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a b s t r a c t

Spread of populations in space often takes place via formation, interaction and propagation

of separated patches of high species density, without formation of continuous fronts. This

type of spread is called a ‘patchy spread’. In earlier models, this phenomenon was con-

sidered to be a result of a pronounced environmental or/and demographic stochasticity.

Recently, it was found that a patchy spread can arise in a fully deterministic predator–prey

system and in models of infectious diseases; in each case the process takes place in a

homogeneous environment. It is well recognized that the observed patterns of patchy

spread in nature are a result of interplay between stochastic and deterministic factors.

However, the models considering deterministic mechanism of patchy spread are developed

and studied much less compared to those based on stochastic mechanisms. A further

progress in the understanding of the role of deterministic factors in the patchy spread would

be extremely helpful. Here we apply multi-species reaction–diffusion models of two spatial

dimensions in a homogeneous environment. We demonstrate that patterns of patchy

spread are rather common for the considered approach, in particular, they arise both in

mutualism and competition models influenced by predation. We show that this phenom-

enon can occur in a system without a strong Allee effect, contrary to what was assumed to

be crucial in earlier models. We show, as well, a pattern of patchy spread having signifi-

cantly different speeds in different spatial directions. We analyze basic features of spatio-

temporal dynamics of patchy spread common for the reaction–diffusion approach. We

discuss in which ecosystems we would observe patterns of deterministic patchy spread due

to the considered mechanism.

# 2008 Elsevier B.V. All rights reserved.

avai lab le at www.sc iencedi rec t .com

journal homepage: ht tp : / /www.e lsev ier .com/ locate /ecocom
1. Introduction

The study of basic mechanisms underlying species spread in

space is of central importance in the theory of biological

invasions (Mooney and Drake, 1986; Murray, 1989; Shigesada
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and Kawasaki, 1997; Fagan et al., 2002). Another important

application is the ecological monitoring of those species which

are not exotic and always present at low density but cause

significant damages during outbreaks. Such population out-

breaks occur both in terrestrial (e.g. insect outbreaks, see Clark
cademy of Science, 36, Nakhimovskiy Prospekt, Moscow 117997,

d.
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et al., 1967; Berryman, 1978; Casti, 1982) and in aquatic systems

(e.g. toxic plankton ‘blooms’, see Pingree et al., 1975; Anderson,

1989; Hallegraeff, 1993).

Although the patterns of spread observed in nature are

rather complex and it is difficult to give their strict classifica-

tion, we can distinguish roughly between the two following

scenarios (Hengeveld, 1989; Shigesada and Kawasaki, 1997;

Lewis and Pacala, 2000): (1) propagation of continuous

traveling population fronts of high species density and (2)

spread via formation and movement of patches of high

density separated by areas with density close to zero. In this

paper, we study the second scenario and call it a ‘patchy

spread’.

Patchy spread has been studied and modeled much less

than the spread via propagation of continuous traveling

fronts, even the origin of this phenomenon is still a subject of

discussions (Davis et al., 1998). In earlier models the basic

mechanisms underlying the patchy spread were considered to

be related to the landscape fragmentation (Murray, 1989; With,

2001) or/and to a pronounced environmental and demo-

graphic stochasticity (Lewis, 2000; Lewis and Pacala, 2000).

However, it is to be emphasized that the actual dynamics of

species spread is a result of interplay between stochastic and

deterministic factors. Stochastic processes would control

ecosystem dynamics only when the intensity of noise

surpasses a certain critical level; otherwise, the dynamics is

governed by deterministic processes (Malchow et al., 2002,

2004). Moreover, the use of deterministic and stochastic

approaches in modeling sometimes provides similar patterns

of dynamics (Kawasaki et al., 1997; Mimura et al., 2000). Recent

conceptual models using reaction–diffusion approach predict

that patchy spread arises as well as a result of deterministic

processes in predator–prey systems and in models of spread of

infectious disease in a fully homogeneous environment

(Petrovskii et al., 2002, 2005; Morozov et al., 2006). A crucial

factor for realization of deterministic patchy spread in the

mentioned works is that the population growth should be

damped by a strong Allee effect, i.e. the growth becomes

negative at low species densities (see Allee, 1938; Dennis,

1989).

It is certain that in reality we often deal with a species

spread in a heterogeneous environment and in fragmental

landscape. However, even in this case, a patchy spread might

emerge as a result of some deterministic mechanisms

prevailing on the environmental (or/and demographic) sto-

chasticity, and an explanation of the observed patterns based

only on stochastic mechanism would be too simplistic. Note

that models of patchy spread based on deterministic mechan-

isms are developed and studied much less compared to those

dealing with stochastic factors. As such, a further develop-

ment and study of models providing patterns of deterministic

patchy spread are needed; in particular, it would tell us in

which ecosystems we should expect to find those patterns.

In this paper, we study patterns of deterministic patchy

spread which arise in multi-species reaction–diffusion models

and emerge as a result of intrinsic interactions of populations

(all processes take place in a fully homogeneous environ-

ment). We consider the following three-species population

models describing ecologically relevant situations: (i) model of

obligate mutualism with an exploiter (Section 2); (ii) two-prey-
one-predator model (Section 3.1); (iii) two-predator-one-prey

model (Section 3.2). We show patterns of a patchy spread in

each model. We found that patchy spread can occur in a

system without strong Allee effect (contrary to what was

assumed to be crucial in earlier models). We demonstrate few

patterns of population spread that have not been reported

before, but which seem to be of importance for the theory of

invasions. In particular, we show that the spread may take

place via continuous front with highly curvilinear shape. We

show, as well, a pattern of patchy spread having significantly

different speeds in different spatial directions. We demon-

strate different scenarios of transition to the patchy spread

from regimes of smooth population fronts, while a control

parameter is being varied. Finally, we formulate (Section 4) the

basic features of spatiotemporal dynamics of patchy spread

obtained in reaction–diffusion models, compare our results

with those obtained in earlier simpler models. We discuss in

which ecosystems we could observe patterns of deterministic

patchy spread due to the considered mechanism.
2. Patchy spread in a model of obligate
mutualism

2.1. Model formulation

In this section, we show that patchy spread arises in a model of

obligate mutualism; i.e., when mutualism is necessary for the

survival of each of mutualistic species (Odum, 1971). The

system consists of two obligate mutualistic species and one

exploiter (which is an obligate parasite) consuming one of

them. Such a situation is rather common in ecology (Holland

et al., 2005; Golinski, 2006). Examples include plant–pollinator–

exploiter systems. The most known of those systems are (i)

communities consisting of yucca trees and pollinating moths

in the presence of non-pollinating moths which are, actually,

seed parasites (Pellmyr and Leebens-Mack, 1999) and (ii)

communities of fig trees with pollinating and non-pollinating

wasps (Kerdelhué and Rasplus, 1996; Weiblen et al., 2001).

