
Mathematical Biosciences 283 (2017) 118–135 

Contents lists available at ScienceDirect 

Mathematical Biosciences 

journal homepage: www.elsevier.com/locate/mbs 

Nonlinear dynamics of avian influenza epidemic models 

� 

Sanhong Liu 

a , b , Shigui Ruan 

b , c , ∗, Xinan Zhang 

b 

a School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, 437100, China 
b School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China 
c Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA 

a r t i c l e i n f o 

Article history: 

Received 9 November 2015 

Revised 16 November 2016 

Accepted 19 November 2016 

Available online 23 November 2016 

Keywords: 

Avian influenza 

Liapunov function 

Global asymptotical stability 

Allee effect 

Periodic solution 

a b s t r a c t 

Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as 

H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 hu- 

man infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. 

The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted 

in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two 

avian influenza bird-to-human transmission models with different growth laws of the avian population, 

one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain 

a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical 

stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov 

function method and LaSalle’s invariance principle, respectively. Moreover, we give necessary and suffi- 

cient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect 

of the avian population. Numerical simulations are also presented to illustrate the theoretical results. 

© 2016 Elsevier Inc. All rights reserved. 
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“Dedicated to our friend Dr. Dingbian Qian, Professor in the School

of Mathematical Sciences at Soochow University, Suzhou, Jiangsu

Province, China, who was critically infected by the H7N9 avian in-

fluenza virus in April 2013, fearfully stayed in the intensive care

unit for more than two months, and miraculously recovered.”

1. Introduction 

Influenza A viruses are divided into subtypes based on two pro-

teins on the surface of the virus: hemagglutinin (HA) and neu-

raminidase (NA). For example, the avian influenza A virus desig-

nation of H7N9 identifies it as having HA of the H7 subtype and

NA of the N9 subtype (CDC [8] ). Avian influenza A H7 viruses are

a group of influenza viruses that normally circulate among birds.

H7 influenza infections in humans are uncommon, but have been

confirmed world-wide in people who have direct contact with in-

fected birds. Most infections have been mild involving only con-

junctivitis and mild upper respiratory symptoms (CIDRAP [9] and

OIE [59] ). Although some H7 viruses (e.g. H7N2, H7N3 and H7N7)
� This work was partially supported by the National Natural Science Foundation 

(NNSF) of China (No. 11371161 and No. 11228104 ), the National Science Foundation 

( DMS-1412454 ), and a Startup Research Grant from Hubei University of Science and 

Technology (No. BK1513 ). 
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ave occasionally been found to infect humans, H7N9 had previ-

usly been isolated only in birds, with outbreaks reported in the

etherlands, Japan, and the United States. Until the 2013 outbreak

n China, no human infections with H7N9 viruses had ever been

eported (CIDRAP [9] and OIE [59] ). 

Differing from the highly pathogenic avian influenza virus

5N1, the H7N9 virus does not induce clinical signs in poultry and

s classified as a low pathogenicity avian influenza virus (LPAIV)

46] . However, the virus can infect humans and most of the re-

orted cases of human H7N9 infection have resulted in severe

espiratory illness [39] . From March 31 to August 31, 2013, 134

ases had been reported in mainland China, resulting in 45 deaths

NHFPC [45] ), an unusually high rate for a new infection and high

eath rate. Genetic characterization of H7N9 shows that the virus

esulted from the recombination of genes between several parent

iruses noted in poultry and wild birds in Asia [37] . Evidence sug-

ests that the gene that codes for HA has its origin in ducks and

he gene that codes for NA has its origin with ducks and probably

lso wild birds. The HA genes were circulating in the East Asian

yway in both wild birds and ducks, while the NA genes were in-

roduced from European lineages and transferred to ducks in China

y wild birds through migration along the East Asian flyway [40] .

here is very little information on the H7N9 virus in wild birds

o access their potential as source of domestic poultry and human

nfection. The mode of H7N9 virus transmission between avian

pecies remains unknown, but various wild birds have been im-
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licated as a source of transmission. Jones et al. [31] showed that

ociety finches, zebra finches, sparrows, and parakeets are suscep-

ible to H7N9 virus and shed virus into water. Jones et al. [32] fur-

her demonstrated that interspecies transmission of H7N9 virus oc-

urs readily between society finches and bobwhite quail but only

poradically between finches and chickens, and transmission oc-

urs through shared water. Since the experimental data of Pantin-

ackwood et al. [46] showed that quail and chickens are suscepti-

le to infection, shed large amounts of virus, and are likely impor-

ant in the spread of the virus to humans, it is therefore conceiv-

ble that passerine birds may serve as vectors for transmission of

7N9 virus to domestic poultry [32] . Data indicate that the novel

vian influenza A H7N9 virus was most likely transmitted from the

econdary wholesale market to the retail live-poultry market and

hen to humans [4,11] . To control the outbreak, from late April

o early June in 2013, local authorities of the provinces and mu-

icipalities, such as Jiangsu, Shanghai, and Zhejiang, temporarily

losed the retail live-poultry markets which proved to be an effec-

ive control measure. There were no reported cases in the summer

nd fall 2013. However, the virus came back in November 2013 and

gain in November 2014 and November 2015. In fact, the second

utbreak (from November 2013 to May 2014), the third outbreak

from November 2014 to June 2015), and the fourth outbreak (from

ovember 2015 to June 2016) caused 130 human cases with 35

eaths, 216 confirmed human cases with 99 deaths, and 110 con-

rmed human cases with 44 deaths, respectively (NHFPC [45] ). 

Mathematical modeling has become an important tool in ana-

yzing the epidemiological characteristics of infectious diseases and

an provide useful control measures [3,36] . In 2007, Iwami et al.

28] proposed ordinary differential equation (ODE) models to char-

cterize the dynamical behavior of avian influenza between hu-

an and avian populations. Since then various models have been

sed to study different aspects of avian influenza transmitted by

he H5N1 virus. Lucchetti et al. [43] developed an ODE model to

escribe the transmission dynamics of the avian influenza A virus

rom birds to humans and used the model to fit the human cases

eported by the WHO. Iwami et al. [29] investigated relations be-

ween the evolution of virulence and the effectiveness of pandemic

ontrol measures after the emergence of mutant avian influenza.

ung et al. [33] extended the study of Iwami et al. [28] for the pre-

ention of the pandemic influenza to evaluate the time-dependent

ptimal prevention policies, which were associated with elimina-

ion policy and quarantine policy, considering its execution cost.

wami et al. [30] designed and analyzed a deterministic patch-

tructured model in heterogeneous areas (with or without vacci-

ation) illustrating transmission of vaccine-sensitive and vaccine-

esistant strains during a vaccination program. Gumel [24] incor-

orated the dynamics of both wild and domestic birds and the

solation of individuals with symptoms of both the avian and mu-

ant strains. Ma and Wang [44] formulated a discrete-time model

ith reproductive and overwintering periods to assess the impact

f avian influenza transmission in poultry. Bourouiba et al. [5] in-

estigated the role of migratory birds in the spread of H5N1 avian

nfluenza among birds by considering a system of delay differen-

ial equations for the numbers of birds on patches, where the de-

ays represent the flight times between patches. See also Gourley

t al. [22] . Tuncer and Martcheva [52] constructed several bird-to-

uman transmission models to investigate the mechanisms for the

easonality in avian influenza H5N1 transmission. Wang and Wu

55] constructed a periodic systems of delay differential equations

odeling the spread of avian influenza by migratory birds between

he refuge ground and the summer breeding site. Chong and Smith

12] proposed two Filippov models with threshold policy to deter-

ine culling of infected birds and quarantine. 

Considering the fact that the domesticated birds are probably

he important infectious source for human population, Iwami et al.
28] assumed that the avian populations are subject to the rule of

onstant growth. But the possibility that migrant birds are viewed

s the original infection source is the largest [62] ). Migratory hosts

ay transmit pathogens to new areas, leading to the exposure and

otential infection of new host species [1] . Resident hosts, im-

unologically naive to these novel pathogens, may subsequently

ct as local amplifiers. For example, the global spread of West Nile

irus is considered to be greatly facilitated by migratory birds in-

roducing the virus to other wildlife and humans in many parts

f the world [47] . It is well-known that the logistic growth, where

he rate of reproduction is proportional to both the existing popu-

ation and the amount of available resources and increases quickly

t first and then more slowly as the population approaches its car-

ying capacity, is more reasonable than the constant growth for the

ildlife birds, including migratory and resident birds. Allee effect,

 phenomenon in which the reproduction rate of a population de-

reases when its density drops below a certain critical level, was

rstly observed by Allee [2] about aggregation and associated co-

perative and social characteristics among members of a species

n animal populations. The phenomenon in biology is called strong

llee effect, which is particularly relevant to endangered species

nd small or invasive populations. Habitat destruction, spread of

lien species, overharvest, pollution (including siltation), and dis-

ase (caused by either alien or native pathogens) are responsible

or endangering species [57] . The study of Serrano et al. [49] on

llee effect in colonial birds demonstrates that Allee effect, that is

ositive density dependence, appears to be the cause of the evolu-

ion of dispersal behavior. Skagen and Yackel [50] observed that

opulation density of small bird populations is correlated posi-

ively with both per capita fecundity and population growth rate

ue to the Allee effect. 

It has been reported that some wild species, such as the African

ild dog Lycaon pictus [6] and the island fox Urocyon littoralis [13] ,

uffer from both disease and an Allee effect. Diseases can drive

opulations to low densities as a result of Allee effect, in partic-

lar for diseases having reservoirs or affecting populations that are

t small pre-epidemic sizes [18] or for native island species ex-

osed to new pathogens [56] . In wild populations of Serins ( Seri-

us serinus ), Senar and Conroy [48] reported that avian pox infec-

ions were very virulent and survival rates of infected birds were

alf that of uninfected ones. Recently, great attention has been

aid to the theoretical modeling and analysis of the joint interplay

f infectious disease and Allee effects (see [20,21,26,27,34,35,51] ,

nd the references cited therein). On one hand, it has been ob-

erved that recurrent infectious disease outbreaks tend to enhance

he deleterious role of Allee effects within diseases capable of in-

ucing reductions in host fitness [35] . On the other hand, sus-

ained oscillations can occur induced by Allee effects via bifurca-

ions [7,26,35,51] . 

In this paper we construct two simplified avian-human epi-

emic models according to different growth rates of the avian

opulation, namely, with avian population being subject to logis-

ic growth and Allee effect. We always assume that the avian in-

uenza virus does not spread from person to person and mutate.

he avian population is classified into two subclasses: susceptible

nd infective, denoted by S a ( t ) and I a ( t ), respectively, and the hu-

an population is classified into three subclasses: susceptible, in-

ective and recovered/removed, denoted by S h ( t ), I h ( t ), and R h ( t ),

espectively. In order to construct the corresponding model, we

ake the following assumptions: 

1) The net growth rate of the susceptible avian population is de-

scribed by the function g ( S a ), where g(·) : R + → R is continu-

ous, R = (−∞ , ∞ ) , R + = [0 , ∞ ) ;
2) All new recruitments and newborns of the human population

are susceptible, the rate is denoted by � ; 
h 
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3) The avian influenza virus is not contagious from an infective

human to a susceptible human. It is only contagious from an

infective avian to a susceptible human; 

4) An infected avian keeps in the state of disease and cannot re-

cover, but an infected human can recover and the recovered hu-

man has permanent immunity; 

5) The incidence rate between the susceptible avian and the infec-

tive avian is bilinear. The incidence rate between the suscepti-

ble human and the infective avian is also bilinear. 

Based on the above assumptions, we have the following SI-SIR

avian influenza model: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S a 

dt 
= g( S a ) − βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a 

d S h 
dt 

= �h − βh S h I a − μh S h 

d I h 
dt 

= βh S h I a − ( μh + δh + γ ) I h 

d R h 

dt 
= γ I h − μh R h , 

(1)

where βa is the transmission rate from infective avian to suscep-

tible avian, μa is the natural death rate of the avian population,

δa is the disease-related death rate of the infected avian; βh is the

transmission rate from the infective avian to the susceptible hu-

man, μh is the natural death rate of the human population; δh is

the disease-related death rate of the infected human; γ is the re-

covery rate of the infective human. If the susceptible avian popu-

lation is subject to the logistic growth, then 

g(S a ) = r a S a 

(
1 − S a 

K a 

)
, (2)

where r a and K a are the intrinsic growth rate and maximal carry-

ing capacity of the avian population, respectively. If the susceptible

avian population is subject to Allee effect, then 

g(S a ) = r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
, (3)

where r a , M a , and m a ( m a < M a ) are the intrinsic growth rate, the

maximal carrying capacity and the critical carrying capacity of the

avian population, respectively. We assume that all parameters are

positive. 

We will analyze the global asymptotical stability of these sys-

tems and compare the sizes of the basic reproduction numbers for

both cases. The paper is organized as follows. The global analysis

of avian-human epidemic models in which the avian population is

subject to the rule of logistic growth law and Allee effect is dis-

cussed in Sections 2 and 3 , respectively, where the human popula-

tion is always subject to the rule of constant growth. In Section 4 ,

we compare the sizes of two basic reproduction numbers and pro-

vide numerical simulations of the model for both cases. A brief

discussion about the biological interpretations and conclusions is

given in the last section. 

