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In this paper, we study the asymptotic behavior of solutions of
non-autonomous parabolic problems with singular initial data.
We first establish the well-posedness of the equation when the ini-
tial data belongs to Lr(Ω) (1 < r < ∞) and W 1,r(Ω) (1 < r < N),
respectively. When the initial data belongs to Lr(Ω), we estab-
lish the existence of uniform attractors in Lr(Ω) for the family of
processes with external forces being translation bounded but not
translation compact in Lp

loc(R; Lr(Ω)). When we consider the exis-
tence of uniform attractors in H1

0(Ω), the solution of equation lacks
the higher regularity, so we introduce a new type of solution and
prove the existence result. For the long time behavior of solutions
of the equation in W 1,r(Ω), we only obtain the uniform attracting
property in the weak topology.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ RN be a bounded smooth domain. Consider the following non-autonomous nonlinear
reaction–diffusion equation⎧⎨⎩

ut − �u + f (x, u) = g(x, t) in Ω, t > τ,

u = 0 on ∂Ω,

u(τ ) = uτ , τ ∈ R,

(1.1)
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where f (x, u) ∈ C(RN × R,R) satisfies

f (x,0) = 0, (1.2)∣∣ f (x, u) − f (x, v)
∣∣� C

∣∣a(x)
∣∣|u − v|(|u|ρ−1 + |v|ρ−1 + 1

)
(1.3)

with ρ > 1 and a(x) ∈ Lβ(Ω), β > 1. Suppose that the external force g(t) = g(·, t) is translation
bounded in L p

loc(R; X), p > 1, i.e., g ∈ L p
b (R; X),

‖g‖p
L p

b (R;X)
= sup

t∈R

t+1∫
t

∥∥g(s)
∥∥p

X ds < +∞,

where the local p-power integral is the Bochner integral and X is a Banach space. We are interested
in X = Lr(Ω) and W 1,r(Ω), respectively.

By a solution u ∈ C([τ , T ]; X1) ∩ C((τ , T ]; X1+ε) ∩ L∞
loc((τ , T ]; X1) of (1.1), we mean that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(t) = e�(t−τ ′)u

(
τ ′)+ t∫

τ ′
e�(t−s)[− f

(
x, u(s)

)+ g(x, s)
]

ds for τ < τ ′ � t � T ,

u
(
τ ′)→ u(τ ) in X1 as τ ′ → τ ,

(1.4)

where ε > 0, Xα is the fractional power space associated to the operator �. This type of solution is
also called an ε-regular mild solution in [6].

Elliptic and parabolic problems with the nonlinearity analogous with the one of (1.1) have drawn
much attention. After the work [5], authors in [20] studied the existence, nonexistence and multiplic-
ity of solutions for the problem

⎧⎨⎩
−�u = λa(x)uq + b(x)up in Ω,

u � 0, u 
≡ 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where Ω is a bounded domain in RN , λ is a parameter and the exponents p and q satisfy 0 �
q < 1 < p with p � 2∗ − 1 if N � 3, p < ∞ if n = 1 or 2. Here 2∗ := 2N/(N − 2). Let σq = ( 2∗

q+1 )′ ,
σp = ( 2∗

p+1 )′ . With some assumptions, they proved that if a(x) ∈ Lτq (Ω) with τq > σq and b(x) ∈
Lτp (Ω) with τp > σp , then (1.5) has at least two solutions v and w; and if a(x) ∈ Lσq (Ω) and b(x) ∈
Lσp (Ω), then (1.5) has no solution. For the parabolic problem, authors in [1] investigated the dynamics
of the semiflow ϕ induced on H1

