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Abstract We present a nonlinear first-order hyperbolic partial differential equation
model to describe age-structured tumor cell populations with proliferating and quies-
cent phases at the avascular stage in vitro. The division rate of the proliferating cells
is assumed to be nonlinear due to the limitation of the nutrient and space. The model
includes a proportion of newborn cells that enter directly the quiescent phase with age
zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The
existence and uniqueness of solutions are established. The local and global stabilities
of the trivial steady state are investigated. The existence and local stability of the pos-
itive steady state are also analyzed. Numerical simulations are performed to verify the
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results and to examine the impacts of parameters on the nonlinear dynamics of the
model.

Keywords Cell cycle · Age-structured model · Proliferating and quiescent stages ·
Steady state · Stability

Mathematics Subject Classification 35L40 · 35B35 · 92C37

1 Introduction

The growth and invasion of tumor cells have drawn great attention ofmany researchers
and have been studied extensively for several decades. Theoretical analysis to tumor
experiments in vivo or in vitro, as one crucial approach to tumor study, is usually
adopted to investigate the in-depth dynamical features at three levels: molecular, cel-
lular and tissue, either separately or comprehensively (Bertalanffy 1957; Laird 1964;
Gyllenberg and Webb 1989; Florian et al. 2005; Ayati et al. 2006; Liu et al. 2012;
Bi et al. 2014). For instance, Florian et al. (2005) established a four-state (first gap
G1, synthesis stage S, second gap G2 and mitosis stage M) cell-cycle model with
explicit G1 phase representation. They analyzed the transfer rates between G0 (quies-
cent phase) and G1 phases from the molecular level. Moreover, they revealed from the
tissue level that perturbations to the transfer rates alter significantly untreated tumor
growth predictions in open-loop situation but does not carry over to closed-loop simu-
lations. Ayati et al. (2006) proposed multi-scale models of cancer tumor invasion with
components at molecular level (diffusion and taxis processes), cellular level (cell age
variable) and tissue level (spatial variable). Themodels andmethods presented inAyati
et al. (2006) provide a template to develop and treat increasingly complex, mechanistic
models of tumor invasion that will be more predictive and less phenomenological.

According to different growth rates and different dispersal circumstances, tumor
development is classified into three distinct stages: avascular, vascular and metastatic.
Tumor cells at the avascular stage grow exponentially due to the fact that all cells are
nourished adequately, but retard to a linear growth phase due to a developing region
of quiescent cells and necrosis in the core (Congar and Ziskin 1983). Following the
linear phase, growth retards ultimately reaching a saturation level atwhich it apparently
ceases (Folkman andHochberg 1973; Carlsson 1977).Ward andKing (1997) proposed
a mathematical model for the growth of avascular tumors and studied in detail the first
two stages of growth, namely the initial (exponential) and the intermediate (linear)
phases. Successively, they extended the model by employing physical mechanisms
which can result in growth saturation and studied the traveling waves and steady
states of the model (Ward and King 1999). Recently, Alzahrani et al. (2014) extended
the Gyllenberg andWebb model (Gyllenberg andWebb 1989) to a three-compartment
formbykeeping trackof the dead cells remaining in the avascular tumor. They analyzed
the variation of the densities of proliferating and quiescent cells with the quiescent
cell death rate and the variation of them with the dead cell removal rate, respectively.
Alzahrani and Kuang (2016) further improved the above model by considering a
resource limitation form. They identified general and explicit expressions of the tumor
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final size, studied the steady states of the tumor and revealed that the tumor size at the
positive steady state is a strictly deceasing function of the dead cell removal rate.

However, once the tumor acquires its own blood system by the process of angiogen-
esis, i.e., entering the vascular stage, it will be well supplied with nutrients, increase
rapidly in size and even invade the surrounding tissues (Folkman and Cotran 1976).
Based on an important assumption that the blood vessels in the tumor would collapse
if the pressure that exerted on the vessels by the tumor cells exceeds a critical value,
Orme and Chaplain (1996) put forward a simple mathematical model to discuss the
growth and invasion of the vascular tumor. They indicated that diffusion only cannot
account for all observed behaviors, and hence, the growth of tumors is accompanied
by the invasion of surrounding tissues. Applying the same hypothesis, Breward et al.
(2004) provided a multi-phase model consisted of the volume fractions of tumor cells,
extracellular material and blood vessels by using conservation of mass andmomentum
equations to describe and analyze the vascular tumor growth. Involving normal cells,
Hubbard and Byrne (2013) presented a four-phase and multi-dimensional continuum
model of vascular tumor growth. They examined the sensitivity of the model to param-
eter changes, captured the geometrically complex tumor boundaries and indicated that
the model supports linear tumor growth rates. For more comprehensive coverage of
the literature describing the mathematical and computational modeling of vascular
tumor growth, we refer to the excellent reviews of Araujo and McElwain (2004) and
Lowengrub et al. (2010).

Additionally, when tumor cells move by direct contacts with new organ sites or
breakaway from the primary tumor through the vasculature to other parts of the body
where, if conditions are favorable, the tumor cells may establish themselves as sec-
ondary tumors and tumor metastases occur (Folkman 2002). Malignant tumor cell
metastasis is fatal. It is very difficult to model these processes and conduct clini-
cal treatment. Hartung et al. (2014) constructed a transport equation model with a
boundary condition for metastatic emissions to describe the metastatic spread and to
estimate the risk of metastasis. Moreover, they compared the model predictions with
experimental results from orthotopic breast tumor xenograft experiments conducted
in Nod/Scid γ mice. Pinho et al. (2002) proposed a model of cancer treatment by
chemotherapy where metastasis of the cancer cells occurs and analyzed the dynamical
behaviors such as the existence and stability of equilibria theoretically and numeri-
cally. Many other mathematical models describing cancer metastases can be found in
Tan (1989), Newton et al. (2013), Ramis-Conde et al. (2008) and Liotta et al. (1976).

There is always a rapid growth period at either the avascular stage or the vascular
stage. At this time, tumor cells will grow exponentially because of abundant nutri-
ents. When cell cycle is considered and cell size or age is involved, the population of
dividing cells with initial synchrony in the cell cycle may lose their initial information
after a few generations. However, the population continues to grow exponentially and
as it does population structure reorganizes so that proportions of the population with
respect to structure converge to constant values independent of the initial data. This
sort of behavior is called asynchronous exponential growth. Mathematical models
that describe this phenomenon fall within the subject of linear structured population
dynamics and have been extensively developed by many researchers such as Gyl-
lenberg and Webb (1987), Arino and Kimmel (1987), Gyllenberg and Webb (1992),
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Arino et al. (1997), Dyson et al. (2002) and Brikci et al. (2008). Especially, Gyllenberg
and Webb (1992) indicated that almost all of the linear age-structured cell population
models as well as age-structured human population models exhibit the phenomenon
of asynchronous exponential growth. The inclusion of nonlinearities in these models
is usually designed to halt the exponential growth and force convergence to stable
equilibria or stable cycles. Considering the competition between proliferating cells
and quiescent cells, a nonlinear age-structured cell population model was studied the-
oretically and numerically by Akimenko and Anguelov (2016). They obtained three
different regimes of population dynamics for asymptotically stable steady states of the
system in numerical experiments for different initial population densities. Moreover,
they studied the quasiperiodical traveling wave solutions numerically with different
values of time delays and with oscillating death rate and birth modulus.

