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Abstract
Diapause, a period of arrested development caused by adverse environmental condi-
tions, serves as a key survival mechanism for insects and other invertebrate organisms
in temperate and subtropical areas. In this paper, a novel modelling framework, moti-
vated bymosquito species, is proposed to investigate the effects of diapause on seasonal
population growth, where the diapause period is taken as an independent growth pro-
cess, during which the population dynamics are completely different from that in
the normal developmental and post-diapause periods. More specifically, the annual
growth period is divided into three intervals, and the population dynamics during each
interval are described by different sets of equations.We formulate twomodels of delay
differential equations (DDE) to explicitly describe mosquito population growth with
a single diapausing stage, either immature or adult. These two models can be further
unified into one DDE model, on which the well-posedness of the solutions and the
global stability of the trivial and positive periodic solutions in terms of an indexR are
analysed. The seasonal population abundances of two temperatemosquito specieswith
different diapausing stages are simulated to identify the essential role on population
persistence that diapause plays and predict that killing mosquitoes during the diapause
period can lower but fail to prevent the occurrence of peak abundance in the following
season. Instead, culling mosquitoes during the normal growth period is much more
efficient to decrease the outbreak size. Our modelling framework may shed light on
the diapause-induced variations in spatiotemporal distributions of different mosquito
species.
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1 Introduction

Diapause is a neurohormonallymediated dynamic state of lowmetabolic activity, asso-
ciated with a reduced morphogenesis, increased resistance to environmental extremes
and altered or reduced physical activity (Tauber et al. 1986).As an adaptingmechanism
to the unfavourable environmental conditions such as harsh winters and dry seasons,
this process of physiological rest can be commonly found among invertebrate organ-
isms, which include temperate zone insects or some tropical species occasionally and
their arthropod relatives (Denlinger 2002; Koštáll 2006), such as mosquitoes (Alek-
seev et al. 2007), ticks (Belozerov 1982), ladybirds (Hodek et al. 2012), dragonflies
(Pritchard 1989) and silkworms (Hasegawa 1957). Recent extensive studies on dif-
ferent aspects of diapause contributed to understanding how inherent mechanisms
regulate organisms surviving through diapause (Denlinger 2002; Denlinger and Lee
2010; Denlinger et al. 2004; Hahn and Denlinger 2011; Rinehart et al. 2006) and
the critical roles of diapause stage on linking the favourable and adverse seasons,
and synchronising the life cycle of organisms with seasonal environmental variations
(Alekseev et al. 2007; Denlinger and Armbruster 2014; Tauber 1976; Tauber et al.
1986).

Mathematical models are believed to be efficient and indispensable tools for better
understanding of population dynamics (Brauer and Castillo-Chavez 2001; Metz and
Diekmann 1986). However, few population models focus on exploring the impact of
diapause on population persistence. In this paper, we attempt to investigate how dia-
pause influences seasonal populationpatterns by constructingmathematically tractable
models, with mosquito species as a motivating example. Mosquitoes act as pathogen
vectors to transmit various infectious diseases including dengue fever, malaria, West
Nile fever, Japanese encephalitis, Zika and chikunguya, which pose great challenges
to human health (Smith et al. 2014). Due to their epidemiological significance, the
study of mosquitoes attracts increasing attention and makes mosquitoes to be the most
concerned model group among aquatic insects. Even though there are huge invest-
ments in mosquito research, relatively a small number of population models evaluate
the effects of diapause on mosquito persistence.

Our literature review indicates that there were two possible ways employed to
incorporate the diapause effects into the population model. One way was using
piecewise parameter functions to differ either the survival or the development rates
between the normal growth and diapause periods. Gong et al. (2011) developed two
discrete difference models with a piecewise death rate function characterising the
impact of adult mosquito diapause to investigate the temporal dynamics of Culex
mosquito populations. A stage-structure, climate-driven population model of ordinary
differential equations (ODE) with a piecewise egg production rate function describ-
ing diapause-induced differences was formulated by Tran et al. (2013) to simulate
Culex mosquito population abundance in the Northeastern US. Another temperature-
dependent, delay differential equation (DDE) model with piecewise developmental
rate functions accounting for the effects of diapause was proposed to demonstrate the
sensitivity of seasonal mosquito patterns to annual changes in temperature (Ewing
et al. 2016). However, considerable observational studies suggest that not only the
developmental rate but also the reproduction and mortality rates are altered simultane-
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Modelling diapause in mosquito population growth 2261

ously when organisms enter into diapause (Denlinger and Armbruster 2014; Hanson
1995; Sim and Denlinger 2008). Consequently, the other fairly reasonable way was to
regard the diapause period as an independent dynamic process, duringwhich the popu-
lation dynamics are completely different from that in the normal growth period. Cailly
et al. (2012) built two different stage-structured temperature-driven ODE models to
predict seasonal mosquito abundance during favourable and unfavourable periods
respectively. Based on the above two models, two new fine-tuned ODE models were
constructed by Jia et al. (2016) to explore the relationships between major climatic
variables and diapause related parameters. Following this point of view, we aim to pro-
pose a novel and comprehensive framework for modelling diapause in the population
growth.

The occurrence of diapause is caused by the advent of adverse environmental con-
ditions such as winter seasons in temperate zones and dry seasons in tropical zones.
As such, the organisms surviving through diapause must experience a fixed period
of latency before their normal growth resumes (Denlinger and Armbruster 2014). In
addition, several observations (Denlinger and Armbruster 2014; Koštáll 2006; Laing
and Corrigan 1995) indicate that normal growth cannot resume immediately after the
termination of diapause. It would make sense to classify the annual growth period into
three intervals, that is, the normal growth period, the diapause period and the post-
diapause period. Population dynamics during each interval are described by different
sets of differential equations. Sincemosquito diapause is restricted to a single stage for
most species, on either immature (mostly egg) or adult stage (Buth et al. 1990; Den-
linger and Armbruster 2014), we attempt to investigate two distinct cases of mosquito
diapause separately, that is, adult diapause and immature diapause. Consequently,
the population is structured into immature and mature classes to explicitly describe
different diapausing life stages. In view of the developmental delays induced by the
maturation and diapausing time period respectively, it seems that the stage-structured
DDE framework is more suitable and reasonable. Two distinct DDE models with two
different delays are formulated from the continuous age-structured partial differen-
tial equations (PDEs) to explicitly describe mosquito growth with either diapausing
adults or immatures. Furthermore, we formulate a unified DDE model, which can
reflect population dynamics with adult diapause and immature diapause separately, by
assuming different diapause-related parameters. Although the motivative example of
this paper is the mosquito species, our modelling framework can be applied to other
species including ticks (Belozerov 1982), silkworms (Hasegawa 1957) and flesh flies
(Flannagan et al. 1998), which are capable of diapause to survive through unfavourable
seasons.

