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1 Introduction

In 1954, Nicholson (1954a, 1954b) published his famous findings concerning compe-
tition for food (sheep’s liver) in laboratory populations of blowflies, Lucilia cuprina.
In a typical experiment, the caged blowflies were fed a limited amount (500 mg)
of ground liver daily as a source of protein, which they required for egg produc-
tion. Sugar and water were supplied ad lib. Each day’s production of eggs was trans-
ferred to a separate and unlimited supply of fresh liver and reared through to adults,
which emerged in the cage a generation later. Under the conditions of his experi-
ments Nicholson (1954a, 1954b) gave the duration of egg to adult development as
“more than two weeks” (i.e. 15 days). The essential feature of the experiments was
that the populations were left free to develop under predetermined environmental
conditions for long periods. The total numbers of blowflies were recorded every two
or three days. It was observed that there occurred characteristic periodic oscillations
or cycles during the course of the experiments.

Nicholson concluded that the basic cause of the oscillations was the time-lag be-
tween stimulus and reaction of the density-related responses. May (1976) used the
delayed logistic model (i.e. Hutchinson model, 1948) to simulate one of Nicholson’s
experiments and inferred an egg to adult duration of nine days. This is far from the
actual observed time of about 15 days stated by Nicholson (1954b).

To overcome the discrepancy in estimating the delay value, Gurney et al. (1990)
proposed the following delay equation:

((jl—b; = —8u(t) + pu(t — t)exp[—au(r — 7)), (1.1
to model the population of the Australian sheep-blowfly Lucilia cuprina, where p
is the maximum per capita daily egg production rate, 1/a is the size at which the
blowfly population reproduces at its maximum rate, § is the per capita daily adult
death rate, and 7 is the generation time.

Notice that, after recalling u™ = au, t* = tt, v = §t, § = p/$ and dropping the
asterisks, the equation becomes

du
o = TuO + prul - Dexp[—u(t — D]. (1.2)

There is a positive equilibrium,
u*=Inpg=1In(p/s),

if the maximum possible per capita reproduction rate is greater than the per capita
death rate, that is, if p > §. As in Hutchinson’s equation, there is a critical value of the
time delay. The positive equilibrium is stable when the delay is less than the critical
value, becomes unstable when it is greater than the value, and there are oscillations
(Ruan 2006; Wei and Li 2005). Testing Nicholson’s data, (1.2) not only provides
self-sustaining limit cycles as Hutchinson’s equation did, but also gives an accurate
measurement of the delay value as 15 days. Gurney et al. (1990) showed that the
fluctuations observed by Nicholson are of limit-cycle type. The period of the cycles is
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set mainly by the delay and adult death rate. High values of pt and §7 will give large
amplitude cycles. Moving deeper into instability produces a number of successive
doublings of the repeated time until a region is reached where the solution becomes
aperiodic (chaotic). Since this equation explains Nicholson’s data (1957) of blowflies
more accurately, it is now referred to as the Nicholson’s blowflies equation and has
been studied by many researchers; see Gourley (2000), Gourley and Ruan (2000),
Li and Fan (2007), Ruan (2006), So et al. (2000), So and Yang (1998), So and Zou
(2001), Wei and Li (2005), Yang and So (1998), and the references therein.

Spatial structure may make it impossible for organisms to encounter each other in
proportion to their average density (Law et al. 2003). The random collision of individ-
uals assumed in the above models may not represent interactions among organisms.
Taking the spatial structure into account, Yang and So (1998) extended (1.2) to the
following diffusive form:

E;—”t’ =dAu—rtu(x,t)+ rulx,t — exp[—u(x,r — 1] (1.3)
on a finite domain with homogeneous Neumann boundary conditions, and obtained
results on the global attractivity of positive steady state and on the oscillation of solu-
tions. The case of Dirichlet boundary conditions was studied by So and Yang (1998),
where the global attractivity of the equilibrium was proved by developing a new ap-
proach to deal with the fact that the delay term is nonmonotone. Some numerical and
Hopf bifurcation analysis of this model was carried out by So et al. (2000). For the
problem on the whole real line, x € (—o00, 00), So and Zou (2001) obtained results
on the existence of travelling wave-fronts. The existence of nonmonotone travelling
waves was studied by Faria and Trofimchuk (2006).

It has been observed that distributed delays are more reasonable than discrete de-
lays in modeling maturation periods (Blythe et al. 1984, 1985; Bernard et al. 2001).
Taking the distributed maturation periods into account, Gourley and Ruan (2000) pro-
posed and investigated the following generalized Nicholson’s blowflies model with
distributed delay:

du
— =dAu —tu(x,t)

ot
! ¢
+ ﬂt(/ k(t —s)u(x,s) ds) exp|:—/ k(t —s)u(x,s) ds], (1.4)

for (x,t) € 2 x [0, 00), where £2 is either all of R” or some finite domain, and the
kernel k(t) satisfies k(¢) > 0 and the conditions

0 o0
f k(t)ydt=1 and / tk(t)dt = 1.
0 0

They studied the uniform states # = 0 and u = In 8 of (1.4) in terms of both their local
(linearized) stability and their global stability and showed that the zero state is glob-
ally asymptotically stable if § < 1 and the nonzero steady state u = In 8 is globally
stable if 1 < 8 <e, where a theory of sub- and supersolutions for delay differen-
tial equations is employed. For the problem on the whole real line, x € (—o0, 00),
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the existence of travelling wave-fronts was considered by Gourley (2000) under a
special kernel form, where the travelling wave equations were recasted into a four-
dimensional system of nondelay ordinary differential equations and then geometric
singular perturbation theory was applied to this system for the case when the delay is
small.