In this paper, we propose a nonlinear age-structured tumor cell population model
and study its dynamical behaviors including the existence and stability of the trivial
steady state and the positive steady state. Comparing with the existing age-structured
cell population models that include proliferating and quiescent phases, the present
model has the following generalizations.

(i) Modification of the linear age-structuredmodel to a nonlinear case by considering
the nutrient and space limitation into the birth rate of the proliferating cells (Arino
et al. 1997; Dyson et al. 2002; Gabriel et al. 2012).

(ii) Emphasis of the evolution speed of individuals k = cell age/time in the cell
cycle (Arino et al. 1997; Dyson et al. 2002; Brikci et al. 2008; Gabriel et al.
2012; Spinelli et al. 2006).

(iii) Consideration of the situation that the newborn cells can enter the quiescence
directly with a certain constant proportion (Ayati et al. 2006; Arino et al. 1997;
Brikci et al. 2008).

The organization of this paper is as follows. In Sect. 2, we present the model.
Section 3 covers the existence and global stability of the trivial steady state. Section 4
deals with the existence and local stability of the positive steady state. Numerical
simulations are given to illustrate the results in Sect. 5. Finally, we conclude the paper
with a brief discussion and provide some problems for further study.

2 The Basic Model

We construct a system of nonlinear first-order PDEs to describe the dynamics of
tumor cell populations with proliferating and quiescent phases at an avascular stage in
vitro condition. The division rate of the proliferating cells is assumed to be nonlinear
due to the limitation of the nutrient and space. Without loss of generality, the model
is valid for other situations where the limited resource is taken into consideration
at vascular or metastatic stage. The model of vital dynamics is developed based on
previous studies including Ayati et al. (2006), Dyson et al. (2002) and Gabriel et al.
(2012) and is schematically shown in Fig. 1. Proliferating cells in phase G1 proceed
through phases S and G2, giving “birth” at the end of the cell cycle (phase M) to new
cells, which either remain in the proliferating phase or join in the quiescent phase,
whereas quiescent cells neither grow nor divide but either transit to the proliferative
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Fig. 1 The schematic of the quiescent cells in phase G0 and proliferating cells in phases G1 (first gap), S
(synthesis), G2 (second gap) and M (mitosis) of the cell cycle correlated with cell age

compartment or stay in phase G0 till death and being removed from the tissue. Cell
age, for both proliferating and quiescent cells, begins from the time when the cell was
newly divided. For proliferating cells, cell age is relevant to the phase of the cell cycle.
We assume that the evolution speed of the physiological age a with respect to time t ,
i.e., da/dt , is constant and denoted by k. If, for example, k = 0.5, it means that the
physiological age a evolves twice as slowly as real time t .

We denote β(a, N (t)) as the division rate of proliferating cells, which is related to
the total number of cells N at time t . It is a decreasing function with N in a resource-
limited model. We also assume that there is a proportion of newborn cells that enter
quiescence with age 0 once they are divided. This proportion can reflect the dose of
the treatment by drugs such as erlotinib, which has been shown in Tyson et al. (2012)
that the main effect of erlotinib on cancer cells is to induce entry into quiescence
(Gabriel et al. 2012). Here, we denote this fraction by f , and hence, 1− f represents
the part that are still remaining in the proliferating stage. We assume that there is no
recruitment to the quiescent cells except the part of the new daughter cells with age
0, i.e., all the proliferating cells with age a > 0 will not enter the quiescent stage.
However, we assume that there exists a transition rate from the quiescent stage to the
proliferating stage which is caused by the fluctuation of the resource supply at some
intermittent period. This rate is denoted by σ(a) at age a.

Let μ(a) be the death rate. Define

S(a) := exp

(
−

∫ a

0
μ(s)ds

)

as the survival rate of a cell (Inaba 2006). Let am be the maximum survival age of
a cell, then we have S(am) = 0. Hence, the assumption that μ(·) ∈ L1+,loc([0, am))

and
∫ am
0 μ(s)ds = ∞ is needed. This assumption implies that for any given survival

rate ε > 0 small enough, there exists ε0 > 0 such that S(am − ε0) < ε holds. Set
a+ = am − ε0. Then, we have S(a) � S(a+) < ε for all a ∈ (a+, am). Since any
cell with age a ∈ (a+, am) has a sufficient small survival rate and will die as age
increases no lager than ε0, biologically, we can omit such cells and only consider the
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cells whose ages lie in interval [0, a+]. Let P(t, a) and Q(t, a) represent the densities
of cells in the proliferating and quiescent stages at time t with age a, respectively.
Then, our model takes the following form:

⎧⎪⎪⎨
⎪⎪⎩

∂P

∂t
+ k

∂P

∂a
= −μ(a)P(t, a) − β(a, N (t))P(t, a) + σ(a)Q(t, a),

∂Q

∂t
+ k

∂Q

∂a
= −μ(a)Q(t, a) − σ(a)Q(t, a)

(2.1)

with boundary conditions

P(t, 0) = 2(1 − f )
∫ a+

0
β(a, N (t))P(t, a)da,

Q(t, 0) = 2 f
∫ a+

0
β(a, N (t))P(t, a)da (2.2)

and initial conditions

P(0, a) = P0(a), Q(0, a) = Q0(a). (2.3)

Now, we define the number of proliferating cells at time t with age between a1 and
a2 by

∫ a2
a1

P(t, a)da; then, the total numbers of proliferating and quiescent cells at

time t are P(t) = ∫ a+
0 P(t, a)da and Q(t) = ∫ a+

0 Q(t, a)da. N (t) = P(t) + Q(t) is
the total number cells including proliferating ones and quiescent ones.

Throughout the paper, we always assume that:
(H1) The death rate μ(·), the dividing rate β(·, N ) and the transition rate σ(·) are

all nonnegative and belong to L∞[0, a+], where N is any nonnegative real number.
Assumption (H1) aims to guarantee the existence and uniqueness of solutions of the

system. The assumption on the non-negativity of the age-specific parametersμ, β and
σ is natural. It is easy to know that μ, β and σ are all integrable on [0, a+] since they
belong to L∞[0, a+]. The assumption that β is essentially bounded means that not all
cells will divide before reaching the nearly maximum survival age a+. Such cells will
die soon and the number of them can be ignored. Usually, assumptions on the death
rate μ are μ(·) ∈ L1+,loc([0, am)) and

∫ am
0 μ(s)ds = ∞. But we cannot deduce the

essential boundedness of μ when a ∈ [0, am) from these assumptions. Consequently,
we replace am by a+ = am − ε0 and assume that μ is essentially bounded on [0, a+],
which naturally implies that μ is locally integrable on such an interval.