The formulations of three DDE models are derived elaborately in Sect. 2. Theoret-
ical analysis on the unified model including the well-posedness of the solutions and
global stability of the trivial and positive periodic solutions in terms of an index R
is presented in Sect. 3. Numerical simulations are performed in Sect. 4 to show the
seasonality of population abundances of two temperate mosquito species, the sensi-
tivity of the diapause-related parameters and implications for controlling mosquito
population. Discussions are provided in the final section.
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2 Model formulation

We first derive the formulation describing the growth of population with only one dia-
pausing stage, either adult or immature diapause.Aunifiedmodel capable of describing
both adult and immature diapause cases is then proposed. The mosquito population
is stratified into two different age classes: immature (I (t)) and mature (M(t)) classes
with a threshold age τ , which represents the development duration from egg to adult.
Within each age group, all individuals share the same birth and death rates. We denote
the population density at time t of age a by u(a, t). Then the population sizes for imma-
ture and adult individuals are represented respectively by the following integrations:

I (t) =
∫ τ

0
u(a, t)da, M(t) =

∫ ∞

τ

u(a, t)da. (1)

The annual growth period consists of three intervals, that is, the normal growth
period, the diapause period and the post-diapause period, the lengths of which are
denoted by T1, T2 and T3 respectively. Here, to derive the closed system, the post-
diapause period is set to be only one developmental duration, i.e. T3 = τ . The length
of the (irrespective of adult diapause or immature) diapause duration is assumed to
be τd , i.e. T2 = τd . Biological observations indicate that τd > τ (Denlinger and
Armbruster 2014; Silver 2007). It then follows that the length of the remaining period,
i.e. the normal growth period, is T1 = 1 − τ − τd . In this paper, we set the starting
time t = 0 of the annual growth period at the termination of the post-diapause period.

During the normal growth period, there is no difference in the model formulations
between these two different diapause mechanisms. The McKendrick-von Foerster
equation can be used to describe the dynamics of an age-structured population (see,
e.g., Cushing (1998); Gourley andWu (2006); Lou and Zhao (2017) and the references
therein):

⎧⎪⎪⎨
⎪⎪⎩

(
∂

∂a
+ ∂

∂t

)
u(a, t) = −μ(a)u(a, t),

u(0, t) = b(M(t)),
u(a, 0) = u0(a).

(2)

The birth rate function is b(M(t)), dependent only on the adult population size, and
u0(a) is the initial age distribution. The death rates during the normal growth period
are stage-dependent, and μ(a) = μI for a < τ while μ(a) = μM for a ≥ τ . In view
of (2), differentiating the integral equations in (1) with respect to time t on both sides
yields

d I (t)

dt
= u(0, t) − u(τ, t) − μI I (t) = b(M(t)) − u(τ, t) − μI I (t),

dM(t)

dt
= u(τ, t) − u(∞, t) − μMM(t).

It is natural to assume that u(∞, t) = 0 as no individual can live forever. To close
the system, we need to figure out u(τ, t), the maturation rate at time t , which can be
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achieved by the technique of integration along characteristics (see for example Smith
(1993)). To proceed, let ξ s(t) = u(t − s, t), then for t − s ≤ τ , we have

dξ s(t)

dt
= −μ(t − s)ξ s(t),

where ξ s(s) = u(0, s) = b(M(s)). Therefore, setting s = t − τ (≥ 0), we have the
following expression for u(τ, t) when t ≥ τ ,

u(τ, t) = b(M(t − τ))e−μI τ .

The following system describes the population dynamics taking into consideration
of seasonal effects during the normal growth period, i.e. when n ≤ t ≤ n + T1 =
n + 1 − τ − τd , here n (≥ 0) is an integer representing the n-th year:

d I (t)

dt
= b(M(t)) − b(M(t − τ))e−μI τ − μI I (t),

dM(t)

dt
= b(M(t − τ))e−μI τ − μMM(t).

However, the population dynamics during the diapause and post-diapause periods
are completely different from both immature and mature diapause individuals. In the
next subsection, we start from the model formulation for adult diapause case.

2.1 Adult diapause

Once the diapause period is initiated, all individuals cease their developmental activi-
ties due to harsh environmental conditions. For adult diapause case, adult individuals
can survive with a diapausing mortality rate dM while the immature population
becomes extinct (Spielman 2001). Consequently, we assume that the number of
immatures I (t) decreases to zero continuously during the diapause period, i.e. when
n+1− τ − τd ≤ t ≤ n+1− τ , moreover, I (t) ≡ 0 when t ∈ [n+1−2τ, n+1− τ ].
During the post-diapause period, i.e. when n + 1 − τ ≤ t ≤ n + 1, the maturation
rate is 0 as no immature survives through the diapause period. The annual growth of
the mosquito population when adults enter into diapause is illustrated in Fig. 1a. In
this case, the population dynamics subject to seasonal effects can be described by the
following system (A), consisting of (A1), (A2) and (A3).

(1) During the normal growth period T1, i.e. when t ∈ [n, n + 1 − τ − τd ] :
⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − b(M(t − τ))e−μI τ − μI I (t),

dM(t)

dt
= b(M(t − τ))e−μI τ − μMM(t).

(A1)

(2) During the adult diapause period T2, i.e. when t ∈ [n+1−τ −τd , n+1−τ ], there
is no developmental activity, immatures go extinct and adults survive through
diapause:
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Fig. 1 Diagrams depicting the annual growth of mosquito populations with single diapausing stage. a
Diagram for adult diapause, b diagram for immature diapause. The 1year period is divided into three
intervals with different growth rates for immatures I (t) and adults M(t) on different intervals. Moreover,
the lengths of these three intervals T1, T2, T3 are 1 − τd − τ , τd and τ respectively

⎧⎪⎨
⎪⎩

I (t) decreases to zero continuously and
I (t) ≡ 0, ∀ t ∈ [n + 1 − 2τ, n + 1 − τ ],
dM(t)

dt
= −dMM(t).

(A2)

(3) During the post-diapause period T3, i.e. when t ∈ [n+1−τ, n+1], no immatures
develop to adults since the longest age for newborns in this period is τ :

⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − μI I (t),

dM(t)

dt
= −μMM(t).

(A3)
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2.2 Immature diapause

In the case that immature individuals diapause, the annual growth of mosquito popula-
tion is illustrated in Fig. 1b. During the diapause period, all individuals stop growing,
immatures (eggs or larvae) enter into diapausewith a diapausingmortality ratedI while
the adult population goes extinct due to harsh environmental conditions (Leisnham
et al. 2008; Toma et al. 2003). Therefore, we assume that M(t) decreases to zero con-
tinuously during the diapause period, i.e. when n + 1− τ − τd ≤ t ≤ n + 1− τ , and
M(t) ≡ 0 when t ∈ [n + 1 − 2τ, n + 1 − τ ]. Different from the adult diapause case,
the maturation rate during the post-diapause period is b(M(t − τ − τd))e−μI τ−dI τd

other than 0. The dynamics of seasonal mosquito population when immatures enter
into diapause can be described by the following system (I), consisting of (I1), (I2) and
(I3).

(1) During the normal growth period T1, i.e. when t ∈ [n, n + 1 − τ − τd ]:
⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − b(M(t − τ))e−μI τ − μI I (t),

dM(t)

dt
= b(M(t − τ))e−μI τ − μMM(t).

(I1)

(2) During the immature diapause period T2, i.e. when t ∈ [n+1−τ −τd , n+1−τ ],
no adult gives birth since all adults die:

⎧⎪⎨
⎪⎩

d I (t)

dt
= −dI I (t),

M(t) decreases to zero continuously and
M(t) ≡ 0, ∀ t ∈ [n + 1 − 2τ, n + 1 − τ ].

(I2)

(3) During the post-diapause period T3, i.e. when t ∈ [n + 1 − τ, n + 1], juveniles
born at previous time instant t − τ − τd survive through the diapause period and
mature into adults at time t :

⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − b(M(t − τ − τd))e−μI τ−dI τd − μI I (t),

dM(t)

dt
= b(M(t − τ − τd))e−μI τ−dI τd − μMM(t).

(I3)

2.3 A unifiedmodel

In this subsection, wewill explore the formulation of a unifiedmodel, which is capable
of describing both the immature (Model (I)) and adult (Model (A)) diapause cases
respectively. The annual growth of mosquito population is shown in Fig. 2.

