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Abstract. We are interested in studying semilinear Cauchy problems
in which the closed linear operator is not Hille-Yosida and its domain is
not densely defined. Using integrated semigroup theory, we study the
positivity of solutions to the semilinear problem, the Lipschitz perturba-
tion of the problem, differentiability of the solutions with respect to the
state variable, time differentiability of the solutions, and the stability of
equilibria. The obtained results can be used to study several types of dif-
ferential equations, including delay differential equations, age-structure
models in population dynamics, and evolution equations with nonlinear
boundary conditions.

1. Introduction

The main purpose of this paper is to present a comprehensive semilinear
theory (Cazenave and Haraux [5], Davies and Pang [8], Hieber [15, 16],
Xiao and Liang [45], etc.) that will allow us to study the dynamics of non-
densely defined Cauchy problems, such as asymptotic behavior of solutions
and bifurcations. Consider the Cauchy problem:

du

dt
= Au+ F (t, u), t ≥ 0, u(0) = u0 ∈ D(A), (1.1)
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where A : D(A) ⊂ X → X is a linear operator in a Banach space X and
F : [0,+∞)×D(A)→ X is a continuous map. We are interested in study-
ing the problem when D(A) is not dense in X and A is not a Hille-Yosida
operator. Several types of differential equations, such as delay differential
equations, age-structure models in population dynamics, some partial dif-
ferential equations, evolution equations with nonlinear boundary conditions,
can be written as semilinear Cauchy problems with non-dense domain (see
Da Prato and Sinestrari [7], Thieme [35, 36], Liu et al. [19], Magal and
Ruan [22]).

When A is a Hille-Yosida operator (i.e., if there exist two constants ω ∈ R
and M ≥ 1 such that (ω,+∞) ⊂ ρ(A) and ‖ (λI −A)−k ‖L(X) ≤ M

(λ−ω)k

for all λ > ω, k ≥ 1, where L(X) is the space of bounded linear operators
from X into X and ρ(A) is the resolvent set of A) and is densely defined
(i.e., D(A) = X), the problem has been extensively studied (see Segal [33],
Weissler [44], Martin [25], Pazy [30], Hirsch and Smith [17]). When A is
a Hille-Yosida operator but its domain is non-densely defined, Da Prato
and Sinestrari [7] investigated the existence of several types of solutions
for (1.1). Thieme [35] investigated the semilinear Cauchy problem with a
Lipschitz perturbation of the closed linear operator A which is non-densely
defined but is Hille-Yosida. Integrated semigroup theory was used to obtain
a variation of constants formula which allows one to transform the integrated
solutions of the evolution equation into solutions of an abstract semilinear
Volterra integral equation, which in turn was used to find integrated solutions
to the Cauchy problem. Moreover, sufficient and necessary conditions for
the invariance of closed convex sets under the solution flow were found.
Conditions for the regularity of the solution flow in time and initial state
were derived. The steady states of the solution flow were characterized and
sufficient conditions for local stability and instability were given. See also
Thieme [36, 38].

In this paper, we attempt to extend Thieme’s results [35] to the case when
the operator A is not Hille-Yosida. The perturbations of the operator are
only Lipschitz on bounded sets. In order to do such extensions, we need
to obtain an estimate for nonhomogeneous equations which is obtained in
Proposition 2.14. Then we are able to develop and extend most of his results
(except the positivity result) in [35]. We obtain some weak and classical
conditions for positivity of the solutions by considering the problem in a more
general setting; that is, we only impose the condition that the integrated
solutions exist when the nonlinear interaction term F is continuous.
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We would like to make some comments about the assumption that the
linear operator A is not a Hille-Yosida operator. We first assume that the
resolvent set ρ(A) of A is non-empty and that A0, the part of A in D(A), is
the infinitesimal generator of a strongly continuous semigroup {TA0(t)}t≥0

of bounded linear operators on D(A). Then A generates an integrated semi-
group {SA(t)}t≥0 on X, defined by

SA(t) = (λI −A0)
∫ t

0
TA0(l)dl (λI −A)−1

for each λ ∈ ρ(A).
Then (see Magal and Ruan [22] and Thieme [38]) we need to impose an

additional condition to assure the existence of integrated solutions of the
non-homogeneous Cauchy problem

du(t)
dt

= Au(t) + f(t) for t ≥ 0 and u(0) = 0. (1.2)

Here we assume that A is not a Hille-Yosida operator (Assumption 2.1),
but for each f ∈ C ([0, τ ] , X) the Cauchy problem (1.2) has an integrated
solution uf (t), and there exists a map δ : [0,+∞) → [0,+∞) (independent
of f) such that (Assumption 2.8 and Theorem 2.9)

‖uf (t)‖ ≤ δ(t) sup
s∈[0,t]

‖f(s)‖ , (1.3)

where δ(t)→ 0 as t→ 0. In particular as in the example presented in Magal
and Ruan [22], the Cauchy problem may not have an integrated solution
for f ∈ L1 ((0, τ);X) . The goal of this paper is to show that under such a
condition on the Cauchy problem (1.2), we still can extend the results for
the classical semi-linear Cauchy problems.

In practice, it is relatively easy to verify that the linear operator A is not
a Hille-Yosida operator (i.e., satisfying Assumption 2.1). Nevertheless, for a
given example, it may require some work to verify the condition (1.3) (i.e.,
Assumption 2.8). In the context of age-structured models the condition (1.3)
has been successfully verified by Magal and Ruan [22] using some charac-
terization on the resolvent of A. For the same class of PDEs, Thieme [38]
also successfully applied the notion of integrated semigroup with bounded p-
semi-variation to verify condition (1.3). For parabolic systems, this question
has been studied by Prevost [32] and Ducrot et al. [13]. In particular, it has
been proved that if A is almost sectorial and A0, the part of A in D(A), is a
sectorial operator, then condition (1.3) is satisfied. We also refer to Prevost
[32] for more examples in the context of parabolic equations.
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The rest of the paper is organized as follows. In section 2, we recall some
results on integrated semigroups and give an estimate for solutions to the
nonhomogeneous equation (see Proposition 2.14) which is crucial for the sta-
bility of equilibria to the semilinear problem. Sections 3-7 are devoted to
the study of the semilinear problem. In section 3, positivity of solutions to
the semilinear problem is considered. Section 4 focuses on Lipschitz pertur-
bations of the problem. Section 5 deals with differentiability of the solutions
with respect to the state variable. In section 6 we are concerned with time
differentiability of the solutions. The stability of equilibria is studied in
section 7. In section 8, as applications we discuss transport equations with
nonlinear boundary conditions and parabolic equations with nonlocal bound-
ary conditions and show that our results apply. In particular, we verify that
our main Assumptions 2.1 and 2.8 hold for these two types of equations.

Notice that Magal and Ruan [22] presented some techniques and results
for integrated semigroups when the generator is not a Hille-Yosida opera-
tor and is non-densely defined, obtained necessary and sufficient conditions
for the existence of mild solutions for non-densely defined non-homogeneous
Cauchy problems, and applied the results to study age structured models.
Recently, Magal and Ruan [23] developed the center manifold theory for
non-densely defined Cauchy problems and employed the theory to establish
a Hopf bifurcation theorem for age structured models. This paper comple-
ments our previous articles [22, 23] in studying semilinear Cauchy problems
with non-dense domain.

2. Integrated Semigroups

In this section we recall some results about integrated semigroups. We
refer to Arendt [2, 3], Neubrander [28], Kellermann and Hieber [18], Thieme
[36, 38], Arendt et al. [4], and Magal and Ruan [22, 23] for more detailed
results on the subject.

Let X and Z be two Banach spaces. Let L (X,Z) denote the space of
bounded linear operators from X into Z and by L (X) the space L (X,X) .
Let A : D(A) ⊂ X → X be a linear operator. If A is the infinitesimal
generator of a strongly continuous semigroup of bounded linear operators on
X, let {TA(t)}t≥0 denote this semigroup. The resolvent set of A is denoted
by ρ (A) = {λ ∈ C : λI −A is invertible} . Set X0 := D(A) and A0 the part
of A in X0, which is a linear operator on X0 defined by

A0x = Ax, ∀x ∈ D(A0) := {y ∈ D(A) : Ay ∈ X0} .
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Assume that (ω,+∞) ⊂ ρ(A). Then it is easy to check that, for each λ > ω,

D (A0) = (λI −A)−1X0 and (λI −A0)−1 = (λI −A)−1 |X0 .

Recall that A is a Hille-Yosida operator if there exist two constants, ω ∈ R
and M ≥ 1, such that (ω,+∞) ⊂ ρ(A) and∥∥∥(λI −A)−k

∥∥∥
L(X)

≤ M

(λ− ω)k
, ∀λ > ω, ∀k ≥ 1.

In the following, we assume that A satisfies some weaker conditions.

Assumption 2.1. Assume that A : D(A) ⊂ X → X is a linear operator
on a Banach space (X, ‖.‖) satisfying the following properties:

(a) There exist two constants, ωA ∈ R and MA ≥ 1, such that (ωA,+∞)
⊂ ρ(A) and∥∥∥(λI −A)−k

∥∥∥
L(X0)

≤ MA

(λ− ωA)k
, ∀λ > ωA, ∀k ≥ 1;

(b) limλ→+∞ (λI −A)−1 x = 0, ∀x ∈ X.

By using Lemma 2.1 in Magal and Ruan [22] and Assumption 2.1-(b)
we deduce that D(A0) = X0. By the Hille-Yosida theorem (see Pazy [30],
Theorem 5.3 on page 20) and the fact that if ρ(A) 6= ∅ then ρ(A) = ρ(A0)
(see Magal and Ruan [23, Lemma 2.4]), one obtains the following lemma.

Lemma 2.2. Assumption 2.1 is satisfied if and only if ρ(A) 6= ∅, A0 is the
infinitesimal generator of a linear C0-semigroup {TA0(t)}t≥0 on X0, and

‖TA0(t)‖ ≤MAe
ωAt, ∀t ≥ 0.

Now we give the definition of an integrated semigroup.

Definition 2.3. Let (X, ‖.‖) be a Banach space. A family of bounded linear
operators {S(t)}t≥0 on X is called an integrated semigroup if the following
hold.

(i) S(0) = 0.
(ii) The map t→ S(t)x is continuous on [0,+∞) for each x ∈ X.

(iii) S(t) satisfies

S(s)S(t) =
∫ s

0
(S(r + t)− S(r)) dr, ∀t, s ≥ 0. (2.2)
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An integrated semigroup {S(t)}t≥0 is said to be non-degenerate if S(t)x =
0 for all t ≥ 0, then x = 0. According to Thieme [36], a linear operator A :
D(A) ⊂ X → X is the generator of a non-degenerate integrated semigroup
{S(t)}t≥0 on X if and only if

x ∈ D(A), y = Ax⇔ S(t)x− tx =
∫ t

0
S(s)yds, ∀t ≥ 0. (2.3)

From [36, Lemma 2.5], we know that, if A generates {SA(t)}t≥0 , then for
each x ∈ X and t ≥ 0,∫ t

0
SA(s)xds ∈ D(A) and S(t)x = A

∫ t

0
SA(s)xds+ tx.

An integrated semigroup {S(t)}t≥0 is said to be exponentially bounded if
there exist two constants, M̂ > 0 and ω̂ > 0, such that

‖S(t)‖L(X) ≤ M̂ebωt, ∀t ≥ 0.

When we restrict ourselves to the class of non-degenerate exponentially
bounded integrated semigroups, Thieme’s notion of generator is equivalent
to the one introduced by Arendt [3]. More precisely, combining Theorem
3.1 in Arendt [3] and Proposition 3.10 in Thieme [36], one has the following
result.