0(Ω) by the following Cauchy problem

⎧⎨⎩
ut − �u = f (x, u) in Ω, t > 0,

u = 0 on ∂Ω, t > 0,

u(0) = u0, x ∈ Ω,

(1.6)

where Ω ⊂ RN is a bounded domain with smooth boundary. A model nonlinearity of (1.6) is

f (x, u) = a0(x)u +
k∑

j=1

a j(x)|u|p j−1u,
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where a j(x) in L∞(Ω) for j = 0, . . . ,k, 2 < p1 < p2 < · · · < pk < 2∗ , 2∗ = ∞ if N = 1,2. When
f (x, u) = λu + a(x)up , p > 1, u0 ∈ L∞(Ω) and u0 � 0, the estimates of positive solutions of (1.6) with
a(x) ∈ C(Ω) and the blow-up of solutions of (1.6) with a(x) ∈ C2(Ω) have been studied respectively
in [36]. Recently, if f (x, u) = a(x)uq + b(x)up , 0 < q � 1 < p, a(x) ∈ Lα(Ω), b(x) ∈ Lβ(Ω), α,β � 1,
it has been proved in [28] that there exists a unique positive solution

u ∈ C
([0, T ]; Lr(Ω)

)∩ L∞
loc

(
(0, T ); L∞(Ω)

)
(1.7)

of (1.6) with u0 ∈ Lr(Ω), 1 � r < ∞, and u0 � γ dΩ , where γ is a positive constant, dΩ = dist(x, ∂Ω).
Authors in [38] analyze the dynamics of the following non-autonomous nonlinear parabolic model
problem ⎧⎨⎩

ut − �u = f (t, x, u) in Ω, t > s,

u = 0 on ∂Ω,

u(s) = us,

(1.8)

where Ω is a bounded domain in RN and f (t, x, u) : R × Ω × R → R is a suitable smooth function
satisfying

f (t, x, u)u � C(t, x)|u|2 + D(t, x)|u| for all u ∈ R (1.9)

for some C(t, x) ∈ Cα(R; L p(Ω)) with 0 < α � 1 and p > N/2, and some function D with values in
Lr(Ω), 1 � r � ∞. Under some other assumptions, they prove that the solutions of (1.8) are global,
and there exist two extremal complete trajectories ϕm and ϕM , one minimal and one maximal, that
bound all complete trajectories corresponding to (1.8). Moreover, there exists a pullback attractor for
the process corresponding to (1.8), which is bounded by ϕm and ϕM . See details in [38]. For other
studies, see [4,37,42]. It is natural to consider problem (1.1) with general nonlinearity satisfying (1.2)–
(1.3).

To investigate the behavior of solutions of (1.1) when time tends to infinity, the first task is to study
the well-posedness of the problem. The autonomous case, study has been considered extensively.
When the initial data u(0) ∈ Lr(Ω) and − f (x, u) = |u|ρ−1u, after the work of [34,46,47], authors in
[13] obtained the local existence and uniqueness of the solution of (1.6) in the sense of (1.7). In [6],
authors studied the abstract parabolic problem{

ut = Au + f (t, u), t > t0,

u(t0) = u0,
(1.10)

where the linear operator A : D(A) ⊂ X0 → X0 satisfies that −A is a sectorial operator in the Banach
space X0, f (t, u) satisfies some local Lipschitz condition. They obtained that there exists a unique
solution (ε-regular mild solution) of (1.10), and applied their abstract results to the heat equation and
Navier–Stokes equation. For other related studies, we refer readers to [7,8,23,24,37,42].

To obtain the existence of uniform attractors in Lr(Ω) for the family of processes corresponding
to (1.1), higher regularity of solutions of (1.1) than the results in [13,28] is needed. Since the nonlin-
earity f (x, u) and external force g(x, t) of (1.1) depend on x, and g(x, t) belongs to L p

loc(R; X), which
is equipped with the local p-power mean convergence topology different from the topology of Xα

associated to linear operator �, − f (x, u) + g(x, t) is not an ε-regular map, and the abstract results
for (1.10) in [6] cannot be applied directly to system (1.1). To overcome this, we decompose system
(1.1) into a linear system and an autonomous nonlinear system. Using some estimates for the solution
of the linear systems, we show that there exists a unique ε-regular solution for the nonlinear system,
and get the local existence and regularity of solutions of (1.1) when the initial data belongs to Lr(Ω)