(1) During the normal growth period T1, i.e. when n ≤ t ≤ n+T1 = n+1− τ − τd ,
the population dynamics are described by the following system, which are the
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Fig. 2 Diagram illustrating the annual growth for the mosquito population when both immatures and adults
can survive through diapause. The 1year period is divided into three intervals with different growth rates
for immatures I (t) and adults M(t) on different intervals. Moreover, the lengths of these three different
intervals T1, T2, T3 are 1 − τd − τ , τd and τ respectively

same as previous two cases.

⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − b(M(t − τ))e−μI τ − μI I (t),

dM(t)

dt
= b(M(t − τ))e−μI τ − μMM(t).

(U1)

(2) Afterwards, all mosquitoes evolve into the diapause period with the advent of
unfavourable seasons. During this period T2, the development of all individuals
is arrested and we assume both immature and mature mosquitoes can survive
through the diapause period suffering the mortality rate dI and dM , respectively.
Then, the population dynamics for mosquitoes during the diapause period (i.e.
when n + 1 − τd − τ ≤ t ≤ n + 1 − τ ) are described by the following system:

⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= −dI I (t),

dM(t)

dt
= −dMM(t).

(U2)

(3) For the post-diapause period T3, i.e. when n+ 1− τ ≤ t ≤ n+ 1, the population
dynamics can be represented by the following system:

⎧⎪⎪⎨
⎪⎪⎩

d I (t)

dt
= b(M(t)) − b(M(t − τ − τd))e−μI τ−dI τd − μI I (t),

dM(t)

dt
= b(M(t − τ − τd))e−μI τ−dI τd − μMM(t).

(U3)
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By assuming dI � 1 (dM � 1), we can investigate the population dynamics for
individuals experiencing adult (resp. immature) diapause in the previous cases via this
unified model. In fact, when only adults diapause, I (t) declines to zero very quickly
in (U2), as expressed in (A2). Moreover, the term b(M(t − τ − τd))e−μI τ−dI τd is
close to zero in (U3) in terms of a threshold, which approximates to (A3). Similarly,
when immatures diapause, the dynamics of system (I) can be approximated by those
of system (U) with the assumption of dM � 1. In summary, we may use system (U)
to reflect the dynamics of systems (A) and (I) and conduct theoretical analysis on the
unified model (U) in the next section, where the detailed proofs for the well-posedness
of the solutions and global stability of the trivial and positive periodic solutions in terms
of a threshold parameterR are provided. The persistence and extinction of population
is totally dependent on the sign ofR−1. WhenR > 1, the population will eventually
oscillate at an annual cycle.

3 Model analysis

Since the equations for M(t) can be decoupled in system (U), it suffices to analyse
the equations for adult population in the unified model:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dM(t)

dt
= b(M(t − τ))e−μI τ − μMM(t), t ∈ [n, n + 1 − τ − τd ],

dM(t)

dt
= −dMM(t), t ∈ [n + 1 − τ − τd , n + 1 − τ ],

dM(t)

dt
= b(M(t − τ − τd))e

−μI τ−dI τd − μMM(t), t ∈ [n + 1 − τ, n + 1],

(3)

where n ∈ N. It is worth noting that only one-sided derivative is considered at all
break points in our model.

We make the following biologically plausible assumptions on the birth rate and the
periods, which are justified in the existing literature (Lou and Zhao 2010):

(H1) b(M) is a non-negative locally Lipschitz continuous function in M . In
particular, we assume that b(M) is strictly increasing with respect to M > 0.
Furthermore, b(0) = 0 and there exists M > 0 such that b(M)e−μI τ > μMM
when 0 < M < M , and b(M)e−μI τ < μMM whenever M > M .
(H2) 2τ + τd < 1.

In fact, any desired birth rate function can be constructed with appropriate param-
eter values alternatively. In general, our assumptions for the birth rate function can be
deduced from Fig. 3. Furthermore, the mosquito diapause is usually initiated when the
cold and dry season comes and halted when the environment is suitable for reproduc-
tion and development (Denlinger and Armbruster 2014). The length of the diapause
period may range from 3 to 5 months among different species and geographies. The
lifespan ofmosquitoes is very short, which varieswith different species and is averaged
at around 2–4 weeks (Silver 2007). Thus, it is reasonable to assume that the dimen-
sionless parameters (divided by 1year), the developmental duration and the period for
diapause, satisfy assumption (H2).
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 M

birth rate : b(M)

death rate : μ
M

 M

Fig. 3 A schematic illustration of the birth rate function that satisfies assumption (H1)

3.1 The well-posedness

Based on the variation of constant formulae, system (3) can be written as the following
equivalent integral form:

M(t) = e−μM (t−n)

[∫ t

n
b(M(s − τ))e−μI τ eμM (s−n)ds + M(n)

]
,

t ∈ [n, n + 1 − τ − τd ],
(4a)

M(t) = e−dM (t−(n+1−τ−τd ))M(n + 1 − τ − τd),

t ∈ [n + 1 − τ − τd , n + 1 − τ ], (4b)

M(t) =e−μM (t−(n+1−τ))
[ ∫ t

n+1−τ

b(M(s − (τ + τd)))e
−μI τ−dI τd eμM (s−(n+1−τ))ds

+ M(n + 1 − τ)
]
, t ∈ [n + 1 − τ, n + 1].

(4c)

Define Y = C([−τ, 0],R+) with the usual supremum norm. For a function u(·) ∈
C([−τ,∞),R+), define ut ∈ Y by ut (θ) = u(t + θ), ∀θ ∈ [−τ, 0], t ≥ 0. In what
follows, the well-posedness of system (3) is established.

Theorem 1 Suppose that assumptions (H1) and (H2) hold, then for any φ ∈ Y , system
(3) admits a unique non-negative and bounded solution u(t, φ)with u0 = φ on [0,∞).

Proof Denote f by

f (t, M(t), M(t − τ)) = b(M(t − τ))e−μI τ − μMM(t).

For any given ρ ≥ 1 and any φ ∈ Y satisfying 0 ≤ φ ≤ ρM , where M is defined in
the assumption (H1), system (3) becomes the initial-value problem for the following
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ODE on t ∈ [0, τ ]:
dM(t)

dt
= f (t, M(t), φ(t − τ)), M(0) = φ(0), ∀ t ∈ [0, τ ].

It follows from assumption (H1) that f is Lipschitz in M , then system (3) admits
a unique solution on its maximal interval of existence. It can be easily checked by
differentiation that (4a) with n = 0 satisfies system (3) on [0, τ ]. Moreover, it follows
from the assumption (H1) that the following holds for t ∈ [0, τ ]:

u(t) = e−μMt
[∫ t

0
b(u(s − τ))e−μI τ eμMsds + u(0)

]

= e−μMt
[∫ t

0
b(φ(s − τ))e−μI τ eμMsds + φ(0)

]

≤ e−μMt
[∫ t

0
b(ρM)e−μI τ eμMsds + ρM

]

= b(ρM)e−μI τ

μM
e−μMt (eμMt − 1) + e−μMtρM

≤ ρM(1 − e−μMt ) + e−μMtρM = ρM .

Hence, system (3) admits a unique solutionu(t) ∈ [0, ρM] for t ∈ [0, τ ]. Furthermore,
the existence of a unique solution u(t, φ) can be extended to [0, 1−τ −τd ] by a similar
approach.