In the following, we study the existences and stabilities of steady states of system
(2.1)–(2.3). The existence and uniqueness of solutions of the system are proved briefly
at the end of the paper (AppendixA). Similar explanations can also be referred to Inaba
(1988), Inaba (2006) and Cherif et al. (2017).
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3 Existence and Stability of the Trivial Steady State

The study of the trivial steady state to the tumor cell population model is meaningful
since it illustrates whether the tumor cells go extinct in the long term. In this section,
we will study the local and global stabilities of the trivial steady state.

Let Ē(a) := (P̄(a), Q̄(a)) be a steady state of the system. Then, it must satisfy the
following time-independent system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP̄

da
= −μ̄(a)P̄(a) − β̄(a, N )P̄(a) + σ̄ (a)Q̄(a),

dQ̄

da
= −μ̄(a)Q̄(a) − σ̄ (a)Q̄(a),

P̄(0) = 2k(1 − f )
∫ a+

0
β̄(a, N )P̄(a)da, Q̄(0) = 2k f

∫ a+

0
β̄(a, N )P̄(a)da,

(3.1)

where

μ̄(a) = μ(a)

k
, σ̄ (a) = σ(a)

k
, β̄(a, N ) = β(a, N )

k
(3.2)

and N = ∫ a+
0 (P̄(a) + Q̄(a))da. In this case, it is important to note that both N and

the “birth rates” P̄(0) and Q̄(0) are constants. Let

�1(a) = exp

(
−

∫ a

0
μ̄(ξ)dξ

)
,

�2(a, N ) = exp
(

−
∫ a

0
β̄(ξ, N )dξ

)
,

�3(a) = exp
(

−
∫ a

0
σ̄ (ξ)dξ

)
.

Obviously, the trivial steady state Ē0 := (0, 0) always exists and there is no
boundary steady states. In fact, since f ∈ (0, 1), it follows from system (3.1) that
P̄(a) = 0 ⇔ P̄(0) = 0 ⇔ Q̄(0) = 0 ⇔ Q̄(a) = 0 for all a ∈ [0, a+].

Firstly, we investigate the local stability of the trivial steady state Ē0 := (0, 0). To
do this, we assume that

(H2) β(a, N ) is differentiable with respect to N .
We have the following result.

Theorem 3.1 Let assumptions (H1) and (H2) be satisfied. In addition, if

2
∫ a+

0
β(a)�1(a)�2(a)

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ)dξ

)
da < 1, (3.3)

then the trivial steady state Ē0 := (0, 0) is locally asymptotically stable, whereβ(a) =
β(a, N )|N=0 and �2(a) = �2(a, N )|N=0.
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Proof Based on assumption (H2), it is easy to calculate that the linearized system of
(2.1)–(2.2) with respect to the steady state Ē0 is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x

∂t
+ k

∂x

∂a
= −(μ(a) + β(a))x(t, a) + σ(a)y(t, a),

∂y

∂t
+ k

∂y

∂a
= −μ(a)y(t, a) − σ(a)y(t, a),

x(t, 0) = 2(1 − f )
∫ a+

0
β(a)x(t, a)da,

y(t, 0) = f

1 − f
x(t, 0).

(3.4)

Separating variables as

x(t, a) = eλt x̄(a), y(t, a) = eλt ȳ(a), (3.5)

we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄(a)

da
= −λ̄x̄(a) − (μ̄(a) + β̄(a))x̄(a) + σ̄ (a)ȳ(a),

dȳ(a)

da
= −λ̄ȳ(a) − μ̄(a)ȳ(a) − σ̄ (a)ȳ(a),

x̄(0) = 2k(1 − f )
∫ a+

0
β̄(a)x̄(a)da,

ȳ(0) = f

1 − f
x̄(0).

(3.6)

Solving the first equation of (3.6) and substituting it into x̄(0), we obtain that

x̄(0) = 2k(1 − f )
∫ a+

0
β̄(a)x̄(0)e−λ̄a�1(a)�2(a)

(
1 + f

1 − f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ)dξ

)
da. (3.7)

Since x̄(0) �= 0 (x̄(0) = 0 leads to the trivial steady state), (3.7) yields the following
characteristic equation:

1 = 2k
∫ a+

0
e−λ̄a β̄(a)�1(a)�2(a)

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ)dξ

)
da. (3.8)

Denote the right hand of (3.8) by H(λ̄), and it is easy to know that H(λ̄) is a con-
tinuously decreasing function with limRe(λ̄)→+∞ H(λ̄) = 0. Hence, Eq. (3.8) has a
unique real root λ̄∗. Moreover, from condition (3.3) we have

H(0) = 2k
∫ a+

0
β̄(a)�1(a)�2(a)

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ)dξ

)
da < 1.
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Thus, λ̄∗ < 0. Let λ̄ = c + di be an arbitrary complex root to Eq. (3.8). Then,

1 = H(λ̄) � |H(c + di)| � H(c),

which implies that λ̄∗ > c. Thus, all the roots of Eq. (3.8) have negative real parts.
Finally, under condition (3.3), the trivial steady state Ē0 is locally asymptotic stable.

The proof is completed. �	
In the following, we discuss the global stability of the trivial steady state. First we

make the following assumption.
(H3)The division rateβ(a, N (t)) has the special formβ(a, N (t)) = β(a)
(N (t)).

Moreover, 
(x) is continuous, differentiable and strictly decreasing in x ∈ [0,+∞).

(0) = 1, limx→+∞ 
(x) = 0.

Based on assumption (H3), we have the following result.

Theorem 3.2 Let assumptions (H1) and (H3) be satisfied. In addition, if

2
∫ a+

0
β(a)�1(a)da < 1, (3.9)

then the trivial steady state Ē0 := (0, 0) is globally asymptotically stable.

Proof Denote by N (t, a) = P(t, a) + Q(t, a) the total number of cells at time t with
age a; then from system (2.1)–(2.3), we have:

⎧⎪⎪⎨
⎪⎪⎩

∂N

∂t
+ k

∂N

∂a
= −μ(a)N (t, a) − β(a, N (t))P(t, a),

N (t, 0) = 2
∫ a+

0
β(a, N (t))P(t, a)da, N (0, a) = N0(a).

(3.10)

Consider the Cauchy problem of system (3.10) on the Banach space X := R ×
L1(0, a+):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt

(
0

u(t, ·)
)

= B

(
0

u(t, ·)
)

+
⎛
⎝2

∫ a+

0
β(a, N (t))P(t, a)da

−β(a, N (t))P(t, ·)

⎞
⎠ ,

(
0

u(0, ·)
)

=
(

0
N (0, ·)

)
∈ X,

(3.11)

where the linear operator B : D(B) ⊂ X → X is defined by

B

(
0
φ

)
:=

( −φ(0)
− kφ′ − μ(·)φ

)
(3.12)

and D(B) is given as D(B) := {0} × AC[0, a+], where AC[0, a+] is the space of all
absolutely continuous functions on [0, a+].
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By the comparison principle and assumption (H3), we deduce that

û(t, ·) � ẑ(t, ·) (3.13)

for all t � 0, where û(t, ·) is an integral solution of system (3.11) and ẑ(t, ·) is a
solution of the linear abstract equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d

dt

(
0

z(t, ·)
)

= B

(
0

z(t, ·)
)

+
⎛
⎝2

∫ a+

0
β(a)z(t, a)da

0

⎞
⎠ ,

(
0

z(0, ·)
)

=
(

0
N (0, ·)

)
∈ X.