In ecology, since populations take time to move in space and usually were not
at the same position in space at previous times, sometimes it is not sufficient to in-
clude only a discrete delay or a finite delay in a population model. Motivated by this,
Britton (1989, 1990) considered the two factors comprehensively and introduced the
so-called spatiotemporal delay or nonlocal delay, that is, the delay term involves a
weighted spatiotemporal average over the whole infinite spatial domain and the whole
times internal up to now. Since then, great progress has been made on the existence
of travelling wave-fronts in reaction—diffusion equations with spatiotemporal delays;
see Ai (2007), Ashwin et al. (2002), Billingham (2004), Gourley (2000), Gourley and
Britton (1993), Gourley et al. (2001), Gourley and Kuang (2003), Gourley and Ruan
(2003), Liang and Wu (2003), Ruan and Xiao (2004), So et al. (2003), Wang et al.
(2006), and the recent survey of Gourley and Wu (2006).

Since the delay term in the Nicholson’s blowflies equation models the larval and
pupa stage in development (when they are not moving very much or not at all) the use
of a time-delay term that remains purely local in space is probably not unreasonable.
However, the basic assumptions behind the Nicholson’s blowflies equation are such
that it is probably applicable to many other species that have a maturation phase
when the individuals may indeed move about. For such cases, nonlocal delays are
indeed essential. Motivated by the above consideration, in this paper we shall study
the following generalization of (1.4):

ou

5= dAu—tu(x, 1)+ Br((g*u)(x, 1)) exp[—(g xu)(x, )], (1.5)

for (x,1) € £2 x [0, 00), where

t
(g*u)(x,t)=/9f gx —y, t —s)u(y,s)dyds,

and the convolution kernel g(y, s) is an integrable and nonnegative function in its
variables s € Ry, y € £2. We normalize the kernel so that

/ /Oog(y,s)dyds=1. (1.6)
2 J0

We remark that (1.5) contains many special equations by taking different kernels.
Some examples are given as follows.

G) If g(x,y,t,5s) =8(x — y)k(t — s), then (1.5) becomes (1.4).
(i) If g(x,y,t,5) =6(x — y)d( —s — 1), then (1.5) becomes (1.3). If u = u(¢)
depends on time only, then (1.3) reduces to (1.2).

In this paper, we are interested in the existence of travelling wave-fronts in (1.5)
when £2 = R. The paper is organized as follows. In Sect. 2, we list some results we
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developed in Wang et al. (2006) for reaction—diffusion systems with spatiotemporal
delays that are needed in Sect. 3. In Sect. 3, we establish the existence of travelling
front solutions to (1.5) with general convolution kernels. Moreover, we consider the
dependence of the minimal wave speed on the delay and the mobility of the popula-
tion. Our main finding here is that delay can induce slow travelling wave-fronts and
the mobility of the population can increase fast travelling wave-fronts. In the final
section, we summarize our conclusions.

2 Preliminaries

The theory developed in Wang et al. (2006) is quite general and extends to coupled
systems as well as scalar equations. Our theorem on the existence of travelling wave-
front solutions involves different hypotheses depending on whether y-monotonicity
properties hold or not. In this section, we set up the notation and summarize the
relevant results.

Consider the following reaction—diffusion systems with nonlocal delay:

du(x, 3%u(x,
“(;t D_p ”;ixz t)+f(u(x,t),(g1*u)(x,t),...,(gm*u)(x,t)), 2.1)

where t > 0, x e R, D =diag(dy,...,dp),di >0,i=1,...,n,n e N; u(x,t) =
(ul(-xvt)v°"vun(xst))T’ feC(R(n1+l)n’R’1)’ and

t +00
(g/*u)(xvt):/ / gj(x_yvt_s)u(yvs)dydsv
—0Q J =0
the kernel g;(x, t) is an integrable nonnegative function satisfying

gj(—x,t)=gj(x,t) and

RS e 2.2)
/ / gj(y,s)dyds=1, j=1,....m, meN.

0 —00

Assume u(x,t) = ¢(x + ct) and replace x + ct with ¢; then we can rewrite (2.1)
in the form

—D¢" (1) +cg' ) = (o), (g1 ¥ P) (@), ..., (gm ¥ P)(1)), 1€R, (2.3)

where

—+00 —+o0
(gj*w)(t)=/0 / gi(y, et —y—cs)dyds, j=1,...,m.
—00

A travelling wave-front with a wave speed ¢ > 0 to (2.1) is a function ¢ €
BC%(R,R"), ¢(x + ct), which satisfies (2.3) and the following boundary condition:

¢(—00) =0 and

(2.4)
p(+o00)=K=(Ky,...,K,)" withK;>0,i=1,2,...,n.