For t ∈ [1− τ − τd , 1− τ ], the solution of system (3) can be determined uniquely
by the initial-value problem for the following linear ODE:

dM(t)

dt
= −dMM(t), M(1 − τ − τd) = u(1 − τ − τd), ∀ t ∈ [1 − τ − τd , 1 − τ ],

which implies that (4b) with n = 0 is the solution of system (3) on [1− τ − τd , 1− τ ].
In view of (4b) with n = 0, we have the solution 0 ≤ u(t) ≤ ρM . It then follows that
system (3) has a unique solution u(t, φ) on [0, 1 − τ ].

Denote g by

g(t, M(t), M(t − (τ + τd))) = b(M(t − (τ + τd)))e
−μI τ−dI τd − μMM(t).

For t ∈ [1− τ, 1], the solution of system (3) must satisfy the initial-value problem
for the following ODE:

dM(t)

dt
= g(t, M(t), M(t − (τ + τd))), M(1 − τ) = u(1 − τ), ∀ t ∈ [1 − τ, 1].

According to assumption (H1), g is also Lipschitz in M . It then follows that there is
a unique solution on its maximal interval of existence for system (3). It is easy to verify
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by differentiation that (4c) with n = 0 satisfies system (3) on [1− τ, 1]. Furthermore,
based on assumption (H1), for all t ∈ [1 − τ, 1], we have

u(t) =e−μM (t−(1−τ))

[∫ t

1−τ

b(u(s − (τ+τd)))e
−μI τ−dI τd eμM (s−(1−τ))ds+u(1 − τ)

]

≤e−μM (t−(1−τ))

[∫ t

1−τ

b(ρM)e−μI τ eμM (s−(1−τ))ds + ρM

]

=b(ρM)e−μI τ

μM
e−μM (t−(1−τ))(eμM (t−(1−τ)) − 1) + e−μM (t−(1−τ))ρM

≤ρM(1 − e−μM (t−(1−τ))) + e−μM (t−(1−τ))ρM = ρM .

Thus, system (3) admits a unique solution u(t, φ) on [0, 1].
Next, we can show the existence of a unique solution 0 ≤ u(t, φ) ≤ ρM with

0 ≤ u0 = φ ≤ ρM for all t ≥ 0 by applying the method of steps on each interval
[n, n + 1]. Since ρ can be chosen sufficiently large, it then follows that system (3)
admits a unique solution u(t, φ) with u0 = φ ∈ Y on [0,∞). 	


Define Φt as the solution semiflow for system (3) on Y , that is, Φt (φ)(θ) =
ut (θ, φ) = u(t + θ, φ) for t ≥ 0, θ ∈ [−τ, 0], where u(t, φ) is the unique solu-
tion of system (3) on [0,∞) with u0 = φ ∈ Y . The following lemma implies that Φt

is a 1-periodic semiflow on Y .

Lemma 1 Φt is a 1-periodic map on Y , that is, (i) Φ0 = I , where I is the identity
map; (i i) Φt+1 = Φt ◦ Φ1, ∀t ≥ 0; (i i i) Φt (φ) is continuous in (t, φ) ∈ [0,∞) × Y .

Proof It is obvious that property (i) is true. Property (iii) can be easily verified by
applying a standard argument (Martin 1976, Theorem 8.5.2). Now, we show that
property (ii) holds. For any φ ∈ Y and all t ≥ 0, let v(t) = u(t + 1, φ) and w(t) =
u(t, u1(φ)) with v(θ) = u(θ + 1, φ) = w(θ) for θ ∈ [−τ, 0]. For all t ∈ [n, n + 1 −
τ − τd ] with n ∈ N, we have

dv(t)

dt
= du(t + 1, φ)

dt
= b(u(t + 1 − τ, φ))e−μI τ − μMu(t + 1, φ)

= b(v(t − τ))e−μI τ − μMv(t)

and for all t ∈ [n + 1 − τ − τd , n + 1 − τ ]:
dv(t)

dt
= − dMu(t + 1, φ) = −dMv(t)

and for all t ∈ [n + 1 − τ, n + 1]:
dv(t)

dt
= du(t + 1, φ)

dt
= b(u(t + 1 − (τ + τd), φ))e−μI τ−dI τd − μMu(t + 1, φ)

= b(v(t − (τ + τd)))e
−μI τ−dI τd − μMv(t).
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This indicates that v(t) is a solution of system (3) with the same initial condition
as another solution w(t). The uniqueness of the solution indicates that v(t) = u(t +
1, φ) = w(t) = u(t, u1(φ)), ∀t ≥ 0. Thus, ut ◦ u1(φ) = ut+1(φ), which further
implies that Φt+1 = Φt ◦ Φ1, ∀t ≥ 0. 	


3.2 Threshold dynamics

In order to investigate the global dynamics of system (3), we employ the theory of
strongly monotone and sub-homogeneous semiflows [see (Zhao 2017, Sect. 2.3)]. The
next two lemmas show that the periodic semiflow Φt is eventually strongly monotone
and strictly subhomogeneous on Y .

Lemma 2 For any φ and ψ in Y with φ > ψ (that is, φ(s) ≥ ψ(s) for s ∈ [−τ, 0]
with φ �≡ ψ), there are two solutions u(t, φ) and v(t, ψ) of system (3) with u0 = φ

and v0 = ψ , respectively, that satisfy u(t, φ) > v(t, ψ) for all t > τ + τd , and hence
Φt (φ) � Φt (ψ) on Y for all t > 2(τ + τd).

Proof For any φ and ψ in Y with φ > ψ , it can be easily shown that u(t) ≥ v(t) for
all t ≥ 0 by applying the comparison argument (Smith 2010, Theorem 5.1.1) on each
interval [n, n + 1] for all n ∈ N. In view of (4a) with n = 0 and assumption (H1), we
have

u(τ ) = e−μM τ

[∫ τ

0
b(u(s − τ))e−μI τ eμMsds + u(0)

]

= e−μM τ

[∫ τ

0
b(φ(s − τ))e−μI τ eμMsds + φ(0)

]

> e−μM τ

[∫ τ

0
b(ψ(s − τ))e−μI τ eμMsds + ψ(0)

]

= v(τ).

By the continuity of solutions, there must exist some ξ ∈ (τ, 1 − τ − τd ] such
that u(t) > v(t) for all t ∈ (τ, ξ). This claim can be further extended to all t ∈
(τ, 1− τ − τd ]. If we assume the contrary, then there exists a t0 ∈ (τ, 1− τ − τd ] such
that u(t) > v(t) for all τ < t < t0 and u(t0) = v(t0). However,

u(t0) = e−μM (t0−τ)

[∫ t0

τ

b(u(s − τ))e−μI τ eμM (s−τ)ds + u(τ )

]

≥ e−μM (t0−τ)

[∫ t0

τ

b(v(s − τ))e−μI τ eμM (s−τ)ds + u(τ )

]

> e−μM (t0−τ)

[∫ t0

τ

b(v(s − τ))e−μI τ eμM (s−τ)ds + v(τ)

]

= v(t0),
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which is a contradiction. For t ∈ [1 − τ − τd , 1 − τ ], it follows from (4b) that

u(t) =e−dM (t−(1−τ−τd ))u(1 − τ − τd) > e−dM (t−(1−τ−τd ))v(1 − τ − τd) = v(t).

For t ∈ [1 − τ, 1], based on assumption (H1) and (4c), we have

u(t) =e−μM (t−(1−τ))

[∫ t

1−τ
b(u(s − (τ + τd )))e−μI τ−dI τd eμM (s−(1−τ))ds + u(1 − τ)

]

≥e−μM (t−(1−τ))

[∫ t

1−τ
b(v(s − (τ + τd )))e−μI τ−dI τd eμM (s−(1−τ))ds + u(1 − τ)

]

>e−μM (t−(1−τ))

[∫ t

1−τ
b(v(s − (τ + τd )))e−μI τ−dI τd eμM (s−(1−τ))ds + v(1 − τ)

]
.

