÞ can effectively control the spread of measles in U.S.
Hence, as proposed in [39], the partial-offset subsidy vaccination policy should be adopted between 1963 and
1965 and a voluntary vaccination policy can be taken after 1965.

7. Conclusion

Great attention has been paid to the investigation of the existence of complex dynamics, such as oscillations and chaos, in
measles epidemic models (Bolker and Grenfell [7], Earn et al. [16], Grenfell [19]). It is believed and has been shown that such
dynamics are strongly related to the seasonal forcing (Conlan and Grenfell [12]). In this paper, based on the mechanism and
characteristics of measles transmission, we proposed a susceptible-exposed-infectious-recovered (SEIR) epidemic model
with vaccination and studied the effect of vaccination in controlling the spread of measles. Two critical threshold values,
lc1 and lc2, of vaccine coverage ratio were obtained. It was shown that measles will be extinct when the vaccination ratio
l > lc1, will be endemic when lc2 < l < lc1, and will be outbreak periodically when l < lc2. Moreover, we applied the opti-
mal control theory to obtain an optimal vaccination strategy l�ðtÞ and gave some numerical simulations for those theoretical
findings. Therefore, we were be able to prove the periodic outbreaks of measles in our model without the seasonal forcing.
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Based on our model, its analysis, and the numerical simulations, we can provide some explanation on the characteristics
of the measles epidemics in the United States from 1950 to 2009. Due to the absence of measles vaccination before 1963,
about 500,000 measles cases and 500 deaths were reported annually, and with epidemic cycles every 2–3 years, which is
in accord with our theoretical analysis. At this point, vaccine immunization rate l is lower than lc2, and then the number
of infectious individuals will exhibit periodical outbreaks. Following the licensure of vaccine in 1963, the incidence of mea-
sles declined more than 98%, and 2–3 year epidemic cycles no longer appeared, which indicates the number of measles cases
was stabilized at a fixed value when the vaccination rate exceeds one critical threshold value lc2 but it is less than the other
critical threshold value lc1. Because measles vaccination ratio among 2-years-old children rose from 70% in 1990 to 91% in
1997, the reported cases descended rapidly after the 1989–1991 resurgence. This decline was due to a high vaccination ratio
of preschool-aged children. Fewer than 500 cases have been reported annually since 1993, and fewer than 200 cases per year
have been reported since 1997. A record of total 37 cases was reported in 2004. Measles elimination in the U.S. was achieved
in 2004, which implies that as the vaccination ratio increases further, then the cases of measles infection reduce gradually,
especially when the vaccination ratio is more than the larger critical value lc1, the measles is extinct. Hence, our model can
illustrate the spread of measles in the United States reasonably and also verify the effectiveness of measles vaccination. In
fact we fit the data of measles cases in the U.S. from 1951 to 1962.

The data on measles cases reported by the Chinese Center for Disease Control and Prevention (CCDC [11]) were presented
in Fig. 1(B). We believe that the situation in China now is probably close to the case when the vaccination ratio l > lc1. How
to estimate parameters so that our model can be used to simulate the data in Fig. 1(B)? What effective control and preven-
tion strategies should be implemented so that measles can be eradicated in China? We leave these for future consideration.
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Appendix A

We discuss the stability and the direction of the bifurcating periodic solutions with the help of the normal form theory.
First we transform the equilibrium E�ðx�; y�; z�Þ to the origin by the transformations
X ¼ x� x�; Y ¼ y� y�; Z ¼ z� z�;
under which, splitting off the linear part A�H and the non-linear part B� of model (2.1) yields
_H ¼ A�H þ B�; ðA:1Þ
where
H ¼
X

Y

Z

2
64

3
75; A� ¼

�rx� 0 �x�

z� �a1 x�

0 a2 �a3

2
64

3
75; B� ¼

�rX2 � XZ

XZ

0

2
64

3
75:
By straightforward calculation, A� has eigenvalues k1 ¼ �A1; k2 ¼ xi and k3 ¼ �xi, whose eigenvectors can be expressed as
q1 ¼
x�

a1 þ a3
;� rx� þ a1

a2
;1

� �T

; q2 ¼ �qrx� þ qxi;
a3

a2
þ x

a2
i;1

� �T

; q3 ¼ �qrx� � qxi;
a3

a2
� x

a2
i;1

� �T

;

where q ¼ 1
rðrx�þa1þa3Þ

.
Since
A� Imðq2Þ;Reðq2Þ; q1½ � ¼ xReðq2Þ;�xImðq2Þ; k1q1½ � ¼ Imðq2Þ;Reðq2Þ; q1½ �
0 �x 0
x 0 0
0 0 k1