Let U1 and U2 denote the density of mutualists 1 and 2,

respectively, and V the density of the exploiter which

consumes mutualist 1. The model consists of three coupled

reaction–diffusion equations:

@U1ðr;TÞ
@T

¼ D1DU1ðr;TÞ �AU1 � E1U2
1 þM1

U1U2

1þV1U2
� S

� U1V
1þQU1

; (1)

@U2ðr;TÞ
@T

¼ D2DU2ðr;TÞ � BU2 � E2U2
2 þM2

U1U2

1þV2U1
; (2)

@Vðr;TÞ
@T

¼ D3DVðr;TÞ þ kS
U1V

1þQU1
�mV; (3)

where r = (X,Y) is the location in space;T is time; andD1,D2 and

D3 are diffusion coefficients.

To describe local interactions between the mutualists we

utilize the minimal model of obligate mutualism given in

Bazykin (1998). The terms AU1 and BU2 stand for the rate the

extinction of each of the species (at low densities) which



Fig. 1 – Local dynamics of model (7) and (8) of obligate

mutualism in the absence of the exploiter. Schematic

reciprocal positions of null-clines and phase portrait are

shown in case of bi-stability. The two stationary stable

states are denoted by black filled circles, each has a
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would take place in the absence of a partner. The terms E1 U2
1

and E2 U2
2 take into account self-inhibition at high densities.

The terms MiUiUj/(1 + ViUj)(i, j = 1, 2, i 6¼ j) in (1) and (2) describe

the mutualistic relationships (or mutual net benefits) of the

partners, taking into account saturation effects at high density

of the partner (see Holland et al. (2002) for a biological

background of this parameterization). Here M1, M2, V1, V2 are

positive coefficients.

The consumption of a mutualist by an exploiter (the last

term in (1)) is described, for the sake of simplicity, by Holling

type II trophic response (but see Morris et al. (2003) for another

possibility). Here 1/Q is the half-saturation constant of

consumption rate; S characterizes the intensity of consump-

tion; k is the food utilization coefficient; m is the mortality rate

of the exploiter.

In order to reduce the number of model parameters we

introduce dimensionless variables: u1 = U1k S/B, u2 = U2E2/B,

v = VS/B, t = TB, x = X(B/D1)1/2, y = Y(B/D1)1/2.

Then system (1)–(3) can be re-written as:

@u1

@t
¼ Du1 � au1 � eu2

1 þ m1
u1u2

1þ v1u2
� u1v

1þ gu1
; (4)

@u2

@t
¼ e1Du2 � u2 � u2

2 þ m2
u1u2

1þ v2u1
; (5)

@v
@t
¼ e2Dvþ u1v

1þ gu1
� dv; (6)

where a = (A/B), e = E1(kS), m1 = M1/E2, m2 = M2/(kS), d = m/B,

v1 = V1B/E2, v2 = V2B/(kS), g = QB/(kS), e1 = D2/D1, e2 = D3/D1.

We first consider the interactions between the mutualists

in absence of the exploiter:

@u1

@t
¼ Du1 � au1 � eu2

1 þ m1
u1u2

1þ v1u2
; (7)

@u2

@t
¼ e1Du2 � u2 � u2

2 þ m2
u1u2

1þ v2u1
: (8)

Local dynamics of (7) and (8) is discussed in detail in Bazykin

(1998). Here we consider the case when the system is bi-stable;

otherwise, the only stationary stable state is a trivial equili-

brium. The reciprocal positions of the null-clines and a phase

portrait in this case are shown schematically in Fig. 1. There

are two stable equilibria: one is characterized by zero densities

of both species, the other one has nonzero densities. Note that

such bi-stability is a characteristic feature of obligate mutu-

alism and was observed in more complex models (Dean, 1983;

Holland et al., 2002; Morris et al., 2003; Wilson et al., 2003).

To study the spatial dynamics of the system we need to

provide (7) and (8) with initial conditions. Similarly to

Petrovskii et al. (2002) we consider the following initial

distributions of species:

u1ðx; y; 0Þ ¼ p1 if x� L
2

�
�
�
�

�
�
�
�
� D11 and y� L

2

�
�
�
�

�
�
�
�
� D12;

otherwise u1ðx; y;0Þ ¼ 0; (9)

u2ðx; y; 0Þ ¼ p2 if x� L
2

�
�
�
�

�
�
�
�
� D21 and y� L

2

�
�
�
�

�
�
�
�
� D22;
otherwise u2ðx; y;0Þ ¼ 0; (10)
where p1, p2, D11, D12, D21, D22 are positive parameters. We

model the spread of species in a square domain L � L. The

choice of initial conditions in form (9) and (10) allows us to

study a joint biological invasion of exotic species 1 and 2

related with obligate mutualism.

From now on, we consider the Neumann ‘zero-flux’

boundary conditions for all models that we investigate.

Moreover, we take the size of the domain L � L large enough

to minimize a possible influence of boundaries on the system

dynamics.

According to the well-known properties of bi-stable

systems (see Murray, 1989; Mikhailov, 1990) one would

expect two possible scenarios in (7) and (8) with initial

distributions (9) and (10): (i) If the sizes of the initially

occupied areas and the initial densities p1, p2 are sufficiently

large (supercritical), then the initial patches will grow in size

and invade the whole area (via propagation of smooth

traveling waves); the final species densities will correspond

to the non-trivial stable stationary state shown in Fig. 1. (ii)

If the initial sizes and densities are small (subcritical), then

the extinction of both species takes place. Our numerical

simulations (including variation of diffusion coefficients)

confirm these expectations (no other regimes have been

found). Note that the bi-stability of local interactions in (7)

and (8) does not automatically imply a bi-stability of the

same model with diffusion. For example, if the saddle point

(see Fig. 1) is situated too close to the non-trivial stationary

state, all initial conditions will be subcritical. Furthermore,

we shall consider the situation when there always

exist supercritical initial distributions leading to a success-

ful invasion of the mutualists in the absence of the

exploiter.