Subsequently, we can show that u(t) > v(t) for all t > τ by applying the method
of induction on each interval [n, n + 1] with 1 ≤ n ∈ N. In particular, s − τ > 0
and s − (τ + τd) > 0 hold when s > τ + τd , then we have u(s − τ) > v(s − τ)

and u(s − (τ + τd)) > v(s − (τ + τd)) for s > τ + τd . Thus, it easily follows that
u(t) > v(t) for all t > τ + τd . Therefore, the solution map Φt is strongly monotone
on Y when t > 2(τ + τd). 	


We need to make additional assumptions on the birth rate function before investi-
gating the subhomogeneity of Φt .

(H3) The birth rate b(M) can be expressed as b(M) = B(M)M , where B(M) is
the per-capita birth rate and is strictly decreasing with respect to M(> 0).

Lemma 3 For any φ � 0 in Y and any λ ∈ (0, 1), we have u(t, λφ) > λu(t, φ)

for all t > τ + τd , and therefore, Φn
1 (λφ) � λΦn

1 (φ) in Y for any integer n with
n > 2(τ + τd).

Proof Let u(t, φ) be the unique solution of system (3) with u0 = φ � 0 in Y . Denote
w(t) = u(t, λφ) and v(t) = λu(t, φ), then for all θ ∈ [−τ, 0],w(θ) = λφ(θ) = v(θ).
Since φ � 0, the proof of Theorem 1 implies that v(t) > 0 and w(t) > 0 hold for all
t ≥ 0. In consideration of assumption (H3), it follows that v(t) satisfies the following
system of differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv(t)

dt
= B

(1
λ

v(t − τ)
)
v(t − τ)e−μI τ − μMv(t), t ∈ [n, n + 1 − τ − τd),

dv(t)

dt
= −dMv(t), t ∈ [n + 1 − τ − τd , n + 1 − τ),

dv(t)

dt
= B

(1
λ

v(t − (τ + τd))
)
v(t − (τ + τd))e

−μI τ−dI τd − μMv(t),

t ∈ [n + 1 − τ, n + 1),
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where n ∈ N. Then, the corresponding equivalent integral forms are shown as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(t) = e−μM (t−n)

[∫ t

n
B

( 1
λ

v(s − τ)
)
v(s − τ)e−μI τ eμM (s−n)ds + v(n)

]
,

t ∈ [n, n + 1 − τ − τd ],
v(t) = e−dM (t−(n+1−τ−τd ))v(n + 1 − τ − τd), t ∈ [n + 1 − τ − τd , n + 1 − τ ],

v(t) = e−μM (t−(n+1−τ))

[ ∫ t

n+1−τ

B
( 1

λ
v(s − (τ + τd))

)
v(s − (τ + τd))

× e−μI τ−dI τd eμM (s−(n+1−τ))ds + v(n + 1 − τ)

]
, t ∈ [n + 1 − τ, n + 1].

(5)

For all t ∈ (0, τ ], it follows from assumption (H3) and the first equation of (5) that

v(t) = e−μMt
[∫ t

0
B

(1
λ

v(s − τ)
)
v(s − τ)e−μI τ eμMsds + v(0)

]

= e−μMt
[∫ t

0
B(φ(s − τ))w(s − τ)e−μI τ eμMsds + w(0)

]

< e−μMt
[∫ t

0
B(λφ(s − τ))w(s − τ)e−μI τ eμMsds + w(0)

]

= e−μMt
[∫ t

0
B(w(s − τ))w(s − τ)e−μI τ eμMsds + w(0)

]

= w(t).

Then, there must exist some ξ1 ∈ (τ, 1− τ − τd ] such that 0 < v(t) < w(t) for all
t ∈ (τ, ξ1) due to the continuity of the solution. This claim can be further extended
to all t ∈ (τ, 1 − τ − τd ]. If not, then there exists a t1 ∈ (τ, 1 − τ − τd ] such that
v(t) < w(t) for all τ < t < t1 and v(t1) = w(t1). However,

w(t1) = e−μM (t1−τ)

[∫ t1

τ

b(w(s − τ))e−μI τ eμM (s−τ)ds + w(τ)

]

> e−μM (t1−τ)

[∫ t1

τ

b(v(s − τ))e−μI τ eμM (s−τ)ds + v(τ)

]

= e−μM (t1−τ)

[∫ t1

τ

B(v(s − τ))v(s − τ)e−μI τ eμM (s−τ)ds + v(τ)

]

> e−μM (t1−τ)

[∫ t1

τ

B
(1
λ

v(s − τ)
)
v(s − τ)e−μI τ eμM (s−τ)ds + v(τ)

]

= v(t1),

which is a contradiction. For all t ∈ [1−τ −τd , 1−τ ], in view of the second equation
of (5), we have

v(t) = e−dM (t−(1−τ−τd ))v(1 − τ − τd) < e−dM (t−(1−τ−τd ))w(1 − τ − τd) = w(t).
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For all t ∈ [1 − τ, 1], assumption (H3) and the third equation of (5) imply that

w(t) = e−μM (t−(1−τ))

[ ∫ t

1−τ

b(w(s − (τ + τd)))e
−μI τ−dI τd eμM (s−(1−τ))ds

+ w(1 − τ)

]

> e−μM (t−(1−τ))

[ ∫ t

1−τ

b(v(s − (τ + τd)))e
−μI τ−dI τd eμM (s−(1−τ))ds

+ v(1 − τ)

]

= e−μM (t−(1−τ))

[ ∫ t

1−τ

B(v(s − (τ + τd)))v(s − (τ + τd))

× e−μI τ−dI τd eμM (s−(1−τ))ds + v(1 − τ)

]

> e−μM (t−(1−τ))

[ ∫ t

1−τ

B
(1
λ

v(s − (τ + τd))
)
v(s − (τ + τd))e

−μI τ−dI τd

× eμM (s−(1−τ))ds + v(1 − τ)

]

= v(t).

Similarly on each interval (n, n+1], we have 0 < v(t) < w(t) for all t ∈ (n, n+1]
with n(≥ 0) ∈ N. Note that s − τ > 0 and s − (τ + τd) > 0 hold when s > τ + τd ,
which imply that w(s − τ) > v(s − τ) and w(s − (τ + τd)) > v(s − (τ + τd)) for
s > τ +τd . Thus, we havew(t) > v(t) for any t > τ +τd , that is, u(t, λφ) > λu(t, φ)

for all t > τ + τd , and hence, Φn
1 (λφ) = Φn(λφ) � λΦn(φ) = λΦn

1 (φ) holds for all
integer n satisfying n > 2(τ + τd). 	


Motivated by the theory of threshold dynamics in Zhao (2017) [or those in Zhao
and Jing (1996)] for strongly monotone and strictly sub-homogeneous semiflows,
we investigate the global dynamics of system (3) in the rest of this section. Based
on assumption (H1), it is easy to verify that system (3) has a population extinction
equilibrium 0. Then, the corresponding linearised system is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dM(t)

dt
= b′(0)e−μI τ M(t − τ) − μMM(t), t ∈ [n, n + 1 − τ − τd ],

dM(t)

dt
= −dMM(t), t ∈ [n + 1 − τ − τd , n + 1 − τ ],

dM(t)

dt
= b′(0)e−μI τ−dI τd M(t − (τ + τd)) − μMM(t), t ∈ [n + 1 − τ, n + 1],

(6)

where n ∈ N. For any given t ≥ 0, let P(t) be the solution map of the linear system
(6) on Y . Then, P(1) is the Poincaré map associated with system (6) with its spectral
radius denoted as R.
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We now prove the main result of this section, that is, the global stability of system
(3) in terms ofR.