‘We make an assumption on the kernels g;(x,1), j=1,...,m:
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(Hop) fjocf gj(x,t)dx is uniformly convergent for r € [0,a],a >0, j=1,...,m.In

other words, given ¢ > 0, there exists an M > 0 such that fﬁ';oo gitx,ndx <¢
for any 7 € [0, a].

In order to study the existence of travelling wave-fronts, we need the following
monotonicity condition and assumptions:

(Hp) There exists a matrix y =diag(yy, ..., ¥n) With y; > 0,i =1, ..., n such that

F(e20), (g1 %92 (1), ..., (gm * 92) (1)) + ya(1)
> fe1(0), (€1 % @) @), ... (gm *@1)(®)) + Y1 (1),

where @1, g2 € C(R, R") satisfy 0 < 91 () < ¢ (t) <Kint e R.

Hy) fu,...,n)#0for0<pu <K;
H3z) f(u,...,u)=0when u=0orK.

Next we give definitions of the sub- and supersolutions of (2.3).

Definition 2.1 A continuous function ¢ : R — R" is called a supersolution of (2.3) if
¢’ and ¢” exist almost everywhere and are essentially bounded on R, and ¢ satisfies

—D¢" (1) +cd'(t) = f(P(1), (g1 % P)(®), ..., (gm xP)(1)), ae.onR. (2.5

A subsolution of (2.3) is defined in a similar way by reversing the inequality in (2.5).

Let

r v (i) ¢ isincreasing in R;
= er:
(1) 0 <lim;— _ @) <Kand lim;— 400 ¢(t) =K

and
BC[0,K] = ¢ € BC(R,R"); 0 < ¢ <K],
where Y = {p € BC(R,R") : ¢/, ¢"” € L®°(R, R")}.

Theorem 2.2 Assume that (Hy), (Hy), (H3), and (Ho) hold. Assume further that ¢
and r, where € BC[0,K]NY with  #£0 and lim;—, _oo V() =0, ¢ € I" with
Y < ¢, are sub- and supersolutions of (2.3), respectively. Then (2.1) has a travel-
ling wave-front ¢* which is increasing and satisfies (2.4) with ¥ < ¢* < ¢ and for
a,beRwitha <b,

o™ — o* ”C([a,b],R") -0, (2.6)
where
—D(¢™)" +c(¢™) +y¢" =Fy" ' +y¢" ! (meN), 2.7)
and
Y<¢t<-<¢m<-<¢'<¢’=9. (2.8)

In particular, if lim;—, _oo ¢ (t) =0, then ||¢p™ — ¢*|| — 0.

@ Springer



J Nonlinear Sci (2007) 17: 505-525 511

In the subsequent section of this paper, we shall use the above results to prove the
existence of monotone travelling waves of (1.5).
3 Ecxistence of Travelling Wave Fronts

Conversion of (1.5) into travelling wave form, with u(x,?) = ¢(z),z =x + ct and
replacing z with ¢, yields

de"(t) —co' (1) + fe@), (g x@)(1)) =0, 1€R, 3.1
where
+o00  p+00
(gw)(r)=/o / ()l — y — cs) dyds,

F(e). (g %)) = —19(1) + BT (g * @) (Ne” ¢,
and solutions of this equation are sought satisfying
p(—00) =0 and ¢(c0)=Ing:=k. (3.2)

We first establish an upper bound on any travelling wave-front, which is an exten-
sion of a result in Gourley (2000).

Lemma 3.1 Any travelling wave-front ¢ (t) of (3.1) satisfies ¢(t) < B/e everywhere.

Proof 1f ¢ exceeds /e anywhere, then ¢ must attain a global maximum, i.e., a point
fo such that ¢(fg) > B/e, ¢’ (o) =0, and ¢” (19) < 0. Equation (3.1) yields

p(10) = Bl * 9)(10) exp(~(g * 9)10) = 7,
since xe ™ < 1/e for all x. O

The following result extends Proposition 3 of Gourley (2000) for the wave equa-
tion (3.1).

Lemma 3.2 If B < e, then any travelling wave-front ¢(t) of (3.1) satisfies ¢(t) <Inf
everywhere.

Proof Tf ¢ exceeds In $, then there must exist a global maximum fy. At 7y, ¢’ = 0 and
¢” <0. Also,

+o0 p+o0
(g*w)(to)=/0 / g(y,s)p(ty —y —cs)dyds

+o0  p+00
5/0 / gy, )p(t)dyds = ¢(ty),
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and furthermore, by Lemma 3.1, both sides of the above inequality are less than or
equal to 1. In view of this fact, together with the fact that xe™ is an increasing
function for x < 1, we can write

0=dy"(10) — cg'(to) + f(¢(1). (g % ¢)(10))
< —79(to) + Bro(tg)e *1.