and W 1,r(Ω), respectively.
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There are papers both on the existence of attractors for autonomous evolution equations, e.g.
[9–12,22,25,32,39–41,43,44,48], and on the existence of uniform attractors for non-autonomous evo-
lution equations, e.g. [16–19,29–31,33,45]. We first establish the existence of uniform attractors in
Lr(Ω) for (1.1) as g(x, t) is translation bounded but not translation compact in L p

loc(R; Lr(Ω)). It is
shown that there are different dissipative conditions for r = 2 and the general case 1 < r < ∞. Us-
ing the regularity of solutions of (1.1) obtained in Theorem 3.1, we establish the existence results in
Lr(Ω) without any further assumption on g(x, t). When we consider the existence of uniform attrac-
tors for (1.1) in W 1,r(Ω), the situation becomes more complicated. We know from Remark 3.1 that
even if g(x, t) ∈ L p

b (R, W 1,r(Ω)), solutions of (1.1) cannot enter in W 2,r(Ω). Therefore, this brings
some difficulties in taking priori estimates of the solutions in obtaining compact uniformly absorb-
ing set. For r = 2, we can overcome this. By the standard Fatou–Galerkin method, we show that
there exists a unique weak solution u ∈ C([τ , T ]; H1

0(Ω)) ∩ L2
loc((τ , T ); H2(Ω)) ∩ L∞((τ , T ); H1

0(Ω)),
which also belongs to C([τ , T ]; H1

0(Ω)) ∩ C((τ , T ]; W 1+2ε,2(Ω)) and satisfies (1.4). For the general
case 1 < r < N , we only get that there exists a bounded uniformly absorbing set in W 1,r(Ω) for the
family of processes corresponding to (1.1), and the uniform attracting property in the weak topology
for any bounded set B ⊂ W 1,r(Ω).

This paper is organized as follows: in next section, we give some definitions and recall some results
which will be used in the following sections; in Section 3, we consider the well-posedness of (1.1) in
Lr(Ω) and W 1,r(Ω), respectively; in Section 4, we prove the existence of uniform attractors in Lr(Ω);
in Section 5, we first prove the existence of uniform attractors in H1

0(Ω), and then show the uniform
attracting property in the weak topology of the family of processes defined in W 1,r(Ω); in Section 6,
we give the relationship between pullback, forward and uniform attractors corresponding to (1.1).

2. Preliminaries

Let Ω be a bounded smooth domain. Denote by Hs
q(Ω) the Bessel potential spaces and H−s

q (Ω) :=
(Hs

q′ (Ω))′ , 1 < q < ∞, s � 0, 1
q + 1

q′ = 1. Notice that Hs
q(Ω) = W s,q(Ω), the standard Sobolev–

Slobodeckii spaces, whenever q = 2 and s ∈ R, or q > 1 and s is an integer. See details in [2,3].
We summarize some well-known embeddings as follows:

⎧⎪⎪⎨⎪⎪⎩
H

s1
q1

(Ω) ↪→ H
s2
q2

(Ω), if s1 − N

q1
� s2 − N

q2
, 1 >

1

q1
� 1

q2
> 0,

Hs
q(Ω) ↪→ Cη(Ω), if s − N

q
> η > 0.

(2.1)

Let A : D(A) ⊂ X0 → X0 be a linear operator which satisfies that −A is a sectorial operator in the
Banach space X0. Denote by Xα , α � 0, the fractional power space associated to the operator A and
by e At the analytic semigroup generated by A. Without loss of generality we can assume that e At is
uniformly bounded, that is,

tβ−α
∥∥e At x

∥∥
Xβ � M‖x‖Xα , t > 0, 0 � α � β. (2.2)

See details in [26,35,41].
We recall the following compactness theorem (see [16, Theorem II.1.4], [27, Theorem I.5.1]).