Theorem 2 The following statements hold for system (3):

(i) IfR ≤ 1, then 0 is globally asymptotically stable in Y .
(ii) IfR > 1, then there exists a unique positive 1-periodic solution M∗(t), which

is globally asymptotically stable in Y \ {0}.
Proof For a fixed integer n1 satisfying n1 > 2(τ + τd), it follows from Lemma 1
that Φt can be an n1-periodic semiflow on Y . In view of Lemmas 2 and 3 , Φn1 is
a strongly monotone and strictly subhomogeneous map on Y . Let DΦn1(0) be the
Fréchet derivative of Φn1 at 0 if it exists, and denote the spectral radius of this linear
operator DΦn1(0) as r(DΦn1(0)). In light of Theorem 2.3.4 in Zhao (2017), we have:

(i) If r(DΦn1(0)) ≤ 1, then 0 is globally asymptotically stable for system (3) in Y .
(ii) If r(DΦn1(0)) > 1, then system (3) admits a unique positive n1-periodic solution

M∗(t), which is globally asymptotically stable in Y \ {0}.
Since r(DΦn1(0)) = r(P(n1)) = (r(P(1)))n1 = Rn1 , it then follows that the above
statements remain valid when the threshold value is R. Moreover, it is necessary to
show thatM∗(t) is 1-periodic. Letφ∗ = M∗(0) inY \{0}, thenwe haveΦn1(φ

∗) = φ∗.
Since

Φ
n1
1 (Φ1(φ

∗)) = Φ1(Φ
n1
1 (φ∗)) = Φ1(Φn1(φ

∗)) = Φ1(φ
∗),

the uniqueness of the positive fixed point of Φ
n1
1 = Φn1 implies that Φ1(φ

∗) = φ∗.
Thus, M∗(t) is a positive period-1 solution for system (3) with M∗(0) = φ∗. 	


4 Numerical simulations

In this section, some numerical simulations are carried out to show how the mosquito
population fluctuates with the diapause-related parameters. In this paper, we focus on
simulating the population dynamics of two temperate mosquito species. One is Aedes
albopictus, only the immature individuals (restricted in egg stage) ofwhich can survive
by entering diapausewith the advent of unfavourable seasons (Vinogradova 2007). The
other is Culex pipiens, only the adults of which undergo diapause to maintain viability
in response to harsh environmental conditions (Vinogradova 2007). The seasonal pat-
terns of these twomosquito species with different diapausing stages will be simulated.
The sensitivity analysis is then performed to exhibit how diapause-related parameters
affect the population dynamics. Some implications for controlling mosquitoes can be
obtained from the further check of the integrated effects of the diapausing and natural
death rates.

Parameter values are adopted from existing biological literatures. In virtue of the
habitats for Aedes albopictus and Culex pipiens are distributed in similar latitudes
(Marini et al. 2017), there may be subtle differences between these two species in the
developmental rates during the normal growth and diapause periods, and therefore,
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related parameters for these two species are set at the same values. Due to the lack of
diapause-related parameters, some reasonable assumptions are made based on current
understanding of mosquito diapause. Since the two species are mostly distributed in
temperate zone, diapause serves as an overwintering strategy. As such, the duration
of diapause period particularly depends on the length of winter season, which is fixed
as 3 months for both immature and adult diapause cases. During the diapause period,
the mortality rates of immatures and adults rely on their diapausing ability. For dia-
pausing immatures (adults), we presume that the mortality rate during diapause period
is slightly larger than that in normal growth duration even though their resistance to
harsh environmental conditions is enhanced (Hanson and Craig 1994; Rinehart et al.
2006). The mortality rate for non-diapausing mosquitoes is assumed as ten-fold of the
death rate during the normal developmental period. In consideration of the density-
dependence in mosquito reproduction, the well-known Beverton-Holt function may
be a good choice for the birth rate function, which is widely applied in modelling the
recruitment of fishes (Beverton and Holt 2012) and insects (Lakovic et al. 2015). In
this paper, the birth rate function is constructed as a special case of Beverton-Holt
function, that is, b(M) = pM/(q + Mr ), which only depends on the adult population
M with the maximum recruitment rate p = 120 (month−1), the maximum capac-
ity related parameter q = 5 and the dimensionless parameter r = 0.5. The detailed
descriptions of parameters are provided in Table 1.

4.1 Seasonal population patterns

We first check the seasonality of the population abundance for Aedes albopictus and
Culex pipiens with different stages entering diapause respectively. For each species,
the population dynamics of immatures and adults are simulated on the unified model
(U) by adjusting the diapause-related death rates dI and dM in Table 1. Moreover, we
plot the curves of the periodic solutions to the other two models (A) and (I) (illustrated
as dotted lines in Fig. 4a, b) since further check is needed to verify whether our
unified model (U) can characterise the dynamics of them. The curves of the periodic
solutions to the unified model (depicted as dashed lines in Fig. 4a, b) overlap with
those simulated by the other two models, which validate that our unified model (U)
is reasonable to characterise the dynamics of population experiencing immature and
mature diapause respectively. In what follows, all simulations are carried out on the
unified model (U).

Figure 4 shows that the population dynamics of Aedes albopictus and Culex pipi-
ens eventually stabilise at seasonal patterns, that is, fluctuating periodically between
maximum and minimum values. The mosquito abundance bears a dramatic increase
and reaches the peak at the end of the normal growth period, then experiences a sharp
decline when diapause period begins. The subtle differences in post-diapause period
between these two mosquito species begin to emerge when we zoom in on the annual
population pattern (Fig. 4d, c). The numbers of both immature and adult drop substan-
tially in the diapause period. Unlike the immatures, the minimum adult Culex pipiens
population size appears at the end of post-diapause period as the decreasing trend
in the diapause period is still maintained until the end of the post-diapause period

123



Modelling diapause in mosquito population growth 2277

Table 1 Parameter values of the model for mosquito population dynamics

Parameter Definition Range Value References

τ Developmental
duration for
immature
mosquitoes
(month)

0.4–1 0.5 Silver (2007)

τd Diapause period
for immature
(mature)
mosquitoes
(month)

2.5–5 3 Denlinger and
Armbruster
(2014)

μI Mortality rate for
immature
mosquitoes
during normal
growth period
(month−1)

0.3–1.8 0.6 Cruz-Pacheco
et al. (2005);
Daszak et al.
(2000); Pawelek
et al. (2014)

μM Mortality rate for
mature
mosquitoes
during normal
growth period
(month−1)

0.6–2.1 0.7 Cruz-Pacheco
et al. (2005);
Daszak et al.
(2000); Pawelek
et al. (2014)

dI Mortality rate for
immature
mosquitoes
during diapause
period
(month−1)

≥ 0.8 Diapause: 0.8 Otherwise: 6 Assumed

dM Mortality rate for
mature
mosquitoes
during diapause
period
(month−1)