This gives ¢(fp) < In 8, which is a contradiction. [l
Lemma 3.3 f(¢(t), (g *x ¢)(t)) satisfies (Hy).
Proof Let g1, ¢2 € C(R, R) with 0 < ¢1(¢) < ¢2(¢) < k. Then,

F (920, (¢ % ) (1)) = f(@1(0), (g % 1))
= —1¢2(0) + BT(g * ) (Ve E D 111 (1) = (g + pr) (e E VO
= —1[p2(t) — 1 (D] + Br[(g * p2) (1)~ W — (g x 1) (1)e~E*V D],

Consider the function i(y) = ye™. Then,

, o >0 fory<l,
R(y)=e(1-y) (3.3)
<0 fory>1I.

So, h(y) is increasing on [0, 1]. Now, since 8 <e,
0<pi(t) =g2(t) <k < 1.

Thus,
(g # @2) (e~ O — (g5 ) (1)e” =¥V = 0,

Therefore,
Fp2(0), (g x02) (1) — fe1(D), (g x o)) = —T[02(1) — 1 (1)]. O

Based on Theorem 2.2, we see that the existence of travelling wave-fronts for
(1.6) follows from the existence of a pair of upper and lower solutions of (3.1). In the
remainder of this section, we will construct such a pair of upper and lower solutions
by choosing a different kernel function g. Here we consider five cases:

.
(i) g(x,1)=+e ©8(x), 70> 0.
2

(ii) g(x,z>=3<r>d41me*%,po>o.

_r
(i) g(x, 1) = T’—ze 08(x), 1o > 0.
0

2
' x

i =le L ¢ i

(IV) g(x,t)_roe me ,T0>0,,0()>0.

L ,
v) gx, )= %e 0 —\/#e*:?, 70 > 0.
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From the results of Wang et al. (2006), we know that these functions satisfy the
condition (Hp).
Our main result in this section is the following theorem.

Theorem 3.4 If 1 < B < e, then there exists ¢* > 0 such that for every ¢ > c*,
(1.5) has a travelling wave-front solution that connects the trivial equilibrium u =0
and the positive equilibrium u =1n §.

We remark that the wave speed ¢* depends on the choice of different kernel func-
tions.

3.1 The case g(x,t) = %e_ﬁﬁ(x), 70> 0

In this case, we define the function
1
Ae)=——1)Br=[r1 = r—d\?], reR.
= (1 1) [0 =pra-a) e

Then, Ajo(L) =dr* 4+ (8 — 1)t > 0. Hence, it is easy to show the following.

Lemma 3.5 There exist ¢* > 0 and A* > 0 such that

(i) Ajer(W¥) =0 and

d
— Aqex (A =0;
an 1lc ( )A:A*

(ii) for 0 <c < c*, and A > 0, we have Aj.(\) > 0; and
(iii) for ¢ > c¢* the equation A1.()) =0 has two positive real roots L1, A12, such
that 0 < A1 < A2 and

>0 fork <A1,
Ac(AM) =41 <0 forre i, r2),
>0 fori> Aps.

Now fix ¢ > ¢* and let 0 < A1 < A1z as in Lemma 3.5. Choose ¢ > 0 sufficiently
small so that ¢ < A1; < A11 + & < A12. Define the functions ¢ and ¥ by

¢(t) =minfk, ke’""} and ¥ () = max{0, k(1 — Moe™ )"}, (3.4)

where My > 1 is a constant to be determined. Clearly, 0 < () < ¢ () <k fort € R
and ¥ (1) 0.

Lemma 3.6 ¢(t) defined by (3.4) is an upper solution of (3.1) and ¢ (t) € I'.

Proof ¢(t) € I' is obvious. We only need to verify that ¢ () is an upper solution
of (3.1).
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Fort>0,¢() =k, ¢'(t) =0, ¢”(t) =0.In view of 0 < ¢(¢) < k and the fact that
the function 4 (y) defined by (3.3) is increasing on [0, k], we have

de" (1) — cd'(t) + f(p(1), (g * $) (1))
=tk + Br(g * ¢) (e~ &N
< —rk+ﬂrke_k =—1tnB+ting=0.

Fort <0, ¢(t) = ke, ¢/ (¢) = khje*t?, ¢ (1) = kk%le)‘“’. Hence, we have

de"(t) —cd'(t) + f(p (1), (g % D) (1))

=k

<k

=k

(da}) —capy — )t + i—t(g * ¢)(r)e—<g*¢><’>}

il
k

(dr3) —chrr — 7))t + (g ¢)(r)}

B Bt +oo pdo0

(@ e = et + B [T [ e 0000 -y - ey
L 0 —00

+00

(d)‘%l —CcAl — -,;)e?»nt +/31,/ _efae)»ll(tfcs) ds:|
- 0 70

(‘“‘%1 —ch] — t)ex“’ + ﬁte“"/ —e 0

+00 1 _ Uthygpos
ds

0 70

:kew[(dﬁ] —eh— )+ L]

1+ Artoc

1
= ke | da2, — ca —1 — -1 =0.
e |: h—cin+t(B—-1+ " Bt 0

Lemma 3.7 For sufficiently large My > 1, ¥ (¢) is a lower solution of (3.1).

Proof Let

Then £

< 0 and
fort >1t,

k(1 = Mpeeh)erit fort < 1.