The complexity of spatiotemporal dynamics of the mutu-

alists increases dramatically in the presence of an exploiter,

i.e. in the whole model (4)–(6). We assume that the initial

distribution of the exploiter is described by a similar

expression as those of the mutualists, albeit the centers of
domain of attraction.
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areas initially occupied by the exploiter and mutualists are

shifted:

vðx; y; 0Þ ¼ q if x� L
2
� a

�
�
�
�

�
�
�
�
� D31 and y� L

2
� b

�
�
�
�

�
�
�
�
� D32;

otherwise vðx; y;0Þ ¼ 0; (11)

where q, a, b, D31, D32 are positive parameters.

An important ecological application of model (4)–(6) with

(9)–(11) is a biological control of exotic species by intentionally

introducing a control agent to stop (or/and to slow) their

spread (Fagan and Bishop, 2000; Fagan et al., 2002).

2.2. Transition to patchy spread

Computer experiments show that the spatiotemporal

dynamics of (4)–(6) exhibit different complex patterns of

species spread. We emphasize that a comprehensive classi-

fication of all regimes of the model is not a goal of this paper.

Instead, we investigate a possibility of realization of patchy

spread and study the transition to this pattern from regimes

with continuous traveling population fronts. We chose an

ecologically meaningful controlling parameter and follow

successions of spread patterns while varying its value. Here

we use d, the mortality rate of exploiter, as the controlling

parameter.

Note that for all parameter sets there are some initial

conditions (subcritical) which lead to extinction of all species.

This is the result of the bi-stability of the obligate mutualism.

Adding an exploiter impedes more survival chances for the

mutualists. From now on, we shall always assume that initial

distributions (9)–(11) are chosen supercritical.

Our simulations have revealed patterns of patchy spread in

the considered system. An example of such dynamics is shown

in Fig. 2 (for the parameters a = 0.75, e = 1, m1 = 3, m2 = 3, g=0.5,

v1 = 0.25,v2 = 0.25, d = 0.71, e1 = 2, e2 = 2 and the initial conditions

(9)–(11) with p1 = 5, p2 = 5, D11 = 7.5, D12 = 10, D21 = 7.5, D22 = 10,

q = 12, a = 2.5, b = 5, D31 = 5, D32 = 2.5). The initial smooth front

breaks to pieces, the propagation of species in space takes place

via irregular movement of separated patches and groups of

patches, and a continuous front never reappears again. The

patches move, merge, disappear or produce new patches, etc.

After invasion of the whole domain L � L, the spatial distribu-

tion of species at any time remains qualitatively similar to the

one shown for t = 400, although the position and shape of

patches vary in the course of time.

We found that a typical scenario of transition to patchy

spread, while diminishing d from large values, is the following:

(i) propagation of circular population fronts with stationary

spatially homogeneous distributions of species behind the

front; (ii) spread of circular traveling fronts with irregular

spatiotemporal oscillations in the wake; (iii) propagation of

concentric rings with species densities close to zero in the

wake of the front; (iv) patchy spread. The patterns (i), (ii), (iii)

are well known in literature (Sherratt et al., 1995, Petrovskii

and Malchow, 2001; Morozov et al., 2006) and we do not show

here the corresponding illustrations. Finally, a further

decrease in d leads to species extinction for all initial

distributions, thus overexploitation extinguishes the mutual-

ism. This result is in a good agreement with the field

observations (Bull and Rice, 1991; Stanton et al., 1999).
We should emphasize that the parameter set corresponding

to the dynamics in Fig. 2 is not unique for the realization of

patchy spread, and this pattern can be observed for other

parameter sets as well. The dimensionless model (4)–(6) still

contains 10 parameters. A thorough analysis of the parameter

space (including variation of initial conditions) of this 2D model

is virtually impossible. To get insight into the robustness of the

phenomenon to a variation of model parameters, we proceed in

the following way. We fix four parameters a, e, e1, e2 at their

originalvaluesfromFig.2andvary theparametersm1,m2,g,v1,v2

within some ranges (we choose the following ranges:

2 < m1,m2 < 3.5, 0.4 < g < 0.75, 0.1 < v1,v2 < 0.45). For the sake

of simplicity, let m1 = m2, v1 = v2 and utilize the same initial

conditions as before. We take about 100 different sets ofm1, m2, g,

v1,v2 fromtheabove indicatedranges, ‘at random’, makingsure

that in the absence of the exploiter, the mutualism is bi-stable,

and for each fixed parameter set we vary the value of d as before.

Our analysis showed patterns of patchy spread, while d is

being varied, for most considered combinations of other

parameters, albeit for a rather narrow range of d (compared to

domains corresponding to patterns with smooth traveling

fronts). Moreover, we found that another scenario of transition

to a patchy spread becomes possible (e.g. m1 = m2 = 3, g = 0.5,

v1 = v2 = 0.4) when transition takes place without formation of

concentric rings and occurs via breaking of smooth population

fronts (here we do not show snapshots of this scenario for

brevity). Note that the transition to extinction from spread

with smooth fronts can also take place without appearance of

a patchy spread. This is observed when the saddle point in

Fig. 1 is situated relatively close to the nontrivial equilibrium.

An important intermediate conclusion can be made here:

obligate mutualism combined with exploitation would lead to

a patchy spread in a completely homogeneous space.
3. Patchy spread in competition models

3.1. Patchy spread in a one-predator-two-prey model

In this subsection, we consider patterns of spread in a system

of a consuming predator and two competitive prey species.

One prey is consumed by the predator, the other one is

inedible. Important ecological examples include zooplankton

grazing on competing algae (Kretzschmar et al., 1993) and

competition between edible and inedible terrestrial plants

consumed by an herbivorous species (Phillips, 1974; Grover,

1995). Moreover, we should emphasize that this situation is

rather typical in ecology. It includes any predator–prey system

where the prey is in competition for resources (or territories)

with some other species (morphologically different from the

prey) which do not serve as a food supply for the predator. It is

to be noted that those inedible species can essentially

influence the predator–prey interactions. Further (Section

4.3) we discuss a possible application of the model to explain a

patchy spread reported for a real ecosystem.