2. Model (1) with logistic growth for avian population 

2.1. The model 

If the net growth rate of the avian population is subject to the

logistic growth law in system (1) , then we obtain the following SI-
IR model: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS a 

dt 
= r a S a 

(
1 − S a 

K a 

)
− βa S a I a 

dI a 

dt 
= βa S a I a − (μa + δa ) I a 

dS h 
dt 

= �h − βh I a S h − μh S h 

dI h 
dt 

= βh I a S h − (μh + δh + γ ) I h 

dR h 

dt 
= γ I h − μh R h , 

(4)

here r a ( K a ) is the intrinsic growth rate (the maximal carrying

apacity) of the avian population, the assumptions and the mean-

ngs of the other parameters are the same as in (1) . System (4) has

 unique solution satisfying initial conditions in R 

5 + which is the

ositively invariant set for system (4) . 

We can deduce two disease-free equilibria given by

 (0 , 0 , S ∗
h 
, 0 , 0) and B (K a , 0 , S 

∗
h 
, 0 , 0) from system (4) , where

 

∗
h 

= 

�h 
μh 

. 

Following the definition and computation procedure in Diek-

ann et al. [19] and van den Driessche and Watmough [54] , we

an rewrite system (4) as follows: 

dX 

dt 
= F − V 

here, 

 (t) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

I a (t) 

I h (t) 

S a (t) 

S h (t) 

R h (t) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, F = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

βa I a S a 

βh I a S h 

0 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

V = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(μa + δa ) I a 

(μh + δh + γ ) I h 

βa I a S a − βa S a 

(
1 − S a 

K a 

)
μh S h + βh I a S h − �h 

μh R h − γ I h 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

hen, 

F = 

⎛ 

⎝ 

βa K a 0 

βh S 
∗
h 

0 

⎞ 

⎠ , V = 

⎛ 

⎝ 

μa + δa 0 

0 μh + δh + γ

⎞ 

⎠ , 

F V 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

βa K a 

μa + δa 
0 

βh S 
∗
h 

μa + δa 
0 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. 

ence, we derive the basic reproduction number as follows 

 0 , 1 = 

K a βa 

μa + δa 
. 

f R 0 , 1 > 1 , we can also derive a unique endemic equilibrium given

y C(S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) , where 

S ∗∗
a = 

μa + δa 

βa 
, I ∗∗

a = 

r a (μa + δa ) 

K a β2 
a 

(R 0 , 1 − 1) , 

S ∗∗
h = 

�h 

βh I 
∗∗
a + μh 

, I ∗∗
h = 

βh I 
∗∗
a S ∗∗

h 

μh + δh + γ
, R 

∗∗
h = 

γ I ∗∗
h 

μh 

. 
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Before analyzing the dynamical behavior of the full model (4) ,

e study the dynamical behavior of the avian-only subsystem. 

.2. Analysis of the avian-only subsystem 

Consider the avian-only subsystem, given by the first two equa-

ions of system (4) , as follows: 
 

 

 

 

 

d S a 

dt 
= r a S a 

(
1 − S a 

K a 

)
− βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a . 

(5) 

t should be noted that the above avian system is independent of

he human system. Clearly, R 

2 + is the positively invariant attracting

et of subsystem (5) . Next we will discuss the dynamical behavior

f solutions to subsystem (5) in R 

2 + . 

.2.1. Local stability of the avian-only subsystem (5) 

The avian-only subsystem (5) always has two disease-free equi-

ibria given by A a (0, 0) and B a ( K a , 0). If R 0 , 1 > 1 , the system also

as a unique endemic equilibrium given by C a (S ∗∗
a , I 

∗∗
a ) . 

emma 2.1. (i) The disease-free equilibrium A a is always unstable;

ii) If μa + δa 

βa 
≥ K a (i.e., R 0 , 1 ≤ 1 ), then the disease-free equilibrium

 a is locally asymptotically stable for positive trajectories; (iii) If 0 <
μa + δa 

βa 
< K a (i.e., R 0 , 1 > 1 ), then the disease-free equilibrium B a is un-

table but the endemic equilibrium C a is locally asymptotically stable. 

roof. The characteristic equation of the Jacobian matrix at an ar-

itrary equilibrium ( S a , I a ) is 

λ −
(

r a − 2 r a 

K a 
S a − βa I a 

))
( λ − ( βa S a − μa − δa ) ) + β2 

a S a I a = 0 . 

(i) If (S a , I a ) = (0 , 0) , the eigenvalues are λ1 = r a > 0 , λ2 =
−(μa + δa ) < 0 . Hence, the equilibrium A a is always unsta-

ble. 

(ii) If R 0 , 1 < 1 and (S a , I a ) = (K a , 0) , the eigenvalues are λ1 =
−r a < 0 , λ2 = (μa + δa )(R 0 , 1 − 1) < 0 . Hence, the equilib-

rium B a is locally asymptotically stable. 

(iii) If R 0 , 1 > 1 and (S a , I a ) = (K a , 0) , the eigenvalues are λ1 =
−r a < 0 , λ2 = (μa + δa )(R 0 , 1 − 1) > 0 . Hence, the equilib-

rium B a is unstable; If R 0 , 1 > 1 and (S a , I a ) = (S ∗∗
a , I 

∗∗
a ) , the

above characteristic equation becomes 

λ2 + 

r a 

K a 
S ∗∗

a λ + β2 
a S 

∗∗
a I ∗∗

a = 0 . 

Since S ∗∗
a > 0 and I ∗∗

a > 0 if R 0 , 1 > 1 , all eigenvalues have

negative real parts. Hence, the equilibrium C a is locally

asymptotically stable. �

emark 2.2. If R 0 , 1 = 1 , then the endemic equilibrium C a coin-

ides with the disease-free equilibrium B a which is a saddle-node

nd is locally asymptotically stable for positive trajectories. 

.2.2. Global stability of the avian-only subsystem (5) 

emma 2.3. (i) If μa + δa 

βa 
≥ K a (i.e., R 0 , 1 ≤ 1 ), then the disease-free

quilibrium B a is globally asymptotically stable for positive trajecto-

ies; (ii) If 0 < 

μa + δa 

βa 
< K a (i.e., R 0 , 1 > 1 ), then the endemic equilib-

ium C a is globally asymptotically stable. 

roof. (i) If R 0 , 1 ≤ 1 , we choose a Liapunov function as follows 

 1 = S a − K a − K a ln 

S a 

K a 
+ I a . 
hen we have 

d V 1 

dt 

∣∣∣∣
(5) 

= (S a − K a ) 
(

r a − r a S a 

K a 
− βa I a 

)
+ βa S a I a − (μa + δa ) I a 

= 

−r a (S a − K a ) 2 

K a 
− βa I a (S a − K a ) + βa S a I a − (μa + δa ) I a 

= 

−r a (S a − K a ) 2 

K a 
+ βa K a I a − (μa + δa ) I a 

= 

−r a (S a − K a ) 
2 

K a 
+ I a (μa + δa )(R 0 , 1 − 1) ≤ 0 . 

ince { (S a , I a ) ∈ R 

2 + : 
d V 1 
dt 

= 0 } = { (S a , I a ) ∈ R 

2 + : S a = K a , I a = 0 } =
 B a } , according to LaSalle’s invariance principle (Hale [25] ),

he equilibrium B a is globally asymptotically stable for positive

rajectories. 

(ii) If R 0 , 1 > 1 , we choose a Liapunov function 

 2 = 

(
S a − S ∗∗

a − S ∗∗
a ln 

S a 

S ∗∗
a 

)
+ 

(
I a − I ∗∗

a − I ∗∗
a ln 

I a 

I ∗∗
a 

)
. 

hen we obtain 

d V 2 

dt 

∣∣∣
(5) 

= (S a − S ∗∗
a ) 

(
r a 

(
1 − S a 

K a 

)
− βa I a 

)
+ (I a − I ∗∗

a )(βa S a − μa − δa ) 

= (S a − S ∗∗
a ) 

(
r a S 

∗∗
a 

K a 
+ βa I 

∗∗
a − r a S a 

K a 
− βa I a 

)
+ βa (I a − I ∗∗

a )(S a − S ∗∗
a ) 

= − r a 

K a 
(S a − S ∗∗

a ) 
2 ≤ 0 . 

t follows that ˆ D = { (S a , I a ) ∈ int R 2 + : 
d V 2 
dt 

= 0 } = { (S a , I a ) : S a =
 

∗∗
a , I a ≥ 0 } . If ˆ D is an invariant set of subsystem (5) , then I a = I ∗∗

a 

y the first equation of subsystem (5) . Hence D 2 = { C a } . LaSalle’s

nvariance principle implies that the equilibrium C a is globally

symptotically stable. �

.3. Analysis of the full system 

Since the first four equations of system (4) are independent of

he variable R h , we only need to analyze the dynamical behavior

f the following equivalent system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d S a 

dt 
= r a S a 

(
1 − S a 

K a 

)
− βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a 

d S h 
dt 

= �h − βh I a S h − μh S h 

d I h 
dt 

= βh I a S h − ( μh + δh + γ ) I h . 

(6) 

learly, R 

4 + is a positively invariant attracting set. We discuss the

ynamical behavior of system (6) in the positively invariant set R 

4 + .

.3.1. Local stability of the full system (6) 

System (6) always has two disease-free equilibria given

y A ah (0 , 0 , S ∗
h 
, 0) and B ah (K a , 0 , S 

∗
h 
, 0) ; if R 0, 1 > 1, then sys-

em (6) also has a unique endemic equilibrium given by

 ah (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

) . 

emma 2.4. (i) The disease-free equilibrium A ah is always unstable;

ii) If μa + δa 

βa 
≥ K a (i.e., R 0 , 1 ≤ 1 ), then the disease-free equilibrium B ah 

s locally asymptotically stable for positive trajectories; (iii) If μa + δa 

βa 
<

 a (i.e., R 0 , 1 > 1 ), then the disease-free equilibrium B ah is unstable

nd the endemic equilibrium C is locally asymptotically stable. 
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Proof. The characteristic equation of the Jacobian matrix at an ar-

bitrary equilibrium ( S a , I a , S h , I h ) takes the form 

( λ + βh I a + μh ) ( λ + μh + δh + γ ) 

×
((

λ −
(

r a − 2 r a 

K a 
S a − βa I a 

))
× ( λ − (βa S a − μa − δa ) ) + β2 

a S a I a 

)
= 0 . 

(i) If (S a , I a , S h , I h ) = (0 , 0 , S ∗
h 
, 0) , the eigenvalues are λ1 = r a > 0 ,

λ2 = −(μa + δa ) , λ3 = −μh , λ4 = −(μh + δh + γ ) . Hence, A ah is

always unstable. 

ii) If R 0 , 1 < 1 and (S a , I a , S h , I h ) = (K a , 0 , S 
∗
h 
, 0) , the eigenvalues

are λ1 = −r a < 0 , λ2 = (μa + δa )(R 0 , 1 − 1) < 0 , λ3 = −μh < 0 ,

λ4 = −(μh + δh + γ ) < 0 . Hence, the equilibrium B ah is locally

asymptotically stable. 

ii) If R 0 , 1 > 1 and (S a , I a , S h , I h ) = (K a , 0 , S 
∗
h 
, 0) , the eigenvalues

are λ1 = −r a < 0 , λ2 = (μa + δa )(R 0 , 1 − 1) > 0 , λ3 = −μh < 0 ,

λ4 = −(μh + δh + γ ) < 0 . Hence, the equilibrium B ah is unsta-

ble; If R 0 , 1 > 1 and (S a , I a , S h , I h ) = (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

) , the char-

acteristic equation of the Jacobian matrix at the endemic equi-

librium C ah is (
λ2 + 

r a 

K a 
S ∗∗

a λ + βa 
2 
S ∗∗

a I ∗∗
a 

)
( λ + βh I 

∗∗
a + μh ) 

×( λ + μh + δh + γ ) = 0 . 

Since S ∗∗
a > 0 , I ∗∗

a > 0 if R 0 , 1 > 1 , all eigenvalues have negative

real parts. Hence, the endemic equilibrium C ah is locally asymp-

totically stable. 

�

Remark 2.5. If R 0 , 1 = 1 , then the equilibrium C ah coincides with

the equilibrium B ah which is a saddle-node and is locally asymp-

totically stable for positive trajectories. 

2.3.2. Global stability of the full system (6) 

Theorem 2.6. (i) If μa + δa 

βa 
≥ K a (i.e. R 0 , 1 ≤ 1 ), then the disease-free

equilibrium B ah of the full system (6) is globally asymptotically stable;

(ii) If 0 < 

μa + δa 

βa 
< K a (i.e., R 0 , 1 > 1 ), then the endemic equilibrium

C ah of the full system (6) is globally asymptotically stable. 

Proof. (i) According to Lemma 2.3 , the disease-free equilibrium B a 
of the avian-only subsystem (5) is globally asymptotically stable if

R 0 , 1 ≤ 1 . To prove the global stability of B ah , we only need to con-

sider system (6) with the avian components already at the disease-

free steady state, given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

(7)

Clearly, we can obtain that S h → S ∗
h 
, I h → 0 if t → ∞ . Hence, the

disease-free equilibrium B ah is globally asymptotically stable. 

(ii) Similarly, by Lemma 2.3 , the endemic equilibrium C a of

avian-only subsystem (5) is globally asymptotically stable if R 0 , 1 >

1 . To prove the global stability of the equilibrium C ah , we only need

to consider system (6) with the avian components already at the

endemic steady state, given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

d S h 
dt 

= �h − βh I 
∗∗
a S h − μh S h 

d I h 
dt 

= βh I 
∗∗
a S h − (μh + δh + γ ) I h . 