(3.14)

For linear problem (3.14), assume that

z(t, a) = eλt z̄(a). (3.15)

Then, (3.14) becomes

⎧⎪⎪⎨
⎪⎪⎩

dz̄(a)

da
= −λ̄z̄(a) − μ̄(a)z̄(a),

z̄(0) = 2
∫ a+

0
β(a)z̄(a)da,

(3.16)

where λ̄ = λ/k and μ̄(a) is defined in (3.2). Solving for z̄(a) and substituting it into
z̄(0), we obtain

z̄(0) = 2
∫ a+

0
β(a)z̄(0)e−λ̄a�1(a)da. (3.17)

Since z̄(0) �= 0 (z̄(0) = 0 corresponds to the trivial steady state), (3.17) leads to the
following characteristic equation:

1 = 2
∫ a+

0
β(a)e−λ̄a�1(a)da. (3.18)

From condition (3.9), we know that all the roots of Eq. (3.18) have negative real parts.
Finally, we have

0 � lim sup
t→∞

P(t, a) � lim sup
t→∞

N (t, a)

= lim sup
t→∞

û(t, a) � lim sup
t→∞

ẑ(t, a)

= lim
t→∞ eλ̄t z̄(a) = 0
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and

0 � lim sup
t→∞

Q(t, a) � lim sup
t→∞

N (t, a)

= lim sup
t→∞

û(t, a) � lim sup
t→∞

ẑ(t, a)

= lim
t→∞ eλ̄t z̄(a) = 0.

The proof is completed. �	
If assumption (H3) is replaced by the following assumption (H4), we will obtain a

weaker condition than that in Theorem 3.2 for the global stability of the trivial steady
state.

(H4) β(a, N (t)) = β(a)
(N (t)). 
(x) is continuous, differentiable and strictly
decreasing in x ∈ [0,+∞). 
(0) = 1, limx→+∞ 
(x) = 0. Moreover, there exists
a positive constant M̂ such that 
(x)x < M̂ for all x ∈ [0,+∞).

Under assumption (H4), we say that system (3.10) is ultimately bounded. In fact,
integrating system (3.10) along the characteristic lines, we get

N (t, a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (0, a − kt)e− ∫ t
0 μ(a−kt+kτ)dτ

−
∫ t

0
β(a − kt + kτ, N (τ ))P(τ, a − kt + kτ)e− ∫ t

τ μ(a−kt+ks)dsdτ, a>kt,

N
(
t − a

k
, 0

)
e− 1

k

∫ a
0 μ(τ)dτ

−1

k

∫ a

0
β

(
τ, N

(
t − a

k
+ τ

k

))
P

(
t − a

k
+ τ

k
, τ

)
e− 1

k

∫ a
τ μ(ξ)dξdτ, a<kt.

(3.19)

From β(a, N (t)) = β(a)
(N (t)), we have

N (t, 0) = 2
∫ a+

0
β(a, N (t))P(t, a)da = 2
(N (t))

∫ a+

0
β(a)P(t, a)da.

(3.20)

Then,

N
(
t − a

k
, 0

)
= 2
(N (t − a

k
))

∫ a+

0
β(σ)P

(
t − a

k
, σ

)
dσ

� 2β̂

(
N

(
t − a

k

)) ∫ a+

0
N (t − a

k
, σ )dσ.

(3.21)
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Hence, it follows from assumption (H4), (3.19) and (3.21) that

N (t, a) �

⎧⎨
⎩

N (0, a − kt)e− ∫ t
0 μ(a−kt+kτ)dτ � N0(a − kt), a > kt,

N
(
t − a

k
, 0

)
e− 1

k

∫ a
0 μ(τ)dτ � 2β̂ M̂, a < kt.

Finally, we have N (t, a) � M := 2β̂ M̂ for all initial function N0(a) � M .

Theorem 3.3 Let assumptions (H1) and (H4) be satisfied. In addition, if

2
∫ a+

0
β(a)�1(a)[�2(a)]γ0

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)[�2(ξ)]−γ0dξ

)
da < 1,

(3.22)

then the trivial steady state Ē0 := (0, 0) is globally asymptotically stable, where
γ0 := 
(M) and M is the ultimate upper bound of system (2.1)–(2.3).

Proof Consider the Cauchy problem of system (2.1)–(2.3) on the Banach space X :=
R × R × L1(0, a+) × L1(0, a+):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

⎛
⎜⎜⎝

0
0

u1(t, ·)
u2(t, ·)

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

0
0

u1(t, ·)
u2(t, ·)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2(1 − f )
∫ a+

0
β(a, N (t))u1(t, a)da

2 f
∫ a+

0
β(a, N (t))u1(t, a)da

−β(a, N (t))u1(t, ·) + σ(a)u2(t, ·)
−σ(a)u2(t, ·)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(0, 0, u1(0, ·), u2(0, ·))T = (0, 0, P(0, ·), Q(0, ·))T ∈ X,

(3.23)

where the linear operator L : D(L) ⊂ X → X is defined by

L(0, 0, φ1, φ2)
T := (−φ1(0),−φ2(0),−kφ′

1 − μ(·)φ1,−kφ′
2 − μ(·)φ2

)T (3.24)

and D(L) is given as D(L) := {0} × {0} × AC[0, a+] × AC[0, a+].
By the comparison principle, we deduce that

û1(t, ·) � ẑ1(t, ·) and û2(t, ·) � ẑ2(t, ·) (3.25)

for all t � 0, where (û1(t, ·), û2(t, ·)) is an integral solution of system (3.23) and
(ẑ1(t, ·), ẑ2(t, ·)) is a solution of the linear abstract equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

⎛
⎜⎜⎝

0
0

z1(t, ·)
z2(t, ·)

⎞
⎟⎟⎠ = L

⎛
⎜⎜⎝

0
0

z1(t, ·)
z2(t, ·)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2(1 − f )
∫ a+

0
β(a)z1(t, a)da

2 f
∫ a+

0
β(a)z1(t, a)da

−β(a)γ0z1(t, ·) + σ(a)z2(t, ·)
−σ(a)z2(t, ·)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(0, 0, z1(0, ·), z2(0, ·))T = (0, 0, P(0, ·), Q(0, ·))T ∈ X.