We utilize the model proposed by Kretzschmar et al. (1993).

For the sake of simplicity, assume that there is no direct

interaction between the predator and the inedible prey. We

add diffusion terms into the model and obtain the following

equations (for dimensionless densities of species):



Fig. 2 – Snapshots of the density u2 of the unexploited mutualist in model (4)–(6) calculated at different moments of time for

parameters a = 0.75, e = 1, m1 = 3, m2 = 3, g = 0.5, v1 = 0.25, v2 = 0.25, d = 0.71, e1 = 2, e2 = 2 and initial conditions (9)–(11) with

p1 = 5, p2 = 5, D11 = 7.5, D12 = 10, D21 = 7.5, D22 = 10, q = 12, a = 2.5, b = 5, D31 = 5, D32 = 2.5. Black colors signify high species

density; white color signifies densities close to zero. Species spread takes place via movement of separated patches.

Distributions of the other species are qualitatively similar.
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@u1

@t
¼ Du1 þ u1ð1� u1 � x12u2Þ �

u1v
1þ gu1

; (12)

@u2

@t
¼ e1Du2 þ ru2ð1� u2 � x21u1Þ; (13)

@v
@t
¼ e2Dvþ g

u1v
1þ gu1

� dv; (14)
where u1, u2, v are the densities of competing preys and

predator, respectively, r is the maximal dimensionless growth

rate of inedible prey, and x12, x21 describe the intraspecific

competition. The parameters g, g describe the feeding of the

predator (note that the dimensionless parameter g can be

greater than 1), d is the mortality rate of the predator.

In the absence of predator, we arrive at the classical two-

species Lotka-Volterra competition model with diffusion
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(Murray, 1989; Okubo et al., 1989; Shigesada and Kawasaki,

1997):

@u1

@t
¼ Du1 þ u1ð1� u1 � x12u2Þ; (15)

@u2

@t
¼ e1Du2 þ ru2ð1� u2 � x21u1Þ: (16)

The spatiotemporal dynamics of (15) and (16) depend

greatly on the dynamics of local species interactions. Follow-

ing the previous section, we shall consider that the subsystem

without predator is locally bi-stable. The species are antago-

nists (1/x12 < 1 and 1/x21 < 1), their stable coexistence is

impossible, but each of them can survive by excluding the

other one (see Fig. 3).

We consider the following initial spatial distributions of

species:

u1ðx; y; 0Þ ¼ ũ1 if x� L
2

�
�
�
�

�
�
�
�
� D21 and y� L

2

�
�
�
�

�
�
�
�

� D22; otherwise u1ðx; y;0Þ ¼ 0; (17)

u2ðx; y; 0Þ ¼ 1 for all x; y: (18)

By using (17) and (18), we study the invasion of an exotic

species into an area initially occupied by a native competitor.

This statement of task has numerous practical applications in

the theory of biological invasions (Okubo et al., 1989; Shige-

sada and Kawasaki, 1997; Hosono, 1998). Note, however, that

in the mentioned works, the authors only considered analy-

tically the cases when local dynamics correspond either to a

stable coexistence of both species or to the situation when

only one (and always the same) species wins the competition.

The case of local bi-stability was not analyzed.

Simulations show that local bi-stability in (15) and (16)

leads to the two scenarios: (i) spread of u1 followed by the

extinction of u2 via a traveling population front with the final

distribution u1 = 1 for all x and y; and (ii) extinction of the initial
Fig. 3 – Local dynamics of the diffusive Lotka-Volterra

competition model (15) and (16). Schematic positions of

null-clines and phase portrait are shown in case of bi-

stability. Stable stationary states are denoted by black

filled circles.
patch of u1 as a result of competitive exclusion by u2. For a

successful invasion of u1, the sizes of the initial patch and the

initial density ũ1 should be supercritical.

We consider the following initial spatial distribution of the

predator:

vðx; y; 0Þ ¼ ṽ if x� L
2
� a

�
�
�
�

�
�
�
�
� D31 and y� L

2
� b

�
�
�
�

�
�
�
�
� D32;

otherwise vðx; y;0Þ ¼ 0: (19)

Our simulations show that model (12)–(14) exhibits

different patterns of patchy spread. It is convenient to take

d again as the controlling parameter. First, we found a similar

succession of patterns leading to a patchy spread as in model

(4)–(6). For example, for the fixed r = 2, x12 = 2, x21 = 10, g = 2,

g = 1.1, e1 = 1, e2 = 2, the transition to patchy spread from the

regimes of smooth fronts takes place via propagation of

concentric rings. For the above parameters, the patchy spread

is observed for d = 0.094 and the initial conditions (17)–(19):

D11 = 15, D12 = 15, ũ1 ¼ 1, D31 = 15, D32 = 10, ṽ ¼ 0:5, a = 5, b = 10

(see Fig. 4 showing snapshots of u1). The spatial distribution of

v is qualitatively similar to that of u1; on the contrary, the

distribution of u2 is somewhat opposite to that of u1, i.e., u2

reaches its carrying capacity at locations where the density of

u1 is close to zero and vice-versa. For a further decrease in d

extinction of both u1 and v takes place for all initial

distributions.

However, the above-described scenario of transition to a

patchy spread is not the only possible one. For smaller values

of r, some other scenarios of successions, leading to a patchy

spread, take place. A thorough classification of these scenarios

will be an issue of our next study. Here we demonstrate a

succession of regimes leading to a pattern of patchy spread

with a different appearance than the pattern in Fig. 4 and

characterized by values of invasion speed essentially different

in different space directions.

As before, we keep all model parameters fixed except the

predator mortality d. We choose the following parameter

values: r = 0.75, x12 = 2, x21 = 10, g = 2, g = 1.1, e1 = 1, e2 = 2.

For large values of d the spread of u1 and v takes place via

propagation of population fronts with the shape close to

round. For smaller values of d, the front is no more circular and

gains a pronounced curvilinear shape. Fig. 5 shows an

example of this pattern of spread for d = 0.18, while the initial

conditions are the same as in Fig. 4. For a further decrease in d,

the spread becomes cellular-like (see Fig. 6 with d = 0.17). After

the propagation of the fronts of u1 and v, which have complex

structure with sprout-like formations in front of the front, the

invaded area becomes divided into a number of ‘cells’ (see

Fig. 6 for t = 3000). The sides separating the cells are composed

by space locations with high densities of u1 and v; the positions

of the sides change slowly in time. Inside each cell, the

densities of u1 and v are close to zero; on the contrary, the

density of u2 reaches its carrying capacity. Thus, the whole

area, initially occupied by the inedible prey, becomes divided

in separated patches.