2
64

3
75; ðA:2Þ
we have
P ¼ Imðq2Þ;Reðq2Þ; q1½ � ¼
qx �qrx� x�

a1þa3

x
a2

a3
a2

� rx�þa1
a2

0 1 1

2
64

3
75;
and then
P�1 ¼
a11 a21 a31

a12 a22 a32

a13 a23 a33

2
64

3
75;
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where
a11¼
ða1þa3Þða1þa3þ rx�Þ

qxða1þa3þ2rx�Þða1þa3Þþx�x
; a12¼

�ða1þa3Þ
qða1þa3þ2rx�Þða1þa3Þþx�

; a13¼
a1þa3

qða1þa3þ2rx�Þða1þa3Þþx�
;

a21¼
a2x�½qrða1þa3Þþ1�

qxða1þa3þ2rx�Þða1þa3Þþx�x
; a22¼

qa2ða1þa3Þ
qða1þa3þ2rx�Þða1þa3Þþx�

; a23¼
�qa2ða1þa3Þ

qða1þa3þ2rx�Þða1þa3Þþx�
;

a31¼
qrx�ðrx� þa1Þða1þa3Þ�a3x�

qxða1þa3þ2rx�Þða1þa3Þþx�x
; a32¼

x� þqðrx� þa1Þða1þa3Þ
qða1þa3þ2rx�Þða1þa3Þþx�

; a33¼
qa3ða1þa3Þ

qxða1þa3þ2rx�Þða1þa3Þþx�x
:

Furthermore,
P�1A�P ¼
0 �x 0
x 0 0
0 0 k1

2
64

3
75:
To put model (2.1) into normal form, we make another linear transformation
X

Y

Z

2
64

3
75 ¼ P

X1

Y1

Z1

2
64

3
75()

X1

Y1

Z1

2
64

3
75 ¼ P�1

X

Y

Z

2
64

3
75
to obtain
_X1

_Y1

_Z1

2
64

3
75 ¼ P�1A�P

X1

Y1

Z1

2
64

3
75þ

g1ðX1;Y1; Z1Þ
g2ðX1;Y1; Z1Þ
g3ðX1;Y1; Z1Þ

2
64

3
75 ¼

0 �x 0
x 0 0
0 0 k1

2
64

3
75

X1

Y1

Z1

2
64

3
75þ

g1ðX1;Y1; Z1Þ
g2ðX1;Y1; Z1Þ
g3ðX1;Y1; Z1Þ

2
64

3
75; ðA:3Þ
where
g1ðX1;Y1; Z1Þ ¼ �ra11 qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	2

þ ða21 � a11Þ qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	
ðY1 þ Z1Þ;

g2ðX1;Y1; Z1Þ ¼ �ra12 qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	2

þ ða22 � a12Þ qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	
ðY1 þ Z1Þ;

g3ðX1;Y1; Z1Þ ¼ �ra13 qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	2

þ ða23 � a13Þ qxX1 � qrx�Y1 þ
x�

a1 þ a3
Z1

� 	
ðY1 þ Z1Þ:
Selecting a center manifold
Z1 ¼ hðX1;Y1Þ ¼ AX2
1 þ BX1Y1 þ CY2

1 þ � � � ;
leads to
_Z1 ¼ 2AX1
_X1 þ BY1

_X1 þ BX1
_Y1 þ 2CY1

_Y1 � � � ¼ ð2AX1 þ BY1Þ _X1 þ ðBX1 þ 2CY1Þ _Y1 þ � � �
¼ ð2AX1 þ BY1Þ½�xY1 þ g1ðX1; Y1; Z1Þ� þ ðBX1 þ 2CY1Þ½xX1 þ g2ðX1;Y1; Z1Þ� þ � � �

¼ BxX2
1 þ ð2Cx� 2AxÞX1Y1 � BxY2

1 � � � ðA:4Þ
It follows from (A.3) that
_Z1 ¼ k1X1 þ g3ðX1;Y1; Z1Þ ¼ k1ðAX2
1 þ BX1Y1 þ CY2

1 þ . . .Þ þ g3ðX1;Y1; Z1Þ ¼ b1X2
1 þ b2X1Y1 þ b3Y2

1 þ � � � ðA:5Þ
where
b1 ¼ Ak1 � ra13q2x2;

b2 ¼ Bk1 þ 2a13q2r2xx� þ ða23 � a13Þqx;

b3 ¼ Ck1 � a13q2r3ðx�Þ2 � ða23 � a13Þqrx�:
Combing (A.4) and (A.5), we obtain
Bx ¼ Ak1 � ra13q2x2;

2Cx� 2Ax ¼ Bk1 þ 2a13q2r2xx� þ ða23 � a13Þqx;
�Bx ¼ Ck1 � a13q2r3ðx�Þ2 � ða23 � a13Þqrx�;