Theorem 2.4. Let {S(t)}t≥0 be a strongly continuous exponentially bounded
family of bounded linear operators on a Banach space (X, ‖.‖) and A :
D(A) ⊂ X → X be a linear operator. Then {S(t)}t≥0 is a non-degenerate
integrated semigroup and A its generator if and only if there exists some
ω̂ > 0 such that (ω̂,+∞) ⊂ ρ (A) and

(λI −A)−1x = λ

∫ ∞
0

e−λsS(s)xds, ∀λ > ω̂.

The following result is well known in the context of integrated semigroups.

Proposition 2.5. Let Assumption 2.1 be satisfied. Then A generates a
uniquely determined non-degenerate exponentially bounded integrated semi-
group {SA(t)}t≥0 . Moreover, for each x ∈ X, each t ≥ 0, and each µ > ωA,

SA(t)x is given by

SA(t)x = µ

∫ t

0
TA0(s) (µI −A)−1 xds+ [I − TA0(t)] (µI −A)−1 x. (2.4)
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Furthermore, the map t → SA(t)x is continuously differentiable if and only
if x ∈ X0 and

dSA(t)x
dt

= TA0(t)x, ∀t ≥ 0, ∀x ∈ X0.

From now on we define

(SA ∗ f) (t) =
∫ t

0
SA(t− s)f(s)ds,∀t ∈ [0, τ ] ,

whenever f ∈ L1 ((0, τ) , X) .
We now consider the non-homogeneous Cauchy problem

du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x ∈ D(A) (2.5)

and assume that f belongs to some appropriate subspace of L1 ((0, τ) , X) .

Definition 2.6. A continuous map u ∈ C ([0, τ ] , X) is called an integrated
solution (or mild solution) of (2.5) if and only if∫ t

0
u(s)ds ∈ D(A), ∀t ∈ [0, τ ]

and

u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f(s)ds, ∀t ∈ [0, τ ] .

Since A generates a non-degenerate integrated semigroup on X, we can
apply Theorem 3.7 in Thieme [36] and obtain the following result.

Lemma 2.7. Let Assumption 2.1 be satisfied. Then for each x ∈ D(A) and
each f ∈ L1 ((0, τ0) , X) , (2.5) has at most one integrated solution.

Denote
(SA � f) (t) =

d

dt
(SA ∗ f) (t)

whenever the map t→ (SA ∗ f) (t) is continuously differentiable.
We will say that {SA(t)}t≥0 has a bounded semi-variation on [0, t] if

V∞(SA, 0, t) := sup
{∥∥∥ n∑

i=1

(
SA(ti)− SA(ti−1)

)
xi

∥∥∥} < +∞,

where the supremum is taken over all partitions 0 = t0 < .. < tn = t of
the interval [a, b] and over any (x1, .., xn) ∈ Xn with ‖xi‖X ≤ 1, for all
i = 1, .., n.

In the sequel, we will only assume that (2.5) has an integrated solution
whenever f ∈ C ([0, τ ] , X) , so we will make the following assumption.
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Assumption 2.8. Let τ0 > 0 be fixed. Assume that {SA(t)}t≥0 has a
bounded semi-variation on [0, τ0] and

lim
t(>0)→0

V∞(SA, 0, t) = 0.

The following theorem, proved by Thieme [38], provides an equivalent
condition to Assumption 2.8 and is very helpful in applications. We refer
to Magal and Ruan [22], Prevost [32], and Ducrot et al. [13] for verifying
Assumption 2.8 for age-structured models and parabolic equations.

Theorem 2.9. Let Assumption 2.1 be satisfied. Then Assumption 2.8 is
satisfied if and only if for each f ∈ C ([0, τ0] , X) , the map t → (SA ∗ f) (t)
is continuously differentiable on [0, τ0] and

‖(SA � f) (t)‖ ≤ δ (t) sup
s∈[0,t]

‖f(s)‖ , ∀t ∈ [0, τ0] ,

where δ : [0, τ0]→ [0,+∞) is a non-decreasing map satisfying

lim
t(>0)→0

δ (t) = 0.

Proof. Assume first that Assumption 2.8 is satisfied. By using Lemma 3.1
in [38], we have for each t ∈ [0, τ0] and each f ∈ C ([0, τ0] , X) that

‖(SA ? f)(t)‖ ≤ V∞(SA, 0, t) sup
s∈[0,t]

‖f(s)‖ ,

where (SA ? f)(t) is defined as a Stieltjes convolution (see [38]). Moreover,
by Theorem 4.2 in [38], we deduce that for each f ∈ C ([0, τ0] , X) , the map
t→ (SA ∗ f)(t) is continuously differentiable and

(SA ? f)(t) = (SA � f)(t) :=
d

dt
(SA ∗ f)(t).

So by fixing δ (t) = V∞(SA, 0, t) we obtain the desired estimate.
Conversely, by using the same arguments as in the proof of Theorem 3.4

in [38], one deduces that V∞ (SA(.), 0, t) ≤ δ (t) for all t ∈ [0, τ0] , and the
result follows. �

We have SA(τ + h) = SA(τ) + TA0(τ)SA(h) for all h ≥ 0, so by using
Assumption 2.8 we deduce that t→ SA(t) has a bounded semi-variation on
[0, 2τ0] . Now, using induction arguments, we deduce that t → SA(t) has a
bounded semi-variation on [0, τ ] for each τ ≥ 0, and by using Theorem 2.9
we obtain the following result.
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Theorem 2.10. Let Assumptions 2.1 and 2.8 be satisfied. Then, for each
τ > 0, t→ SA(t) has a bounded semi-variation on [0, τ ] . Moreover, for each
f ∈ C ([0, τ ] , X) , the map t → (SA ∗ f) (t) is continuously differentiable,
(SA ∗ f) (t) ∈ D(A) for all t ∈ [0, τ ] , and u(t) = (SA � f) (t) satisfies

u(t) = A

∫ t

0
u(s)ds+

∫ t

0
f(s)ds, ∀t ∈ [0, τ ]

and
‖u(t)‖ ≤ V∞(SA, 0, t) sup

s∈[0,t]
‖f(s)‖ , ∀t ∈ [0, τ ] .

Furthermore, for each λ ∈ (ω,+∞) , we have

(λI −A)−1 (SA � f) (t) =
∫ t

0
TA0(t− s) (λI −A)−1 f(s)ds. (2.6)

Corollary 2.11. Let Assumptions 2.1 and 2.8 be satisfied. Then, for each
x ∈ X0 and each f ∈ C ([0, τ ] , X0), the Cauchy problem (2.5) has a unique
integrated solution u ∈ C ([0, τ ] , X0) given by

u(t) = TA0(t)x+ (SA � f) (t), ∀t ∈ [0, τ ] .

Moreover, we have

‖u(t)‖ ≤MAe
ωt ‖x‖+ V∞(SA, 0, t) sup

s∈[0,t]
‖f(s)‖ , ∀t ∈ [0, τ ] .

We now consider a bounded perturbation of A. The following result was
proved in Magal and Ruan [22, Theorem 3.1], which is also closely related to
Desch and Schappacher’s theorem (see [10] or Engel and Nagel [14, Theorem
3.1, page 183]).

Theorem 2.12. Let Assumptions 2.1 and 2.8 hold. Let L ∈ L (X0, X) .
Then A + L : D(A) ⊂ X → X also satisfies Assumptions 2.1 and 2.8.
More precisely, if {SA+L(t)}t≥0 denotes the integrated semigroup generated
by A+L, and τ1 ∈ (0, τ0] is chosen such that ‖L‖L(X0,X) V

∞(SA, 0, τ1) < 1,
then, for each f ∈ C ([0, τ1] , X) ,

‖(SA+L � f) (t)‖ ≤ V∞(SA, 0, t)
1− ‖L‖L(X0,X) V

∞(SA, 0, τ1)
sup
s∈[0,t]

‖f(s)‖ ,∀t ∈ [0, τ1] .

We have the following lemma.

Lemma 2.13. Let Assumptions 2.1 and 2.8 be satisfied. Then t→ SA(t) is
continuous from [0,+∞) into L (X) and

lim
λ→+∞

∥∥∥(λI −A)−1
∥∥∥
L(X)

= 0.
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Proof. By Proposition 3.10 in Thieme [36], we have for each λ > max(0, ωA)
that

(λI −A)−1 x = λ

∫ +∞

0
e−λtSA(t)xdt.

Note that

SA(t)x =
d

dt

∫ t

0
SA(t− s)xds,

so, by Assumption 2.8, we have

‖SA(t)x‖ ≤ V∞(SA, 0, t) ‖x‖ , ∀t ≥ 0.

But
SA(t+ h)− SA(t) = TA0(t)SA(h);

it follows that t → SA(t) is operator norm continuous. Let ε > 0 be fixed
and let τε > 0 be such that V∞(SA, 0, τε) ≤ ε. Choose γ > max(0, ωA) and
Mγ > 0 such that

‖SA(t)x‖ ≤Mγe
γt, ∀t ≥ 0.

Then we have for each λ > γ that∥∥∥(λI −A)−1 x
∥∥∥ ≤ λ [Mγ

∫ +∞

τε

e(γ−λ)tdt+ ε

∫ τε

0
e−λtdt

]
‖x‖ .

Thus,

lim sup
λ→+∞

∥∥∥(λI −A)−1
∥∥∥
L(X)

≤ ε.

This proves the lemma. �

By using the fact that (SA � f) (t) ∈ X0 for all t ∈ [0, τ ] , and formula
(2.6), we have for each f ∈ C ([0, τ ] , X) that

(SA � f) (t) = lim
µ→+∞

∫ t

0
TA0(t− l)µ (µI −A)−1 f(l)dl, ∀t ∈ [0, τ ] . (2.7)

This approximation formula was already observed by Thieme [35] in the
classical context of integrated semigroups generated by a Hille-Yosida oper-
ator. From this approximation formulation, we then deduce that for each
pair t, s ∈ [0, τ ] with s ≤ t, and f ∈ C ([0, τ ] , X) ,

(SA � f) (t) = TA0 (t− s) (SA � f) (s) + (SA � f (s+ .)) (t− s). (2.8)

Let |.| denote the norm on X0 defined by

|x| = sup
l≥0

e−ωAl ‖TA0 (l)x‖ , ∀x ∈ X0.
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Clearly, we have

|TA0 (t)|L(X0) ≤ e
ωAt, ∀t ≥ 0, ‖x‖ ≤ |x| ≤MA ‖x‖ , ∀x ∈ X0,

and by Assumption 2.8, for each f ∈ C ([0, τ ] , X) and each t ∈ [0, τ ] ,

|(SA � f) (t)| ≤MA ‖(SA � f) (t)‖ ≤MAV
∞(SA, 0, t) sup

s∈[0,t]
‖f(s)‖ . (2.9)

The following proposition is one of the main tools for studying semilinear
problems (see the next section and also Magal and Ruan [23] for another
class of applications of this result).

Proposition 2.14. Let Assumptions 2.1 and 2.8 be satisfied. Let ε > 0 be
fixed. Then, for each τε > 0 satisfying MAV

∞(SA, 0, τε) ≤ ε, we have

‖(SA � f) (t)‖ ≤ C (ε, γ) sup
s∈[0,t]

eγ(t−s) ‖f(s)‖ , ∀t ≥ 0

whenever γ ∈ (ωA,+∞) , f ∈ C (R+, X) , with

C (ε, γ) :=
2εmax (1, e−γτε)

1− e(ωA−γ)τε
.

Proof. Let ε > 0, f ∈ C (R+, X) , and γ > ωA be fixed. Let τε = τε (ε) ∈
(0, τ ] be such that MAV

∞(SA, 0, τε) ≤ ε. By (2.9), we have

|(SA � f) (t)| ≤ ε sup
s∈[0,t]

‖f(s)‖ ,∀t ∈ [0, τε] . (2.10)

Let γ > ωA be fixed. Set ε1 = εmax (1, e−γτε) . Let k ∈ N and t ∈ [kτε, (k +
1)τε] be fixed. First, notice that if γ ≥ 0, we have

ε sup
s∈[kτε,t]

‖f(s)‖ = ε sup
s∈[kτε,t]

eγse−γs ‖f(s)‖ ≤ εeγt sup
s∈[kτε,t]

e−γs ‖f(s)‖

= ε1e
γt sup
s∈[kτε,t]

e−γs ‖f(s)‖ .