A further decrease in d results in a patchy spread (in the 1D

model we had extinction of u1 and v). However, this pattern

(see Fig. 7 with d = 0.157) has a different visual appearance

compared to the pattern in Fig. 4. This is related to the fact that

the mechanism of spatial spread of patches in Fig. 7 is



Fig. 4 – Snapshots for density u1 of the edible prey in the one-predator-two-prey model (12)–(14) calculated at different

moments of time for parameters r = 2, x12 = 2, x21 = 10, g = 2, e = 1.1, e1 = 1, e2 = 2 d = 0.094 and initial conditions (17)–(19) with

D11 = 15, D12 = 15, ũ1 ¼ 1, D31 = 15, D32 = 10, ṽ ¼ 0:5, a = 5, b = 10. Black colors signify high species density; white color

signifies densities close to zero. Invasion of the edible prey takes place without forming a smooth front. Distribution of the

predator is qualitatively similar, distribution of inedible prey is the opposite to that of the edible prey.
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somewhat different from that in Fig. 4 and is closer to the one

found in chemical systems (Muratov, 1996). As a result, the

speed of spread can be essentially different in different space

directions, which can be easily seen from Fig. 7. For a fixed set

of model parameters, directions with faster rates of spread are

determined only by initial conditions (which should be non-

symmetrical). Our estimates show that the discrepancy

between speeds in different directions can be as large as

five-folds. On the contrary, the patchy spread obtained earlier
for higher values of r, although highly irregular, does not differ

essentially in different directions in space, i.e., it can be

considered as statistically isotropic. From an ecological point

of view, the pattern in Fig. 7 seems to be of significant interest

because variation in the invasion speed in different space

directions was attributed earlier to an environmental hetero-

geneity (see Shigesada and Kawasaki, 1997 and references

therein) and not to an internal mechanism of system

dynamics.



Fig. 5 – Snapshots for density u1 of the edible prey in the

one-predator-two-prey model (12)–(14) calculated at

different moments of time for parameters r = 0.75, x12 = 2,

x21 = 10, g = 2, e = 1.1, e1 = 1, e2 = 2, d = 0.18 and the same

initial conditions as in Fig. 4. Black colors signify high

species density; white color signifies densities close to
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A further decrease in d leads to the formation of a group of

patches of round shape (see Fig. 8, d = 0.145). After some

transient stage (t � 300) the number of patches does not

change. The centers of patches are immobile but their profiles

oscillate with time. The number of patches depends on the

initial conditions. Finally, for d < 0.144 extinction of u1 and v

takes place regardless the choice of initial conditions.

We should note that contrary to the patchy spread shown

in Fig. 4, the above described scenario of transition to

anisotropic patchy spread was found only in case when the

dispersal of the predator is faster than that of the prey species

(i.e., e1 < e2), albeit the ratio e2/e1 can be relatively small as in

the above example.

3.2. Patchy spread in a two-predator-one-prey model

Here we show that a deterministic patchy spread can arise in a

model without Allee effect. We consider a system of two

predators competing for a prey in the 2D space (for the brevity

sake, already in dimensionless variables):

@u
@t
¼ Duþ u� bu2 � uv

1þ g1u
� uw

1þ g2u
; (20)

@v
@t
¼ e2Dvþ uv

1þ g1u
� d1v� d̃1v2; (21)

@w
@t
¼ e3Dwþ s

uw
1þ g2u

� d2w� d̃2w2; (22)

where u, v;w are the densities of prey and predators, respec-

tively, b describes the saturation of the prey growth at high

densities, g1, g2, s characterize feeding abilities of the preda-

tors, and d1, d2 are the mortality rates of predators at low

densities. The terms d̃1; d̃2 are the so-called ‘closure terms’

describing self-grazing of predators (Steele and Henderson,

1992; Kohlmeier and Ebenhöh, 1995).

System (20)–(22) is a generalization of the well-known two-

predator-one-prey model (Hsu et al., 1978; Smith, 1982). We

added into this model the closure terms to take into account

the self-grazing of predators. Such situation is typical for

eutrophic plankton communities, where the density of

zooplankton species is usually high (Steele and Henderson,

1992; Edwards and Yool, 2000).

Let us first start with the case when the prey is consumed

only by one predator:

@u
@t
¼ Duþ u� bu2 � uv

1þ g1u
; (23)

@v
@t
¼ e2Dvþ uv

1þ g1u
� d1v� d̃1v2: (24)

Local dynamics of the u� v predator–prey subsystem (23)

and (24) are described in detail in Bazykin (1998). For a wide

range of parameters, the system exhibits bi-stability and has
zero. The front of invasion of the edible prey has a

pronounced curvilinear shape. Distribution of the predator

is qualitatively similar; distribution of the inedible prey is

the opposite to that of the edible prey.



Fig. 6 – Snapshots for density u1 of the edible prey in the one-predator-two-prey model (12)–(14) calculated at different

moments of time for d = 0.17, other parameters are the same as in Fig. 5. Black colors signify high species density; white

color signifies densities close to zero. Invasion of the edible prey takes place via putting out irregular shoots. Distribution of

predator is qualitatively similar; distribution of the inedible prey is the opposite to that of the edible prey.
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two stable stationary states: the upper (u1, v1) and the lower

(u0, v0) with u1 > u0 and v1 >v0, separated by a saddle point.

Fig. 9 shows schematically the reciprocal position of the null-

lines and a phase portrait in this case. Taking into account the

results obtained in the two previous models, we shall

optimistically look for patterns of patchy spread in the whole

model with two competitive predators when the u� v

subsystem exhibits bi-stability.