8><
>:
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which gives
A ¼ 1
ð4x2þk2

1Þk1
a13rq2x2ð2x2 þ 2ðx�Þ2r2 þ k2

1 � 2rk1x�Þ � ða23 � a13Þqx2ð2rx� � k1Þ
h i

;

B ¼ 1
ð4x2þk2

1Þx
a13rq2x2ð2ðx�Þ2 � 2rk1x� � 2x2Þ � ða23 � a13Þqx2ð2rx� � k1Þ
h i

;

C ¼ x
ð4x2þk2

1Þk1
a13rq2ð2x2ðx�Þ2r2 þ x�r2k2

1 � 2x�rk1x2 � 2x4Þ þ ða23 � a13Þqð2rx�x2 þ rx�k2
1 � k1x2Þ

h i
:

8>>>>><
>>>>>:
Hence, the normal form of model (2.1) is given by
_X1

_Y1

" #
¼

0 �x
x 0

� �
X1

Y1

� �
þ gð1ÞðX1;Y1Þ

gð2ÞðX1;Y1Þ

" #
; ðA:6Þ
where
gð1ÞðX1;Y1Þ ¼ g1 X1; Y1;AX2
1 þ BX1Y1 þ CY2

1

� �
¼ x�

a1 þ a3
ða21 � a11 � ra11

x�

a1 þ a3
ÞðAX2

1 þ BX1Y1 þ CY2
1Þ

2
þ qAxða21 � a11 � 2ra11

x�

a1 þ a3
ÞX3

1

þ x�

a1 þ a3
� qrx�

� 	
ða21 � a11Þ þ 2a11qx�r2 x�

a1 þ a3

� �
CY3

1

þ 2a11rq
x�

a1 þ a3
ðrx�A� BxÞ þ ða21 � a11Þ qBx� qrx�Aþ x�

a1 þ a3
A

� 	� �
X2

1Y1

þ 2a11qr
x�

a1 þ a3
ðrx�B� CxÞ þ ða21 � a11Þ qCxþ x�

a1 þ a3
B� qrx�B

� 	� �
X1Y2

1 � ra11q2x2X2
1 � ½a11q2r2x�

þ ða21 � a11Þqrx��Y2
1 þ ½2a11q2r2x�xþ qxða21 � a11Þ�X1Y1;

gð2ÞðX1;Y1Þ ¼ g2 X1; Y1;AX2
1 þ BX1Y1 þ CY2

1

� �
¼ x�

a1 þ a3
a22 � a12 � ra12

x�

a1 þ a3

� 	
AX2

1 þ BX1Y1 þ CY2
1

� �2
þ qAx a22 � a12 � 2ra12

x�

a1 þ a3

� 	
X3

1

þ x�

a1 þ a3
� qrx�

� 	
ða22 � a12Þ þ 2a12qx�r2 x�

a1 þ a3

� �
CY3

1

þ 2a12rq
x�

a1 þ a3
ðrx�A� BxÞ þ ða22 � a12Þ qBx� qrx�Aþ x�

a1 þ a3
A

� 	� �
X2

1Y1

þ 2a12qr
x�

a1 þ a3
ðrx�B� CxÞ þ ða22 � a12Þ qCxþ x�

a1 þ a3
B� qrx�B

� 	� �
X1Y2

1 � ra12q2x2X2
1

� a12q2r2x� þ ða22 � a12Þqrx�
� �

Y2
1 þ 2a12q2r2x�xþ qxða22 � a12Þ

� �
X1Y1:
By using the formula in Hassard et al. [20] and Zhang and Chen [40] and complex calculations, we obtain the stability
coefficient
K ¼ Kð0;0Þ ¼ 1
16