Moreover, if γ < 0, we have

ε sup
s∈[kτε,t]

‖f(s)‖ = ε sup
s∈[kτε,t]

eγse−γs ‖f(s)‖ ≤ εeγkτε sup
s∈[kτε,t]

e−γs ‖f(s)‖

= εeγte−γteγkτε sup
s∈[kτε,t]

e−γs ‖f(s)‖

= eγtεe−γ(t−kτε) sup
s∈[kτε,t]

e−γs ‖f(s)‖

≤ eγtεe−γτε sup
s∈[kτε,t]

e−γs ‖f(s)‖ = eγtε1 sup
s∈[kτε,t]

e−γs ‖f(s)‖ .
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Therefore, for each k ∈ N, each t ∈ [kτε, (k + 1) τε] , and each γ ∈ R, we
obtain

ε sup
s∈[kτε,t]

‖f(s)‖ ≤ eγtε1 sup
s∈[kτε,t]

e−γs ‖f(s)‖ . (2.11)

It follows from (2.10) and (2.11) that, for all t ∈ [0, τε] ,

|(SA � f) (t)| ≤ ε sup
s∈[0,t]

‖f(s)‖ = eγtε1 sup
s∈[0,t]

e−γs ‖f(s)‖ . (2.12)

Using (2.8) with s = τε, we have for all t ∈ [τε, 2τε] that

(SA � f) (t) = T0 (t− τε) (SA � f) (τε) + (SA � f (τε + .)) (t− τε).
Using (2.10), (2.11), and (2.12), we have

|(SA � f) (t)| ≤ eωA(t−τε) |(SA � f) (τε)|+ |(SA � f (τε + .)) (t− τε)|

≤ eωA(t−τε)eγτεε1 sup
s∈[0,τε]

e−γs ‖f(s)‖+ ε sup
s∈[τε,t]

‖f(s)‖

≤ eωA(t−τε)eγτεε1 sup
s∈[0,τε]

e−γs ‖f(s)‖+ eγtε1 sup
s∈[τε,t]

e−γs ‖f(s)‖

≤ ε1eγt
(
e(ωA−γ)(t−τε) + 1

)
sup
s∈[0,t]

e−γs ‖f(s)‖ .

Similarly, for all t ∈ [2τε, 3τε] ,

(SA � f) (t) = TA0 (t− 2τε) (SA � f) (2τε) + (SA � f (2τε + .)) (t− 2τε)

and

|(SA � f) (t)| ≤ eωA(t−2τε)ε1e
γ2τε

(
e(ωA−γ)τε + 1

)
× sup
s∈[0,2τε]

e−γs ‖f(s)‖+ ε sup
s∈[2τε,t]

‖f(s)‖

≤ eωA(t−2τε)ε1e
γ2τε

(
e(ωA−γ)τε + 1

)
× sup
s∈[0,2τε]

e−γs ‖f(s)‖+ ε1e
γt sup
s∈[2τε,t]

e−γs ‖f(s)‖

≤ ε1eγt
[
e(ωA−γ)(t−2τε)

(
e(ωA−γ)τε + 1

)
+ 1
]

sup
s∈[0,t]

e−γs ‖f(s)‖ .

By induction, we obtain for all k ∈ N with k ≥ 1, t ∈ [kτε, (k + 1) τε] , and
for each γ > ωA that

|(SA � f)(t)| ≤ ε1eγt sup
s∈[0,t]

e−γs ‖f(s)‖
[
e(ωA−γ)(t−kτε)

k−1∑
n=0

(e(ωA−γ)τε)n + 1
]
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≤ ε1eγt sup
s∈[0,t]

e−γs ‖f(s)‖
[ ∞∑
n=0

(
e(ωA−γ)τε

)n
+ 1
]
.

Since γ > ωA, we have for each t ≥ 0 that

e−γt ‖(SA � f) (t)‖ ≤ e−γt |(SA � f) (t)| ≤ 2ε1
1− e(ωA−γ)τε

sup
s∈[0,t]

e−γs ‖f(s)‖ .

This completes the proof. �

Let I ⊂ [0,+∞) be an interval. Set s := inf I ≥ 0. For each γ ≥ 0, define

BCγ (I, Y ) :=
{
ϕ ∈ C (I, Y ) : sup

l∈I
e−γ(l−s) ‖ϕ(l)‖Y < +∞

}
and

‖ϕ‖BCγ(I,Y ) := sup
l∈I

e−γ(l−s) ‖ϕ(l)‖Y .

It is well known that BCγ (I, Y ) endowed with the norm ‖.‖BCγ(I,Y ) is a
Banach space.

By using Proposition 2.14 we obtain the following result.

Lemma 2.15. Let Assumptions 2.1 and 2.8 be satisfied. For each s ≥ 0 and
each σ ∈ (s,+∞] , define a linear operator Ls : C ([s, σ) , X)→ C ([s, σ) , X0)
by

Ls (ϕ) (t) = (SA � ϕ(.+ s)) (t− s), ∀t ∈ [s, σ) , ∀ϕ ∈ C ([s, σ) , X) .

Then, for each γ > ωA, Ls is a bounded linear operator from BCγ ([s, σ) , X)
into BCγ ([s, σ) , X0) . Moreover, for each ε > 0 and each τε > 0 such that
MAV

∞(SA, 0, τε) ≤ ε,

‖Ls (ϕ)‖L(BCγ([s,σ),X),BCγ([s,σ),X0)) ≤ C (ε, γ) .

Proof. Let ϕ ∈ BCγ ([s, σ) , X) be fixed. By using Proposition 2.14, we have
for t ∈ [s, σ) that

e−γ(t−s) ‖(SA � ϕ(.+ s)) (t− s)‖ ≤ C (ε, γ) supl∈[0,t−s] e
−γl ‖ϕ(l + s)‖

= C (ε, γ) supr∈[s,t] e
−γ(r−s) ‖ϕ(r)‖ ≤ C (ε, γ) supr∈[s,σ) e

−γ(r−s) ‖ϕ(r)‖

and the result follows. �
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3. Semilinear Problems – Positivity

Starting from this section, we consider the semilinear Cauchy problem
dU(t, s)x

dt
= AU(t, s)x+ F (t, U(t, s)x), t ≥ s, U(s, s)x = x ∈ X0.

We shall investigate the properties of the non-autonomous semiflow gener-
ated by the following problem

U(t, s)x = x+A

∫ t

s
U(l, s)xdl +

∫ t

s
F (l, U(l, s)x)dl, t ≥ s ≥ 0, (3.1)

or equivalently

U(t, s)x = TA0(t− s)x+ (SA � F (.+ s, U(.+ s, s)x)) (t− s), t ≥ s ≥ 0.
(3.2)

Definition 3.1. Consider two maps χ : [0,+∞) × X0 → (0,+∞] and U :
Dχ → X0, where

Dχ =
{

(t, s, x) ∈ [0,+∞)2 ×X0 : s ≤ t < s+ χ (s, x)
}
.

We say that U is a maximal non-autonomous semiflow on X0 if U satisfies
the following properties:

(i) χ (r, U(r, s)x)+r = χ (s, x)+s, ∀s ≥ 0,∀x ∈ X0, ∀r ∈ [s, s+ χ (s, x)) .
(ii) U(s, s)x = x, ∀s ≥ 0, ∀x ∈ X0.

(iii) U(t, r)U(r, s)x = U(t, s)x, ∀s ≥ 0, ∀x ∈ X0,∀t, r ∈ [s, s+ χ (s, x))
with t ≥ r.

(iv) If χ (s, x) < +∞, then

lim
t→(s+χ(s,x))−

‖U(t, s)x‖ = +∞.

Set
D =

{
(t, s, x) ∈ [0,+∞)2 ×X0 : t ≥ s

}
.

In order to present a theorem on the existence and uniqueness of solutions
to equation (3.1), we make the following assumption.

Assumption 3.2. Assume that F : [0,+∞)×D(A) → X is a continuous
map, and for each σ > 0 and each ξ > 0 there exists K(σ, ξ) > 0 such that

‖F (t, x)− F (t, y)‖ ≤ K(σ, ξ) ‖x− y‖
whenever t ∈ [0, σ] , y, x ∈ X0 with ‖x‖ ≤ ξ and ‖y‖ ≤ ξ.

The following theorem is proved in Magal and Ruan [22, Theorem 5.2].
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Theorem 3.3. Let Assumptions 2.1-2.8 and 3.2 be satisfied. Then there
exist a map χ : [0,+∞) × X0 → (0,+∞] and a maximal non-autonomous
semiflow U : Dχ → X0, such that for each x ∈ X0 and each s ≥ 0, U(., s)x ∈
C ([s, s+ χ (s, x)) , X0) is a unique maximal solution of (3.1) (or equivalently
a unique maximal solution of (3.2)). Moreover, Dχ is open in D and the map
(t, s, x)→ U(t, s)x is continuous from Dχ into X0.

We are now interested in the positivity of the solutions of equation (3.1).
Let X+ ⊂ X be a cone of X; that is, X+ is a closed convex subset of X
satisfying the following two properties:

(i) λx ∈ X+,∀x ∈ X+, ∀λ ≥ 0.
(ii) x ∈ X+ and −x ∈ X+ ⇒ x = 0.

It is clear that X0+ = X0 ∩X+ is also a cone of X0. Recall that such a
cone defines a partial order on the Banach space X which is defined by

x ≥ y if and only if x− y ∈ X+.

We need the following assumption to prove the positivity of solutions of
equation (3.1).

Assumption 3.4. Assume that there exists a linear operatorB ∈ L (X0, X)
such that

(a) for each γ > 0, A−γB is resolvent positive (i.e., (λI−(A−γB))−1X+

⊂ X+ for all λ > ωA large enough);
(b) for each ξ > 0 and each σ > 0, there exists γ = γ(ξ, σ) > 0, such

that F (t, x) + γBx ∈ X+ whenever x ∈ X0+, ‖x‖ ≤ ξ and t ∈ [0, σ] .

Proposition 3.5. Let Assumptions 2.1-2.8 and 3.2-3.4 be satisfied. Then
for each x ∈ X0+ and each s ≥ 0, we have U(t, s)x ∈ X0+ for all t ∈
[s, s+ χ (s, x)) .

Proof. Without loss of generality we can assume that s = 0 and x ∈ X0+.
Moreover, using the semiflow property, it is sufficient to prove that there
exists ε ∈ (0, χ (0, x)) such that U(t, 0)x ∈ X0+ for all t ∈ [0, ε] . Let x ∈ X0+

be fixed. We set ξ := 2 (‖x‖+ 1) . Let γ > 0 such that F (t, x) + γBx ∈ X+

when x ∈ X0+, ‖x‖ ≤ ξ and t ∈ [0, 1]. Fix τγ > 0 such that γV∞(SA, 0, τγ) <
1. For each σ ∈ (0, τγ) , define

Eσ = {ϕ ∈ C ([0, σ] , X0+) : ‖ϕ(t)‖ ≤ ξ, ∀t ∈ [0, σ]} .

Then it is sufficient to consider the fixed-point problem

u(t) = T(A−γB)0(t)x+(SA−γB �F (., u(.))+γBu(.))(t) =: Ψ(u)(t), ∀t ∈ [0, σ].
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Since A − γB is resolvent positive, we have T(A−γB)0(t)X0+ ⊂ X0+ for all
t ≥ 0. Using the approximation formula (2.7), we have for each τ > 0 that

(SA−γB � ϕ) (t) ∈ X0+, ∀t ∈ [0, τ ] , ∀ϕ ∈ C ([0, τ ] , X+) .