(8)

We can easily deduce that subsystem (8) has a unique positive

equilibrium (S ∗∗
h 

, I ∗∗
h 

) which is locally asymptotically stable. 
To prove the global stability of the positive equilibrium (S ∗∗
h 

, I ∗∗
h 

)

f subsystem (8) , we choose a Lyapunov function as follows 

 = S ∗∗
h 

(
S h 
S ∗∗

h 

− ln 

S h 
S ∗∗

h 

)
+ I ∗∗

h 

(
I h 
I ∗∗
h 

− ln 

I h 
I ∗∗
h 

)
, 

hen, 

dV 

dt 

∣∣∣∣
(8) 

= 

d S h 
dt 

− S ∗∗
h 

S h 

d S h 
dt 

+ 

d I h 
dt 

− I ∗∗
h 

I h 

d I h 
dt 

. 

sing the relationships that (at endemic state) �h = βh I 
∗∗
a S ∗∗

h 
+

h S 
∗∗
h 

and μh + δh + γ = 

βh I 
∗∗
a S ∗∗

h 
I ∗∗
h 

, we obtain 

d S h 
dt 

− S ∗∗
h 

S h 

d S h 
dt 

= (�h − βh I 
∗∗
a S h − μh S h ) 

− S ∗∗
h 

S h 
(�h − βh I 

∗∗
a S h − μh S h ) 

= ( βh I 
∗∗
a S ∗∗

h + μh S 
∗∗
h − βh I 

∗∗
a S h − μh S h ) 

− S ∗∗
h 

S h 
( βh I 

∗∗
a S ∗∗

h + μh S 
∗∗
h − βh I 

∗∗
a S h − μh S h ) 

= μh S 
∗∗
h 

(
2 − S ∗∗

h 

S h 
− S h 

S ∗∗
h 

)
+ 2 βh I 

∗∗
a S ∗∗

h 

− βh I 
∗∗
a S h − βh I 

∗∗
a 

(S ∗∗
h 

) 2 

S h 

nd 

d I h 
dt 

− I ∗∗
h 

I h 

d I h 
dt 

= ( βh I 
∗∗
a S h − (μh + δh + γ ) I h ) 

− I ∗∗
h 

I h 
( βh I 

∗∗
a S h − (μh + δh + γ ) I h ) 

= 

(
βh I 

∗∗
a S h − βh I 

∗∗
a S ∗∗

h 

I h 
I ∗∗
h 

)

− I ∗∗
h 

I h 

(
βh I 

∗∗
a S h − βh I 

∗∗
a S ∗∗

h 

I h 
I ∗∗
h 

)

= βh I 
∗∗
a S h + βh I 

∗∗
a S ∗∗

h − βh I 
∗∗
a S ∗∗

h 

I h 
I ∗∗
h 

− βh I 
∗∗
a S h 

I ∗∗
h 

I h 
. 

herefore, we have 

dV 

dt 

∣∣∣
(8) 

= μh S 
∗∗
h 

(
2 − S ∗∗

h 

S h 
− S h 

S ∗∗
h 

)

+ βh I 
∗∗
a S ∗∗

h 

(
3 − S ∗∗

h 

S h 
− I h 

I ∗∗
h 

− S h 
S ∗∗

h 

I ∗∗
h 

I h 

)
. 

ince the arithmetic mean exceeds the geometric mean, we have 

 − S ∗∗
h 

S h 
− S h 

S ∗∗
h 

≤ 0 , 

 − S ∗∗
h 

S h 
− I h 

I ∗∗
h 

− S h 
S ∗∗

h 

I ∗∗
h 

I h 
≤ 0 . 

ence, dV 
dt 

| (8) ≤ 0 . Due to ˜ D = { (S h , I h ) ∈ int R 

2 + : 
dV 
dt 

= 0 } =
 (S ∗∗

h 
, I ∗∗

h 
) } , by the LaSalle’s invariance principle, it follows that

 h → S ∗∗
h 

and I h → I ∗∗
h 

if t → ∞ . Therefore, the endemic equilibrium

 ah of the full system (6) is globally asymptotically stable. �

Now we can state our results for the original SI-SIR model

4) with logistic growth for the avian population. 

orollary 2.7. (i) The disease-free equilibrium A of model (4) with lo-

istic avian growth is always unstable; (ii) If μa + δa 

βa 
≥ K a (i.e., R 0 , 1 ≤

 ), then the disease-free equilibrium B of model (4) is globally asymp-

otically stable for positive trajectories; (iii) If 0 < 

μa + δa 

βa 
< K a (i.e.,
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S

 0 , 1 > 1 ), then the disease-free equilibrium B of model (4) is unstable

ut the endemic equilibrium C of model (4) is globally asymptotically

table. 

emark 2.8. If the susceptible avian population is subject to con-

tant growth, that is, g(S a ) = �a − μa S a , where �a is the recruit

ate of new recruitments and newborns and μa is the mortality

ate of the avian population, then we can obtain analogous results

nd the dynamics are very much similar to that of system (4) with

ogistic avian growth. 

. Model (1) with Allee effect for avian population 

.1. The model 

If the avian population is subject to Allee effect in system (1) ,

hen we have the following SI-SIR model: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d S a 

dt 
= r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
− βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a 

d S h 
dt 

= �h − βh I a S h − μh S h 

d I h 
dt 

= βh I a S h − ( μh + δh + γ ) I h 

d R h 

dt 
= γ I h − μh R h , 

(9) 

here r a , M a and m a ( m a < M a ) are the intrinsic growth rate,

he maximal carrying capacity and the critical carrying capacity

f the avian population, respectively, other assumptions and the

eanings of other parameters remain unchanged. System (9) has

 unique solution satisfying the initial conditions in R 

5 + which is a

ositively invariant set. 

Define the basic reproduction number by 

 0 , 2 = 

βa (M a + m a )(μa + δa ) 

(μa + δa ) 2 + M a m a β2 
a 

. 

e can deduce three disease-free equilibria given by

 1 (0 , 0 , S ∗
h 
, 0 , 0) , H 2 (m a , 0 , S 

∗
h 
, 0 , 0) , and H 3 (M a , 0 , S 

∗
h 
, 0 , 0) , where

 

∗
h 

= 

�h 
μh 

. If R 0 , 2 > 1 , we can also derive a unique endemic

quilibrium given by H 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) , where 

 

∗∗
a = 

μa + δa 

βa 
, I ∗∗

a = 

r a 

βa 

β2 
a M a m a + (μa + δa ) 2 

M a m a β2 
a 

(R 0 , 2 − 1) , 

 

∗∗
h = 

�h 

βh I 
∗∗
a + μh 

, I ∗∗
h = 

βh I 
∗∗
a S ∗∗

h 

μh + δh + γ
, R 

∗∗
h = 

γ I ∗∗
h 

μh 

. 

omparing the relationship between R 0 , 2 and 1, we have the fol-

owing results: 

(i) R 0 , 2 < 1 ⇔ 

μa + δa 

βa 
< m a or μa + δa 

βa 
> M a ; 

(ii) R 0 , 2 > 1 ⇔ m a < 

μa + δa 

βa 
< M a ; 

(iii) R 0 , 2 = 1 ⇔ 

μa + δa 

βa 
= m a or μa + δa 

βa 
= M a . 

Before analyzing the dynamical behavior of the full model

9) with Allee effect, once again we first study the dynamical be-

avior of the avian-only subsystem. 
.2. Analysis of the avian-only subsystem 

Consider the following avian-only subsystem: 
 

 

 

 

 

d S a 

dt 
= r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
− βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a . 

(10) 

imilarly, R 

2 + is a positively invariant set of the subsystem (10) .

irst we discuss its dynamical behavior in R 

2 + . 

.2.1. Local stability of the avian-only subsystem (10) 

The avian-only subsystem (10) always has three disease-free

quilibria given by O (0, 0) , A ( m a , 0) and B ( M a , 0); if R 0 , 2 > 1 ,

hen the subsystem also has a unique endemic equilibrium given

y E(S ∗∗
a , I 

∗∗
a ) . 

emma 3.1. (i) The disease-free equilibrium O is always locally

symptotically stable but the disease-free equilibrium A is always un-

table; (ii) The disease-free equilibrium B is unstable if 0 < 

μa + δa 

βa 
<

 a but locally asymptotically stable if μa + δa 

βa 
≥ M a for positive tra-

ectories; (iii) The endemic equilibrium E is unstable if m a < 

μa + δa 

βa 
<

M a + m a 
2 but locally asymptotically stable if M a + m a 

2 ≤ μa + δa 

βa 
< M a . 

roof. The characteristic equation of the Jacobian matrix of an ar-

itrary equilibrium ( S a , I a ) is [
λ −

(
r a 

(
−3 S 2 a + 2(M a + m a ) S a 

M a m a 
− 1 

)
− βa I a 

)]
[ λ − (βa S a − μa − δa ) ] + β2 

a S a I a = 0 . 

(i) If (S a , I a ) = (0 , 0) , the eigenvalues are λ1 = −r a < 0 , λ2 =
−(μa + δa ) < 0 . Hence, the disease-free equilibrium O is al-

ways locally asymptotically stable; If (S a , I a ) = (m a , 0) , the

eigenvalues are λ1 = 

(M a −m a ) r a 
M a 

> 0 , λ2 = βa (m a − μa + δa 

βa 
) .

Hence, the equilibrium A is always unstable; 

(ii) If (S a , I a ) = (M a , 0) , the eigenvalues are λ1 = 

(m a −M a ) r a 
m a 

< 0 ,

λ2 = βa (M a − μa + δa 

βa 
) . If 0 < 

μa + δa 

βa 
< M a , then λ2 > 0. Hence,

the equilibrium B is unstable; If μa + δa 

βa 
> M a , then λ2 < 0.

Hence, the equilibrium B is locally asymptotically stable; 

(iii) If m a < 

μa + δa 

βa 
< M a and (S a , I a ) = (S ∗∗

a , I 
∗∗
a ) , the above char-

acteristic equation becomes 

λ2 + aλ + b = 0 , (11)

where 

a = − r a 

M a m a 

2(μa + δa ) 

βa 

(
M a + m a 

2 

− μa + δa 

βa 

)
, 

b = 

r a (μa + δa )( β2 
a M a m a + (μa + δa ) 2 ) 

M a m a βa 
2 

(R 0 , 2 − 1) . 

Clearly, if M a + m a 
2 < 

μa + δa 

βa 
< M a , then a > 0 and b > 0.

Thus all eigenvalues have negative real parts and the en-

demic equilibrium E is locally asymptotically stable; if m a <
μa + δa 

βa 
< 

M a + m a 
2 , then a < 0 and b > 0. Hence all the eigen-

values have positive real parts and the endemic equilib-

rium E is unstable. If μa + δa 

βa 
= 

M a + m a 
2 , the characteristic Eq.

(11) has purely imaginary eigenvalues ± i ω, where ω =√ 

β2 
a S 

∗∗
a I ∗∗

a > 0 . In this case, the endemic equilibrium E is a

center or a fine focus. 

Next, we shall study the type of the equilibrium E if μa + δa 

βa 
=

M a + m a 
2 . Making a transformation 

 = S a − S ∗∗
a , I = I a − I ∗∗

a 
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System (10) can be turned into ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= r a (S + S ∗∗

a ) 
(

1 − S + S ∗∗
a 

M a 

)(
S + S ∗∗

a 

m a 
− 1 

)
− βa (S + S ∗∗

a )(I + I ∗∗
a ) 

dI 

dt 
= βa (S + S ∗∗

a )(I + I ∗∗
a ) − (μa + δa )(I + I ∗∗

a ) . 

(12)

Simplifying system (12) , it becomes ⎧ ⎪ ⎨ 

⎪ ⎩ 

dS 

dt 
= −βa S 

∗∗
a I − r a S 

∗∗
a 

M a m a 
S 2 − βa IS − r a 

M a m a 
S 3 

dI 

dt 
= βa I 

∗∗
a S + βa IS. 

(13)

Let x = S, y = 

√ 

S ∗∗
a 

I ∗∗
a 

I. System (13) can be written as ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dx 

dt 
= −

√ 

β2 
a S 

∗∗
a I ∗∗

a y − r a S 
∗∗
a 

M a m a 
x 2 − βa √ 

S ∗∗
a 

I ∗∗
a 

xy − r a 

M a m a 
x 3 

dy 

dt 
= 

√ 

β2 
a S 

∗∗
a I ∗∗

a x + βa xy. 

(14)

According to the Hopf bifurcation formula in Guckenheimer and

Holmes [23] in two-dimensional systems 

dx 

dt 
= −ωy + f (x, y ) , 

dy 

dt 
= ωx + g(x, y ) , 

the singular point (0, 0) of system (14) is a stable fine focus of

order one for c < 0, where 

c = 

f xxx + f xyy + g xxy + g yyy 

16 

+ 

f xy ( f xx + f yy ) − g xy (g xx + g yy ) − f xx g xx + f yy g yy 

16 ω 

, 

in which the partial derivatives are all evaluated at (0, 0) as fol-

lows: f xxx = 

−6 r a 
M a m a 

, f xyy = 0 , g xxy = 0 , g yyy = 0 , f xx = 

−2 r a S 
∗∗
a 

M a m a 
, f xy =

−βa √ 

S ∗∗
a 

I ∗∗
a 

, f yy = 0 , g xx = 0 , g xy = βa , g yy = 0 . Then c = 

−r a 
4 M a m a 

< 0 . Thus,

the trivial equilibrium (0, 0) of system (14) is a stable fine focus of

order one. Hence, the endemic equilibrium E of subsystem (10) is

a stable fine focus of order one for μa + δa 

βa 
= 

M a + m a 
2 . 

In summary, the endemic equilibrium E of the avian-only sub-

system (10) is locally asymptotically stable if M a + m a 
2 ≤ μa + δa 

βa 
< M a 

and unstable if m a < 

μa + δa 

βa 
< 

M a + m a 
2 . �

Remark 3.2. If μa + δa 

βa 
= m a , then the equilibrium E coincides with

the equilibrium A , which is a saddle-node and the disease-free

equilibrium A is unstable for positive trajectories; If μa + δa 

βa 
= M a ,

then the equilibrium E coincides with the equilibrium B , which is

a saddle-node and the disease-free equilibrium B is locally asymp-

totically stable for positive trajectories. 