(3.26)

Let C be a linear operator from {0} × {0} × AC[0, a+] × AC[0, a+] to X defined by

C

⎛
⎜⎜⎝

0
0
φ1
φ2

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2(1 − f )
∫ a+

0
β(a)φ1(a)da

2 f
∫ a+

0
β(a)φ1(a)da

−β(·)γ0φ1 + σ(·)φ2
−σ(·)φ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let ω be any eigenvalue of the linear operator L + C . We can calculate that the
dominated eigenvalue of linear equation (3.26) satisfies the characteristic equation

1 = 2(1 − f )
∫ a+

0
β(a)e− ωa

k �1(a)[�2(a)]γ0 (1

+ f

1 − f

∫ a

0
σ̄ (ξ)�3(ξ)[�2(ξ)]−γ0dξ

)
da.

Then from condition (3.22), one obtains that ω < 0. Thus, we have

lim sup
t→∞

||û1(t, ·)|| � lim sup
t→∞

||ẑ1(t, ·)|| = lim
t→∞ |P(0)e

ωt
k | = 0

and

lim sup
t→∞

||û2(t, ·)|| � lim sup
t→∞

||ẑ2(t, ·)|| = lim
t→∞ |Q(0)e

ωt
k | = 0,

where P(0) := ∫ a+
0 P(0, a)da, Q(0) := ∫ a+

0 P(0, a)da. That is,

lim sup
t→+∞

∫ a+

0
P(t, a)da = 0, lim sup

t→+∞

∫ a+

0
Q(t, a)da = 0.
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From the non-negativity of P(t, a) and Q(t, a), we have

lim sup
t→+∞

P(t, a)da = 0, lim sup
t→+∞

Q(t, a)da = 0.

This completes the proof. �	

4 Existence and Local Stability of the Positive Steady State

In this section, we discuss the existence and the local stability of the positive steady
state for system (2.1)–(2.3).

Solving the second equation of system (3.1), we have

Q̄(a) = Q̄(0)�1(a)�3(a). (4.1)

Solving the first equation of system (3.1) and substituting (4.1) into the solution, we
get

P̄(a) = P̄(0)�1(a)�2(a, N )

+ Q̄(0)�1(a)�2(a, N )

∫ a

0
σ̄ (η)�3(η)�−1

2 (η, N )dη. (4.2)

It follows from (4.2) that the boundary condition Q̄(0) can be represented as

Q̄(0) = Q̄(0)U (N ), (4.3)

where

U (N ) = 2k
∫ a+

0
β̄(a, N )�1(a)�2(a, N ) ((1 − f )

+ f
∫ a

0
σ̄ (η)�3(η)�−1

2 (η, N )dη

)
da. (4.4)

Obviously, (4.3) has a unique nonzero solution if and only if U (N ) = 1. Therefore,
we have the following theorem.

Theorem 4.1 Let N > 0 and assume that (H1) holds. Then, a necessary and sufficient
condition for the existence of the steady state with a total number of cells N is that

U (N ) = 1. (4.5)

When this is the case, the steady state Ē(a) = (P̄(a), Q̄(a)) corresponding to N is
given by (4.2) and (4.1) with

Q̄(0) = f

1 − f
P̄(0) (4.6)
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and

P̄(0) = N
( ∫ a+

0

(
�1(a)�2(a, N )

+ f

1 − f

(
�1(a)�2(a, N )

∫ a

0
σ̄ (η)�3(η)�−1

2 (η, N )dη

+ �1(a)�3(a)
))

da
)−1

. (4.7)

Proof From system (3.1), we have (4.1), (4.2) and (4.6). Applying these results, we
have

N =
∫ a+

0
(P̄(a) + Q̄(a))da

=
∫ a+

0

(
P̄(0)�1(a)�2(a, N )

+ Q̄(0)�1(a)�2(a, N )

∫ a

0
σ̄ (η)�3(η)�−1

2 (η, N )dη + Q̄(0)�1(a)�3(a)

)
da

= P̄(0)
∫ a+

0

(
�1(a)�2(a, N )

+ f

1 − f
(�1(a)�2(a, N )

∫ a

0
σ̄ (η)�3(η)�−1

2 (η, N )dη + �1(a)�3(a))
)
da;

then (4.7) holds. Thus to complete the proof, it suffices to show that, granted (4.1) and
(4.2), (4.5) is equivalent to (4.3). The previous analysis of this section just illustrates
that it is true. This completes the proof. �	

In the following, we study the local stability of the positive steady state.We improve
assumption (H2) to

(H5) β(a, N ) is differentiable with respect to N . Moreover,
∂β(a, N )

∂N
is bounded

on [0, a+].
Let Ē∗(a) := (P̄∗(a), Q̄∗(a)) be a positive steady state of the system. Let

(x(t, a), y(t, a)) be the perturbation from the steady state (P̄∗(a), Q̄∗(a)), i.e.,

x(t, a) = P(t, a) − P̄∗(a), y(t, a) = Q(t, a) − Q̄∗(a).

Let n(t) = N (t)−N∗, where N∗ = ∫ a+
0 (P̄∗(a)+ Q̄∗(a))da. Obviously, N∗ depends

on the steady state. Then,

n(t) =
∫ a+

0
(P(t, a) + Q(t, a))da −

∫ a+

0
(P̄∗(a) + Q̄∗(a))da

=
∫ a+

0
(x(t, a) + y(t, a))da.
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A simple computation shows that P(t, a) and Q(t, a) obey the basic equations and
boundary conditions of system (2.1) if and only if x(t, a) and y(t, a) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x

∂t
+ k

∂x

∂a
= −(μ(a) + β(a, N∗))x(t, a) + σ(a)y(t, a)

−βN (a, N∗)P̄∗(a)n(t) − �0(t, a),

∂y

∂t
+ k

∂y

∂a
= −(μ(a) + σ(a))y(t, a),

x(t, 0) = 2(1 − f )
∫ a+

0
β(a, N∗)x(t, a)da + 2(1 − f )δ(N∗)n(t) + �1(t),

y(t, 0) = 2 f
∫ a+

0
β(a, N∗)x(t, a)da + 2 f δ(N∗)n(t) + �2(t),

(4.8)

where

�0(t, a) = βN (a, N∗)n(t)x(t, a) + �(a, n)(P̄∗(a) + x(t, a)),

�1(t) = 2(1 − f )
∫ a+

0
�0(t, a)da, �2(t) = 2 f

∫ a+

0
�0(t, a)da,

δ(N∗) =
∫ a+

0
βN (a, N∗)P̄∗(a)da

and

�(a, n) = β(a, N∗ + n(t)) − β(a, N∗) − βN (a, N∗)n(t).

To investigate the local behavior of the system around the steady state, we neglect the
“high-order” terms in (4.8) and consider the following linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x

∂t
+ k

∂x

∂a
= −(μ(a)+β(a, N∗))x(t, a)+σ(a)y(t, a) − βN (a, N∗)P̄∗(a)n(t),

∂y

∂t
+ k

∂y

∂a
= −(μ(a) + σ(a))y(t, a),

x(t, 0) = 2(1 − f )
∫ a+

0
β(a, N∗)x(t, a)da + 2(1 − f )δ(N∗)n(t),

y(t, 0) = f

1 − f
x(t, 0).