V()=

Fort > 1,y () =0and ¢ (t —y —cs) > 0 for all y € R. Thus,

dy" (@) —cy' )+ f(¥ (D), (g *¥)(1))

=dy"(t) — ey (1) — T (1) + BT (g * Y)(t)e & VD
> 0.
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Fort < t, v (t) = k(1 — Moet)H)e*!!, /(1) = k[A1] — Mo(hi1 + €)el e and
Y () = k[k%l — Mo(A11 + €)2e?' e’ Hence, we have

RES S el 1 _s
(g*tﬁ)(t):k/o f I (Y)Y (r—y—cs)dyds

+001 s
:k/ —e Y (t—cs)ds
0 70

+o00 1 _s 400 1 _s
> k/ —e e)»ll(t_cs) ds — kM()/ —e W es(l—cs)ekll(t—cs) ds
0 70 0 70
kert kMOe(MlJrS)f
T l+intoe 14+ (g +e)wc]

and
ket

+00 1 s (t )
* 1)<k —e werUmeS)de—_ —
g+ V)0 =< /o 70 14+ A7oC

Thus, using the inequality e* > 1 + x for x € R, we have
dy" (1) — ' (t) + f (¥ @), (g ¥) (1))
=dy"(t) — ey (t) — TP (1) + (g * Y)(1)e” &N

1
> ke*”"[d)\%l —cini+t(B—-1D+ (m - 1)&]

— kMoe e [d(xu +e)—chnte)+r(B-1)

1
+ <1 + (A1 48)T10c 1)'&}

+ Br(g * Y)(1)[e” &P 1]
> _kMoe* 1O AL (hyy + £) — }gf[(g % 1#)(t)]z
ﬂrkze(MlJre)t
(1+ A11700)?

Btk
Are(h1 + &)1+ Ait00)?

> —kMoe™ 1T A (g1 + &) —

= —kePTIT AL (A1) +6) |:Mo + } (3.5)

Since Ajc(r11 + €) < 0, the right-hand side in (3.5) is positive for sufficiently
large M. g

From Lemmas 3.3, 3.6, and 3.7 and Theorem 2.2, we see that Theorem 3.4 is true.
In order to estimate the value of ¢*, we define

hiiA) =1(1—B)+ch—dr?> and hpp(A) = <ﬁ - 1);%.
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Then,
A1) =hp(A) —h1 (V).

Obviously, the function A11()) is concave down with the maximum % —t(B—-1)

attained at ﬁ and the function h12()) is decreasing in [0, co) and

I c\ _ —19c2 BT
2\2d4) T 2d 1 w02
Thus, if % >1(B — 1), thatis, c > 2/dt(8 — 1), then A1.(A) = 0 has two positive

real roots, regardless of the value of 7¢, and if ¢ =0, then A;.(1) = 0 has no real

roots. Hence, we have ¢* € (0, 24/dt(8 — 1)). Furthermore, if ¢ € (0, 2/d7 (8 — 1)),

then A1.(X) = 0 has two positive real roots provided that
4dt(B—1) —c?
0> B-D - <
2tc?+ 4

Thus, we have the following result.

Corollary 3.8 Assume that 1 < 8 <e. Then the following statements are true:

(1) For every ¢ > 2./dt(B — 1), regardless of the value of 79 > 0, (1.5) has a trav-
elling wave-front solution, which connects the trivial equilibrium u = 0 and the
positive equilibrium u =1n .

(i) For every c € (0,2+/dt (B — 1)), (1.5) also admits a travelling wave-front solu-
tion, which connects the trivial equilibrium u = 0 and the positive equilibrium
u = In B, provided that

2dr(f—1)—%
> .

70
Tc? + %
We know from Sect. 1 thatif g(x, y,z,s) =8(x — y)8(t — s), then (1.5) becomes
equation
d
8—?’ — dAu — tu(x, 1) + Brulx, 1) expl—u(x, 1)]. (3.6)

For (3.6), Gourley (2000) obtained the following result.

Theorem 3.9 Equation (3.6) has a travelling wave-front with speed c if and only if

c>2dt(B—1).

If g(x,y,t,5) =8(x —y)é(t —s — 1), then (1.5) becomes (1.3). For the discrete
delay model (1.3), So and Zou (2001) obtained the following result by applying Wu
and Zou’s results for reaction—diffusion equations with discrete delays (Wu and Zou
2001).

Theorem 3.10 If 1 < B < e, then there exists c* > 0 such that for every ¢ > c* there
exists a travelling wave-front for (1.3) with speed c.
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Remark 3.11 The constant ¢* is the “minimal wave speed” in the sense that (1.4)
has no travelling wave-front when the wave speed c is less than ¢*. This can be seen
from the observation that the formal linearization of (3.1) at the zero solution is given
by

de"(t) — cg' (1) = Tp(t) + (g * ) (1) =0,

and the function A1.(A) is obtained by substituting e for ¢(t) in the above lineariza-
tion. Therefore, by Lemma 3.5(ii), (3.1) should not have a solution (¢, ¢) with ¢ < ¢*
and ¢(—o0) =0.