In order to discuss the existence and uniqueness of limit cycles

in the avian-only subsystem (10) , we introduce a lemma. 

Lemma 3.3. ( [15 , 16] ) Let f ( x ) and g ( x ) be continuously differentiable

functions on an open interval ( r 1 , r 2 ) and ψ( y ) be a continuously dif-

ferentiable function on R . Consider the Liénard system ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 

dt 
= ψ(y ) −

∫ x 

x 0 

f (u ) du, 

dy 

dt 
= −g(x ) 

(15)

and assume that 

(i) dψ(y ) 
dy 

> 0 ; 
(ii) there is a unique x 0 ∈ ( r 1 , r 2 ) such that (x − x 0 ) g(x − x 0 ) > 0

for x 	 = x 0 and g(x 0 ) = 0 ; 

(iii) f (x 0 ) 
d 
dx 

( f (x ) 
g(x ) 

) < 0 for x 	 = x 0 . 

Then system (15) has at most one limit cycle, and if it exists, it is

yperbolic. 

heorem 3.4. If m a < 

μa + δa 

βa 
< 

M a + m a 
2 , then the avian-only subsys-

em (10) has a unique limit cycle which is hyperbolic. 

roof. In order to apply Lemma 3.3 , we make a transformation 

 a = x, I a = e y , d t = −x −1 d τ. 

ystem (10) can be written as 
 

 

 

 

 

dx 

dτ
= βa e 

y − r a 

(
1 − x 

M a 

)(
x 

m a 
− 1 

)
≡ψ(y ) − F (x ) 

dy 

dτ
= 

(μa + δa ) 

x 
− βa ≡ − g(x ) , 

(16)

here ψ(y ) = βa e 
y , F (x ) = r a (1 − x 

M a 
)( x 

m a 
− 1) , and g(x ) = βa −

(μa + δa ) 
x . 

Set r 1 = m a , r 2 = 

M a + m a 
2 . We check the three conditions of

emma 3.3 : 

(i) dψ(y ) 
dy 

= βa e 
y > 0 . 

(ii) dg(x ) 
dx 

= 

μa + δa 

x 2 
> 0 . We choose x 0 = 

μa + δa 

βa 
∈ (r 1 , r 2 ) , where x 0 

satisfies that g(x 0 ) = 0 . Hence, (x − x 0 ) g(x − x 0 ) > 0 for x 	 =
x 0 . 

(iii) f (x ) = 

dF (x ) 
dx 

= 

−2 r a 
M a m a 

(x − M a + m a 
2 ) , f (x 0 ) = 

−2 r a 
M a m a 

(x 0 −
M a + m a 

2 ) > 0 , f (x ) 
g(x ) 

= 

−r a x (2 x −(M a + m a )) 
M a m a (βa x −(μa + δa )) 

, d 
dx 

( f (x ) 
g(x ) 

) =
h (x ) 

M a m a ( βa x −(μa + δa )) 2 
, where h (x ) = r a (−2 βa x 

2 + 4(μa +
δa ) x − (μa + δa )(M a + m a )) , 

d 
dx 

(h (x )) = −4 βa r a (x − μa + δa 

βa 
) .

When 

˜ x = 

μa + δa 

βa 
= x 0 , h ′ ( ̃  x ) = 0 , h ′ ( x ) > 0 for m a < x < ̃x

and h ′ ( x ) < 0 for ˜ x < x < 

m a + M a 
2 . h ( ̃  x ) = 2(μa +

δa ) r a ( 
μa + δa 

βa 
− M a + m a 

2 ) < 0 . Hence, we have h (x ) < h ( ̃  x ) < 0 ,

f (x 0 ) 
d 
dx 

( f (x ) 
g(x ) 

) < 0 for m a < x < 

M a + m a 
2 and x 	 = x 0 . 

Thus, system (16) satisfies the three conditions of Lemma 3.3 .

o the avian-only subsystem (10) has at most one limit cycle, and

t is hyperbolic. 

Next, we prove the existence of a limit cycle of subsystem (10) .

e choose βa as a perturbed parameter. The equation 

μa + δa 

βa 
=

M a + m a 
2 implies that βa = 

2(μa + δa ) 
M a + m a 

. Set μ = βa − 2(μa + δa ) 
M a + m a 

, where | μ|

1. According to Lemma 3.1 , we have the following results: 

If μ < 0 (i.e., μa + δa 

βa 
> 

M a + m a 
2 ), then the endemic equilibrium E

s locally asymptotically stable; If μ = 0 (i.e., μa + δa 

βa 
= 

M a + m a 
2 ), then

he endemic equilibrium E is a stable fine focus of order one; If

> 0 (i.e., μa + δa 

βa 
< 

M a + m a 
2 ), then the endemic equilibrium E is an

nstable focus. 

By the results in Zhang and Feng [60] (p.207), there exists at

east one stable limit cycle in the neighborhood of the endemic

quilibrium E of system (10) for sufficient small μ > 0. Thus, sys-

em (10) has a unique limit cycle which is hyperbolic for m a <
μa + δa 

βa 
< 

M a + m a 
2 . �

.2.2. Global stability of the avian-only subsystem (10) 

In order to study global stability of these equilibria, we need

o analyze the critical point at infinity of the avian-only subsystem

10) . 

Making a Poincaré transformation 

 a = 

1 

z 
, I a = 

u 

z 
or z = 

1 

S a 
, u = 

I a 

S a 

nd let dτ = 

dt 
2 . Then system (10) can be written as 
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3

 

t  
 

 

 

 

 

 

 

 

 

 

 

du 

dτ
= 

r a 

M a m a 
u + 

(
βa − r a (M a + m a ) 

M a m a 

)
uz 

+ βa u 

2 z + (r a − μa − δa ) u z 2 

dz 

dτ
= 

r a 

M a m a 
z − r a (M a + m a ) 

M a m a 
z 2 + βa u z 2 + r a z 

3 . 

(17) 

t is clear to see that there is a unique equilibrium C (0, 0) on the

 -axis. The eigenvalues of the Jacobian matrix of the equilibrium

 (0, 0) of system (17) are λ1 = λ2 = 

r a 
M a m a 

. Hence, the equilibrium

 (0, 0) is an unstable node. 

Making another Poincaré transformation 

 a = 

v 
z 
, I a = 

1 

z 
or z = 

1 

I a 
, v = 

S a 

I a 

nd letting dτ = 

dt 
z 2 

. Then system (10) is transformed into 

 

 

 

 

 

dv 
dτ

= −βa v z + (μa + δa ) v z 2 − βa v 2 z + r a v 
(

z − v 
M a 

)( v 
m a 

− z 

)
dz 

dτ
= −βa v z 2 + (μa + δa ) z 

3 . 

(18) 

et z = 0 . Then system (18) has an equilibrium D (0, 0) which is a

igher order singular point. The geometric property of the higher

rder singular point D (0, 0) of system (18) is decided by the fol-

owing system: 
 

 

 

 

 

dv 
dτ

= −βa v z 

dz 

dτ
= −βa v z 2 + (μa + δa ) z 

3 . 

(19) 

aking a time transformation 

 τ = d τ1 /z. 

hen system (19) becomes 
 

 

 

 

 

dv 
dτ1 

= −βa v 

dz 

dτ1 

= −βa v z + (μa + δa ) z 
2 . 

(20) 

ystem (20) has a unique equilibrium (0, 0) which is a higher or-

er singular point with one of the eigenvalues being zero. By the

esults in Zhang et al. [61] , the equilibrium (0, 0) is a saddle-node.

Thus, we have the following results: system (10) has two crit-

cal points at infinity given by C (0, 0) and D (0, 0), where C (0, 0)

orresponds with the critical point at infinity of the S a -axis and is

n unstable node, and D (0, 0) corresponds with the critical point

t infinity of the I a -axis and is a saddle-node. 

Hence, we can always divide the region R 

2 + into sub-regions D 1 

nd D 2 as follows: 

(i) If 0 < 

μa + δa 

βa 
≤ m a , then the sub-region D 1 is surrounded by

the saddle-node separatrix BD , curve DO , and curve OB ; the

sub-region D 2 is surrounded by the saddle-node separatrix

BD , curve CD , and curve CB . 

(ii) If m a < 

μa + δa 

βa 
< 

m a + M a 
2 , then the sub-region D 1 is sur-

rounded by the saddle-node separatrix DA , curve DO , and

curve AO ; the sub-region D 2 is surrounded by the saddle-

node separatrix DA , curve AC , and curve CD . 

(iii) If m a + M a 
2 ≤ μa + δa 

βa 
< M a , then the sub-region D 1 is sur-

rounded by the saddle-node separatrix DA , curve DO , and

curve AO ; the sub-region D 2 is surrounded by the saddle-

node separatrix DA , curve AC , and curve CD . 

(iv) If μa + δa 

βa 
≥ M a , then the sub-region D 1 is surrounded by the

saddle-node separatrix DA , curve DO , and curve AO ; the sub-

region D 2 is surrounded by the saddle-node separatrix DA ,
curve AC , and curve CD . o
The global dynamics of the avian-only subsystem (10) can be

ummarized in the following theorem. 

heorem 3.5. (i) The disease-free equilibrium O of the avian-only

ubsystem (10) is always globally asymptotically stable in D 1 ; (ii) If

 a < 

μa + δa 

βa 
< 

m a + M a 
2 , then there is a limit cycle in the neighborhood

f the endemic equilibrium E of the avian-only subsystem (10) which

s globally asymptotically stable in D 2 ; (iii) If m a + M a 
2 ≤ μa + δa 

βa 
< M a ,

hen the endemic equilibrium E of the avian-only subsystem (10) is

lobally asymptotically stable in D 2 ; (iv) If μa + δa 

βa 
≥ M a , then the

isease-free equilibrium B of the avian-only subsystem (10) is glob-

lly asymptotically stable in D 2 . 

roof. Lemma 3.1 implies that the disease-free equilibrium O

s always locally asymptotically stable, the endemic equilibrium

 is locally asymptotically stable for m a + M a 
2 ≤ μa + δa 

βa 
< M a , and

he disease-free equilibrium B is locally asymptotically stable for
μa + δa 

βa 
≥ M a . 

(i) If ( S a , I a ) ∈ D 1 , it should be noted that subsystem (10) has no

endemic equilibrium in the interior of D 1 and the S a - and I a -

axes are positively invariant, so there is no limit cycle in D 1 .

Hence, the disease-free equilibrium O is globally asymptoti-

cally stable in D 1 (see Fig. 1 (a)). 

(ii) If m a < 

μa + δa 

βa 
< 

M a + m a 
2 and ( S a , I a ) ∈ D 2 , by Lemma 3.1 and

Theorem 3.4 , subsystem (10) has a unique limit cycle which

is hyperbolic in D 2 and the endemic equilibrium E is an

unstable focus, thus we can deduce that the limit cycle

is internally stable (semistable from inside); according to

Lemma 3.1 , the equilibrium B is an unstable node, the in-

finite point C is an unstable node, the infinite point D is a

saddle-node, and the saddle-node separatrix DA is a curve

from the point D to the point A , thus solutions starting from

the exterior of the limit cycle are tending to the limit cy-

cle, that is, the limit cycle is externally stable (semistable

from outside). Hence, the limit cycle is globally asymptoti-

cally stable in D 2 (see Fig. 1 (b)). 

(iii) If m a + M a 
2 ≤ μa + δa 

βa 
< M a and ( S a , I a ) ∈ D 2 , by Theorem 3.4 ,

we know that there is no limit cycle in the neighborhood

of the endemic equilibrium E in the D 2 . On the other hand,

according to Lemma 3.1 , the endemic equilibrium E is a sta-

ble focus, the equilibrium B is an unstable saddle, the infi-

nite point C is an unstable node, the infinite point D is a

saddle-node, and the saddle-node separatrix DA is a curve

from the point D to the point A , thus solutions starting from

the region D 2 are tending to the equilibrium E . Hence, the

endemic equilibrium E is globally asymptotically stable in D 2 

(see Fig. 1 (c)). 

(iv) If μa + δa 

βa 
≥ M a and ( S a , I a ) ∈ D 2 , it should be noted that there

is no endemic equilibrium in the region D 2 , so there is no

limit cycle. By Lemma 3.1 , the equilibrium B is a stable node,

the infinite point C is an unstable node, the infinite point

D is a saddle-node, and the saddle-node separatrix DA is a

curve from the point D to the point A , thus all solutions

starting from the region D 2 are tending to the disease-free

equilibrium B . Hence, the disease-free equilibrium B is glob-

ally asymptotically stable in D 2 (see Fig. 1 (d)). �

.3. Analysis of the full system 

Since the first four equations of system (9) are independent of

he variable R h , similarly we only analyze the dynamical behavior

f the following equivalent system 
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Fig. 1. The plots are the global phase portraits of the avian-only subsystem (10) with respect to μa + δa 

βa 
. (a) 0 < 

μa + δa 

βa 
≤ m a ; (b) m a < 

μa + δa 

βa 
< 

m a + M a 
2 

; (c) m a + M a 
2 

≤ μa + δa 

βa 
< M a ; 

(d) μa + δa 

βa 
≥ M a . 
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t  
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S a 

dt 
= r a S a 

(
1 − S a 

M a 

)(
S a 

m a 
− 1 

)
− βa S a I a 

d I a 

dt 
= βa S a I a − ( μa + δa ) I a 

d S h 
dt 

= �h − βh I a S h − μh S h 

d I h 
dt 

= βh I a S h − ( μh + δh + γ ) I h . 