(4.9)
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Under assumption (3.5), (4.9) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄(a)

da
= −λ̄x̄(a) − (μ̄(a)+β̄(a, N∗))x̄(a)+σ̄ (a)ȳ(a) − β̄N (a, N∗)P̄∗(a)n∗,

dȳ(a)

da
= −λ̄ȳ(a) − (μ̄(a) + σ̄ (a))ȳ(a),

x̄(0) = 2k(1 − f )
∫ a+

0
β̄(a, N∗)x̄(a)da + 2k(1 − f )δ̄(N∗)n∗,

ȳ(0) = f

1 − f
x̄(0),

(4.10)

where

λ̄ = λ

k
, β̄(a, N∗) = β(a, N∗)

k
, β̄N (a, N∗) = βN (a, N∗)

k
,

n∗ =
∫ a+

0
(x̄(a) + ȳ(a))da, δ̄(N∗) =

∫ a+

0
β̄N (a, N∗)P̄(a)da = δ(N∗)

k
.

μ̄(a) and σ̄ (a) are defined in (3.2). Setting

�2(a, N∗) = exp

(
−

∫ a

0
β̄(ξ, N∗)dξ

)

and conducting regular calculations to system (4.10), we have

ȳ(a) = ȳ(0)e−λ̄a�1(a)�3(a)

and

x̄(a) = �1(a)�2(a, N∗)
(
x̄(0)e−λ̄a +

∫ a

0
(σ̄ (ξ)ȳ(ξ)

−β̄N (ξ, N∗)P̄∗(ξ)n∗)e−λ̄(a−ξ)�−1
1 (ξ)�−1

2 (ξ, N∗)dξ
)

= �1(a)�2(a, N∗)
(
x̄(0)e−λ̄a

(
1 + f

1 − f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ, N∗)dξ
)

−n∗ P̄∗(0)
∫ a

0
β̄N (ξ, N∗)e−λ̄(a−ξ)dξ

)
,

where the expression of P̄∗(a) = P̄∗(0)�1(a)�2(a, N∗) was utilized. Substituting
ȳ(a) and x̄(a) into the expression of n∗, we get

n∗ =
x̄(0)

∫ a+
0 e−λ̄a�1(a)

(
�2(a, N∗)+ f

1− f

(
�2(a, N∗)

∫ a
0 σ̄ (ξ)�3(ξ)�−1

2 (ξ, N∗)dξ+�3(a)
))

da

1+ P̄∗(0)
∫ a+
0 �1(a)�2(a, N∗)

∫ a
0 β̄N (ξ, N∗)e−λ̄(a−ξ)dξda

.
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Then, x̄(a) can be written as

x̄(a) = x̄(0)�1(a)�2(a, N∗)
(
e−λ̄a

(
1 + f

1 − f
g(a)

)
− hλ̄ fλ̄(a)

)
, (4.11)

where

hλ̄ =
P̄∗(0)

∫ a+
0 e−λ̄a�1(a)

(
�2(a, N∗) + f

1− f (�2(a, N∗)g(a) + �3(a))
)
da

1 + P̄∗(0)
∫ a+
0 �1(a)�2(a, N∗) fλ̄(a)da

,

g(a) =
∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ, N∗)dξ, fλ̄(a) =
∫ a

0
β̄N (ξ, N∗)e−λ̄(a−ξ)dξ.

Plugging (4.11) into the expression of x̄(0) and noting that

δ̄(N∗) =
∫ a+

0
β̄N (a, N∗)P̄∗(0)�1(a)�2(a, N∗)da,

we have

1 =
∫ a+

0

(
1 + f

1 − f
g(a)

)
r1(a, N∗)e−λ̄ada + hλ̄

∫ a+

0
(r2(a, N∗)

−r1(a, N∗) fλ̄(a))da, (4.12)

where

r1(a, N∗) = 2k(1 − f )β̄(a, N∗)�1(a)�2(a, N∗),
r2(a, N∗) = 2k(1 − f )β̄N (a, N∗)�1(a)�2(a, N∗).

Thus, a solution with form (3.5) will exist if and only if λ̄ satisfies transcendental
equation (4.12). If all λ̄’s that satisfy (4.12) have negative real parts, then all solutions
of the form (3.5) will approach to zero as t goes to infinity. Hence, we have the
following result.

Theorem 4.2 Assume that (H1), (H5) and (4.5) hold. In addition, if (4.12) has no
solution λ̄ with Re(λ̄) � 0, then the positive steady state Ē∗(a) = (P̄∗(a), Q̄∗(a)) of
system (2.1)–(2.3) is locally asymptotically stable. Otherwise, it is unstable.

Remark 4.1 We analyzed the existence and stability of the positive steady state of
nonlinear system (2.1)–(2.3) by applying the Gurtin–Maccamy method (Gurtin and
Maccamy 1974) and obtained a transcendental equation (4.12) with respect to param-
eter λ̄. According to our assumption on the solutions of the perturbation system, i.e.,
x(t, a) = eλt x̄(a), y(t, a) = eλt ȳ(a), the positive steady state will be asymptotically
stable if (4.12) has no solution λ̄ with Re(λ̄) � 0. However, (4.12) has no monotonic-
ity on λ̄ and it is difficult to get some criteria mathematically. Hence, we regard it
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as a condition of Theorem 4.2 like Theorem 7 in Gurtin and Maccamy (1974). But,
we illustrate the existence (Figs. 7, 8, 9, 10) and stability (Fig. 11) of the positive
steady state numerically in Sect. 5, which shows that the system really has locally
asymptotically stable positive steady state if the coefficients of the system are taken
appropriate values.

5 Numerical Simulations

In this section, we present some numerical examples to illustrate the local stability of
the trivial steady state, the global stability of the trivial steady state and the existence
and local stability of the positive steady state, respectively. It is worth noting that we
numerically analyze in detail the effects of three key parameters: the evolution speed
k, the proportion f of newborn cells that enter quiescence with age 0, and the death
rate μ, on the cell populations. In all examples, we take the nearly maximum survival
age of cells as a+ = 72 hours and the transition rate σ(a) = 0.02 (Spinelli et al.
2006). Assume that the cell division rate has the form β(a, N ) = β(a)
(N ). Take

β(a) =
⎧⎨
⎩

0, a � ā,

1

�

(a − ā)2

2�2 + 2�(a − ā) + (a − ā)2
, a > ā

(see Gabriel et al. 2012) for all a ∈ [0, a+] and
(N ) = 107/(N +107) for all N � 0,
where ā = 50 is the time from when the proliferating cells begin to divide, and � = 2
is a variance constant. Take the death rate as follows

μ(a) =
{

μ, a � ā,

μ + μ(a − ā)2, a > ā
(5.1)

for all a ∈ [0, a+].
Firstly, we investigate the local stability of the trivial steady state Ē0. Take μ =

0.002 (Spinelli et al. 2006) and the initial functions P(0, a) = Q(0, a) = (a+ −
a) × 105/a+ (Brikci et al. 2008). We study the condition of Theorem 3.1 and discuss
the effects of the proportion f on the local stability of the trivial steady state under
different cell evolution speeds k. Let

J ( f ) = 2
∫ a+

0
β(a)�1(a)�2(a)

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)�−1

2 (ξ)dξ

)
da

= (1 − f ) × 2
∫ a+

0
β(a)�1(a)�2(a)da

+ f × 2
∫ a+

0
β(a)�1(a)

∫ a

0

σ(ξ)

k
�3(ξ)

�2(a)

�2(ξ)
dξda.