Remark 3.12 From the expression of the function

1
Alc(V) = <m - 1);91 — [t = B) +cr —dr?]

Bt

= T —cA+dA
1+ Atoc +

we see that the graph of A > A.(A) moves downwards as 7y increases. By
Lemma 3.5 it is easily seen that the minimal wave speed c¢* is a decreasing func-
tion of tp.

Remark 3.13 Corollary 3.8 and Theorems 3.9 and 3.10 indicate that the time delay
can induce slow wave-fronts, which was also reported by Zou (2002) for the equation
of KPP-Fisher type.

2

3.2 The case g(x,t) = S(I)J“ITme_‘STO, 00 >0

In this case, we define the function
Asc(h) = (" — 1)t —[t(1 = B) +ch —d3?], reR.
It is easy to show the following.

Lemma 3.14 There exist ¢* > 0 and \* > 0 such that
(1) Arex(A*) =0and
0
— Apex (A =0.
EYY 2¢ ( ) .
(ii) For 0 <c < c* and ) > 0, we have Ay.(A) > 0.
(iii) For ¢ > c*, the equation Aj.(A) = 0 has two positive real roots Ay, Ao, such
that 0 < Ay < Aoy and
>0 fork<Ap,
Are(XM) 4 <0 for k€ (21, A22),
>0 fork>Ap.
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Now fix ¢ > ¢* and let 0 < A2] < Ap; as in Lemma 3.14. Choose ¢ > 0 sufficiently
small so that € < Ay < A1 + € < Ap;. Define the functions ¢ and ¥ as (3.4).

Lemma 3.15 ¢(t) defined by (3.4) is an upper solution of 3.1) and ¢ (t) € I'.

Proof ¢(t) € I' is obvious. We only need to verify that ¢ (¢) is an upper solution
of (3.1).

For ¢ > 0, the proof is similar to that of Lemma 3.6.

Fort <0, ¢(t) = ke, ¢/(t) = krrie*!, ¢ (t) = kr3,e*". Hence, using the
fact that ¢ (1) < ke*?!’ for t € R, we have

dg" (1) = c¢' (1) + [ (B (). (8 % ) (1))
+ %(g * ¢><r>e<g*¢’><'>}

ﬁk—T(g * ¢)(I)}

=k|(dr3) — cho —T)eM!

<k (dk%l —cAyl — T)ekzlt +

B ,37,' +oo  r+00
(dk%l —CA2l — r)e)‘z" + —/ / g(s, )o@ —y—cs)dy dsi|
L o0

Il
»4

- 2
2 » IBI L %

=k _(d)‘21 —chyp — )M + \/_ e Mgt —y) dsi|

- “+00 7&
<k|(dA3; —crar — 7)™ + Bt — ¢ dnetnlty) ds]

| 47 po
= ke)‘z"[(dkgl —chy— 1)+ ,Bfe)%lpo]
=ke™!'[dA3, — Aoy +T(B— 1) + (ek%lpo —1)pr] =0. -

Lemma 3.16 For sufficiently large Mo > 1, ¥ (t) is a lower solution of (3.1).

Proof Lett; = 1 ln . For t > 11, the proof is similar to that of Lemma 3.7.

For 1 <1y, v = k(l — Moe* e /(1) = k[Aa1 — Mo(ha1 + e)e*']e*>!" and
Y'(t) = k[)»21 — Mo(hay + &)%ef]e*21!. Noting that k(1 — Moet")e*2! < (1) <
ke*21! for all € R, we have

+00  p+oo
= 8
(g*v)(@) /0 /_OO (S)m

400 1 y2
>k ——e (1 - Moes(t_y))e)‘zl(t_y) dy
B 47 po

‘,2
e 0yt —y—cs)dyds

+00 1 y2

e Fet21V(g
0o ~4TpPo Y

= ke“”

2
— kMyelator ¢ TImeGatay gy,

[ G

Aoyt 22 s et A £)?
— kel21tapohy; —kMoe( 21+8)1 oo (R21+¢) ,
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and
PPN B R oy A1t o por2
(g*w)(t)ske 21 / e %oe” 21ydy=ke 218 a0
—c0 4o

Thus, using the inequality e* > 1 + x for x € R, we have
dy"(t) — ey (0) + f(¥ (1), (g % ¥) (1))

=dy" (1) — (1) — TP (1) + Br(g x Y) (1)e” &N

> k21 [dA3) — chay + T(B — 1) + (€31 — 1)1]
— kMoe%21 O [d Gyt + €)% — c(har + ) + (B — 1) + (202197 _ 1) 7]
+ BT (g YD) e VO —1]

= —kMoe "2 Age (b1 + ) + Br(g x ) () [e” VO —1]

> —kMoe® 1t Ay (hat +6) — Br[(g * )]

> —kMoe®1 " Ay (hay + 8) — BThPe2Paie0artor

2
Brk2e?rora }

_— 3.7
Aze(Ao1 +¢€) G-7)

= —ke2F Ay (b1 +e) [Mo +

Since Azc(A21 + &) < 0, the right-hand side in (3.7) is positive for sufficiently
large M. |

From Lemmas 3.3, 3.15, and 3.16 and Theorem 2.2, we see that Theorem 3.4 is
true.
In order to estimate the value of ¢*, we define

ha () =1(1 = B)+ch—di> and hyp() = (e —1)Br.
Then,
Aze(X) =hoo(X) — ha1 (V).