(21)

We discuss the dynamical behavior of system (21) in its positively

invariant set R 

4 + . 

3.3.1. Local stability of the full system (21) 

System (21) has three equilibria given by O ah (0 , 0 , S ∗
h 
, 0) ,

A ah (m a , 0 , S 
∗
h 
, 0) , and B ah (M a , 0 , S 

∗
h 
, 0) . If R 0 , 2 > 1 , system

(21) also has a unique endemic equilibrium given by E ah (S ∗∗
a , I 

∗∗
a ,

S ∗∗
h 

, I ∗∗
h 

) . 

Lemma 3.6. (i) The disease-free equilibrium O ah is always locally

asymptotically stable and the disease-free equilibrium A ah is always

unstable; (ii) If μa + δa 

βa 
< M a , then the disease-free equilibrium B ah is

unstable; if μa + δa 

βa 
≥ M a , then the disease-free equilibrium B ah is lo-

cally asymptotically stable; (iii) If m a < 

μa + δa 

βa 
< 

M a + m a 
2 , then the en-

demic equilibrium E ah is unstable; if M a + m a 
2 ≤ μa + δa 

βa 
< M a , then the

endemic equilibrium E ah is locally asymptotically stable. 

Proof. The characteristic equation of the Jacobian matrix of an ar-

bitrary equilibrium ( S a , I a , S h , I h ) of system (21) is given by [(
λ − r a (−3 S 2 a + 2(M a + m a ) S a − M a m a ) 

M a m a 
− βa I a 

)

( λ − βa S a + μa + δa ) + β2 
a S a I a 

]
(λ + βh I a + μh )(λ + μh + δh + γ ) = 0 . 

(i) If (S a , I a , S h , I h ) = (0 , 0 , S ∗
h 
, 0) , the eigenvalues are λ1 =

r a , λ2 = −(μa + δa ) , λ3 = −μh , λ4 = −(μh + δh + γ ) . Obviously,

hese eigenvalues are negative. Hence, the disease-free equilib-

ium O ah is always locally asymptotically stable; If (S a , I a , S h , I h ) =
(m a , 0 , S 

∗
h 
, 0) , the eigenvalues are 

1 = 

(M a − m a ) r a 
M a 

> 0 , λ2 = βa 

(
m a − μa + δa 

βa 

)
, 

3 = −μh , λ4 = −(μh + δh + γ ) . 

ince one of the eigenvalues is positive, the disease-free equilib-

ium A ah is always unstable. 

(ii) If (S a , I a , S h , I h ) = (M a , 0 , S 
∗
h 
, 0) , the eigenvalues are 

1 = 

(m a − M a ) r a 
m a 

, λ2 = βa 

(
M a − μa + δa 

βa 

)
, 

3 = −μh , λ4 = −(μh + δh + γ ) . 

bviously, if μa + δa 

βa 
> M a , all the above eigenvalues are negative,

he disease-free equilibrium B ah is locally asymptotically stable; If

 < 

μa + δa 

βa 
< M a , then λ2 > 0. Hence the disease-free equilibrium

 ah is unstable. 

(iii) If m a < 

μa + δa 

βa 
< M a and (S a , I a , S h , I h ) = (S ∗∗

a , I 
∗∗
a , S 

∗∗
h 

, I ∗∗
h 

) ,

he above characteristic equation becomes 

(λ + μh + δh + γ )(λ + βh I 
∗∗
a + μh )(λ

2 + aλ + b) = 0 , (22)

here the meanings of a and b are the same as in the characteris-

ic equation (11) . Since the characteristic equation (22) has at least
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wo negative eigenvalues λ = −(μh + δh + γ ) , λ = −(βh I 
∗∗
a + μh ) ,

he local stability of the endemic equilibrium E ah of system (21) is

ecided by the equation λ2 + aλ + b = 0 . Lemma 3.1 implies that if
M a + m a 

2 ≤ μa + δa 

βa 
< M a , then the endemic equilibrium E ah is locally

symptotically stable; if m a < 

μa + δa 

βa 
< 

M a + m a 
2 , then the endemic

quilibrium E ah is unstable. �

emark 3.7. If μa + δa 

βa 
= M a , then the equilibrium E ah coincides

ith the equilibrium B ah , which is a saddle-node and is locally

symptotically stable for positive trajectories. 

.3.2. Global stability of the full system (21) 

Set E 1 = { (S a , I a , S h , I h ) : (S a , I a ) ∈ D 1 , S h ≥ 0 , I h ≥ 0 } and E 2 =
 (S a , I a , S h , I h ) : (S a , I a ) ∈ D 2 , S h ≥ 0 , I h ≥ 0 } , where D 1 and D 2 are

efined in Theorem 3.5 . 

heorem 3.8. (i) The disease-free equilibrium O ah of system (21) is

lways globally asymptotically stable in E 1 ; (ii) If M a + m a 
2 ≤ μa + δa 

βa 
<

 a , only the endemic equilibrium E ah (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

) of system

21) is globally asymptotically stable in E 2 ; (iii) If μa + δa 

βa 
≥ M a , only

he disease-free equilibrium B ah (M a , 0 , S 
∗
h 
, 0) of system (21) is glob-

lly asymptotically stable in the region E 2 . 

roof. (i) If ( S a , I a , S h , I h ) ∈ E 1 , then ( S a , I a ) ∈ D 1 . According to

heorem 3.5 , the disease-free equilibrium O of the avian-only sub-

ystem (10) is always globally asymptotically stable in the region

 1 . To prove the global stability of the disease-free equilibrium O ah ,

e only need to consider the system (21) with the avian compo-

ents already at the disease-free steady state, given by 
 

 

 

 

 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

(23) 

bviously, I h → 0, S h → S ∗
h 

if t → ∞ . Hence, the equilibrium O ah is

lways globally asymptotically stable in the region E 1 . 

(ii) If M a + m a 
2 ≤ μa + δa 

βa 
< M a and ( S a , I a , S h , I h ) ∈ E 2 , then ( S a , I a )

 D 2 . According to Theorem 3.5 , the endemic equilibrium E of the

ubsystem (10) is globally asymptotically stable in the region D 2 .

o prove the global stability of the endemic equilibrium E ah , we

onsider system (21) with the avian components already at the en-

emic steady state given by 
 

 

 

 

 

d S h 
dt 

= �h − βa I 
∗∗
a S h − μh S h 

d I h 
dt 

= βa I 
∗∗
a S h − (μh + δh + γ ) I h . 

(24) 

ccording to the proof of Theorem 2.6 (ii), S h → S ∗∗
h 

, I h → I ∗∗
h 

if t →
 . Hence, the endemic equilibrium E ah is globally asymptotically

table in the region E 2 . 

(iii) If μa + δa 

βa 
≥ M a and ( S a , I a , S h , I h ) ∈ E 2 , then ( S a , I a ) ∈ D 2 .

y Theorem 3.5 , the disease-free equilibrium B of the subsystem

10) is globally asymptotically stable in the region D 2 . To prove

he global stability of the disease-free equilibrium B ah , we consider

ystem (21) with the avian components already at the disease-free

teady state, given by 
 

 

 

 

 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

bviously, I h → 0, S h → S ∗
h 

if t → ∞ . Hence, the disease-free equi-

ibrium B ah is globally asymptotically stable in the region E 2 . �

emma 3.9. The full system (21) has a unique periodic solution if and

nly if the subsystem (10) has a unique limit cycle. 
roof. At first, we prove the sufficient condition. According to

heorem 3.4 , the subsystem (10) has a unique limit cycle. Let the

-periodic solution ( ̃  S a (t) , ̃  I a (t)) be the unique limit cycle of the

ubsystem (10) . We will prove that the third equation of system

21) has a unique ω-periodic solution 

˜ S h (t) . 

Any solution of the third equation of system (21) can be repre-

ented by 

 h (t) = e 
−βh 

∫ t 
t 0 

I a (s ) ds −μh t 

[
e μh t 0 S h (t 0 ) + �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

I a (u ) du 
e μh s ds 

]
, 

here S h ( t 0 ) is the initial value of S h ( t ). Thus, all solutions of the

hird equation of system (21) on the three-dimensional cylinder 

× R 

+ × R 

+ = 
 × [0 , ∞ ) × [0 , ∞ ) 

re denoted as 

 h (t) = e 
−βh 

∫ t 
t 0 

˜ I a (s ) ds −μh t 

[
e μh t 0 S h (t 0 ) + �h 

∫ t 

t 0 

e 
β
h 

∫ s 

t 0 

˜ I a (u ) due μh s ds 

]
, 

(25) 

here 
 = { ( ̃  S a (t) , ̃  I a (t)) : t ∈ [0 , ω] } , R + = [0 , ∞ ) . 

In (25) , we have 

S h (t + ω) = e 
−βh 

∫ t+ ω 
t 0 

˜ I a (s ) ds −μh (t+ ω) 

[
e μh t 0 S h (t 0 ) 

+ �h 

∫ t+ ω 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]

= e 
−βh 

∫ t 0 + ω 
t 0 

˜ I a (s ) ds 
e 

−βh 

∫ t+ ω 
t 0 + ω 

˜ I a (s ) ds 
e −μh (t+ ω) 

[
e μh t 0 S h (t 0 ) 

+ �h 

∫ t 0 + ω 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

+ �h 

∫ t+ ω 

t 0 + ω 
e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]

= e 
−βh 

∫ t+ ω 
t 0 + ω 

˜ I a (s ) ds 
e −μh t { e −βh 

∫ t 0 + ω 
t 0 

˜ I a (s ) ds 
e −μh ω 

[
e μh t 0 S h (t 0 ) 

+ �h 

∫ t 0 + ω 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]

+ �h 

∫ t+ ω 

t 0 + ω 
e 
βh (−

∫ t 0 + ω 
t 0 

+ ∫ s t 0 
) ̃ I a (u ) du 

e μh (s −ω) ds } 

= e 
−βh 

∫ t 
t 0 

˜ I a (s ) ds 
e −μh t 

{
e −βh 

∫ ω 
0 

˜ I a (s ) ds e −μh ω 

[
e μh t 0 S h (t 0 ) 

+ �h 

∫ t 0 + ω 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]

+ �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

}
. 

f 

e −βh 

∫ ω 
0 

˜ I a (s ) ds e −μh ω 

[
e μh t 0 S h (t 0 ) 

+ �h 

∫ t 0 + ω 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]
= e μh t 0 S h (t 0 ) , 

.e., if 

 

∗
h (t 0 ) = 

�h 

∫ t 0 + ω 
t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

e μh t 0 [ e βh 

∫ ω 
0 

˜ I a (s ) ds e μh ω − 1] 
, 

hen 
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˜ S h (t) = e 
−βh 

∫ t 
t 0 

˜ I a (s ) ds −μh t 

[
e μh t 0 S ∗h (t 0 ) + �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u ) du 
e μh s ds 

]
(26)

is a unique periodic solution of the third equation of system (21) . 

Similarly, 

˜ I h (t) = e −(μh + δh + γ ) t 

[
e (μh + δh + γ ) t 0 I ∗h (t 0 ) 

+ βh 

∫ t 

t 0 

e (μh + δh + γ ) s ˜ I a (s ) ̃  S h (s ) ds 

]
(27)

is a unique periodic solution of the fourth equation of system (21) ,

where 

I ∗h (t 0 ) = 

βh 

∫ t 0 + ω 
t 0 

e (μh + δh + γ ) s ˜ I a (s ) ̃  S h (s ) ds 

e (μh + δh + γ ) t 0 [ e (μh + δh + γ ) ω − 1] 
. 

Hence, ( ̃  S a (t) , ̃  I a (t) , ̃  S h (t) , ̃  I h (t)) is a unique periodic solution of

system (21) . 

We now prove the necessary condition. If system (21) has a

unique periodic solution, then the subsystem (10) must have at

least one periodic solution. Suppose that the subsystem (10) has

two periodic solutions ( ̃  S a (t) , ̃  I a (t)) and ( φ1 ( t ), φ2 ( t )). Then

( ̃  S a (t) , ̃  I a (t) , ̃  S h (t) , ̃  I h (t)) and ( φ1 ( t ), φ2 ( t ), φ3 ( t ), φ4 ( t )) are periodic

solutions of system (21) , where 

φ3 (t) = e 
−βh 

∫ t 
t 0 

φ2 (s ) ds −μh t 

(
e μh t 0 φ∗

3 (t 0 ) + �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

φ2 (u ) du 
e μh s ds 

)
and 

φ4 (t) = e −(μh + δh + γ ) t 

(
e (μh + δh + γ ) t 0 φ∗

4 (t 0 ) 

+ βh 

∫ t 

t 0 

e (μh + δh + γ ) s φ2 (s ) φ3 (s ) ds 

)

with φ∗
3 (t 0 ) = 

�h 

∫ t 0 + ω 
t 0 

e 
βh 

∫ s 
t 0 

φ2 (u ) du 
e μh s ds 

e μh t 0 [ e 
βh 

∫ ω 
0 

φ2 (s ) ds 
e μh ω −1] 

and φ∗
4 (t 0 ) =

βh 

∫ t 0 + ω 
t 0 

e (μh + δh + γ ) s φ2 (s ) φ3 (s ) ds 

e (μh + δh + γ ) t 0 [ e (μh + δh + γ ) ω −1] 
. This is a contradiction. Therefore,

the subsystem (10) has a unique limit cycle. �

Theorem 3.10. If m a < 

μa + δa 

βa 
< 

M a + m a 
2 , then the unique periodic so-

lution ( ̃  S a (t) , ̃  I a (t) , ̃  S h (t) , ̃  I h (t)) of the full system (21) is globally

asymptotically stable if and only if the unique limit cycle ( ̃  S a (t) , ̃  I a (t))

of the subsystem (10) is globally asymptotically stable. 