From Theorem 3.1, we know that the trivial steady state Ē0 is locally stable if J ( f ) <

1. Figure 2a shows the exact value of f such that J ( f ) = 1 under different values of k.
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Fig. 2 a The effects of f on the local stability of the trivial steady state Ē0 when cell evolution speed k
takes values 0.5, 1 and 2, respectively. b The effects of f on the local stability of the trivial steady state Ē0
as k increases. Ē0 is locally stable for all J ( f ) < 1
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Fig. 3 a, b are the age distributions of proliferating cells P(t, a) and quiescent cells Q(t, a). c is the time
series of the total number N (t) under three different initial values. These three figures show the global
stability of the trivial steady state Ē0 under conditions of Theorem 3.2

In order to cope with the condition J ( f ) < 1 in the case k = 1, a larger proportion f
is needed than that in others cases. Figure 2b plots function J ( f ) = 1 as k increases.
On one hand, it gives a curve that the tumor will go extinct when f takes values above
it. On the other hand, it indicates that when cell evolution speed k is 0.85, we need the
largest dose of the drug erlotinib to induce the newborn cells to enter the quiescence
so that J ( f ) = 1.

Now,we illustrate the global stability of the trivial steady state Ē0, where we choose
the initial functions as P(0, a) = Q(0, a) = 4(a+ − a) × 105/a+. Take k = 1 and
f = 0.3.
If we choose μ = 0.011, we can calculate that

J (μ) = 2
∫ a+

0
β(a)�1(a)da = 0.9507 < 1,

which satisfies condition (3.9) of Theorem 3.2. Hence, Ē0 is globally stable. See
Fig. 3a, b. Figure 3c plots the time series of the total number N under three different
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Fig. 4 a The effects of the death rate μ on the global stability of the trivial steady state Ē0 when cell
evolution speed k takes values 0.5, 1 and 2, respectively. b The effects of the death rate μ on the global
stability of the trivial steady state Ē0 as k increases. Ē0 is globally stable for all J (μ) < 1

initial values, which further demonstrates the global stability of the trivial steady state
Ē0. Note that J (μ) does not depend on the proportion f . Figure 4a plots the effects
of the death rate μ on the global stability of Ē0 at three different cell evolution speeds
k = 0.5, 1 and 2. Figure 4b plots the effects of the death rate μ on the global stability
of Ē0 as k increases. One can see that a larger cell evolution speed needs a larger death
rate to guarantee the condition J (μ) < 1. Recalling the definition of μ(a) in (5.1),
we have

J (μ) = 2
∫ a+

0
β(a)�1(a)da

= 2
∫ a+

0
β(a) exp

(
−μ

k

(∫ ā

0
ds +

∫ a

ā
(1 + (s − ā)2)ds

))
da.

However, we have known from Fig. 4a that when μ/k = 0.01054 := μ0, J (μ) = 1.
Hence, the death rate μ that satisfies J (μ) = 1 is a linear function on the evolution
speed k. Moreover, μ = μ0k (Fig. 4b).

If μ = 0.006, we can calculate that the maximum value of the cell number is less
than 2 × 107. Take M = 2 × 107; then, we obtain

J̄ ( f ) = 2
∫ a+

0
β(a)�1(a)[�2(a)]γ0

(
1 − f + f

∫ a

0
σ̄ (ξ)�3(ξ)[�−1

2 (ξ)]γ0dξ
)
da

= 0.9904 < 1,

which satisfies condition (3.22). Hence, the trivial steady state Ē0 is globally stable
as shown in Figs. 5 and 6. It is noticed that we need a death rate μ no less than
0.01054 to guarantee J (μ) < 1 if k = 1. However, to satisfy the inequality J̄ ( f ) < 1
in Theorem 3.3, we only take the death rate μ = 0.006. Hence, condition (3.22) is
superior to condition (3.9).
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Fig. 5 a, b are the age distributions of proliferating cells P(t, a) and quiescent cells Q(t, a). c is the time
series of the total number N (t). These three figures verify the global stability of the trivial steady state Ē0
under conditions of Theorem 3.3
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Fig. 6 The time series of P(t, a) and Q(t, a) at six fixed ages corresponding to Theorem 3.3

In the following, let us discuss the existence and local stability of the positive steady
state. Take μ = 0.001, k = 1 and f = 0.3. Based on the values of above parameters,
our calculation shows that condition U (N ) = 1 holds if the total number of cells N
reaches 4.0588× 106. The positive steady state exists. Figures 7, 8 and 9 demonstrate
the existence of the positive steady state, where the initial functions are taken as
P(0, a) = Q(0, a) = (a+ − a) × 105/a+. Figure 7 shows the age distributions of
proliferating cells P and quiescent cells Q in a long timescale. One can see that both
P and Q develop steady states when time is larger than 600 hours. Figure 8 plots the
trends of P and Q at six different ages and display stabilities of the two kinds of cells
on some fixed ages more clearly. Figure 9 gives us a better presentation about the age
distributions of P and Q at six different time points. One can see that the changes of
cell’s age with time are no longer distinct when t � 300.

It follows from (4.1) and (4.2) that steady-state system (3.1) depends continuously
on the number of the newborn cells with age zero. Hence, we can say that system
(2.1)–(2.3) is locally stable since the curves of newborn cells with different initial
values tend to the same line (see Fig. 10). Moreover, Fig. 11 shows the stability of the
total number N with respect to time t .

Figure 12a, b simulates separately the changes of cell numbers P , Q and N to the
two parameters k and f at a sufficiently large time point t0 = 4000 hours under the
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Fig. 7 The age distributions of proliferating cells P(t, a) and quiescent cells Q(t, a)
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Fig. 8 The time series of P(t, a) and Q(t, a) at six fixed ages a = 0, 35, 50, 60, 65, and 70 h
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Fig. 9 The age distributions of P(t, a) and Q(t, a) at six different time points t = 20, 100, 200, 300, 450,
and 600 h

same death rate μ = 0.001. Figure 12a shows that the cell number of P , Q and N
strictly increases with the cell evolution speed k, i.e., larger aging speed will lead to an
increase in all kinds of cells. From Fig. 12b, we can observe that with the increase in
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Fig. 10 The time series of P(t, a) and Q(t, a) with three different initial values at age a = 0. These two
figures also illustrate the local stability of the system

Fig. 11 The time series of the
total number of cells N (t) under
three different initial values
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the proportion f that enter the quiescence, the number of quiescent cells will increase,
while the number of proliferating cells and the total cell number will decrease. One
can see from Fig. 11 that to control tumor growth, we can lower the cell evolution
speed or increase the dose of drug erlotinib to enlarge the proportion that enter the
quiescent stage of the newborns.