Obviously, the function /71 (A) is concave down with the maximum % —7(B—-1)
attained at ﬁ and the function /7, (1) is increasing in [0, co) and

c po
i 57) = (w5 ) 1)
Thus, if ¢ =0, then Aj.(1) = 0 has no real roots and if 0 < ¢ < 2./dt(B —1),
then hy»(A) > 0 and hy;(A) <0 for A > 0 and so Ax.(A) > 0. Hence, c* €

(2y/dt(B —1), 00).
Remark 3.17 Similar to Remark 3.11, we can see that the constant ¢* is the “minimal

wave speed” in the sense that (1.4) has no travelling wave-front when the wave speed
¢ is less than c¢*.
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Remark 3.18 From the expression of the function
Ase(0) = (%" = 1)t — [t(1 — B) + ek — dr2] = BreP’ — 7 — ch +di2,

we can see that the graph of A — Aj.(A) moves upwards as pp increases. By
Lemma 3.14 it is easily seen that the minimal wave speed c* is an increasing function

of po.

Remark 3.19 Theorem 3.4 shows that the mobility of the population can increase
the fast wave-fronts.

3.3 The case g(x,t) = ﬁe_ﬁﬁ(x), 70> 0
0
In this case, we define the function
1
A= ————1|)Bt— [t - r—dr?], reR.
3 (3) (aHmz )ﬂ [t B)+c ]
We have the following lemma.

Lemma 3.20 There exist ¢* > 0 and \* > 0 such that
(1) Azex(A*) =0 and
9 Azex (L) =0;
P 3c e =Y,

(ii) for 0 <c < c* and A > 0, we have As. (L) > 0; and
(iii) for ¢ > c¢* the equation Az:.()) =0 has two positive real roots A31, A3p, such
that 0 < A31 < A3p and

>0 forA <Az,
Azc(A) § <0 ford € (A31,232),
>0 fori>Ai3.

Now fix ¢ > ¢* and let 0 < A3; < A37 as in Lemma 3.20. Choose ¢ > 0 sufficiently
small so that ¢ < A31 < A31 4+ € < A32. Define the functions ¢ and v as (3.4).

Similarly, we can prove the following lemmas.
Lemma 3.21 ¢(¢) defined by (3.4) is an upper solution of (3.1) and ¢ (t) € I'.
Lemma 3.22 For sufficiently large Mo > 1, ¥ (t) is a lower solution of (3.1).

From Lemmas 3.3, 3.21, and 3.22 and Theorem 2.2, we see that Theorem 3.4 is

true.
In order to estimate the value of ¢*, we define

1
h3i(M) =t(1 —B) +ch —dr? and h32(k):<m—1>ﬁr.
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Then,
Azc(A) = h3(A) — h31 (V).

Obviously, the function %31(A) is concave down with the maximum % —t(B—=1
attained at ﬁ and the function A3, (A) is decreasing in [0, co) and

5 c B 4d7oc? +r2c4
32\ 24 Q2d + toc2)?

Thus, 1f C >t(B — 1), thatis, c > 2/dt(B — 1), then A3.(1) = 0 has two positive
real roots regardless of the value of 7¢, and if ¢ = 0, then A3.(1) = 0 has no real

roots. Hence, we have ¢* € (0, 2./dt (8 — 1)). Furthermore, if ¢ € (0, 2/d7(8 — 1)),

then A3z (A) = 0 has two positive real roots provided that

—(c* +4dte) + \/(c4 +4dTe)? +4d(rct + S (ddT(B— 1) — 2)
0> . (3.8)

2rct 4 &)

Thus, we have the following result.

Corollary 3.23 Assume that 1 < B < e. Then the following statements are true:

(i) For every ¢ > 2./dt(B — 1), regardless of the value of to > 0, (1.5) has a trav-
elling wave-front solution that connects the trivial equilibrium u = 0 and the
positive equilibrium u = In B.

(ii) For every c € (0,2/dt(B — 1)), (1.5) also admits a travelling wave-front so-
lution that connects the trivial equilibrium u = 0 and the positive equilibrium
u = In B, provided that (3.8) holds.

If g(x,y,t,5) =8(x —y)k(t —s), then (1.5) becornes (1.4), where the kernel func-
tion k(t) is a strong generic delay, that is, k(t) = 5 e /7 15 > 0. Gourley (2000)

considered (1.4) and established the existence of travellmg wave-front solutions by
using geometric singular perturbation theory.

Theorem 3.24 For any to > O sufficiently small, there exists speed ¢ > 2/dT(f — 1)
such that (1.4) has a travelling wave-front.