Proof. The necessary condition is obvious. We only prove the suf-

ficient condition. 

By Theorem 3.5 , the unique limit cycle 
 of the subsystem

(10) is globally asymptotically stable in D 2 if m a < 

μa + δa 

βa 
< 

M a + m a 
2 .

For any solution ( S a ( t ), I a ( t )), by the results in Coppel [17] (p. 82)

or Coddington and Levinson [14] (p. 323), we have 

lim 

→∞ 

∣∣S a (t) − ˜ S a (t + c) 
∣∣ = 0 , lim 

t→∞ 

∣∣I a (t) − ˜ I a (t + c) 
∣∣ = 0 , 

where c is some constant depending on ( S a ( t ), I a ( t )). 

Next, we prove that lim t→∞ 

∣∣S h (t) − ˜ S h (t + c) 
∣∣ = 0 . Since ∣∣S h (t) − ˜ S h (t) 

∣∣ = e 
−βh 

∫ t 
t 0 

˜ I a (s ) ds 
e −μh (t−t 0 ) 

∣∣S h (t 0 ) − S ∗h (t 0 ) 
∣∣, 

we have 

lim 

→∞ 

∣∣S h (t) − ˜ S h (t) 
∣∣ = 0 . 

Since lim 

t→∞ 

∣∣I a (t) − ˜ I a (t + c) 
∣∣ = 0 , ∀ ε > 0, there exists a T 1 > 0 such

that if t > T 1 , then 

˜ I a (t + c) − ε < I a (t) < 

˜ I a (t + c) + ε. (28)
We construct the following equations: 

dS −
h 

dt 
= �h − βh ( ̃ I a (t + c) + ε) S h − μh S h , (29)

dS + 
h 

dt 
= �h − βh ( ̃ I a (t + c) − ε) S h − μh S h . (30)

he Eq. (29) has a unique periodic solution 

˜ S −
h 
(t) and 

lim 

→∞ 

∣∣S −
h 
(t) − ˜ S −

h 
(t) 

∣∣ = 0 ;

he Eq. (30) has a unique periodic solution 

˜ S + 
h 
(t) and 

lim 

→∞ 

∣∣S + 
h 
(t) − ˜ S + 

h 
(t) 

∣∣ = 0 , 

here, 

˜ S −
h 
(t) = e 

−βh 

∫ t 
t 0 

( ̃ I a (s + c)+ ε) ds −μh t 

[
e μh t 0 S ∗h (t 0 ) 

+ �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

[ ̃ I a (u + c)+ ε] du 
e μh s ds 

]
, 

˜ S + 
h 
(t) = e 

−βh 

∫ t 
t 0 

[ ̃ I a (s + c) −ε ] ds −μh t 

[
e μh t 0 S ∗h (t 0 ) 

+ �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

[ ̃ I a (u + c) −ε] du 
e μh s ds 

]
, 

˜ 
 

−
h 
(t) is defined on the three-dimensional cylinder 
− × R 

+ ×
 

+ = 
− × [0 , ∞ ) × [0 , ∞ ) and 

˜ S + 
h 
(t) is defined on the three-

imensional cylinder 
+ × R 

+ × R 

+ = 
+ × [0 , ∞ ) × [0 , ∞ ) , where
− = { ( ̃  S a (t) , ̃  I a (t) + ε) : t ∈ [0 , ω] } and 
+ = { ( ̃  S a (t) , ̃  I a (t) − ε) :

 ∈ [0 , ω] } , R 

+ = [0 , ∞ ) . 

By the third equation of system (21) and the comparison theo-

em of ordinary differential equations, we have 

 

−
h 
(t) < S h (t) < S + 

h 
(t) (31)

or t > T 1 . 

Next, we prove that 

lim 

→∞ 

∣∣ ˜ S −
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 , lim 

t→∞ 

∣∣ ˜ S + 
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 . 

ince 

dS h (t + c) 

dt 
= �h − βh I a (t + c) S h (t + c) − μh S h (t + c) , 

e have, 

˜ 
 h (t + c) = e 

−βh 

∫ t 
t 0 

˜ I a (s + c) ds −μh t 

[
e μh t 0 S ∗h (t 0 + c) 

+ �h 

∫ t 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u + c) du 
e μh s ds 

]
. 

hus, 

˜ S −
h 
(t) − ˜ S h (t + c) = e 

−βh 

∫ t 
t 0 

˜ I a (s + c) ds −μh (t−t 0 ) [ e −βh ε(t−t 0 ) S −∗
h 

(t 0 ) 

− S ∗h (t 0 + c)] 

+ e 
−βh 

∫ t 
t 0 

( ̃ I a (s + c)+ ε) ds −μh t 
∫ t 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u + c) du 
e μh s 

× [ e βh ε(s −t 0 ) − 1] ds, 

˜ S + 
h 
(t) − ˜ S h (t + c) = e 

−βh 

∫ t 
t 0 

˜ I a (s + c) ds −μh (t−t 0 ) [ e −βh ε(t−t 0 ) S −∗
h 

(t 0 ) 

− S ∗h (t 0 + c)] 

+ e 
−βh 

∫ t 
t 0 

( ̃ I a (s + c) −ε) ds −μh t 
∫ t 

t 0 

e 
βh 

∫ s 
t 0 

˜ I a (u + c) du 
e μh s 

× [ e −βh ε(s −t 0 ) − 1] ds. 

f ε is small enough, then 
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Fig. 2. The plot shows the changes of R 0 , 1 and R 0 , 2 with respect to βa . 
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u  
lim 

→∞ 

∣∣ ˜ S −
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 , lim 

t→∞ 

∣∣ ˜ S + 
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 . 

y (31) , we have 

 

−
h 
(t) − ˜ S h (t + c) < S h (t) − ˜ S h (t + c) < S + 

h 
(t) − ˜ S h (t + c) . 

ince 

S −
h 
(t) − ˜ S h (t + c) 

∣∣ ≤
∣∣S −

h 
(t) − ˜ S −

h 
(t) 

∣∣ + 

∣∣ ˜ S −
h 
(t) − ˜ S h (t + c) 

∣∣, 
S + 

h 
(t) − ˜ S h (t + c) 

∣∣ ≤
∣∣S + 

h 
(t) − ˜ S + 

h 
(t) 

∣∣ + 

∣∣ ˜ S + 
h 
(t) − ˜ S h (t + c) 

∣∣, 
e have 

lim 

→∞ 

∣∣S −
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 , lim 

t→∞ 

∣∣S + 
h 
(t) − ˜ S h (t + c) 

∣∣ = 0 . 

ence, 

lim 

→∞ 

∣∣S h (t) − ˜ S h (t + c) 
∣∣ = 0 . 

Similarly, we can prove lim t→∞ 

∣∣I h (t) − ˜ I h (t + c) 
∣∣ = 0 . �

Let F i = { (S a , I a , S h , I h , R h ) | (S a , I a ) ∈ D i , S h ≥ 0 , I h ≥ 0 , R h ≥ 0 }
ith i = 1 , 2 . Finally, we have the following results on the global

ynamics of the original system (9) with Allee effect for the avain

opulation. 

orollary 3.11. (i) The disease-free equilibrium H 1 (0 , 0 , S ∗
h 
, 0 , 0) of

odel (9) avian Allee effect is always globally asymptotically sta-

le in F 1 ; (ii) if μa + δa 

βa 
≥ M a , then the disease-free equilibrium

 3 (M a , 0 , S 
∗
h 
, 0 , 0) of model (9) avian Allee effect is globally asymp-

otically stable in F 2 ; (iii) if M a + m a 
2 ≤ μa + δa 

βa 
< M a , then the unique

ndemic equilibrium H 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) of model (9) avian

llee effect is globally asymptotically stable in F 2 ; (iv) if m a <
μa + δa 

βa 
< 

M a + m a 
2 , then there is a unique periodic solution of model

9) avian Allee effect at the neighborhood of the endemic equilibrium

 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) which is globally asymptotically stable in F 2 . 

. Numerical simulations 

.1. Comparison and numerical simulations of the basic reproduction 

umbers 

By the results in Sections 2 and 3 , we know that the basic re-

roduction numbers of systems (4) and (9) are R 0 , 1 = 

K a βa 

μa + δa 
and

 0 , 2 = 

βa (M a + m a )(μa + δa ) 

(μa + δa ) 2 + M a m a β2 
a 

, respectively. Now we keep the maximal

arrying capacity in systems (4) and (9) identical (i.e., K a = M a ),

hen we can easily obtain that 

R 0 , 2 − R 0 , 1 = 

βa (M a + m a )(μa + δa ) 

(μa + δa ) 2 + M a m a β2 
a 

− βa K a 

μa + δa 

= 

βa (M a + m a )(μa + δa ) 

(μa + δa ) 2 + M a m a β2 
a 

− βa M a 

μa + δa 

= 

βa m a (μa + δa + βa M a ) βa ( 
μa + δa 

βa 
− M a ) 

(μa + δa )[(μa + δa ) 2 + M a m a β2 
a ] 

. 

hus, we have the following results: 

(i) If K a = M a and 

μa + δa 

βa 
≤ m a , then R 0 , 1 > 1 ≥ R 0 , 2 ; 

ii) If K a = M a and m a < 

μa + δa 

βa 
< M a , then R 0 , 1 > R 0 , 2 > 1 ; 

ii) If K a = M a and 

μa + δa 

βa 
= M a , then R 0 , 1 = R 0 , 2 = 1 ; 

v) If K a = M a and 

μa + δa 

βa 
> M a , then R 0 , 1 < R 0 , 2 < 1 . 

In order to substantiate the above results, we present some nu-

erical simulations as follows. First we fix some parameters. We

ssume human and the wild avian can survive 70 years and 8

ears, respectively. Hence the natural death rates of human and

ild avian population are μ = 3 . 91 ∗ 10 −5 and μa = 3 . 4246 ∗ 10 −4 

h 
er day, respectively. We also assume that the disease-related

eath rates of the infected avian and the infective human popu-

ation are δa = 4 ∗ 10 −4 and δh = 0 . 3445 per day, respectively; the

ntrinsic growth rate of the avian population is r a = 5 ∗ 10 −3 ; the

aximal and critical carrying capacities of the avian population

re K a = M a = 50 , 0 0 0 and m a = 80 0 , respectively. The numerical

imulations of the basic reproduction numbers of both systems are

iven in Fig. 2 . 

From Fig. 2 , we know that if βa < 1 ∗ 10 −8 , then R 0 , 1 < R 0 , 2 <

 ; if βa > 2 ∗ 10 −8 , then R 0 , 1 > R 0 , 2 > 1 ; if βa = 1 . 4 84 92 ∗ 10 −8 ,

hen R 0 , 1 = R 0 , 2 = 1 . These results support the theoretical conclu-

ions. 

.2. Numerical simulations of the models 

Noted that the expression 

μa + δa 

βa 
is a key quantity. The rela-

ionship between 

μa + δa 

βa 
and K a or m a , M a determines whether

he avian influenza disappears or not. When μa , δa , m a and M a 

re fixed, then βa is a key parameter. In this subsection, we in-

estigate the influence of parameter βa on the number of in-

ected humans by performing some numerical simulations. Be-

ides the fixed parameters in the above subsection, we further

ssume that the recovery rate of infectious human individuals is

.1 per day, so γ = 0 . 1 . In general, avian influenza mainly out-

reaks in a specific location. We estimate that the number of sus-

eptible avian population is between 10 0,0 0 0 and 1,0 0 0,0 0 0, the

umber of infective avian population is between 0 and 100, and

he number of susceptible human population is between 10 0,0 0 0

nd 1,0 0 0,0 0 0 in the region. So we choose the initial values as

(S a (0) , I a (0) , S h (0) , I h (0) , R h (0)) = (10 0 , 0 0 0 , 10 0 , 10 0 , 0 0 0 , 1 , 0) . 

Firstly, we study the influence of parameter βa on the num-

er of infective individuals of model (4) with logistic avian growth.

hen parameters K a , μa , and δa are fixed, the threshold value
∗
a = 1 . 4 84 92 × 10 −8 such that R 0 , 1 = 1 . If βa ≤ β∗

a , the disease

isappears and the solution I h ( t ) is asymptotically stable and con-

erges to the disease-free state value (see Fig. 3 (A)); If βa > β∗
a , the

ndemic disease is prevalent, the solution I h ( t ) is asymptotically

table and converges to the endemic state value (see Fig. 3 (B)). Fur-

hermore, we can also observe that the peak value of I h ( t ) increases

ith βa increasing from Fig. 3 . 

Secondly, we investigate the influence of parameter βa on the

umber of infective individuals of model (9) with avian Allee ef-

ect. Recall that R 0 , 2 = 1 ⇔ 

μa + δa 

βa 
= m a or μa + δa 

βa 
= M a . Then for

xed parameters μa , δa , m a and M a , the threshold value β∗
a =

 . 4 84 92 × 10 −8 or 9 . 28075 × 10 −7 such that R 0 , 2 = 1 . Accord-

ng to Corollary 3.11 , for the above parameter and initial val-

es, if βa ≥ 9 . 28075 × 10 −7 , the disease disappears and the solu-



130 S. Liu et al. / Mathematical Biosciences 283 (2017) 118–135 

Fig. 3. The plots display the changes of I h ( t ) with βa varying where βh = 6 × 10 −9 . (A) Solutions I h ( t ) are asymptotically stable and converge to the disease-free state value; 

(B) Solutions I h ( t ) are asymptotically stable and converges to the endemic state value. 
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tion I h ( t ) is asymptotically stable in the region F 2 (see Fig. 4 (A));

if 2 . 9231 × 10 −8 ≤ βa < 9 . 28075 × 10 −7 , the endemic disease is

prevalent, the solution I h ( t ) is asymptotically stable in the region

F 2 (see Fig. 4 (B)). 