≥ 0.9 Diapause: 0.9 Otherwise: 7 Assumed

(Fig. 4c). For Aedes albopictus, the population sizes of immature and adult Aedes
albopictus both undergo similar decline. However, different from Culex pipiens, the
numbers of Aedes immatures and adults both bounce back immediately after the ter-
mination of diapause (Fig. 4d). Different diapausing strategies contribute to the subtle
difference between these two species. For Culex pipiens, no immature individuals
surviving at the end of the diapause period leading to zero maturation rate during the
post-diapause period, which results in further decline in the number of adults. After
one developmental duration (the post-diapause period), the number of adults starts to
increase as the new-born immatures attain maturity and develop into adults. However,
for Aedes albopictus, immatures survive through diapause. At the end of the diapause
period, some immatures born τ +τd time units earlier survive and develop into adults,
leading to the increased number of adults during the post-diapause period. Owing to
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(c) Adult diapause
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(d) Immature diapause

Fig. 4 Simulated mosquito population abundance. a Population dynamics for Culex pipiens: immature
population (shown as fine red lines) and adult population (bold blue lines), simulated by systems (A) (shown
as dotted lines) and (U) (dashed lines). Here, dI = 6, dM = 0.9.bPopulation dynamics forAedes albopictus
population dynamics: immature population (shown as fine red lines) and adult population (bold blue lines),
simulated by systems (I) (shown as dotted lines) and (U) (dashed lines). Here, dI = 0.8, dM = 7. c Culex
pipiens population dynamics in one period with adult diapause. d Aedes albopictus population dynamics
in one period with immature diapause. T1, T2 and T3 represent the durations of the normal growth period,
diapause period and post-diapause period respectively. The values of all other parameters are following
Table 1 (color figure online)

these newly matured adults which can give birth, the number of immatures can resume
growing after the diapause period ends.

The global stability of the periodic solutions can be demonstrated intuitively by
two phase portraits of systems with respect to immature and adult diapause cases.
The phase portraits sketched in Fig. 5 show similar qualitative features. All solutions
with different initial conditions converge towards a stable positive periodic solution,
which can be seen as the solid closed curve in Fig. 5. The stable periodic orbit in
Fig. 5b passing the bottom boundary of the axis related to adult population size implies
that adult Aedes albopictus die out while immatures enter diapause, whereas, for
Culex pipiens experiencing adult diapause, the periodic orbit may reach the leftmost
boundary of the axis referring to the extinction of immatures (shown in Fig. 5a).
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Fig. 5 Phase portraits for systems with respect to the adult and immature diapause case respectively. a In
the case of adult Culex pipiens diapause, phase-portraits of solutions with three different positive initial
conditions. b In this case, dI = 0.8, dM = 7. In the case of immature Aedes albopictus diapause, phase-
portraits of solutions with three different positive initial conditions. Here, dI = 6, dM = 0.9. The values of
all other parameters are following Table 1. For these two cases, all solutions with different initial conditions
converge to a positive periodic solution (shown as the solid closed curve)

These simulations are as expected and further demonstrate that themodelling frame-
work is valid to capture the dynamical behaviour of diapausing species. In the next
subsection, sensitivity analysis reveals how the mosquito population dynamics change
due to the variations of specific parameters related to diapause.

4.2 Sensitivity analysis

The survivability of mosquitoes under adverse environmental conditions is believed
to be the vital factor preserving the population size and maintaining the succeeding
normal development (Rinehart et al. 2006). The sensitivity analysismainly investigates
the impacts of the mortality rates during diapause period and the length of diapause
duration, which are strongly relevant to the diapausing survivability.

4.2.1 Effects of the diapausing death rates

Themaximum population abundance as one index characterisingmosquito population
abundance is mainly concerned to evaluate the effects of the diapausing death rates
on population growth. For the adult diapause case, all immature Culex pipiens die at
the end of the diapause period while some adults can survive through diapause. In this
case, the survivability of diapausing adults other than immatures during the diapause
period is crucial for subsequent population growth. The variations of maximum adult
and immature Culex pipiens population sizes are examined respectively by varying
the adult diapausing death rate dM and fixing the immatures dying at a non-diapausing
rate, i.e. dI = 6. However, in the case of immatureAedes albopictus entering diapause,
the ability of the immatures surviving though diapause becomes the major concern.
Consequently, we vary the immature diapausing rate dI while fix the adult death rate
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Fig. 6 Sensitivity analysis of the diapause-related parameters. a Maximum Culex pipiens population size
varies with changing dM . b Maximum Aedes albopictus population size varies with changing dI . c Pop-
ulation dynamics for Culex pipiens in one period when τd = 3 (shown as solid lines), τd = 4 (shown as
dotted lines) and τd = 5 (shown as dashed lines): adult population (shown as bold lines) and immature
population (shown as fine lines). Here, dI = 6 and dM = 0.9. d Population dynamics for Aedes albopitus
in one period when τd = 3 (shown as solid lines), τd = 4 (shown as dotted lines) and τd = 5 (shown as
dashed lines): adult population (shown as bold lines) and immature population (shown as fine lines). Here,
dI = 0.8 and dM = 7

during the diapause period as dM = 7 to investigate how the maximum adult and
immature Aedes albopictus population sizes change.

The consequences of varying diapausingmortality rates dM and dI for two diapause
cases are illustrated in Fig. 6a, b, the curves in which clearly show that increasing the
survivability of diapausing mosquitoes may benefit the succeeding normal growth,
which is embodied in the larger peak adult and immature population abundances
with lower diapausing mortality rate. It is worth noting that the decline in the peak
population abundance for both cases (as shown in Fig. 6a, b) becomes inconspicuous
when the diapausing death rate is beyond some threshold value. The peak population
sizes for both immatures and adults tend to keep unchanged at a positive value rather
than zero even if the death rate becomes very large, which indicates that the extremely
low survivability during the diapause period is still hard to drive population extinction.
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Once the environment conditions become suitable for development, the mosquito
population will resume growing rapidly as long as there are few mosquitoes surviving
through the environmentally harsh period. On account of the short developmental
durations for mosquitoes, the normal growth period is long enough for mosquitoes to
rebound and new outbreaks of mosquitoes will emerge again.

4.2.2 Effects of the diapause duration

In addition to the diapausing death rates, the length of the diapause duration τd also
plays an important role on population growth. Global climate change is believed to
affect the timing of critical diapause periods (Ragland et al. 2010). For each diapause
case, we examine how the adult and immature population dynamics fluctuate with
changing τd . The curves in Fig. 6c, d describe the annual population patterns during
1year period with three different values of τd , which clearly show that the lengthened
diapause period lowers the peak population abundance and brings forward the peak
time of each stage. The possible reason is that longer diapause duration results in
relatively low survivability during diapause period and shortens the normal growth
period for mosquito population to rebound. The results in this subsection further
demonstrates that increase in the survival ability during the diapause period with
shorter diapausing duration will be beneficial to the following normal population
growth.

The above sensitivity analysis indicates that the mosquito population growth can
benefit from the enhanced diapausing survivability. Diapause plays a significant role
in preventing the extinction of the population from harsh environmental conditions.

4.3 Controlling adult mosquito population

It is well-known that all mosquito-borne pathogens such as dengue, West Nile,
Japanese encephalitis, Zika and chikungunya viruses are transmitted by adult
mosquitoes (Smith et al. 2014), controlling or reducing the adult mosquito population
size is an indispensable tool to fight against the transmission of the mosquito-borne
diseases. Based on the sensitivity analysis in previous subsection, the larger decline
in the peak adult population size indicates that reducing the survivability by increas-
ing the diapausing death rate may be an alternative way to lower the peak of adult
population size and prevent the transmission of the infectious diseases. However, for
the sake of controlling efficiency, focusing on killing mosquitoes during the diapause
period alone may not be an effective strategy as it is impossible to wipe out all the
mosquitoes. It would be better to integrate mosquito control measures in the normal
growth period. To verify this conjecture, we perform a series of numerical simulations
to investigate the integrated effects of the natural death rates and the diapausing death
rates on the peak adult population sizes of both species.