Remark 3.25 Clearly, Corollary 3.23 improves Theorem 3.24 by dropping the as-
sumption that 7 is sufficiently small and relaxing the condition ¢ > 2/dt (8 — 1).

x2

L o740, 79>0, pg>0

3.4 The case g(f,x) = rioe‘% N

In this case, we define the function

00>

Ac() = (m

— 1>ﬂt — [t =p)+cr—dr?*], reR.
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Similarly, we have

Lemma 3.26 There exist ¢* > 0 and A* > 0 such that
(1) Agex(W*) =0 and
9 Agex(N) =0
Y N
(i) For0 <c < c* and A > 0, we have Aq-()) > 0.
(iii) For ¢ > c*, the equation A4c(A) = 0 has two positive real roots A4y, lap, such
that 0 < Aq1 < g2 and
>0 forA <As4p,
Age(M) = <0 for e (A1, ra2),
>0 fori> Aq.

Similarly, we can prove that ¢ () defined by (3.4) is an upper solution of (3.1) and
¢ (t) € I', and for sufficiently large Mo > 1, 1 (¢) defined by (3.4) is a lower solution
of (3.1). Thus, Theorem 3.4 holds.

it 2
3.5 The case g(t, x) = Tl—oe 0L e "% 7p>0

VAt

To+ /2 2+4
For ¢ > 0, let A5(c) = W, and for A € (0, A5(c)), define the function

Asc(/\)—<1+kcm_m2 1>,Br [t(1 = B) +cr—dr?].

Obviously,

Asc(0)= (B — D, lim  Asq(A) =400,
A—>As5(c)—0 (3 9)
1+ ictg— A219 >0, forie (0, 25(c)). '

Lemma 3.27 There exist ¢* > 0 and A* > 0 such that
(1) Asex(A*) =0 and
B
— Asex (A =0.
I s5cx (1) .
(ii) For0 <c < c*, and A5(c) > A > 0, we have As.(\) > 0.
(iii) For ¢ > c* the equation As.()) =0 has two positive real roots Asi, Lso, such
that 0 < As1 < Asp < As(c) and
>0 for0<A\<A\sg,
Asc(A) 1 <0 for d € (As1, A52),
>0 foris(c) > A > Aso.
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Proof 1f ¢ =0, then A5(0) = % > 0 for A € (0, A5(0)), and

70
1 2

If co=d+ Bt + 1, then As5(co) > 1, and

1
Ase(N)=——— —1)Br —[r(1 = 1] < —1.
5c0(1) (Hcm_ro )ﬁr [tA=p)+Br+1] <
Furthermore, for any ¢ > 0 and A € (0, A(c)), we have

92 419(1 + Aetg — A1) + 2(cTo — 2A70)? 0
>

2 As.(\) =2d
gi2 Ase®) + (1 + retg — A210)3

’

and
ATo
— <
(14 Actg — AZ1p)2

This implies that for ¢ > 0, the image of y = As.(%) in the plane (A,y) (0 < A <
A(c)) is strictly convex down and satisfies (3.9). Also, when ¢ > 0 is increasing,
the image strictly drops and there are no common points for A > 0. Combining the
arguments for ¢ = 0 and ¢ = ¢y, the conclusion follows. g

0.

d
— A, ) = —A
ac

Using this lemma, we can prove that Theorem 3.4 is true for this case.

4 Discussion

We have established the existence of travelling wave-fronts for a version of Nichol-
son’s blowflies model that is more general than that studied by Gourley (2000), Gour-
ley and Ruan (2003), So et al. (2000), So and Yang (1998), and Yang and So (1998)
by considering a nonlocal delay, which involves a weighted spatiotemporal average
over the whole space domain and the whole time interval. Our method is the ap-
proach developed in Wang et al. (2006) on the existence of travelling-front solutions
to reaction—diffusion systems with nonlocal delays. Moreover, we have considered
the dependence of the minimal wave speed on the delay and the mobility of the pop-
ulation. Our main finding here is that the time delay can induce slow travelling wave-
fronts and the mobility of the population can increase fast travelling wave-fronts if
B < e. In particular, if we choose some special kernel forms, then our results include
and improve some known results obtained by Gourley (2000), Gourley and Ruan
(2003), and So and Zou (2001).

Note that in terms of the original parameters, the condition 8 < e is equivalent to
p/8 <e, where p is the maximum per capita daily egg production rate and § is the
per capita daily adult death rate. The main results demonstrate that when the ratio of
the maximum per capita daily egg production rate and the per capita daily adult death
rate is relatively small (less than the exponential number e), then the generalized
Nicholson’s blowflies model has travelling wave-fronts connecting the two uniform
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steady states u = 0 and u =In 8 = In(p/8). Thus, there is a moving zone of transition
for the species from the zero steady-state to the positive steady-state. In other words,
the species successfully invade the environment by “waves of invasion.”

We established only the existence of travelling-front solutions in the Nicholson’s
blowflies model with nonlocal delay when the ratio § of the maximum per capita
daily egg production rate and the per capita daily adult death rate is less than e. In
the case when B > e, the delay model undergoes a Hopf bifurcation at the positive
steady-state # = In 8, and there are bifurcating periodic solutions surrounding the
positive steady state (Gurney et al. 1990; Wei and Li 2005; Ruan 2006). We expect
that in this case there are travelling wave-train solutions connecting the zero steady
state and the periodic solution (see Dunbar 1986 and Huang et al. 2003) that can
be established by using a topological argument (see, for example, Ruan 1998). This
deserves further investigation.
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