Moreover, by using Theorem 2.12, for each ϕ ∈ Eσ and each t ∈ [0, σ], we
deduce that

‖Ψ(ϕ)(t)‖ =
∥∥T(A−γB)0(t)x+ (SA−γB � F (., ϕ(.)) + γϕ(.)) (t)

∥∥
≤
∥∥T(A−γB)0(t)x

∥∥+
V∞(SA, 0, t)

1− γV∞(SA, 0, τγ)
sup
s∈[0,t]

‖F (s, ϕ(s)) + γϕ(s)‖

≤ sup
t∈[0,σ]

∥∥T(A−γB)0(t)x
∥∥

+
V∞(SA, 0, σ)

1− γV∞(SA, 0, τγ)

[
sup
s∈[0,σ]

‖F (s, 0)‖+ [K(1, ξ) + γ] ξ
]
.

Hence, there exists σ1 ∈ (0, 1) such that Ψ(Eσ) ⊂ Eσ for all σ ∈ (0, σ1] .
Therefore, for each σ ∈ (0, σ1] and each pair ϕ,ψ ∈ Eσ, we have for t ∈ [0, σ]
that

‖Ψ(ϕ)(t)−Ψ(ψ)(t)‖=
∥∥(SA−γB � [F (., ϕ(.))− F (., ψ(.)) + γ(ϕ− ψ)(.)])(t)

∥∥
≤ V∞(SA, 0, σ)

1− γV∞(SA, 0, τγ)
[K(1, ξ) + γ] sup

s∈[0,σ]
‖(ϕ− ψ) (s)‖ .

Thus, there exists σ2 ∈ (0, σ1] such that Ψ(Eσ2) ⊂ Eσ2 and Ψ is a strict
contraction on Eσ2 . The result then follows. �

Example 3.6. (1) We refer to Thieme [35] and Hirsch and Smith [17] for
more results on the positivity of semiflows.

(2) Usually Proposition 3.5 is applied with B = I. But the case B 6= I
can also be useful. Consider the following functional differential equation:{

dx(t)
dt

= f (xt) ,∀t ≥ 0,
x0 = ϕ ∈ C ([−τ, 0] ,Rn) ,

(3.3)

where f : C ([−τ, 0] ,Rn) → Rn is Lipschitz continuous on bounded subsets
of C ([−τ, 0] ,Rn). In order to obtain the positivity of solutions, it is sufficient
to assume that for each M ≥ 0 there exists γ = γ (M) > 0 such that

f (ϕ) + γϕ (0) ≥ 0

whenever ‖ϕ‖∞ ≤ M and ϕ ∈ C
(
[−τ, 0] ,Rn

+

)
. It is well known that this

condition is sufficient to obtain the positivity of solutions (see Martin and
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Smith [26, 27]). In order to prove this, one may also apply Proposition 3.5.

By identifying xt with u(t) =
(

0
xt

)
, the system (3.3) can be rewritten as

a non-densely defined Cauchy problem (see Liu, Magal and Ruan [19] for
more details)

dv(t)
dt

= Av(t) + F (v(t)), ∀t ≥ 0, and v(0) =
(

0
ϕ

)
with X = Rn × C ([−τ, 0] ,Rn) , D (A) = {0Rn} × C1 ([−τ, 0] ,Rn) , where
A : D(A) ⊂ X → X is defined by

A

(
0
ϕ

)
=
(
−ϕ′ (0)
ϕ′

)
and F : D(A)→ X by

F

(
0
ϕ

)
=
(
f (ϕ)
0C

)
.

Then Proposition 3.5 applies with

B

(
0
ϕ

)
=
(
ϕ (0)
0C

)
.

Recall that a cone X+ of a Banach space (X, ‖.‖) is normal if there exists
a norm ‖.‖1 equivalent to ‖.‖, which is monotone; that is,

∀x, y ∈ X, 0 ≤ x ≤ y ⇒ ‖x‖1 ≤ ‖y‖1 .

Corollary 3.7. Let Assumptions 2.1-2.8 and 3.2-3.4 be satisfied. Assume
in addition that

(a) X+ is a normal cone of (X, ‖.‖);
(b) there exist a continuous map G : [0,+∞) × X0+ → X+ and two

real numbers k1 ≥ 0 and k2 ≥ 0, such that for each t ≥ 0 and each
x ∈ X0+,

F (t, x) ≤ G(t, x) and ‖G(t, x)‖ ≤ k1 ‖x‖+ k2.

Then
χ (s, x) = +∞, ∀s ≥ 0, ∀x ∈ X0+.

Moreover, we have the following estimate: for each γ > 0 large enough, there
exist C1 > 0 and C2 > 0 such that

‖U(t, s)x‖ ≤ eγ(t−s) [C1 ‖x‖+ C2] .
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Proof. Without loss of generality, we can assume that s = 0 and the norm
‖.‖ is monotone. Let ε ∈ (0, 1

2k1
) and τε > 0 such that MAV

∞(SA, 0, τε) ≤
ε. Let x ∈ X0+ be fixed. Then by Proposition 3.5, we have for each t ∈
[0, χ (0, x)) that

0 ≤ U(t, 0)x = TA0(t)x+ (SA � F (., U(., 0)x)) (t)

≤ TA0(t)x+ (SA �G(., U(., 0)x)) (t).

Hence, for each γ > max(ωA, 0), we have for each t ∈ [0, χ (0, x)) that

e−γt ‖U(t, 0)x‖ ≤ e−γt ‖TA0(t)x‖+ e−γt ‖(SA �G(., U(., 0)x)) (t)‖

≤MAe
(−γ+ωA)t ‖x‖+ C (ε, γ) sup

s∈[0,t]
e−γs ‖G(s, U(s, 0)x)‖

≤MA ‖x‖+ C (ε, γ) sup
s∈[0,t]

e−γs [k1 ‖U(s, 0)x‖+ k2]

≤MA ‖x‖+ k2C (ε, γ) + k1C (ε, γ) sup
s∈[0,t]

e−γs ‖U(s, 0)x‖ .

Since 2k1ε < 1, for γ > max(ωA, 0) sufficiently large, we obtain k1C (ε, γ) =
2k1ε

1−e(ωA−γ)τε < 1 and the result follows. �

4. Global Lipschitz Perturbation

We now consider the case where the map x→ F (t, x) is Lipschitz contin-
uous. Let (Y, ‖.‖Y ) and (Z, ‖.‖Z) be two Banach spaces. Let E be a subset
of Y and G : Y → Z be a map. Define

‖G‖Lip(E,Z) = sup
x,y∈E:x 6=y

‖G(x)−G(y)‖Z
‖x− y‖Y

.

For each x ∈ Y and r > 0, set

BY (x, r) = {y ∈ Y : ‖x− y‖Y < r} , BY (x, r) = {y ∈ Y : ‖x− y‖Y ≤ r} .

The main results of this section are on the existence and uniqueness of a
solution to the integral equation (3.1) and its estimate when x → F (t, x)x
is globally Lipschitz continuous.

Proposition 4.1. Let Assumptions 2.1-2.8 be satisfied. Let F : [0,+∞) ×
D(A) → X be a continuous map and σ ∈ (0,+∞] be a fixed constant.
Assume that

ΓF (σ) := sup
t∈[0,σ)

‖F (t, .)‖Lip(X0,X) < +∞.
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Then, for each x ∈ X0 and each s ∈ [0, σ), there exists a unique solution
U(., s)x ∈ C ([s, σ) , X0) of

U(t, s)x = x+A

∫ t

s
U(l, s)xdl +

∫ t

s
F (l, U(l, s)x)dl, ∀t ∈ [s, σ) .

Moreover, there exists γ0 > max (0, ωA) such that for each γ ≥ γ0, each pair
t, s ∈ [0, σ) with t ≥ s, and each pair x, y ∈ X0, we have

‖U(t, s)x‖ ≤ eγ(t−s)
[
2MA ‖x‖+ sup

l∈[s,σ)
e−γ(l−s) ‖F (l, 0)‖

]
and

‖U(t, s)x− U (t, s) y‖ ≤ eγ(t−s)2MA ‖x− y‖ .

Proof. Fix s, t ∈ [0, σ) with s < t. Let ε > 0 such that

εmax(ΓF (σ) , 1) < 1/8.

Let τε > 0 such that MAV
∞(SA, 0, τε) ≤ ε. Then by Lemma 2.15 we have

for each γ > ωA that

‖Ls (ϕ)‖L(BCγ([s,+∞),X),BCγ([s,+∞),X0)) ≤ C (γ, ε) =
2εmax (1, e−γτε)(

1− e(ωA−γ)τε
) .

Let γ0 ≥ max(0, ωA) such that
1(

1− e(ωA−γ)τε
) < 2, ∀γ ≥ γ0.

To prove the proposition it is sufficient to prove that the following fixed-point
problem

U(., s)x = TA0(.− s)x+ Ls ◦Ψ (U(., s)x) (3.4)
admits a solution U(., s)x ∈ BCγ ([s, σ) , X0) , where Ψ : BCγ ([s, σ) , X0)→
BCγ ([s, σ) , X) is a nonlinear operator defined by

Ψ (ϕ) (l) = F (l, ϕ(l)), ∀l ∈ [s, t] , ∀ϕ ∈ BCγ ([s, σ) , X0) .

We have
‖TA0(.− s)‖L(X0,BCγ([s,σ),X0)) ≤MA,

‖Ls‖L(BCγ([s,σ),X),BCγ([s,σ),X0)) ≤ 4ε,

and
‖Ψ‖Lip(BCγ([s,σ),X0),BCγ([s,σ),X)) ≤ ΓF (σ) .

From this we deduce that

‖Ls ◦Ψ‖Lip(BCγ([s,σ),X0),BCγ([s,σ),X0)) ≤ 4εΓF (σ) ≤ 1/2.
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Thus, the fixed-point problem (3.4) has a unique solution. Moreover, for each
x ∈ X0, there exists a unique solution U(., s)x in BCγ ([s, σ) , X0) such that

‖U(., s)x‖BCγ([s,t],X0)

≤MA ‖x‖+ ‖Ls (Ψ (0))‖+ ‖Ls (Ψ (U(., s)x)−Ψ (0))‖

≤MA ‖x‖+ 4ε ‖Ψ (0)‖BCγ([s,σ),X) +
1
2
‖U(., s)x‖BCγ([s,σ),X0) ,

which implies that

‖U(., s)x‖BCγ([s,σ),X0) ≤ 2MA ‖x‖+ 8ε ‖Ψ (0)‖BCγ([s,σ),X) .

Since by construction ε ≤ 1
8 , we have

sup
l∈[s,σ)

e−γ(l−s) ‖U(., s)x‖ ≤ 2MA ‖x‖+ sup
l∈[s,σ)

e−γ(l−s) ‖F (l, 0)‖ .

Similarly, we have for each pair x, y ∈ X0 that

U(., s)x− U(., s)y = TA0(.− s)(x− y) + Ls [Ψ (U(., s)x)−Ψ (U(., s)y)] .

Therefore,

‖U(., s)x− U(., s)y‖BCγ([s,σ),X0)

≤MA ‖x− y‖+
1
2
‖U(., s)x− U(., s)y‖BCγ([s,σ),X0) .

This completes the proof. �

5. Differentiability with Respect to the State Variable

In this section we investigate the differentiability of solutions with respect
to the state variable.

Proposition 5.1. Let Assumptions 2.1-2.8 and 3.2 be satisfied. Assume in
addition that

(a) for each t ≥ 0 the map x → F (t, x) is continuously differentiable
from X0 into X;

(b) the map (t, x) → DxF (t, x) is continuous from [0,+∞) × X0 into
L (X0, X) .