We shall consider the following initial spatial distributions

of u and v:

uðx; y;0Þ ¼ p if x� L
2

�
�
�
�

�
�
�
�
� D21 and y� L

2

�
�
�
�

�
�
�
�
� D22;

otherwise uðx; y;0Þ ¼ u0; (25)

vðx; y;0Þ ¼ v0 for all x; y; (26)

where u0, v0 are the densities corresponding to the lower

equilibrium (see Fig. 9, we assume p > u0). Note that, con-

trary to the previous models dealing with invasion of exotic

species, model (23)–(24) with (25)–(26) describes the

dynamics of outbreaks of densities of a native species which

exists at low density between the outbreaks due to an

intensive predator pressure (e.g. plankton blooms and

insect outbreaks).
Similar to the previous model (7)–(8) and (15)–(16), bi-

stable system (23) and (24) exhibits two qualitatively

different types of behaviour: (i) transition to the upper

homogeneous stable distribution with u = u1 and v ¼ v1

for x,y2L � L; (ii) for a subcritical initial perturbation, the

species densities relax to the homogeneous distributions u0
and v0.

Let us now consider the whole two-predator-one-prey

system. For the initial density of the second predator, we

assume that:

wðx; y;0Þ ¼ p� if x� L
2
� a

�
�
�
�

�
�
�
�
� D31 and y� L

2
� b

�
�
�
�

�
�
�
�
� D32;

otherwise wðx; y; 0Þ ¼ 0: (27)

Our numerical simulations show that system (20)–(22)

provides a variety of regimes of competition between the

predators in space leading either to their coexistence or to

extinction of one predator. Here we shall restrict ourselves to

the case when the second predator is a weaker competitor

compared to the first one. Mathematically, we consider the

following conditions:

s
u0

1þ g2u0
� d2 < 0; (28)



Fig. 7 – Snapshots for density u1 of the edible prey in the one-predator-two-prey model (12)–(14) calculated at different

moments of time for d = 0.157, other parameters are the same as in Fig. 5. Black colors signify high species density; white

color signifies densities close to zero. The rate of spread is essentially different in different directions in space. Distribution

of the predator is qualitatively similar; distribution of the inedible prey is the opposite to that of the edible prey.
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s
u1

1þ g2u1
� d2 > 0; (29)

where u0, u1 are the lower and the upper stationary stable

densities of the prey in the bi-stable u� v subsystem, see Fig. 9.

In this case the homogeneous stationary state with u = u0,

v ¼ v0;w ¼ 0 (x,y2L � L) is stable and the homogeneous state

u = u1, v ¼ v1;w ¼ 0 is unstable with regard to small perturba-

tions. This property is a consequence of stability (or

instability) of stationary states for local interactions in (23)–

(25) when the u� v subsystem is bi-stable and (28) and (29)

holds. Local stability (or instability) will remain for the same

model with diffusion when diffusion coefficients are close to

each other.

We choose the mortality d2 of the second predator as the

controlling parameter. For sufficiently large values of d2,

spread of the three species takes place via propagation of

smooth traveling fronts. For a progressive decrease in d2,

smooth population fronts break to pieces and, thus, result into

appearance of a patchy spread. Fig. 10 shows snapshots of

prey densities obtained for: b = 0.08, s = 0.5; g1 = 1, d1 = 0.07,

d̃1 ¼ 0:23, g2 = 0.8, d2 = 0.434, d̃2 ¼ 0:1, e1 = e2 = 2 (this gives

u0 � 0.91, v0 � 1:77) and the initial conditions (25)–(27) with

D21 = 25, D22 = 20, D31 = 10, D32 = 15, a = 10, b = 5, p = 5, p* = 0.2.
A small decrease in d2 (beginning with d2 = 0.427) leads to

extinction of the second predator and relaxation to the

homogeneous distributions u = u0, v ¼ v0 for the prey and

the first predator respectively (for all initial conditions).

However, surprisingly, a further decrease in d2 restores

coexistence of the two predators in the model for somewhat

smaller values of d2 (d2 < 0.405). This transition is not

associated now with formation of patterns of patchy spread

and a single round-shaped patch with oscillating borders is

formed, the center of the patch is immobile. Absence of

coexistence of the predators for the interval 0.405 < d2 < 0.434

signifies that for a successful persistence of the second

predator its mortality should be either sufficiently small (to

provide population survival) or relatively high (to reduce its

trophic press on prey and let the prey attain high densities,

which, in turn, will allow its own survival). It is interesting to

note that within the whole interval 0.405 < d2 < 0.434, the

same model without diffusion terms would predict a coex-

istence of the three species via stable periodical oscillations.

Thus, competition models with and without space dimension

may predict completely different outcomes.

Transition to a patchy spread, while varying d2, takes place

in a wide range of others model parameters provided that the

u� v subsystem is bi-stable (although the range of d2, itself, is



Fig. 8 – Snapshots for density u1 of the edible prey in the one-predator-two-prey model (12)–(14) calculated at different

moments of time for d = 0.145, other parameters are the same as in Fig. 5. Black colors signify high species density; white

color signifies densities close to zero. Introduction of the inedible prey leads to persistence but do not result in a geographic

spread. Distribution of the predator is qualitatively similar; distribution of the inedible prey is the opposite to that of the

edible prey.

Fig. 9 – Local dynamics of the predator–prey system with

closure term for predation (23) and (24). Schematic

reciprocal positions of null-clines and phase portrait are

shown in case of bi-stability. The two stationary stable

states (u0, v0) and (u1, v1) are denoted by black filled circles,

unstable stationary states are denoted by white filled

circles.
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rather narrow). In addition, we found that patchy spread can

occur when d1 = 0, d̃2 ¼ 0 (i.e. in absence of self-grazing in

population of the second predator and when self-grazing term

for the first predator prevails over its natural mortality). This

takes place, for example, for s = 0.55, d̃1 ¼ 0:26, d2 = 0.49,

(d1 ¼ d̃2 ¼ 0) and other parameters the same as in Fig. 10. Note

that a non-zero closure term d̃1 always remains a necessary

property for the existence of a patchy spread in (20)–(22).