The surfaces depict the fluctuations of peak adultCulex pipiens (illustrated in Fig. 7)
and Aedes albopictus (shown in Fig. 8) population sizes respectively. For each species,
the peak shows apparent decreasing trend when the normal and diapausing death rates
are increasing respectively. In accordance with the aforementioned results, the peak
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Fig. 7 The surfaces (a, c, e) and contour plots (b, d, f) depicting the variations of peak adult Culex pipiens
population size with varying death rates. Here, dI = 6, the values of all other parameters are following
Table 1. a, b The peak varies with changing μI and dM . c, d The peak varies with changing μM and dM .
e, f The peak varies with changing μI and μM . In this case, we fix dM = 0.9

adultCulex pipiens drops substantially when dM is less than 5 and remains unchanged
when the diapausing death rate is greater than 5 (see Fig. 7b, d). The narrower range of
variations in the natural death rate leads to the same decline in the peaks of both species
(see contour plots in Figs. 7b, d, 8b, d), which indicates that reducing the immature
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Fig. 8 The surfaces (a, c, e) and contour maps (b, d, f) describing the fluctuations of peak adult Aedes
albopictus population size with varying death rates. Here, dM = 7, the values of all other parameters are
following Table 1. a, b The peak varies with changing μI and dI . c, d The peak varies with changing μM
and dI . e, f The peak varies with changing μI and μM . In this case, we fix dI = 0.8

or adult death rate during the normal growth period is more effective than reducing
the diapausing death rate to control the peaks of these two species. The contour plots
in Figs. 7f and 8f suggest that increasing the adult death rate other than immature
death rate during the normal growth period is relatively more efficient in reducing the
adult outbreak size for both species. Compared with the effects of diapausing adult
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death rate on the peak of adult Culex pipiens, the diapausing immature death rate dI
has relatively larger effects on the peak of adult Aedes albopictus (see Figs. 7 and 8).
Even though increasing the mortality rate during the diapause period will lower the
peak of adult population, the more efficient way to control the adult outbreak size is
to increase the mortality rate during the normal developmental period, particularly the
adult natural death rate.

5 Discussion

Diapause, a survival strategy in response to the adverse environment conditions, is
believed to play significant roles in preserving population size andmaintaining the pop-
ulation growth. The effects of this survival mechanism on species persistence remain
unclear so far. In this paper, we attempted to explore this question by constructing
mathematically tractable models, where diapause period is taken as an independent
dynamic process, during which the population growth is completely different from
that in the normal developmental and post-diapause periods. Consequently, the annual
growth period is divided into three different intervals, with respective sets of equations
in each interval. To explicitly describe population growth with different diapausing
stages, we constructed three different models motivated by mosquitoes: model (A)
with consideration of the adult diapause case; model (I) taking into account the imma-
ture diapause case; and the unified model (U) characterising both diapausing cases,
respectively. The well-posedness of the solutions to unified model (U) was investi-
gated by the decoupled adult system. Rigorous analysis on population dynamics was
performed. Moreover, we explored the threshold dynamics involving the global stabil-
ity in terms of an index R dependent on model parameters by applying the theory of
monotone dynamical systems. However, we should mention that it would be interest-
ing to use a more biologically meaningful index, the net reproduction numberR0, as
the threshold index, which may be theoretically introduced by using the idea in Liang
et al. (2018) and Zhao (2017). Further sensitivity analysis on R0 can provide useful
information in terms of mosquito control. We leave this direction for a further study.

In addition to the theoretical analysis, numerical simulations were carried out on
the unified model (U) to simulate the population dynamics of two temperate mosquito
species respectively, that is, Aedes albopictus experiencing immature diapause and
Culex pipiens undergoing adult diapause. The simulated mosquito population abun-
dances of these two species from the unifiedmodel and the other twomodels supported
our expectations that the unified model (U) remains valid to describe the dynamics of
diverse mosquito populations with different diapausing stages. The sensitivity anal-
ysis was then performed to check how the diapause-related parameters influence the
population dynamics of these two mosquito species. The fluctuations of the maxi-
mum population size as one index characterising mosquito population dynamics were
mainly concerned. Our results indicated that increasing the survivability during dia-
pause period by either reducing the diapausing death rate or shortening the length of
diapause period may benefit the following normal growth, which is embodied in the
larger outbreak size with a lower diapausingmortality rate and a shorter diapause dura-
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tion. These sensitivity results further demonstrated that mosquito diapause is crucial
for the sake of population persistence.

Adult mosquitoes as the main agent of many mosquito-borne diseases pose a big
threat to human health. Controlling the adult mosquito population size is believed to
be an effective way to prevent the mosquito-borne disease transmission. Hence, we
further investigated the integrated effects of the diapausing and natural death rates on
the peak adult population sizes for these two species. These results indicated that the
more effective approach to reduce the outbreak size of these two species is to increase
the death rate during the normal growth period especially that for adults, rather than
the diapausing death rate. As an assistant intervention, killing mosquitoes during the
diapause period is feasible to lower the peak and average adult population sizes, which
can prevent the massive outbreaks of mosquitoes to some extent.

Based on our unified model, future stochastic simulations with true climatic data
may contribute to understanding the crucial ecological roles that diapause plays in
response to spatiotemporal climatic changes (Bradshaw 1976). Beyond the aspect of
controlling mosquitoes, our modelling framework may shed light on the mechanisms
for the differences in temporal or geographic distributions of differentmosquito species
due to diapause-related variations in seasonal abundance, which will further help
us predict the spread of mosquito-borne diseases (Bradshaw and Holzapfel 1990;
Denlinger and Armbruster 2014). We leave this for future consideration.

Although the density-dependent self-regulation is accounted by assuming that the
per-capita birth rate is a decreasing function of the adult density, the intra-specific
competition among immatures is ignored during the normal population growth in
the current study. In mosquitoes, intra-specific competition often occurs during the
immature stage (Tsurim et al. 2013). One feasible way to incorporate the immature
intra-specific competition is to change the death term in system (2) into immature
density dependent such as μ(a) + g(I (t)), where g(I (t)) represents the additional
deaths due to intra-specific competition among immatures (Fang et al. 2016). Then,
the resulted model will contain a term involving the survivability due to intra-specific
competition, i.e. exp(− ∫ τ

0 g(I (t−τ +r))dr), which brings challenges to the theoreti-
cal analysis of the model. In this case, it is impossible to decouple the adult population
size M(t) from the whole system, which makes the model much more difficult to
analyse.

Moreover, it would be more reasonable to incorporate time periodic death rate,
μ(a, t), lengths of maturation period, τ(t), and the diapause period, τd(t), which
are strongly related to the seasonal variations of environmental conditions such as
temperature, humidity and photoperiod. Periodic maturation delay has recently been
investigated in several studies in population dynamics (see, e.g., Beck-Johnson et al.
(2013); Lou and Zhao (2017); Wang et al. (2017, 2018); Liu et al. (2017); Wu et al.
(2015) and reference therein). Furthermore, a recent study on diapausing species
growth was proposed in Zhang et al. (2017) by dividing the population into two classes
with two constant delays. Unlike aforementioned studies, the biological assumptions
here give rise to a discontinuous periodic delay, which brings new challenges to the
derivation of the model formulations and the theoretical analysis. Further extensions
of the modeling idea with periodic discontinuous delays are expected in the future
work.
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