Let x0 ∈ X0, s ≥ 0, τ ∈ [0, χ (s, x0)) , and γ ∈ (0, χ (s, x0)− τ) . Let η > 0
(there exists such a constant since Dχ is open in D) such that

χ (s, y) > τ + γ,∀y ∈ BX0 (x0, η) .
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Then for each t ∈ [s, s+ τ + γ] , the map x → U(t, s)x is defined from
BX0 (x, η) into X0 and is differentiable at x0. Moreover, if we set

V (t, s)y = DxU(t, s)(x)(y), ∀y ∈ X0,

then t→ V (t, s)y is an integrated solution of the Cauchy problem
dV (t, s)y

dt
= AV (t, s)y +DxF (t, U(t, s)x0)V (t, s)y, t ∈ [s, s+ χ (s, x0)) ,

V (s, s)y = y

or equivalently, for all t ∈ [s, s+ χ(s, x0)), t→ V (t, s)y is a solution of

V (t, s)y = TA0(t− s)y + (SA �DxF (., U(., s)x0)V (., s)y)(t− s).

Proof. First by using the result in Section 4 about the Lipschitz case, it
clear that W (t, s) is well defined. Set

R(t)(y) = U(t, s) (x0 + y)− U(t, s)(x0)− V (t, s)y.

Then

R(t)(y) = (SA � [F (., U(., s) (x0 + y))− F (., U(., s) (x0))
−DxF (., U(., s)x0)V (., s)y])(t− s).

But

F (t, U(t, s) (x0 + y))− F (t, U(t, s) (x0))

=
∫ 1

0
DxF (t, rU(t, s) (x0 + y) + (1− r)U(t, s) (x0))(U(t, s) (x0 + y)

−U(t, s) (x0))dr

=
∫ 1

0
Ψ1(t, r, y) (U(t, s) (x0 + y)− U(t, s) (x0)) dr

+DxF (t, U(t, s) (x0)) (U(t, s) (x0 + y)− U(t, s) (x0)) ,

where

Ψ1(t, r, y) = DxF (t, rU(t, s)(x0+y)+(1−r)U(t, s)(x0))−DxF (t, U(t, s)(x0)).

Thus,
R(t)y = (SA � [K(.) +DxF (., U(., s)x0)R(.)y]) (t− s),

where

K(t) =
∫ 1

0
Ψ2(t, r, y) (U(t, s) (x0 + y)− U(t, s) (x0)) dr

and

Ψ2(t, r, y) = DxF (t, rU(t, s)(x0+y)+(1−r)U(t, s)(x0))−DxF (t, U(t, s)(x0)).
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The result follows from Proposition 2.14 and the continuity of (t, x) →
U(t, s)x. �

6. Time Differentiability

In this section, we study the time differentiability of the solutions. Con-
sider a solution u ∈ C([0, τ ], D(A)) of

u(t) = x0 +A

∫ t

0
u(s)ds+

∫ t

0
F (s, u(s))ds, t ∈ [0, τ ].

Assume that x0 ∈ D(A) and F : [0, T ]×D(A)→ X is a C1 map. When the
domain of A is dense, it is well known (see Pazy [30], Theorem 6.1.5, page
187) that, for each x ∈ D(A), the map t→ u(t) is a classical solution. That
is, the map t → u(t) is continuously differentiable and u(t) ∈ D(A) for all
t ∈ [0, τ ], and satisfies

u′(t) = Au(t) + f(t, u(t)), ∀t ∈ [0, τ ], u(0) = x0.

In this section, we consider the same problem but in the the context of
non-densely defined Cauchy problems. When A satisfies the Hille-Yosida
condition, this problem has been studied by Thieme [35] and Magal [21]. So
the goal is to extend these results to the non-Hille-Yosida case. This problem
turns out to be more difficult. For each τ > 0, set

C1,+([0, τ ], X) =
{
f ∈ C([0, τ ], X) :

d+f

dt
∈ C([0, τ), X), lim

t↗τ

d+f

dt
(t) <∞

}
.

The following lemma is a variant of a result due to Da Prato and Sinestrari
[7].

Lemma 6.1. Let A : D(A) ⊂ X → X be a closed linear operator. Let
τ > 0, f ∈ C([0, τ ], X), and x ∈ X0 be fixed. Assume that u ∈ C ([0, τ ] , X)
is a solution of

u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
f(s)ds, ∀t ∈ [0, τ ] .

Assume in addition that u belongs to C1,+([0, τ ], X) or C([0, τ ] , D(A)). Then
u ∈ C1([0, τ ] , X) ∩ C([0, τ ] , D(A)) and

u′(t) = Au(t) + f(t), ∀t ∈ [0, τ ] .

Proof. If u ∈ C([0, T ], D(A)), since A is closed, we have

u(t) = x+
∫ t

0
Au(s)ds+

∫ t

0
f(s)ds, ∀t ∈ [0, τ ] .
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Thus u ∈ C1([0, τ ] , X) and u′(t) = Au(t) + f(t),∀t ∈ [0, τ ] .
If u ∈ C1,+([0, τ ], X), then we have for each t ∈ [0, τ) and h > 0 that

u(t+ h)− u(t)
h

−
∫ t+h
t f(s)ds

h
= A

∫ t+h
t u(s)ds

h
.

Since A is closed, we deduce that u(t) ∈ D(A) and Au(t) = d+u
dt (t) + f(t)

for all t ∈ [0, τ) . Since u ∈ C1,+([0, τ ], X), we then deduce that u ∈
C([0, τ ], D(A)) and complete the proof. �

Lemma 6.2. Let Assumptions 2.1 and 2.8 be satisfied. Assume that g ∈
C1 ([0, T ] , X) and g(0) ∈ D(A); then t→ (SA � g) (t) is continuously differ-
entiable and

d

dt
(SA � g) (t) = TA0(t)g(0) +

(
SA � g′

)
(t), ∀t ∈ [0, T ] .

Proof. Since g is continuously differentiable, the map t → (SA ∗ g) (t) is
continuously differentiable, with

d

dt
(SA ∗ g) (t) = SA(t)g(0) +

(
SA ∗ g′

)
(t),∀t ∈ [0, T ] .

Since g(0) ∈ D(A), we have SA(t)g(0) =
∫ t
0 TA0(l)g(0)dl for all t ∈ [0, T ] ,

and the result follows. �

The following theorem is due to Vanderbauwhede [39, Theorem 3.5].

Lemma 6.3. (Fibre contraction theorem) Let M1 and M2 be two complete
metric spaces and Ψ : M1 ×M2 →M1 ×M2 a mapping of the form

Ψ (x, y) = (Ψ1 (x) ,Ψ2 (x, y)) ,∀ (x, y) ∈M1 ×M2

satisfying the following properties:
(i) Ψ1 has a fixed point x ∈M1 such that for each x ∈M1,

Ψn
1 (x)→ x as n→ +∞.

(ii) There exists k ∈ [0, 1) such that for each x ∈ M1 the map y →
Ψ2 (x, y) is k-Lipschitz continuous.

(iii) The map x→ Ψ2 (x, y) is continuous, where y ∈M2 is a fixed point
of the map y → Ψ2 (x, y) .

Then, for each (x, y) ∈M1 ×M2,

Ψn (x, y)→ (x, y) as n→ +∞.

The key result of this section is the following lemma.
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Lemma 6.4. Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed
and F : [0, τ ]×D(A)→ X be continuously differentiable. Assume that there
exists an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] , u(0) = x ∈ X0.

Assume in addition that x ∈ D(A0) and F (0, x) ∈ D(A). Then there exists
ε > 0, such that u ∈ C1([0, ε], X) ∩ C([0, ε], D(A)) and

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, ε].

Proof. Since F is continuously differentiable, there exist ε0 > 0, K1 > 0,
and K2 > 0 such that

‖∂tF (t, y)‖ ≤ K1 and ‖∂xF (t, y)‖L(X0,X) ≤ K2

whenever ‖x− y‖ ≤ ε0 and 0 ≤ t ≤ ε0. For each ε ∈ (0, ε0] , set

M ε
1 = {ϕ ∈ C([0, ε], X0) : ϕ(0) = x, ‖ϕ(t)− x‖ ≤ ε0,∀t ∈ [0, ε]},

M ε
2 = {ϕ ∈ C([0, ε], X0) : ϕ(0) = A0x+ F (0, x),

‖ϕ(t)−A0x+ F (0, x)‖ ≤ ε0, ∀t ∈ [0, ε]}.
From now on, we assume that for each i = 1, 2, M ε

i is endowed with the
metric d(ϕ, ϕ̂) = ‖ϕ− ϕ̂‖∞,[0,ε] and M ε

1 × M ε
2 is endowed with the usual

product distance d((ϕ,ψ), (ϕ̂, ψ̂)) = d(ϕ, ϕ̂) + d(ψ, ψ̂).
For each ε ∈ (0, ε0] , set

Eε =
{

(ϕ1, ϕ2) ∈M ε
1 ×M ε

2 : ϕ1(t) = x+
∫ t

0
ϕ2(s)ds,∀t ∈ [0, ε]

}
.

Then it is clear that Eε is a closed subset of M ε
1 ×M ε

2 .
We consider a map Ψ : M ε

1 ×M ε
2 → C ([0, ε] , X0)× C ([0, ε] , X0) defined

by
Ψ (ϕ1, ϕ2) = (Ψ1 (ϕ1) ,Ψ2 (ϕ1, ϕ2)) , ∀ (ϕ1, ϕ2) ∈M ε

1 ×M ε
2 ,

where, for each t ∈ [0, ε] ,

Ψ1 (ϕ1) (t) = TA0(t)x+ (SA � F (., ϕ1(.))) (t),
Ψ2 (ϕ1, ϕ2) (t) = TA0(t) [A0x+ F (0, x)]

+ (SA � ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t).

One can easily check that Ψ is a continuous map. We now prove that for
some ε > 0 small enough, Ψ (M ε

1 ×M ε
2 ) ⊂M ε

1 ×M ε
2 , and

Ψ1 (ϕ1) (0) = x, Ψ2 (ϕ1, ϕ2) (0) = [A0x+ F (0, x)] .
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For each ε ∈ (0, ε0] , each t ∈ [0, ε] , and each ϕ ∈M ε
1 , we have

‖Ψ1 (ϕ) (t)− x‖ ≤ ‖TA0(t)x− x‖+ ‖(SA � F (., ϕ(.)) (t)‖
≤ ‖TA0(t)x− x‖+ V∞(SA, 0, t) sup

s∈[0,t]
‖F (s, ϕ(s))‖

≤ ‖TA0(t)x− x‖+ V∞(SA, 0, ε)
(

sup
s∈[0,t]

‖F (s, x)‖+K2 sup
s∈[0,t]

‖ϕ(s)− x‖
)

≤ sup
t∈[0,ε]

‖TA0(t)x− x‖+ V∞(SA, 0, ε)
(

sup
s∈[0,ε]

‖F (s, x)‖+K2ε0

)
.

Thus, there exists ε1 ∈ (0, ε0] such that for each ε ∈ (0, ε1] , Ψ1 (M ε
1 ) ⊂M ε

1 .
Moreover, for each ε ∈ (0, ε1] , each t ∈ [0, ε] , and each (ϕ1, ϕ2) ∈ M ε

1 ×
M ε

2 , we have

‖Ψ2 (ϕ1, ϕ2) (t)− [A0x+ F (0, x)]‖
≤ ‖TA0(t) [A0x+ F (0, x)]− [A0x+ F (0, x)]‖

+ ‖(SA � ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t)‖
≤ sup

t∈[0,ε]
‖TA0(t) [A0x+ F (0, x)]− [A0x+ F (0, x)]‖

+V∞(SA, 0, ε) sup
s∈[0,ε]

‖∂tF (s, ϕ1(s))‖

+V∞(SA, 0, ε) sup
s∈[0,ε]

‖∂xF (s, ϕ1(s))‖ ‖ϕ2(.)‖

≤ sup
t∈[0,ε]

‖TA0(t) [A0x+ F (0, x)]− [A0x+ F (0, x)]‖

+V∞(SA, 0, ε) {K1 +K2 [‖A0x+ F (0, x)‖+ ε0]} .