Thus, the analysis of the two-predator-one-prey model

allows us to make an important conclusion: patchy spread is

possible in a population model without Allee effect.
4. Discussion

In the previous sections, we showed by means of numerical

simulations that patterns of deterministic patchy spatial

spread arise in different multi-species reaction–diffusion

models, the processes take place in a fully homogeneous

environment. In other words, the spread of species via

formation and movement of separated patches should not

be attributed to a particular system or parameterization of

system equations. Comparison of the above three models

allows us to mark out some important features that are



Fig. 10 – Snapshots of the density of the prey in the two-predator-one-prey model (20)–(22) calculated at different moments

of time for parameters b = 0.08, s = 0.5, g1 = 1, d1 = 0.07, d̃1 ¼ 0:23, g2 = 0.8, d2 = 0.434, d̃2 ¼ 0:1, e1 = e2 = 2 and initial conditions

(25)–(27) with D21 = 25, D22 = 20, D31 = 10, D32 = 15, u0 = 0.91, v0 ¼ 1:77, a = 10, b = 5, p = 5, p* = 0.2. Black colors signify high

species density, bright gray and white colors signify densities close to u0. Distribution of predator 1 is qualitatively similar;

distribution of predator 2 follows that of the prey, and is close to zero in areas where the prey density is close to u0.

e c o l o g i c a l c o m p l e x i t y 5 ( 2 0 0 8 ) 3 1 3 – 3 2 8324
common for all models and necessary for the existence of

patterns of patchy spread.

4.1. Basic features of dynamics of the patchy spread

In each model, there is a subsystem with a bi-stable

dynamics characterized by two homogeneous stationary

states. At the lower state, two types of perturbations are

possible: transition to the upper state for a supercritical
perturbation and relaxation to the lower state for a

subcritical perturbation. In the whole system, the bi-

stability of the considered subsystem becomes violated

(due to the presence of a predator or exploiter, which is a

crucial factor in the models) and the upper homogeneous

stable state disappears or loses its stability. On the contrary,

the lower stationary homogeneous state persists and

remains stable. The stability of the lower homogeneous

stationary state becomes of vital importance for the
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realization of patchy spread because it ‘absorbs’ all patches

with small densities and sizes. Only ‘supercritical’ patches

can survive.

Below we formulate some properties of spatiotemporal

dynamics of the patchy spread regime which were found in all

considered models.
(1) T
he patchy spread is a spatiotemporal chaos. (We came to

this conclusion by estimating the dominant Lyapunov

exponents.)
(2) F
or each model the patchy spread is observed for both

equal and different diffusion coefficients.
(3) T
he transition to patchy spread from regimes of propaga-

tion via continuous population fronts, when a model

parameter is varied, takes place via different scenarios. In

all models, we found the existence of the following

succession of regimes: (i) propagation of circular waves

with or without oscillations in the wake; (ii) spread of

concentric rings; (iii) patchy spread; (iv) species extinction

for all initial conditions. This succession takes place both

for equal and for different diffusion coefficients. However,

when the diffusivity of the predator is higher than that of

the prey, some other scenarios become possible (Figs. 5–8

give examples of such a scenario; a thorough classification

of patterns of successions leading to patchy spread will be

the issue of our next study).
(4) T
ransition to patchy spread from the regimes of propaga-

tions of smooth traveling fronts leads to an essential drop

in the speed of invasion which indicates a transition to a

new mechanism of population propagation in space.
(5) F
or realization of patchy spread in a 2D system, the

corresponding 1D system exhibits extinction regardless

the choice of initial conditions (see also Morozov and Li,

2007).

Note that the above results agree with those obtained

earlier in a predator–prey system with the Allee effect

(Morozov et al., 2006) and in epidemic models (Petrovskii

et al., 2005).

4.2. Influence of initial conditions

Initial conditions play an important role in realization of

patchy spread in the considered models. For any parameter

set, there always exist initial distributions leading to species

extinction and only supercritical initial perturbations will

result in a patchy spread. Along with the amplitude of initial

perturbation, the shape of the initial distribution plays a

crucial role. Note that the initial spatial distributions con-

sidered in this paper are not always ‘optimal’ to provide a

patchy spread.

The point is that a patchy spread can be possible even when

species extinction takes place for all parameters in (9)–(11),

(17)–(19) and (25)–(27). For example, analysis of model (4)–(6)

shows that for all parameters fixed at values as in Fig. 2,

extinction takes place for d < 0.698 when we use initial

distributions (9)–(11). However, when we consider initial

conditions in the form of two multi-species patches, each of

them described by (9)–(11) and separated from the other one by

a certain distance, a patchy spread without extinction can be
observed for somewhat lower values of d (we found patterns of

patchy spread till d = 0.696). Moreover, initial distributions

with more complex geometry allow a patchy spread even for

smaller values of d.

To determine when patchy spread and species persistence

become impossible for any type of initial conditions, we used

the following technique. First, we run simulations for

parameters when patchy spread is still realizable for (9)–

(11). For a certain moment of time we arrive at a distribution of

species qualitatively similar to that from Fig. 2 for t = 100.

Further, we use the obtained ‘embryo’ of patches as the initial

condition for testing a neighbor parameter range (with smaller

d) where the use of initial distributions (9)–(11) leads to

extinction. We denote by d* the smallest value of d for which a

patchy spread is observed by using the above technique. We

obtained d* = 0.694.

Another interesting issue is that the initial distributions

considered in this paper can still provide patchy spread until d*

when the environment is slightly heterogeneous in the

vicinity of the domain of the original introduction of species.

We considered the situation when a small circular area (with

the radius about 1/10 of the whole domain) in the vicinity of

the initially inhabited domain was characterized by a higher

predator mortality (5–10% higher than in the rest of L � L). We

found that such environmental heterogeneity promotes

formation of irregular embryo patches during the initial stage

(regardless the shape of the initially inhabited domain) and it

leads to a further patchy spread and species persistence. The

considered heterogeneity serves only as a trigger for a further

patchy spread since a successful spread takes place even if the

heterogeneity is artificially removed later and the environ-

ment becomes homogeneous again. In other words, the

environmental heterogeneity would enhance the determinis-

tic patchy spread.

4.3. Ecological applications

There is growing evidence that the spread of exotic species

often takes place via movement of separated population

patches (Hengeveld, 1989; Shigesada and Kawasaki, 1997;

Davis et al., 1998; Lewis, 2000; Kolb and Alpert, 2003). We

showed that in different ecosystem models patchy spread

would arise in a homogeneous environment as a result of a

fully deterministic mechanism including a combination of

local interactions among populations and a simple Brownian

diffusion. The considered models predict that obligate

mutualism and competition of native and exotic species are

among the factors facilitating this phenomenon. In particular,

we obtained that patchy spread can exhibit essentially

different rates of invasion in different directions in space,

which was earlier attributed only to the influence of environ-

mental heterogeneity and not to some intrinsic mechanisms

of population interactions (Shigesada and Kawasaki, 1997).