Thirdly, we simulate the periodic solutions of model (9) with

avian Allee effect. Parameters μa , δa , μh , γ , M a , m a and r a are

chosen as before. Other parameters and initial values are selected

as follows: �h = 30 , βh = 6 × 10 −8 , δh = 0 . 3445 , (S a (0) , I a (0) ,

S h (0) , I h (0) , R h (0)) = (1 , 0 0 0 , 0 0 0 , 20 0 0 , 10 0 , 0 0 0 , 30 , 5) . When

βa = 2 . 57 × 10 −7 or βa = 2 . 58 × 10 −7 , then 

μa + δa 

βa 
is be-

tween m a and 

M a + m a 
2 , which satisfies the condition of

Corollary 3.11 . Hence, there is a unique periodic solution of

system (9) in the neighborhood of the endemic equilibrium which

is globally asymptotically stable in F 2 (see Fig. 4 (C)). 

Finally, we examine the influence of parameter βh on the num-

ber of infective individuals of model (4) with logistic avian growth

and model (9) with avian Allee effect. When the birds are at en-

demic state, we can observe that the human population is also at

endemic state even if bird-to-human contact rate ( βh ) is reduced

by 99% (see Fig. 5 ). Furthermore, we can also observe that the peak

value of I h ( t ) and the endemic state value of these systems increase

when βh is increasing (see Fig. 5 ). 

5. Discussion 

It is believed that the H7N9 was transferred to ducks in China

by wild birds through migration along the East Asian flyway [40] .

Experimental data [46] showed that it is conceivable that passer-

ine birds may serve as vectors for transmission of H7N9 virus to

domestic poultry [32] , which in turn transmitted the virus to hu-

mans through live-poultry markets [4,11] , . After the first outbreak

in the spring of 2013, the H7N9 avian influenza resurged in China

from November 2013 to May 2014, from November 2014 to June

2015, and from November 2015 to June 2016 (WHO [58] ). The data

strongly indicate that it is becoming seasonal and persistent like

the H5N1 avian influenza. Tuncer and Martcheva [52] used pe-

riodic contact/incidence rates to model the seasonality in H5N1

avian influenza transmission. Since the live-poultry markets are

open all year around, the contact/incidence rates are more likely

to be constant in this case. Cross-sectional surveys conducted in

China after the outbreaks of the avian influenza A H7N9 viruses
 e  
how a high degree of awareness of human avian influenza in

oth urban and rural populations, a higher level of proper hy-

ienic practice among urban residents, and in particular a dramat-

cally reduced number of visits to live markets in urban popula-

ion after the H7N9 outbreak in 2013. Taking into account the psy-

hological effect toward avian influenza in the human population,

e [41] proposed a bird-to-human transmission model in which

he avian population exhibits saturation effect. However, our study

hows that the saturation effect within avian population and the

sychological effect in human population cannot change the sta-

ility of equilibria but can affect the number of infected humans

f the disease is prevalent, so there is no periodic solutions. In Liu

t al. [42] , we also took account of the incubation periods of avian

nfluenza A virus, constructed a bird-to-human transmission model

ith different time delays in the avian and human populations

ombining the survival probability of the infective avian and hu-

an populations at the latent time, and obtained global asymptot-

cal stability of equilibria of the system. Once again the time delays

n such models do not induce oscillations. Chen et al. [10] argued

hat the lack of understanding of the virus ecology in birds has

esulted in the persistent circulating of H7N9 in China. Since the

7N9 virus does not induce clinical signs in poultry and is classi-

ed as a low pathogenicity avian influenza virus [46] , we believe

hat the population dynamics of avian species contribute signifi-

antly to the persistence and potential periodicity of the virus in

vian as well as human populations. Note that it has been observed

49] the growth of some avian populations exhibit Allee effect due

o habitat destruction, spread of alien species, pollution, and dis-

ases. 

In this paper, to study the transmission dynamics of avian in-

uenza from birds to humans we constructed ordinary differen-

ial equation models with two different growth laws for the avian

opulation: (i) logistic growth and (ii) Allee effect. We obtained

 threshold value for the prevalence of avian influenza and dis-

ussed the local or global asymptotical stability of each equilib-

ium of these systems. Our results indicate that the asymptotic

ynamics of the model with logistic growth for the avian popu-

ation are completely determined by the basic reproduction num-

er: the disease-free equilibrium exists and is locally asymptoti-

ally stable if the basic reproduction number is less than the unity;

he disease-free equilibrium becomes unstable and the endemic

quilibrium exists and is locally asymptotically stable if the basic
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Fig. 4. The plots bring to light the changes of I h ( t ) with βa varying. (A) I h ( t ) is asymptotically stable in the region F 2 and converges to the disease-free state value where the 

disease-free equilibrium is (50 , 0 0 0 , 0 , 767263 . 43 , 0 , 0) ; (B) I h ( t ) is asymptotically stable in the region F 2 and converges to the endemic state value; (C) The periodic solution 

I h ( t ) is asymptotically stable in F 2 . 
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eproduction number is greater than the unity. Global asymptotic

tability of these equilibria were also established by using Liapunov

unction method and LaSalle’s invariance principle. For the model

ith Allee effect for the avian population, beside stability results

t was shown that periodic solutions exists via Hopf bifurcations.

lobal stability of the periodic solutions was also considered. 

Recall that for the system (4) with logistic avian growth, the

asic reproduction number was given as follows 

 0 , 1 = 

K a βa 

μa + δa 
. (32) 

here were two disease-free equilibria given by A (0 , 0 , S ∗
h 
, 0 , 0) and

 (K a , 0 , S 
∗
h 
, 0 , 0) , where S ∗

h 
= 

�h 
μh 

. If R 0 , 1 > 1 , and a unique endemic

quilibrium given by C(S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) , where 

 

∗∗
a = 

μa + δa 

βa 
, I ∗∗

a = 

r a (μa + δa ) 

K a β2 
a 

(R 0 , 1 − 1) , (33)

 

∗∗
h = 

�h 

βh I 
∗∗
a + μh 

, I ∗∗
h = 

βh I 
∗∗
a S ∗∗

h 

μh + δh + γ
, R 

∗∗
h = 

γ I ∗∗
h 

μh 

. (34)

e only consider the biologically meaningful equilibria

 (K a , 0 , S 
∗
h 
, 0 , 0) and C(S ∗∗

a , I 
∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) , the results about

ystem (4) with logistic avian growth can be summarized in the

ollowing chart (BRN = basic reproduction number). 
For the system (9) with Allee effect in the avian population, the

asic reproduction number is given by 

 0 , 2 = 

βa (M a + m a )(μa + δa ) 

(μa + δa ) 2 + M a m a β2 
a 

. (35) 

here are three disease-free equilibria given by H 1 (0 , 0 , S ∗
h 
, 0 , 0) ,

 2 (m a , 0 , S 
∗
h 
, 0 , 0) , and H 3 (M a , 0 , S 

∗
h 
, 0 , 0) , where S ∗

h 
= 

�h 
μh 

, and if

 0 , 2 > 1 , there is also a unique endemic equilibrium given by

 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) , where 

 

∗∗
a = 

μa + δa 

βa 
, I ∗∗

a = 

r a 

βa 

β2 
a M a m a + (μa + δa ) 2 

M a m a β2 
a 

(R 0 , 2 − 1) , (36)

 

∗∗
h = 

�h 

βh I 
∗∗
a + μh 

, I ∗∗
h = 

βh I 
∗∗
a S ∗∗

h 

μh + δh + γ
, R 

∗∗
h = 

γ I ∗∗
h 

μh 

. (37)

imilarly, considering only the biologically meaningful equilibria

e can summarize the results about system (9) with Allee effect

n the avian population in the following chart (GSPS = globally sta-

le periodic solution). 

Through the analysis, we found that if the maximal carrying

apacity of the avian population of each system is the same (i.e.,

 a = M a ) and m a < 

μa + δa 

βa 
< M a , then R 0 , 1 > R 0 , 2 > 1 , which indi-

ates that the transmission speed of the avian influenza virus of
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Fig. 5. The plots reveal the changes of I h ( t ) with βh varying. (A) I h ( t ) of system (4) with avian logistic growth is asymptotically stable and converges to the endemic state 

value; (B) I h ( t ) of system (9) with avian Allee effect converges to the endemic state value; (C) The periodic solution I h ( t ) of system (9) with avian Allee effect is asymptotically 

stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Stability chart for system (4) with logistic avian growth. 

Conditions BRN B (K a , 0 , S 
∗
h 
, 0 , 0) C(S ∗∗

a , I 
∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) 

μa + δa 

βa 
> K a R 0 , 1 < 1 Globally stable Does not exist 

μa + δa 

βa 
< K a R 0 , 1 > 1 Unstable Globally stable 

I  

a  

r  

c  

b  

a  

s  

e  

u  

i  

m  

b  

f  

d  
system (4) (with logistic growth) is greater than system (9) (with

Allee effect) and the endemic disease of the two systems is preva-

lent; if the maximal carrying capacity of each system is the same

and 

μa + δa 

βa 
≤ m a , then R 0 , 1 > 1 ≥ R 0 , 2 , which indicates that the en-

demic disease of system (4) is prevalent but the endemic disease

of system (9) disappears; if the maximal carrying capacity of each

system is the same and 

μa + δa 

βa 
> M a , then R 0 , 1 < R 0 , 2 < 1 , which

indicates that the endemic disease of both systems disappears.

Therefore, we can make the quantity μa + δa 

βa 
greater than the maxi-

mal carrying capacity of the avian population to control the disease

by reducing βa (transmission rate from infective avian to suscepti-

ble avian) or increasing μa (natural death rate of the avian popula-

tion) and δa (disease-related death rate of the infected avian). The

effective methods will be to reduce the transmission between the

susceptible and infective avian populations and isolating or culling

the infective birds if necessary. 

For the system (4) with logistic avian growth, from Table 1 we

can see that if μa + δa 

βa 
> K a so that R 0 , 1 < 1 , then the disease-free

equilibrium B (K a , 0 , S 
∗
h 
, 0 , 0) is globally stable; if μa + δa 

βa 
< K a so that

R 0 , 1 > 1 , then the disease-free equilibrium B (K a , 0 , S 
∗
h 
, 0 , 0) be-

comes unstable and the endemic equilibrium C(S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

)

exists and is globally stable. For the system (9) with Allee ef-

fect in the avian population, the dynamics are more interesting.
 i  
f M a < 

μa + δa 

βa 
(where M a is the maximal carrying capacity of the

vian population) so that R 0 , 2 < 1 , then the disease-free equilib-

ium H 2 (m a , 0 , S 
∗
h 
, 0 , 0) with less avian density (where m a is the

ritical carry capacity of the avian population, m a < M a ) is unsta-

le and the disease-free equilibrium H 3 (M a , 0 , S 
∗
h 
, 0 , 0) with more

vian density is globally stable; if βa increases or μa + δa increases

uch that m a + M a 
2 < 

μa + δa 

βa 
< M a so R 0 , 2 > 1 , then the disease-free

quilibrium H 3 (M a , 0 , S 
∗
h 
, 0 , 0) with more avian density becomes

nstable and an endemic equilibrium H 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) ex-

sts and is globally stable; if m a < 

μa + δa 

βa 
< 

m a + M a 
2 so R 0 , 2 > 1 re-

ains hold, then the endemic equilibrium H 4 (S ∗∗
a , I 

∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

)

ecomes unstable and there is a globally stable periodic orbit bi-

urcated from it; if, further, μa + δa 

βa 
< m a so that R 0 , 2 < 1 , both

isease-free equilibria H 2 (m a , 0 , S 
∗
h 
, 0 , 0) and H 3 (M a , 0 , S 

∗
h 
, 0 , 0) ex-

st and the disease die out. We have provided references to sup-
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Table 2 

Stability chart for system (9) with Allee effect in the avian population. 

Conditions BRN H 2 (m a , 0 , S 
∗
h 
, 0 , 0) H 4 (S ∗∗

a , I 
∗∗
a , S 

∗∗
h 

, I ∗∗
h 

, R ∗∗
h 

) H 3 (M a , 0 , S 
∗
h 
, 0 , 0) 

M a < 

μa + δa 

βa 
R 0 , 2 < 1 Unstable Does not exists Globally stable 

m a + M a 
2 

< 

μa + δa 

βa 
< M a R 0 , 2 > 1 Unstable Globally stable Unstable 

m a < 

μa + δa 

βa 
< 

m a + M a 
2 

R 0 , 2 > 1 Unstable Unstable (GSPS) Unstable 
μa + δa 

βa 
< m a R 0 , 2 < 1 Unstable Does not exist Unstable 
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A

 

(  

A

A

 

i
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P  
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o  
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t  

t  
ort the observation that the H7N9 avian virus has been transmit-

ed from wild birds to domestic poultry and then to humans and

ointed out some potential avian species that are believed to be

esponsible for the cross-species transmission. Though we are not

ble to obtain data on specific avian species and apply our models

nd conclusions directly, we believe that our results on the exis-

ence and stability of periodic solutions in the model with Allee

ffect for the avian population may be useful in understanding the

easonal/periodic outbreaks of the H7N9 avian influenza. 