Therefore, there exists ε2 ∈ (0, ε1] such that for each ε ∈ (0, ε2],Ψ2(M ε
1 ×

M ε
2 ) ⊂M ε

2 .
Similarly, for each ε ∈ (0, ε2] , Ψ (M ε

1 ×M ε
2 ) ⊂ M ε

1 ×M ε
2 . Now we check

that Ψ (Eε) ⊂ Eε. Let (ϕ1, ϕ2) ∈ Eε. Then ϕ1 ⊂ C1 ([0, ε] , X0) and ϕ′1(t) =
ϕ2(t) for all t ∈ [0, ε] . Notice that

Ψ1 (ϕ1) (t) = TA0(t)x+ (SA � F (., ϕ1(.)) (t);

using Lemma 6.2 and the fact that x ∈ D(A0) and F (0, x) ∈ D(A), we have

dΨ1 (ϕ1) (t)
dt

= A0TA0(t)x+ TA0(t)F (0, x) +
(
SA �

d

dt
F (., ϕ1(.)

)
(t)

= TA0(t) [A0x+ F (0, x)]
+ (SA � ∂tF (., ϕ1(.)) + ∂xF (., ϕ1(.))ϕ2(.)) (t).
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Thus,
dΨ1 (ϕ1) (t)

dt
= Ψ2 (ϕ1, ϕ2) (t)

and Ψ (Eε) ⊂ Eε. Next we apply Lemma 6.3. It remains to verify i) and ii)
for some ε ∈ (0, ε2] small enough. Let (ϕ1, ϕ2) , (ϕ̂1, ϕ̂2) ∈M ε

1×M ε
2 be fixed.

We have for each ε ∈ (0, ε2] that

‖Ψ1 (ϕ1) (t)−Ψ1 (ϕ̂1) (t)‖ = ‖(SA � F (., ϕ1(.))− F (., ϕ̂1(.))) (t)‖
≤ V∞(SA, 0, ε) ‖F (s, ϕ1(s))− F (s, ϕ̂1(s))‖
≤ V∞(SA, 0, ε)K2 sup

s∈[0,ε]
‖ϕ1(s)− ϕ̂1(s)‖ .

Thus there exists ε3 ∈ (0, ε2] such that δ1 := V∞(SA, 0, ε3)K2 ∈ (0, 1) ; we
have for each ε ∈ (0, ε3] that

‖Ψ1 (ϕ1)−Ψ1 (ϕ̂1)‖∞,[0,ε] ≤ δ1 ‖ϕ1 − ϕ̂1‖∞,[0,ε] .

Moreover,

‖Ψ2 (ϕ1, ϕ2) (t)−Ψ2 (ϕ1, ϕ̂2) (t)‖ = ‖(SA � ∂xF (., ϕ1(.)) (ϕ2(.)− ϕ̂2)) (t)‖
≤ V∞(SA, 0, ε)K2 sup

s∈[0,ε]
‖ϕ2(s)− ϕ̂2(s)‖ ≤ δ1 sup

s∈[0,ε]
‖ϕ2(s)− ϕ̂2(s)‖ ,

which implies that

‖Ψ2 (ϕ1, ϕ2) (t)−Ψ2 (ϕ1, ϕ̂2)‖∞,[0,ε] ≤ δ1 ‖ϕ2 − ϕ̂2‖∞,[0,ε] .

Hence, for ε = ε3 we have Ψ (M ε
1 ×M ε

2 ) ⊂ M ε
1 ×M ε

2 , Ψ (Eε) ⊂ Eε and Ψ
satisfies the assumptions of Lemma 6.3. We deduce that there exists (u, v) ∈
M ε

1 ×M ε
2 such that for each (ϕ1, ϕ2) ∈M ε

1 ×M ε
2 ,

Ψn (ϕ1, ϕ2)→ (u, v) as n→ +∞.

Since Ψ (Eε) ⊂ Eε and Eε is closed, we deduce that (u, v) ∈ Eε. In particu-
lar, u ∈ C1([0, ε], X), and the result follows. �

Lemma 6.5. Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed
and F : [0, τ ]×D(A)→ X be continuously differentiable. Assume that there
exists an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] , u(0) = x ∈ X0.

Assume in addition that x ∈ D(A0) and F (0, x) ∈ D(A). Then

u ∈ C1([0, τ ], X) ∩ C([0, τ ], D(A))
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and
u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, τ ].

Proof. Let w ∈ C([0, τ ], D(A)) be a solution of the equation

w(t) = Ax+ F (0, x) +A

∫ t

0
w(s)ds

+
∫ t

0

∂

∂t
F (s, u(s)) +DxF (s, u(s))w(s)ds,∀t ∈ [0, τ ].

From the results in Section 4 concerning globally Lipschitz perturbations, it
is clear that the solution w(t) exists and is uniquely determined. Since u(t)
exists on [0, τ ], let t ∈ [0, τ) be fixed. We have for each h ∈ (0, τ − t) that

u(t+ h)− u(t)
h

=
1
h
A

[∫ t+h

0
u(s)ds−

∫ t

0
u(s)ds

]
+

1
h

[∫ t+h

0
F (s, u(s))ds−

∫ t

0
F (s, u(s))ds

]
= A

[∫ t

0

u(s+ h)− u(s)
h

ds

]
+

1
h
A

∫ h

0
u(s)ds

+
∫ t

0

F (s+ h, u(s+ h))− F (s, u(s))
h

ds+
1
h

∫ h

0
F (s, u(s))ds.

Therefore,

u(t+ h)− u(t)
h

− w(t) = A

∫ t

0

[
u(s+ h)− u(s)

h
− w(s)

]
ds

+
1
h
A

∫ h

0
u(s)ds+

1
h

∫ h

0
F (s, u(s))ds−Ax− F (0, x)

+
∫ t

0

[
F (s+ h, u(s+ h))− F (s+ h, u(s))

h
−DxF (s, u(s))w(s)

]
ds

+
∫ t

0

[
F (s+ h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
ds.

Denote

vh(t) :=
u(t+ h)− u(t)

h
− w(t)

and

xh :=
1
h
A

∫ h

0
u(s)ds+

1
h

∫ h

0
F (s, u(s))ds−Ax− F (0, x).
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We have

vh(t) = xh +A

∫ t

0
vh(s)ds+

∫ t

0

∫ 1

0
DxF (l (u(s+ h)− u(s)) + u(s))

×
(
u(s+ h)− u(s)

h
− w(s)

)
dlds

+
∫ t

0

∫ 1

0
[DxF (l (u(s+ h)− u(s)) + u(s))−DxF (u(s))]w(s)dlds

+
∫ t

0

[
F (s+ h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
ds.

Set

K = sup
l∈[0,1],s∈[0,τ ],h∈[0,τ−s]

‖DxF (l (u(s+ h)− u(s)) + u(s))‖L(X0,X) < +∞.

Let τ̂ > 0 such that

MV∞(SA, 0, t) ≤
1

8(K + 1)
, ∀t ∈ [0, τ̂ ] .

Choose γ > max(0, ωA) so that 1

4
“
1−e(ωA−γ)bτ” < 1

2 . Then by Proposition

2.14, we have for all γ > max(0, ωA) that

e−γt ‖vh(t)‖ ≤M ‖xh‖+
1
2

sup
s∈[0,τ ]

e−γs ‖vh(s)‖

+ sup
s∈[0,τ ]

e−γs
∥∥∥∥∫ 1

0
[DxF (l(u(s+ h)− u(s)) + u(s))−DxF (u(s))]w(s)dl

∥∥∥∥
+ sup
s∈[0,τ ]

e−γs
∥∥∥∥∫ 1

0

[
F (s+ h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
dl

∥∥∥∥ ,
which implies that

e−γt ‖vh(t)‖ ≤ 2M ‖xh‖

+ 2 sup
s∈[0,τ ]

e−γs
∥∥∥∥∫ 1

0
[DxF (l(u(s+ h)− u(s)) + u(s))−DxF (u(s))]w(s)dl

∥∥∥∥
+ 2 sup

s∈[0,τ ]
e−γs

∥∥∥∥∫ 1

0

[
F (s+ h, u(s))− F (s, u(s))

h
− ∂

∂t
F (s, u(s))

]
dl

∥∥∥∥ .
We now claim that

lim
h↘0

xh = 0.
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Indeed, we have

u(h)− u(0)
h

=
1
h
A

∫ h

0
u(s)ds+

1
h

∫ h

0
F (s, u(s))ds

and by Lemma 6.4, we have

lim
h→0+

u(h)− u(0)
h

= Ax+ F (0, x),

so
lim
h↘0

xh = 0.

We conclude that for each t ∈ [0, τ) , we will have

lim
h→0+

u(t+ h)− u(t)
h

= w(t).

Since w ∈ C ([0, τ ] , X) , we deduce that u ∈ C1,+([0, τ ], X). By using Lemma
6.1, we obtain the result. �

To extend the differentiability result to the case where F (0, x0) /∈ D(A),
we notice that, since u(t) ∈ D(A) for all t ∈ [0, T ], a necessary condition for
the differentiability is

Ax+ F (0, x) ∈ D(A).
In fact, this condition is also sufficient. Indeed, taking any bounded linear
operator B ∈ L(X), if u satisfies

u(t) = x+A

∫ t

0
u(s)ds+

∫ t

0
F (s, u(s))ds, ∀t ∈ [0, T ],

then we have

u(t) = x+ (A+B)
∫ t

0
u(s)ds+

∫ t

0
(F (s, u(s))−Bu(s)) ds, t ∈ [0, T ].

So to prove the differentiability of u(t) it is sufficient to find B such that
(A+B)x ∈ D(A). Take B(ϕ) = −x∗(ϕ)Ax, where x∗ ∈ X∗ is a continuous
linear form with x∗(x) = 1 if x 6= 0, which is possible by the Hahn-Banach
theorem. We then have

x ∈ D(A) = D(A+B) and (A+B)x ∈ D(A) = D(A+B).

Moreover, assuming that Ax + F (0, x) ∈ D(A), we obtain F (0, x0) − Bx ∈
D(A). By using Theorem 2.12, we deduce that A+B satisfies Assumptions
2.1 and 2.8 and we have the following theorem.
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Theorem 6.6. Let Assumptions 2.1 and 2.8 be satisfied. Let τ > 0 be fixed
and F : [0, τ ]×D(A)→ X be continuously differentiable. Assume that there
exists an integrated solution u ∈ C ([0, τ ] , X) of the Cauchy problem

du(t)
dt

= Au(t) + F (t, u(t)), t ∈ [0, τ ] , u(0) = x ∈ X0.

Assume in addition that

x ∈ D(A) and Ax+ F (0, x) ∈ D(A).

Then u ∈ C1([0, τ ], X) ∩ C([0, τ ], D(A)) and

u′(t) = Au(t) + F (t, u(t)), ∀t ∈ [0, τ ].

We now consider the nonlinear generator

ANϕ = Aϕ+ F (0, ϕ), ϕ ∈ D(AN ) = D(A).

As in the linear case, one may define AN,0 (the part AN in D(A)) as follows:

AN,0 = AN on D(AN,0) =
{
y ∈ D(A) : ANy ∈ D(A)

}
.

Of course, one may ask about the density of the domain D(AN,0) in D(A).

Lemma 6.7. Under Assumptions 2.1-2.8 and 3.2, the domain D(AN,0) is
dense in X0 = D(A). Assume in addition that X has a positive cone X+

and that Assumption 3.4 is satisfied. Then D(AN,0)∩X0+ is dense in X0+.

Proof. Let y ∈ D(A) be fixed. Consider the following fixed-point problem:
xλ ∈ D(A) satisfies

(λI −A− F )xλ = λy ⇔ xλ = λ(λI −A)−1y + (λI −A)−1F (0, xλ).

Denote

Φλ(x) = λ(λI −A)−1y + (λI −A)−1F (0, xλ), ∀x ∈ X0.