In the previous models of deterministic patchy spread

(Petrovskii et al., 2002, 2005), the crucial factor making this

pattern of dynamics possible was the assumption that the

prey growth should be damped by the strong Allee effect. Our

results confirmed that the Allee effect would enhance a patchy

spread in reaction–diffusion models. This is observed in the

model of obligate mutualism where the growth rate for each



e c o l o g i c a l c o m p l e x i t y 5 ( 2 0 0 8 ) 3 1 3 – 3 2 8326
mutualistic species becomes negative at low density. Also this

model demonstrates that an exact expression for parameter-

ization of the Allee effect is not crucial for the realization of a

patchy spread. On the other hand, we showed that a patchy

spread can be obtained also in a system without an Allee effect

(in the two-predator-one-prey model). From this point of view,

model (12)–(14) of two-prey-one-predator is of particular

interest because it lies between the two mentioned cases.

The point is that model (12)–(14) was analyzed as the result

of adding a predator into the diffusive Lotka-Volterra

competition model. On the other hand, this model can be

regarded as a diffusive predator–prey model (see Sherratt

et al., 1995) when interactions take place in a (heterogeneous)

dynamical environment constituted by the inedible prey.

Although the prey growth is logistic in the initial system, it

becomes affected by the strong Allee effect while placed in the

environment constituted by the inedible prey (small amounts

of edible prey will be eliminated due to competition with the

inedible one). This idea seems to be important in ecological

applications because it shows that for a realization of patchy

spread in predator–prey systems it is not necessary for prey

multiplication to be ‘explicitly’ damped by a strong Allee

effect.

Note that the above mechanism might be a possible

explanation for patchy invasion of tree species and forest

mosaic observed in a real ecosystem (see Davis et al., 1998).

The point is that along with other factors, the reported

patchiness might be a result of interaction between trees and

herbivorous. The system consists of hemlock, some other tree

species (natural competitors of hemlock) and a predator

(white-tailed deer) browsing the trees. Among the most

important competitors of hemlock is sugar maple. Hemlock

and maple are antagonists and one would replace the other

one (Anderson and Loucks, 1979). It is known, as well, that

hemlock is highly preferable by deer (Alverson et al., 1988).

Thus the one-predator-two-prey model (12)–(14) (with u1 and

u2 standing for the hemlock and maple densities, and v

standing for deer density) can be a possible candidate to

explain the observed patchiness.

While studying the persistence of mutualistic species

under exploitation, Yu et al. (2001) argued that the spatial

dimension can be of vital importance and lamented the lack of

mutualist–exploiter models with an explicit space. Wilson

et al. (2003) developed a lattice model including environmental

stochasticity and studied a possibility of spatial patterns due

to the Turing scenario in a mutualist–exploiter (plant–

pollinator–exploiter system) system. Our results obtained

from a reaction–diffusion mutualism–exploiter model con-

firmed the conclusion made by Wilson et al. (2003) (coex-

istence of mutualists and an exploiter, often impossible in a

non-spatial model, becomes possible in models with explicit

space). However, we predict a formation of patches of high

densities of mutualists (see Fig. 2) separated by space with very

low densities even for equal dispersal rates of plants,

pollinator and exploiter.

Another important application of the paper results con-

cerns the understanding of mechanisms of coexistence of

competitive species, which is one of the central problems in

ecology (Chesson, 2000). Among important factors facilitating

coexistence and preventing extinction is the predation on
competing species, which can result in a ‘predator-mediated

coexistence’ (Caswell, 1978; Crowley, 1979). On the other hand,

it was demonstrated that the space may be an important

factor facilitating coexistence; in particular, a dispersal-

mediated coexistence often arises in spatially varying envir-

onments (see Holmes et al., 1994 for references). The analysis

of (12)–(14) demonstrates that for the parameters correspond-

ing to a patchy spread none of the two mentioned factors alone

can lead to a successful coexistence (coexistence becomes

impossible both in a nondiffusive system with a predator and

in a diffusive system without a predator). However, a

combination of the factors makes the coexistence of the

three species possible. Another important condition of

coexistence is the two-dimensionality of the environment;

this factor is not always taken into account while considering

competition models in space.

While modeling the coexistence of two predators consum-

ing one prey, we found that the self-grazing of predators

allows a stable coexistence of the predators. Earlier models

(Hsu et al., 1978; Smith, 1982) show that the only possible

coexistence of the predators takes place in an oscillatory

regime. Another interesting result is that there is a surprising

discrepancy between non-spatial and spatial approaches: for a

wide range of parameters providing patterns of coexistence in

space, the same system without diffusion often predicts

extinction of the second predator. On the contrary, in case

when a non-homogeneous coexistence of species (i.e. a

coexistence via formation non-homogeneous spatial patterns)

is impossible, local dynamics can exhibit stable oscillations of

all species (see the end of Section 3.2). Thus, taking into

account the space can be crucial for analysis of successful

coexistence of the predators.
5. Concluding remarks

The main goal of this paper is to demonstrate that a

deterministic patchy spread in homogeneous environment

can be found in reaction–diffusion models of ecosystems of

different nature. Following this purpose, we were more

concerned with showing patterns of patchy spread and did

not consider the dynamics of each model in every detail. We

are certain that along with the above cases, patterns of the

deterministic patchy spread can be easily found in other

multi-species models.

However, this paper should not be considered as denying

the importance of environmental or/and demographic sto-

chasticity (or landscape fragmentation) in formation of

patterns of spatial species spread. It would be unwise to

explain such a complex phenomenon as patchy spread as due

to realization of only one mechanism or process. Here we

show that local population interactions and a simple

Brownian diffusion together would lead to patterns of spread

(in different ecosystem models), which are similar to those

obtained from different assumptions on the environment and

species dynamics (cf. Lewis and Pacala, 2000; Lewis, 2000). We

argue that while studying an ultimate cause of patchy spread

for a particular ecosystem, a comprehensive research should

include estimating the impacts of both stochastic and determi-

nistic factors. Such a detailed investigation always requires a
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large data set (including spatial distribution of both native

species and exotic species) which is not often available. It is

certain, however, that only applying such a detailed approach

we might be sure about understanding the real causes of

spread of patches in every reported case.
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