6 Discussion

We proposed and analyzed a nonlinear age-structured tumor cell population model
with quiescence. First, we studied the local (Theorem 3.1) and global stabilities
(Theorems 3.2 and 3.3) of the trivial steady state. Then, we considered the exis-
tence (Theorem 4.1) and local stability (Theorem 4.2) of the positive steady state by
applying the Gurtin–Maccamy method (Gurtin and Maccamy 1974). Finally, we per-
formed some numerical simulations to verify the results and to examine the impacts
of parameters on the asymptotic behavior of this model.
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Fig. 12 a The trends of cell populations P , Q and N to the cell evolution speed k at an enough large time
point t0 = 4000 h with parameter f = 0.3. b The trends of cell populations P , Q and N to the proportion
f that enter the quiescence at an enough large time point t0 = 4000 h with parameter k = 1. Here we take
μ = 0.001 and the initial functions P(0, a) = Q(0, a) = (a+ − a) × 105/a+ for both a, b

There are three key parameters, the evolution speed k, the proportion f of newborn
cells that enter quiescence with age 0, and the death rateμ, that have been emphasized
in our numerical work. For the stability of the trivial steady state, we gave an exact
proportion f under which it is locally stable (see Fig. 2a), and an exact value μ under
which it is globally stable (see Fig. 4a). Both of the two cases had three different k
values at 0.5, 1 and 2. For the stability of the positive steady state, we illustrated that
the total number of cells increases as the cell evolution speed k increases (see Fig. 12a).
However, it decreases as the proportion f increases (see Fig. 12b).

Though we have given a condition to judge whether the positive steady state is
stable, the criterion is not easy to be verified mathematically. However, the numerical
simulation showed the fact that the population of newborn cells would tend to the
same level after a long time (see Fig. 10) with three different initial functions. This
implies that the age distributions of the system will approach to the same surface and
then illustrate the stability of the positive steady state.

The model we presented in this paper only includes the transition from quiescent
stage to proliferating stage; a natural extension is to add the transition fromproliferating
stage to quiescent stage in the model. However, this will raise a new challenge that
the solution cannot be solved concretely, and we must search for other approaches to
cope with this problem. Besides, some other developments such as detailing the four
stages to the cell cycle of proliferating cells and establishing age-structured models
correspondingly or considering the effects of the space and including spatial variable
in the model are also very interesting and deserve further studies.

Acknowledgements The authors are grateful to the two anonymous reviewers and the handling editor for
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Appendix A. Existence and Uniqueness of Solutions

Consider a Banach spaceX = L1(0, a+)× L1(0, a+) endowed with the norm ||φ|| =
||φ1|| + ||φ2|| for φ(a) = (φ1(a), φ2(a))T ∈ X, where || · || is the norm in L1 and vT

is the transpose of the vector v.
Now we define a linear operator A : D(A) ⊂ X → X by

(Aφ)(a) :=
(

−k
d

da
φ1(a),−k

d

da
φ2(a)

)T

. (A.1)

The domain D(A) is given as

D(A) =
{
φ ∈ X+ := L1+(0, a+) × L1+(0, a+) : φ1, φ2 ∈ AC[0, a+],

φ(0) = (φ1(0), φ2(0))
T
}

,

where L1+(0, a+) denotes the positive cone of L1(0, a+) and AC[0, a+] is the set of
absolutely continuous functions on [0, a+),φ1(0) = 2(1− f )

∫ a+
0 β(a, N (t))φ1(a)da

and φ2(0) = 2 f
∫ a+
0 β(a, N (t))φ1(a)da. We also define a nonlinear operator F :

X+ → X by

(Fφ)(a) :=
(−μ(a)φ1(a) − β(a, N )φ1(a) + σ(a)φ2(a)

−μ(a)φ2(a) − σ(a)φ2(a)

)
. (A.2)

Based on Assumption (H1), it is not difficult to prove that the operator F is Lipschitz
continuous and there exists a positive constant r > 0 such that

(I + r F)(X+) ⊂ X+, (A.3)

where I denotes the identity operator. The proof of this result can be referred to Inaba
(2006).

Set u(t) = (P(t, ·), Q(t, ·))T . Then system (2.1)–(2.3) can be formulated as a
nonlinear Cauchy problem on the Banach space X:

du(t)

dt
= Au(t) + F(u(t)), u(0) = u0 ∈ X, (A.4)

whereu0(a) = (P0(a), Q0(a))T.Wecan see that operator A generates aC0-semigroup
{et A}t�0 and there exist numbers M � 1 and α > 0 such that

||et A|| � Meαt . (A.5)
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Let r > 0 be a constant such that (A.3) holds. Using this r and according to
Busenberg et al. (1991), abstract Cauchy problem (A.4) can be rewritten as

du(t)

dt
=

(
A − 1

r

)
u(t) + 1

r
(I + r F)u(t), u(0) = u0 ∈ X. (A.6)

Investigating problem (A.6), we obtain the mild solution by the solution of the integral
equation

u(t) = e− 1
r tet Au0 + 1

r

∫ t

0
e− 1

r (t−s)e(t−s)A(I + r F)u(s)ds.

Let {S(t)}t�0 be the semiflow defined by the solutions of the above variation of
constants formula. Then, S(t)u0 can be given as the limit of the iterative sequence
{un}n�0 such that

⎧⎨
⎩

u0(t) = u0,

un+1(t) = e− 1
r tet Au0 + 1

r

∫ t

0
e− 1

r (t−s)e(t−s)A(I + r F)un(s)ds.

Notice that un+1 is a linear convex combination of et Au0 ∈ X+ and e(t−s)A(I +
r F)un ∈ X+. Then, based on the positivity of et A and I + r F , we conclude that
un+1 ∈ X+ if un ∈ X+ by applying (A.3). It follows from the Lipschitz continuity of
F that {un} converges to the mild solution S(t)u0 ∈ X+ uniformly. Applying (A.5),
we have the estimate

||u(t)|| � Me(α− 1
r )t ||u0|| + MK

r

∫ t

0
e(α− 1

r )(t−s)||u(s)||ds,

where K := ||I + r F ||. From the Gronwall inequality, we can estimate that:

||u(t)|| � ||u0||Me(α− 1−MK
r )t .

Because the norm of the local solution grows at most exponentially as time evolves,
it can be extended to a global one. Hence, the solution S(t)u0, t > 0, is global.

Finally, we say that Cauchy problem (A.4) has a unique mild solution S(t)u0 ∈ X+
for eachu0 ∈ X+, andX+ is positively invariantwith respect to the semiflow {S(t)}t�0.
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