From the expressions of the basic reproduction numbers R 0 , 1 

nd R 0 , 2 defined in (32) and (35) , respectively, and the existence

nd stability conditions listed in Tables 1 and 2 , it seems that

he parameters involving human population do not appear and

he overall disease could be controlled if it can be controlled in

irds. Theoretically it is true: if there is no disease among birds

hen there is no outbreaks in humans since there is no human-

o-human transmission yet. However, H7N9 is classified as a low

athogenicity avian influenza virus and causes no symptoms and

ortality in birds. Controlling the disease in the avian population

s very difficult and the basic reproduction numbers do not pro-

ide effective control measures for the human population. Notice

hat βh (the transmission rate from infective avian to susceptible

uman) appears in the expressions (34) and (37) for the steady

tate values of I ∗∗
h 

, the number of infective human individuals. In

act, it should be understood that βh = c h p h , where c h is the con-

act rate between a susceptible human and an infective bird and

 h is the probability of transmitting the virus per contact. Thus, to

revent spread of the avian influenza virus from birds to humans,

e suggest to reduce contacting poultry and to take extra protec-

ion when contacting is necessary. If either c h = 0 or p h = 0 , then

 

∗∗
h 

= 0 and there is no outbreaks in humans. This also explains that

n the spring of 2013, when the poultry markets in Jiangsu, Shang-

ai, and Zhejiang were temporarily closed, the outbreak was con-

rolled soon. 

Our study also indicates that if birds are at endemic state, then

he human population is also at endemic state even if the bird-

o-human contact rate ( βh ) is reduced by 99% (see Fig. 5 ). Further-

ore, we can see that the peak value of I h ( t ) and the endemic state

alue of these systems increase when βh is increasing (see Fig. 5 ).

ur models results may not accurately describe all situations, but

hey can explain most of situations because perfect prevention (i.e.

00% reduction of βh ) is unlikely to happen in reality. 

Note that asymptotic dynamics of avian influenza models con-

isted of bird and human populations, in particular global stabil-

ty in such models, have been studied by other researchers, see

or example [28] and [24] . Constant growth was assumed for the

vian population in these studies. Compared to their models and

esults, our main contributions are as follows: First, we assumed

hat the growth rate of the avian population follows either the lo-

istic law or the Allee effect, which is more general than the con-

tant growth rate. Secondly, we not only obtained global stability

f the disease-free and endemic equilibria but also established the

lobal stability of the periodic solutions generated via Hopf bifur-

ations. To the best of our knowledge, there are very few results

n the global stability of periodic solutions for epidemic models.

hus, our techniques could be useful to study the existence and
 {
lobal stability of periodic solutions in similar ecological and epi-

emiological models. 

The roles of wild birds and domestic birds in the transmission

f the H5N1 avian influenza are different and mathematical mod-

ls have been proposed to include both types of birds [5,22,43,52] .

t will be very interesting to include both wild birds and do-

estic birds in modeling the bird-to-human transmission of the

7N9 avian influenza, we are considering such a model, estimat-

ng model parameters, and trying to simulate the datasets on re-

orted human H7N9 cases from China. The results will be reported

omewhere else in the future. 

Since the H7N9 virus is classified as a low pathogenicity avian

nfluenza virus (LPAIV) [46] , we ignored the recovery class of birds

n our models. The model of Vaidya and Wahl [53] predicts that

irds infected by avian influenza virus lose their immunity in ap-

roximately 4 weeks, it would be interesting to take account of the

ecovery class of birds in future models of avian influenza. 
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ppendix A 

In this section, we prove the global stability of the full system

4) with logistic avian growth and the full system (9) with avian

llee effect by using LaSalle’s invariance principle. 

.1. Boundedness of solutions 

For system (4) with logistic avian growth, we have the follow-

ng result. 

emma A.1. All solutions of system (4) with initial values in R 

5 + are

ounded. 

roof. Define a function η = S a + I a + S h + I h + R h , then for each ν:

 < ν < min { μa , μh }, the following inequality holds: 

dη

dt 
+ νη ≤ K a (r a + ν) 2 

4 r a 
+ �h = φ. 

pplying the theory of differential inequalities ( [38] ), we obtain

hat 

0 < η(S a , I a , S h , I h , R h )(t) < 

φ

ν
(1 − e −νt ) 

+ η(S a (0) , I a (0) , S h (0) , I h (0) , R h (0)) e −νt , 

nd for t → ∞ we have 0 < η < 

φ
ν . 

For ε = 1 , there exists t 0 > 0, if t > t 0 then (S a + I a + S h + I h +
 h )(t) < 

φ
ν + 1 . Furthermore, (S a + I a + S h + I h + R h )(t) is continu-

us on the interval [0, t 0 ], so (S a + I a + S h + I h + R h )(t) has a max-

mum value A 

∗ on the interval [0, t 0 ]. Choose M = max { A 

∗, φν + 1 } ,
hen (S a + I a + S h + I h + R h )(t) ≤ M. Hence all the solutions of sys-

em (4) with initial values in R 

5 + are confined in the region D =
 (S a , I a , S h , I h , R h ) ∈ R 

5 + : S a + I a + S h + I h + R h ≤ M} . �
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Similarly, for system (9) with avian Alle effect, we have the fol-

lowing result. 

Lemma A.2. All solutions of system (9) with initial values in

R 

5 + are uniformly bounded in the region F = { (S a , I a , S h , I h , R h ) ∈
R 

5 + : S a + I a + S h + I h + R h ≤ max { A 0 , 
ρ
ω + 1 }} , where ω : 0 < ω <

min { r a , μa + δa , μh } , ρ = 

4 r a (M a + m a ) 3 

27 M a m a 
+ �h , A 0 is the maximum

value of (S a + I a + S h + I h + R h )(t) on interval [0, t 1 ] . 

Proof. The proof is similar to that of Lemma A.1 , we omit it. �

A.2. Another proof of Theorem 2.6 

Proof. (i) According to Lemma 2.3 , the disease-free equilibrium B a 
of system (5) is globally asymptotically stable if R 0 , 1 ≤ 1 which im-

plies that S a → K a and I h → 0 if t → ∞ . Hence, we analyze the

global stability of B ah only at the region D 01 = { (S a , I a , S h , I h ) | S a =
K a , I a = 0 , S a + I a + S h + I h ≤ M} . Consider system (6) with the avian

components already at the disease-free steady state, given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

(38)

Choose a Liapunov function as follows 

 21 = S h − S ∗h − S ∗h ln 

S h 
S ∗

h 

+ I h , 

then, 

dV 21 

dt 

∣∣∣
(38) 

= 

S h − S ∗
h 

S h 
(�h − μh S h ) − (μh + δh + γ ) I h 

= −μh 

S h 
(S h − S ∗h ) 

2 − (μh + δh + γ ) I h ≤ 0 . 

Since D 01 = { (S a , I a , S h , I h ) | S a = K a , I a = 0 , S a + I a + S h + I h ≤ M :
d V 21 

dt 
= 0 } = { (S a , I a , S h , I h ) : S a = K a , I a = 0 , S h = S ∗

h 
, I h = 0 } = { B ah } , 

according to LaSalle’s invariance principle (Hale [25] ), the equilib-

rium B ah is globally asymptotically stable for positive trajectories. 

(ii) Similarly, by Lemma 2.3 , the endemic equilibrium C a of sys-

tem (5) is globally asymptotically stable if R 0 , 1 > 1 which shows

that S a → S ∗∗
a and I a → I ∗∗

a if t → ∞ . We consider the global sta-

bility of C ah only at the region D 02 = { (S a , I a , S h , I h ) | S a = S ∗∗
a , I a =

I ∗∗
a , S a + I a + S h + I h ≤ M} . Consider system (6) with the avian com-

ponents already at the endemic steady state, given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

d S h 
dt 

= �h − βh I 
∗∗
a S h − μh S h 

d I h 
dt 

= βh I 
∗∗
a S h − (μh + δh + γ ) I h . 

(39)

Choose the following Liapunov function 

 22 = S ∗∗
h 

(
S h 
S ∗∗

h 

− ln 

S h 
S ∗∗

h 

)
+ I ∗∗

h 

(
I h 
I ∗∗
h 

− ln 

I h 
I ∗∗
h 

)
, 

According to the proof of Theorem 2.6 (ii), we have 
dV 22 

dt 

∣∣∣
(39) 

≤ 0 .

Due to D 02 = { (S a , I a , S h , I h ) | S a = S ∗∗
a , I a = I ∗∗

a , S a + I a + S h + I h ≤ M :
dV 22 

dt 
= 0 } = { (S ∗∗

a , I 
∗∗
a , S 

∗∗
h 

, I ∗∗
h 

) } = { C ah } , by the LaSalle’s invariance

principle, the endemic equilibrium C ah is globally asymptotically

stable. �

A.3. Another proof of Theorem 3.8 

Set E 1 = { (S a , I a , S h , I h ) : (S a , I a ) ∈ D 1 , S a + I a + S h + I h ≤
max { A 0 , 

ρ
ω + 1 }} and E 2 = { (S a , I a , S h , I h ) : (S a , I a ) ∈ D 2 , S a + I a +

S h + I h ≤ max { A 0 , 
ρ
ω + 1 }} , where D 1 and D 2 are defined in

Theorem 3.5 . 
roof. (i) If ( S a , I a , S h , I h ) ∈ E 1 , then ( S a , I a ) ∈ D 1 . Accord-

ng to Theorem 3.5 , the disease-free equilibrium O of the avian-

nly subsystem (10) is always globally asymptotically stable in

he region D 1 which implies that S a → 0 and I a → 0 if

 → ∞ . So we only consider the global stability of O ah only

t the region E 12 = { (S a , I a , S h , I h ) | S a = 0 , I a = 0 , S a + I a + S h + I h ≤
ax { A 0 , 

ρ
ω + 1 }} . Now consider system (21) with the avian com-

onents already at the disease-free steady state, given by 
 

 

 

 

 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

(40)

hoose a Liapunov function as follows 

 31 = S h − S ∗h − S ∗h ln 

S h 
S ∗

h 

+ I h , 

ccording to the proof of Theorem 2.6 (i), we have E 12 =
 (S a , I a , S h , I h ) | S a = K a , I a = 0 , S a + I a + S h + I h ≤ max { φν + 1 , A 0 } : 

d V 31 
dt 

= 0 } = { (S a , I a , S h , I h ) : S a = 0 , I a = 0 , S h = S ∗
h 
, I h = 0 } = { O ah } , 

aSalle’s invariance principle (Hale [25] ) implies that the equilib-

ium O ah is globally asymptotically stable for positive trajectories

n the region E 1 . 

(ii) If M a + m a 
2 ≤ μa + δa 

βa 
< M a and ( S a , I a , S h , I h ) ∈ E 2 , then ( S a ,

 a ) ∈ D 2 . According to Theorem 3.5 , the disease-free equilibrium

 of the subsystem (10) is always globally asymptotically sta-

le in the region D 2 which shows that S a → S ∗∗
a and I h → I ∗∗

a if

 → ∞ . Thus we only need to analyze the global stability of E ah 

nly at the region E 22 = { (S a , I a , S h , I h ) | S a = S ∗∗
a , I a = I ∗∗

a , S a + I a +
 h + I h ≤ max { A 0 , 

ρ
ω + 1 }} . Once again consider system (21) with

he avian components already at the disease-free steady state,

iven by 
 

 

 

 

 

d S h 
dt 

= �h − βa I 
∗∗
a S h − μh S h 

d I h 
dt 

= βa I 
∗∗
a S h − (μh + δh + γ ) I h . 

(41)

hoose the following Liapunov function 

 32 = S ∗∗
h 

(
S h 
S ∗∗

h 

− ln 

S h 
S ∗∗

h 

)
+ I ∗∗

h 

(
I h 
I ∗∗
h 

− ln 

I h 
I ∗∗
h 

)
, 

ccording to the proof of Theorem 2.6 (ii), we have E 22 =
 (S a , I a , S h , I h ) | S a = S ∗∗

a , I a = I ∗∗
a , S a + I a + S h + I h ≤ max { A 0 , 

ρ
ω + 1 } : 

d V 32 
dt 

= 0 } = { (S a , I a , S h , I h ) : S a = S ∗∗
a , I a = I ∗∗

a , S h = S ∗∗
h 

, I h = I ∗∗
h 

} = 

 E ah } , LaSalle’s invariance principle then implies that the equilib-

ium E ah is globally asymptotically stable for positive trajectories

n the region E 2 . 

(iii) If μa + δa 

βa 
≥ M a and ( S a , I a , S h , I h ) ∈ E 2 , then ( S a , I a ) ∈

 2 . By Theorem 3.5 , the disease-free equilibrium B of the sub-

ystem (10) is globally asymptotically stable in the region D 2 

hich illustrates that S a → M a and I h → 0 if t → ∞ . Sim-

larly we only need to study the global stability of B ah only

t the region E 22 = { (S a , I a , S h , I h ) | S a = M a , I a = 0 , S a + I a + S h + I h ≤
ax { A 0 , 

ρ
ω + 1 }} . To do so we consider system (21) with the avian

omponents already at the disease-free steady state, given by 
 

 

 

 

 

d S h 
dt 

= �h − μh S h 

d I h 
dt 

= −(μh + δh + γ ) I h . 

hoose a Liapunov function as follows 

 33 = S h − S ∗h − S ∗h ln 

S h 
S ∗

h 

+ I h , 

roceeding with the proof process of (i), we have E 22 =
 (S a , I a , S h , I h ) | S a = M a , I a = 0 , S a + I a + S h + I h ≤ max { A 0 , 

ρ + 1 } : 
ω 
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d V 33 
dt 

= 0 } = { (S a , I a , S h , I h ) : S a = M a , I a = 0 , S h = S ∗
h 
, I h = 0 } = { B ah } , 

y LaSalle’s invariance principle we claim that the equilibrium

 ah is globally asymptotically stable for positive trajectories in the

egion E 2 . �
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