@3gð1Þ

@X3
1

þ @3gð1Þ

@X1@Y2
1

þ @3gð2Þ

@X2
1@Y1

þ @
3gð2Þ

@Y3
1

" #

þ 1
16x

@2gð1Þ

@X1@Y1

@2gð1Þ

@X2
1

þ @
2gð1Þ

@Y2
1

 !
� @2gð2Þ

@X1@Y1

@2gð2Þ

@X2
1

þ @
2gð2Þ

@Y2
1

 !
� @

2gð1Þ

@X2
1

@2gð2Þ

@X2
1

þ @
2gð1Þ

@X2
1

@2gð2Þ

@Y2
1

" #

¼ 1
16

6qAx a21 � a11 � 2ra11
x�

a1 þ a3

� 	
þ 4a11qr

x�

a1 þ a3
ðrx�B� CxÞ þ ða21 � a11Þ qCxþ x�

a1 þ a3
B� qrx�B

� 	� �


þ 4a12qr
x�

a1 þ a3
ðrx�A� BxÞ þ ða22 � a12Þ qBxþ x�

a1 þ a3
A� qrx�A

� 	� �

þ 6C 2a12qr2x�
x�

a1 þ a3
þ ða22 � a12Þð

x�

a1 þ a3
� qrx�Þ

� ��
þ 1

16x
2a11q2r2x�xþ qxða21 � a11Þ
� ��

� �2ra11q2x2
2 þ 2a11q2r2x� þ 2ða21 � a11Þqrx�

� �
� ½2a12q2r2x�xþ qxða22 � a12Þ�

� �2ra12q2x2 þ 2a12q2r2x� þ 2ða22 � a12Þqrx�
� �

� 4a11a12r2q4x4

þ 4 a12q2r2x� þ ða22 � a12Þqrx�
� �

a11q2r2x� þ ða21 � a11Þqrx�
� ��

:

Therefore, we have the following conclusion:
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Proposition A.1. If Eq. (3.1) has a negative eigenvalue together with two purely imaginary eigenvalues, and the eigenvalues cross
the imaginary axis with nonzero speed (i.e., Vc ¼ Reðdk

dq jq¼0Þ– 0), then the periodic orbits which are bifurcated from the

equilibrium E� are stable when K < 0 and unstable when K > 0. The direction of bifurcation are super-critical (sub-critical) when
VcK < 0 ðVcK > 0Þ.

We will give an example to investigate the stability of periodic solutions generated from the Hopf bifurcation.

Example A.2. Consider
_x ¼ rxð1� xÞ � xz� 0:4x;
_y ¼ xz� 0:2z;
_z ¼ 0:6y� 0:2z:

8><
>: ðA:7Þ
According to the above analyses, it is easy to see that if 0:4 < r < 0:4286 (i.e.,R0 < 1), then the disease-free equilibrium E1 is
globally asymptotically stable; if the 0:4286 < r < 0:6261 or r > 14:3739 (i.e., R1 < 1 < R0), the endemic equilibrium E� is
asymptotically stable; if the 0:6261 < r < 14:3739 (i.e., R1 > 1), the endemic equilibrium E� is unstable. Especially, if
r ¼ rc1 ¼ 0:6261 or r ¼ rc2 ¼ 14:3739, then the Jacobian matrix of model (A.7) at the endemic equilibrium E� has a negative
eigenvalue together with two purely imaginary eigenvalues, and the eigenvalues cross the imaginary axis with nonzero
speed since Reðdk

dq jr¼rc1
Þ ¼ 0:0222 > 0 and Reðdk

dq jr¼rc2
Þ ¼ �0:1062 < 0. Hence, we can see that a Hopf bifurcation is bifurcated

from the endemic equilibrium E�. Next, we justify the stability and the direction of periodic solutions bifurcated from the
endemic equilibrium E�.

We only discuss the case for r ¼ rc1. From (A.6), the normal form of the model (A.7) is
_X1

_Y1

" #
¼

0 �0:1292
0:1292 0

� �
X1

Y1

� �
þ gð1ÞðX1; Y1Þ

gð2ÞðX1; Y1Þ

" #
; ðA:8Þ
where
gð1Þ ¼ �0:2063X2
1 þ 0:1080Y2

1 � 0:2678X1Y1 � 0:1334X3
1 þ 0:7204X2

1Y1 � 0:0903X1Y2
1 þ 0:0029Y3

1 � 0:0100X4
1

� 0:2926X2
1Y2

1 � 0:0012Y4
1 þ 0:1070X3

1Y1 þ 0:0370Y4
1;

gð2Þ ¼ 0:0604X2
1 � 0:2049Y2

1 þ 0:6149X1Y1 þ 0:1696X3
1 � 0:9032X2

1Y1 þ 0:0480X1Y2
1 þ 0:0007Y3

1 þ 0:0143X4
1

þ 0:4164X2
1Y2

1 þ 0:0017Y4
1 � 0:1523X3

1Y1 � 0:0526Y4
1:
The coefficient of the stability is
K ¼ 1
16
�0:1334� 6� 2� 0:9032� 2� 0:0903þ 6� 0:0007ð Þ þ 1

16� 0:1292
� �2� 0:2678ð�0:2063þ 0:1080Þ½

� 2� 0:6149ð0:0604� 0:2049Þ þ 4� 0:2063� 0:0604� 4� 0:1080� 0:2049� ¼ �0:0812 < 0:
It follows from Reðdk
dq jr¼rc1

Þ > 0 and K < 0 that stable periodic orbits are bifurcated from the endemic equilibrium E� and the

direction of bifurcation is super-critical.
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