Fix r > 0. Since y ∈ D(A), by Lemma 2.13, limλ→+∞
∥∥ (λI −A)−1

∥∥
L(X)

= 0, thus we deduce that there exists λ0 > ωA such that

Φλ(BX0(y, r)) ⊂ BX0(y, r), ∀λ ≥ λ0,

where B(y, r) denotes the ball centered at y with radius r in X0. Moreover,
there exists λ1 ≥ λ0, such that for each λ ≥ λ1, Φλ is a strict contraction on
B(y, r). Hence, for all λ ≥ λ1, there exists xλ ∈ B(y, r) such that Φλ(xλ) =
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xλ. Finally, using the fact that y ∈ D(A), we have lim
λ→+∞

λ(λI −A)−1y = y,

so
lim

λ→+∞
xλ = y.

The proof of the positive case is similar. �

7. Stability of Equilibria

In this section we first investigate the local stability of an equilibrium.

Proposition 7.1. Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A)→
X be a continuous map. Assume that

(a) there exists x ∈ D(A) such that Ax+ F (x) = 0;
(b) there exist M̂ ≥ 1, ω̂ < 0, and L ∈ L (X0, X) such that∥∥∥T(A+L)0

(t)
∥∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0;

(c) ‖F − L‖Lip(BX0
(x,r),X) → 0 as r → 0.

Then for each γ ∈ (ω̂, 0) there exists ε > 0, such that for each x ∈ BX0 (x, ε) ,
there exists a unique solution U(.)x ∈ C ([0,+∞) , X0) of

U(t)x = x+A

∫ t

0
U(s)xds+

∫ t

0
F (U(s)x) ds, ∀t ≥ 0

which satisfies

‖U(t)x− x‖ ≤ eγt2M̂ ‖x− x‖ , ∀t ≥ 0, ∀x ∈ X0.

Proof. Without loss of generality we can assume that x = 0, L = 0, ωA < 0,
and

‖F‖Lip(BX0
(xη),X) → 0 as η → 0.

Choose η0 > 0 such that

‖F‖Lip(BX0
(xη0),X) < +∞.

Let φ : (−∞,+∞)→ [0,+∞) be a Lipschitz continuous map such that

φ(α)

 = 0, if 2 ≤ |α|
∈ [0, 1] , if 1 ≤ |α| ≤ 2
= 1, if |α| ≤ 1.

Set
Fr (x) = φ(r ‖x‖)F (x),∀x ∈ X0,∀r > 0.
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Then

Fr (x) =
{

0, if 2
r ≤ ‖x‖ ,

F (x) , if ‖x‖ ≤ 1
r .

Choose η ∈ (0, η0] and fix r = 2
η . Let x, y ∈ X0. Define ϕ : [0, 1]→ R by

ϕ(t) = ‖Fr (t (x− y) + y)− Fr (y)‖ , ∀t ∈ [0, 1] .

Since ‖F‖Lip(BX0
(x,η),X) < +∞, the map ϕ is Lipschitz continuous, thus we

have for each pair t, s ∈ [0, 1] that

|ϕ(t)− ϕ(s)| ≤ ‖F‖Lip(BX0
(x,η),X)

(
2 ‖φ‖Lip + 1

)
‖x− y‖ |t− s| .

In particular, for t = 1 and s = 0, we deduce that

‖Fr (x)− Fr (y)‖ ≤ ‖F‖Lip(BX0(x, 2r ),X)
(

2 ‖φ‖Lip + 1
)
‖(x− y)‖ .

Thus for all r ≥ 2
η0
, Fr ∈ Lip (X0, X) and

‖Fr‖Lip(X0,X) ≤ ‖F‖Lip(BX0(x, 2r ),X)
(

2 ‖φ‖Lip + 1
)
→ 0 as r → +∞. (3.5)

For each r ≥ 2
η0
, we consider the nonlinear semigroup {Ur(t)} which is a

solution of

Ur(t)x = x+A

∫ t

0
Ur(s)xds+

∫ t

0
Fr (Ur(s)x) ds, ∀t ≥ 0.

Let γ ∈ (ω̂, 0) be fixed. By Proposition 4.1 and (3.5), there exists r0 =
r0 (γ) ≥ 2

η0
such that

‖Ur0(t)x‖ ≤ eγt2M ‖x‖ , ∀t ≥ 0, ∀x ∈ X0.

Let ε ∈
(
0, 1

2r0
1

2M

)
. Then, for each x ∈ BX0(0, ε),

‖Ur0(t)x‖ ≤ eγt2M ‖x‖ ≤ 1
2r0

.

On the other hand, since F = Fr on BX0(0, 1
2r0

), we deduce that for each
x ∈ BX0(0, ε), Ur0(.)x is a solution of

Ur(t)x = x+A

∫ t

0
Ur(s)xds+

∫ t

0
F (Ur(s)x) ds, ∀t ≥ 0.

The uniqueness of the solution with initial value x in BX0(0, ε) follows from
the fact that F is locally Lipschitz continuous around 0 and by using the
arguments of Lemma 3.3 in Magal and Ruan [22]. �
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Remark 7.2. (1) If F is continuously differentiable in BX0 (x, r0) , we set
L = DF (x). Then by the formula

F (x)− F (y) =
∫ 1

0
DF (s(x− y) + y)(x− y)ds, ∀x, y ∈ BX0 (x, ε) ,

it is clear that

‖F −DF (x)‖Lip(BX0
(x,r),X) → 0 as r → 0.

Thus if x is an equilibrium (i.e., assertion (a) is satisfied) and∥∥∥T(A+DF (x))0
(t)
∥∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0

for some M̂ ≥ 1 and ω̂ < 0, the conclusion of the proposition holds.
(2) In order to see an example where the condition (c) is more appropriate

than the usual differentiability condition, we consider the following case.
Assume that F is quasi-linear; that is, F (x) = L(x)x, where L : X0 →
L (X0, X) is a Lipschitz continuous map (but not necessarily differentiable
in a neighborhood of 0). Then

‖(F − L(0))x− (F − L(0)) y‖ = ‖(L(x)− L(0))x− (L(y)− L(0)) y‖
≤ ‖(L(x)− L(0))x− (L(y)− L(0))x‖+ ‖(L(y)− L(0))x− (L(y)− L(0))y‖
≤ [‖x‖+ ‖y‖] ‖L‖Lip ‖x− y‖ .
So

‖(F − L(0))‖Lip(BX0+
(0,ε),X) ≤ 2ε ‖L‖Lip → 0 as ε→ 0.

Thus, in this case we can apply the condition (c), but F is not differentiable.

We now investigate the global asymptotic stability of an equilibrium.

Proposition 7.3. Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A)→
X be a Lipschitz continuous map. Assume that

(a) there exists x ∈ D(A) such that Ax+ F (x) = 0;
(b) there exist M̂ > 0, ω̂ < 0, and L ∈ L (X0, X), such that∥∥∥T(A+L)0

(t)
∥∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0.

Consider {U(t)}t≥0 the C0-semigroup of nonlinear operators on X0 which is
the solution of

U(t)x = x+A

∫ t

0
U(s)xds+

∫ t

0
F (U(s)x) ds, ∀t ≥ 0.
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Then, for each γ ∈ (ω̂, 0) , there exists δ0 = δ0 (γ) > 0, such that

‖F − L‖Lip(X0,X) ≤ δ0 ⇒ ‖U(t)x− x‖ ≤ eγt2M̂ ‖x− x‖ , ∀t ≥ 0, ∀x ∈ X0.

Thus x is a globally exponentially stable equilibrium of {U(t)}t≥0.

Proof. Replacing U(t)x by V (t)x = U(t)(x + x) − x and F (.) by G(.) =
F (.+ x)−F (x), respectively, without loss of generality we can assume that
x = 0. Moreover, using Theorem 2.12 and replacing M by M̂, ωA by ω̂, A
by A+ L, and F by F − L, respectively, we can further assume that L = 0
and ωA < 0.

Fix τ > 0 and set ε := Mδ(τ). Let γ ∈ (ωA, 0) be fixed. Choose δ0 =
δ0 (γ) > 0 such that

δ0
2εe−γτε(

1− e(ωA−γ)τε
) ≤ 1

2
.

Then by Lemma 2.15 we have

‖L0 (ϕ)‖L(BCγ([0,+∞),X),BCγ([0,+∞),X0)) ≤
2εe−γτε(

1− e(ωA−γ)τε
) ≤ 1

2δ0
.

It is sufficient to consider the problem U(.)x ∈ BCγ ([0,+∞) , X0) ,

U(t)x = TA0(t)x+ L0 (Ψ (U(.)x)) (t) ,∀t ∈ [0,+∞) ,

where Ψ : BCγ ([0,+∞) , X0)→ BCγ ([0,+∞) , X) is defined by

Ψ (ϕ) (t) = F (ϕ (t)) , ∀t ∈ [0,+∞) .

If ‖F‖Lip(X0,X) ≤ δ0, we have ‖L0 ◦Ψ‖Lip(BCγ([0,+∞),X0),BCγ([0,+∞),X0)) ≤
1/2, so for each t ≥ 0

‖U(.)x‖BCγ([0,+∞),X0) ≤M ‖x‖+
1
2
‖U(.)x‖BCγ([0,+∞),X0)

and the result follows. �

Let L : X0 → X be a bounded linear operator. In order to apply the
stability theorem, one needs to prove that there exist two constants M̂ ≥ 1
and ω̂ < 0, such that∥∥∥T(A+L)0

(t)
∥∥∥
L(X0)

≤ M̂ebωt, ∀t ≥ 0,

which is also equivalent to

ω0 ((A+ L)0) := lim
t→+∞

ln
(∥∥T(A+L)0(t)

∥∥
L(X0)

)
t

< ω̂.
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This condition can also be expressed by using spectral properties of the
linear operator A+L. In fact, by applying the results obtained by Webb [43]
(see also Engel and Nagel [14] for more results), it is necessary to verify the
following two properties:

(a) (Point spectrum condition)

σp (A+ L) ⊂ {λ ∈ C : Re (λ) < ω̂}
where

σp (A+ L) = {λ ∈ C : N (λI − (A+ L)) 6= {0}} .
(b) (Essential growth rate condition)

ω0,ess ((A+ L)0) := lim
t→+∞

ln
(∥∥∥T(A+L)0

(t)
∥∥∥

ess

)
t

< ω̂,

where ∥∥∥T(A+L)0
(t)
∥∥∥

ess
= κ

(
T(A+L)0

(t)BX0 (0, 1)
)

with BX0 (0, 1) = {x ∈ X0 : ‖x‖ ≤ 1} , and for each bounded set B ⊂
X, κ (B) = inf {ε > 0 : B can be covered by a finite number of balls
of radius ≤ ε} is the Kuratovsky measure of non-compactness.

In practice the essential growth rate condition can be studied by using
perturbation techniques. When R (L) ⊂ X0 this question has been inves-
tigated by Webb [41, 42, 43]. When R (L) * X0, this question has been
investigated in the Hille-Yosida case by Thieme [37] and extended to the
non-Hille-Yosida case by Ducrot et al. [12].

As a consequence of Theorem 2.2 in Desch and Schappacher [9] and Propo-
sition 5.1, we have the following result on the instability of an equilibrium
(see Thieme [35, Corollary 4.3]).

Proposition 7.4. Let Assumptions 2.1 and 2.8 be satisfied. Let F : D(A)→
X be a Lipschitz continuous map. Assume that there exists x ∈ D(A) such
that Ax + F (x) = 0. Assume that ω0,ess ((A+DF (x))0) < 0 and there ex-
ists λ ∈ σp ((A+DF (x))0) with Re (λ) > 0. Then x is an unstable equilib-
rium in the following sense: There exist a constant ε > 0 and a sequence
xn (∈ X0)→ x as tn → +∞, such that

‖U (tn)xn − x‖ ≥ ε for all n ≥ 0.

Remark 7.5. When the property of an equilibrium changes from stability
to instability, interesting and complex dynamics, such as Hopf bifurcation,
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can occur. We refer to Magal and Ruan [23] for detailed results on this
aspect.

8. Applications

As we mentioned in the Introduction, the key point in applying our results
is to verify the main Assumptions 2.1 and 2.8. In this section, as examples
we consider transport equations and parabolic equations and verify that the
Assumptions 2.1 and 2.8 hold, so that the theory developed in this article
applies.

8.1. Transport equations. First consider the transport equation with a
nonlinear (and nonlocal) boundary condition

∂u

∂t
+
∂u

∂x
= M(u(t, .))(x), t > 0, a > 0

u(t, 0) = G(u(t, .))
u(0, .) = u0 ∈ Lp ((0,+∞) ,R) ,

(8.1)

where M : Lp ((0,+∞) ,R)→ Lp ((0,+∞) ,R) and G : Lp ((0,+∞) ,R)→ R
are continuous maps.

In order to take into account the nonlinear boundary condition we consider
the extended state space X = R× Lp ((0,+∞) ,R) endowed with the usual
product norm and a linear operator A : D(A) ⊂ X → X defined by

A

(
0
ϕ

)
=
(
−ϕ(0)
−ϕ′

)
with D(A) = {0R}×W 1,p ((0,+∞) ,R) . Notice that X0 = D(A) 6= X. So A
is non-densely defined in X. Also, note that A is Hille-Yosida if and only if
p = 1. So A is not a Hille-Yosida operator if we assume p > 1.

Now we consider a nonlinear operator F : D(A)→ X defined by

F (
(

0
ϕ

)
) =

(
G(ϕ)
M(ϕ)

)
.

Then by identifying u(t, .) to v(t) =
(

0
u(t, .)

)
, the PDE (8.1) can be

formulated as a non-densely defined Cauchy problem

dv(t)
dt

= Av(t) + F (v(t)) for t ≥ 0 with u(0) = x ∈ D(A). (8.2)

Lemma 8.1. The operator A satisfies Assumption 2.1.
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Proof. One may readily check that the resolvent is given by the formula

(λI −A)−1

(
y
ψ

)
=
(

0
ϕ

)
⇔ ϕ(a) = e−λay +

∫ a

0
e−λ(a−s)ψ(s)ds.

It follows that ∥∥∥∥(λI −A)−1

(
y
0

)∥∥∥∥ =
(

1
pλ

)1/p

|y| .

By using Young’s inequality we also have∥∥∥∥(λI −A)−1

(
0
ψ

)∥∥∥∥ =
1
λ
‖ψ‖Lp .

So A0, the part of A in X0 = D(A), is a Hille-Yosida operator and we have
the estimate

0 < lim
λ→+∞

λ1/p
∥∥∥(λI −A)−1

∥∥∥
L(X)

< +∞.

This completes the proof. �

Now we can claim that A0 generates a C0-semigroup {TA0(t)}t≥0 and A

generates an integrated semigroup SA(t).

Lemma 8.2. {TA0(t)}t≥0 , the C0-semigroup generated by A0 (the part of A
in X0), is defined by

TA0(t)
(

0
ϕ

)
=
(

0
T̂A0(t)ϕ

)
with

T̂A0(t) (ϕ) (a) =
{
e−λaϕ(a− t) if a ≥ t,
0 if a < t.

Moreover, the integrated semigroup {SA(t)}t≥0 generated by A is defined by

SA(t)
(
y
ϕ

)
=
(

0
W (t)y +

∫ t
0 T̂B0(s)ϕds

)
with

W (t) (y) (a) =
{
e−λay if a ≤ t,
0 if a > t.

Proof. For TA0(t) and SA(t) defined by the above formulas, we have

d

dt
(λI −A)−1 TA0(t)x = λ (λI −A)−1 TA0(t)x− TA0(t)x
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and
d

dt
(λI −A)−1 SA(t)x = λ (λI −A)−1 SA(t)x− SA(t)x+ (λI −A)−1 x.

The result follows from Lemma 2.10 of Magal and Ruan [22]. �

Lemma 8.3. For each τ, each f ∈ Lp ((0, τ) , X0) , and each x ∈ X0, there
exists a unique integrated solution u ∈ C([0, τ ] , X0) of the Cauchy problem

du

dt
= Au(t) + f(t), t ∈ [0, τ ] , u(0) = x, (8.3)

given by
u(t) = TA0(t)x+ (SA � f) (t), ∀t ∈ [0, τ ] . (8.4)

Moreover, there is a constant Mτ such that

‖(SA � f) (t)‖ ≤Mτ

(∫ t

0
‖f(s)‖p ds

)1/p

, ∀t ∈ [0, τ ] . (8.5)

Proof. Let ψ ∈ C∞c ((0,+∞) , Y ∗) be fixed. We define x∗ ∈ X∗0 by

x∗
(

0
ϕ

)
=
∫ +∞

0
ψ(s)(ϕ(s))ds.

Let x =
(
y
ϕ

)
∈ X. For each λ > ω, we have

x∗
(

(λI −A)−1

(
y
ϕ

))
=
∫ +∞

0
e(−λ+ω)tWx∗(t) (y) dt

with
Wx∗(t)(y) = e−(λ+ω)tψ(t)y.

Therefore,

x∗
(

(λI −A)−n
(
y
ϕ

))
=

(−1)n−1

(n− 1)!
dn−1

dλn−1
x∗
(

(λI −A)−1

(
y
ϕ

))
=

1
(n− 1)!

∫ +∞

0
tn−1e(−λ+ω)tWx∗(t) (y) dt

and∣∣∣∣x∗((λI −A)−n
(
y
ϕ

))∣∣∣∣ ≤ 1
(n− 1)!

∫ +∞

0
tn−1e−λtM ‖ψ(t)‖Y ∗ dt ‖y‖Y .

Hence, Proposition 4.1 and Theorem 4.7 in Magal and Ruan [22] imply that
u(t) defined by (8.4) is an integrated solution of (8.3). Moreover, by using
Lemma 2.10 in Magal and Ruan [22], we obtain the inequality in (8.5). �
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Now, by combining Theorem 2.9 and Lemma 8.3, we know that Assump-
tion 2.8 is satisfied. Thus, the theory developed in sections 2-7 applies to
the transport equation (8.1).

8.2. Parabolic equations. In parabolic equations, due to the boundary
conditions it is well known that elliptic operators are not in general Hille-
Yosida operators but almost sectorial operators (see Da Prato [6], Okazawa
[29], Periago and Straub [31] and references therein). To illustrate this prop-
erty we consider the parabolic system

∂u

∂t
=
∂2u

∂x2
+M(u(t, .))(x), t > 0, x > 0

−∂u(t, 0)
∂x

= G(u(t, .))

u(0, .) = u0 ∈ Lp ((0,+∞) ,R) .

(8.6)

As before we consider a linear operator A : D(A) ⊂ X → X defined by

A

(
0
ϕ

)
=
(
ϕ′(0)
ϕ′′

)
with D(A) = {0R}×W 2,p ((0,+∞) ,R) . One may observe that A0, the part
of A in D(A) = {0R} × Lp ((0,+∞) ,R) , is the generator of the strongly
continuous semigroup of bounded linear operators associated to

∂u

∂t
=
∂2u

∂x2
, t > 0, x > 0

−∂u(t, 0)
∂x

= 0

u(0, .) = u0 ∈ Lp ((0,+∞) ,R) .

That is,

A0

(
0
ϕ

)
=
(

0
ϕ′′

)
with

D(A0) =
{(

0
ϕ

)
∈ {0R} ×W 2,p ((0,+∞) ,R) : ϕ′(0) = 0

}
.

In particular it is well known that A0 is the infinitesimal generator of an
analytic semigroup on D(A). The resolvent of A is defined by the formula

(λI −A)−1

(
α
ψ

)
=
(

0
ϕ

)
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⇔ ϕ(x) =
α

−
√
λ
e−
√
λxα

+
1

2
√
λ

∫ +∞

0
e−
√
λsψ(s)dse−

√
λx +

1
2
√
λ

∫ +∞

0
e−
√
λ|x−s|ψ(s)ds

for λ ∈ C with Re (λ) > 0.
So as in the hyperbolic case we obtain

0 < lim inf
λ→+∞

λ1/p∗
∥∥(λI −A)−1

∥∥
L(X)

< lim sup
λ→+∞

λ1/p∗
∥∥(λI −A)−1

∥∥
L(X)

< +∞,

where p∗ = 2p
1+p . Note that A is non-densely defined and is not a Hille-Yosida

operator when p ∈ (1,+∞) .

Now by identifying u(t, .) to v(t) =
(

0
u(t, .)

)
, the PDE (8.6) can be

formulated as a non-densely defined Cauchy problem

dv(t)
dt

= Av(t) + F (v(t)) for t ≥ 0 with u(0) = x ∈ D(A). (8.7)

We make the following assumption.

Assumption 8.4. Let A : D(A) ⊂ X → X be a linear operator on a
Banach space X. Assume that there exist two constants, ωA ∈ R and MA >
0, such that

(a) ρ(A0) ⊃ {λ ∈ C : Re (λ) > ωA} and∥∥∥(λ− ωA) (λI −A0)−1
∥∥∥
L(X0)

≤MA, ∀λ ∈ C, Re (λ) > ωA;

(b) (ωA,+∞) ⊂ ρ (A) and there exists p∗ ≥ 1 such that

lim sup
λ→+∞

λ1/p∗
∥∥∥(λI −A)−1

∥∥∥
L(X)

< +∞.

The above assumption can be reformulated by saying that A0 is sectorial
and A is 1

p∗ -almost sectorial. Moreover, we have the following result (see
Ducrot, Magal and Prevost [13, Theorem 3.1]).

Lemma 8.5. Let Assumption 8.4 be satisfied. Let λ > ωA and p̂ ∈ (p∗,+∞)
be fixed. Then, for each f ∈ Lp̂ ((0, τ) , X), the map t → (SA ∗ f) (t) is
continuously differentiable, (SA ∗ f) (t) ∈ D(A) for all t ∈ [0, τ ] , and if we
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denote by u(t) = d
dt (SA ∗ f) (t), then

u(t) = A

∫ t

0
u(s)ds+

∫ t

0
f(s)ds, ∀t ∈ [0, τ ] .

Moreover, for each β ∈ (1 − 1
p∗ , 1 −

1
p̂) and each t ∈ [0, τ ] , the following

estimate holds:

‖(SA � f) (t)‖ ≤Mβ,τ

∫ t

0
(t− s)−βeωA(t−s) ‖f(s)‖ ds, (8.8)

where Mβ,τ is some positive constant.

Lemma 8.5 implies that, for each p̂ > p∗ and each τ > 0, the Cauchy
problem (8.7) has a unique integrated solution and there exists a constant
Mτ,bp > 0 such that

‖(SA � f) (t)‖ ≤Mτ,bp(∫ t

0
‖f(s)‖bp ds)1/bp

, ∀t ∈ [0, τ ] .

Therefore, Assumptions 2.1 and 2.8 are satisfied for the parabolic equation
(8.8). Thus, the results in sections 3-7 apply to this equation too.

For parabolic problems in dimension n, we refer to Tanabe [34, Section
3.8, p.82], Agranovich [1], and Volpert and Volpert [40] for general estimates
for the resolvent of elliptic operators in the n-dimensional case.

The goal of this paper was to develop a comprehensive semilinear theory
for non-densely defined Cauchy problems when the linear operator is not
a Hille-Yosida operator. The above two examples on transport equations
with nonlinear boundary conditions and parabolic equations with nonlo-
cal boundary conditions demonstrate that when the linear operator is not
Hille-Yosida, we still can formulate the problems into a non-densely defined
Cauchy problem and apply the theory of this paper to study these two types
of equations. We believe that our results can be applied to discuss various
other types of equations, such as retarded and neutral functional differential
equations (see Liu, Magal and Ruan [19], Magal and Ruan [22], and Ducrot,
Liu and Magal [11]).
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