Theorem 2.1. Let E0 , E1 , E be three Banach spaces satisfying E1 � E ⊂ E0 . Assume that p1 � 1 and p0 > 1.
Consider the space

W p1,p0(0, t; E1, E0) = {ψ(t), t ∈ [0, t] ∣∣ψ(t) ∈ Lp1(0, T ; E1), ψ ′(t) ∈ Lp0(0, T ; E0)
}
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with the norm

∥∥ψ(t)
∥∥

W p1,p0
=
( T∫

0

∥∥ψ(s)
∥∥p1

E1
ds

) 1
p1

+
( T∫

0

∥∥ψ ′(s)
∥∥p0

E0
ds

) 1
p0

.

Then the following embedding is compact:

W p1,p0(0, t; E1, E0) � Lp1(0, T ; E).

Let y(t) ∈ C1([t0, t1]), y � 0, and the following inequality

y′(t) + cy(t) � h(t) (2.3)

holds with c � 0. We need the following result which comes from [16].

Lemma 2.2. Let y(t) be uniformly continuous on [t0,∞), y � 0, and satisfies (2.3), where c > 0 and h(t) � 0
for all t � t0 . Suppose that

t+1∫
t

h(s)ds � C1, ∀t � t0.

Then

y(t) � y(t0)e−c(t−t0) + C1
(
1 − e−c)−1 � y(t0)e−c(t−t0) + C1

(
1 + c−1).

Consider a non-autonomous evolution equation of the type

∂t u = Aσ (t)(u), t ∈ R. (2.4)

In system (1.1), Aσ(t)(u) = �u − f (x, u) + g(x, t), σ(t) = g(x, t). For every s ∈ R we are given an
operator Aσ(s)(·) : E1 → E0, where E1, E0 are Banach spaces. The functional parameter σ(s), s ∈ R, in
(2.4) reflects the dependence on time of the equation, and is called the time symbol (or the symbol) of
Eq. (2.4). The values of the function σ(s) belong to some metric or Banach space Ξ , i.e., σ(s) ∈ Ξ for
every (or almost every) s ∈ R.

We supplement Eq. (2.4) with an initial data at t = τ , τ ∈ R:

u |t=τ = uτ , uτ ∈ E, (2.5)

where E is a Banach space, E1 ⊆ E ⊆ E0. Assume that for any symbol σ(s) ∈ Σ , Σ ⊂ Ξ is a parameter
set, problem (2.4)–(2.5) is uniquely solvable for each τ ∈ R and arbitrary uτ ∈ E . Let also u(t) ∈ E for
any t � τ . Thus, u(t) can be represented in the form

u(t) = Uσ (t, τ )uτ , uτ ∈ E, τ ∈ R, t � τ , σ = σ(s) ∈ Σ ⊂ Ξ.

Definition 2.1. The two-parameter family of mappings {Uσ (t, τ ), t � τ , τ ∈ R}, σ ∈ Σ , acting in the
Banach space E is said to be a family of processes with time symbol σ ∈ Σ if for each σ ∈ Σ ,

Uσ (t, τ ) : E → E, t � τ , τ ∈ R
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and satisfies the following multiplicative properties:

Uσ (t, s)Uσ (s, τ ) = Uσ (t, τ ), ∀t � s � τ , τ ∈ R,

Uσ (τ , τ ) = Id is the identity operator, τ ∈ R.

Note that the following translation identity is valid for the family of processes Uσ (t, τ ), σ ∈ Σ ,
generated by a problem, which is uniquely solvable, and for the translation semigroup {T (h) | h � 0}:

Uσ (t + h, τ + h) = U T (h)σ (t, τ ), ∀σ ∈ Σ, t � τ , τ ∈ R, h � 0.

Definition 2.2. A family of processes {Uσ (t, τ )} is said to be (E × Σ, E) weakly continuous if for any
t � τ , τ ∈ R, the mapping (u, σ ) → Uσ (t, τ )u is weakly continuous from E × Σ to E .

Denote by B(E) the collection of the bounded sets of E . Let B ∈ B(E). Its Kuratowski measure of
non-compactness κ(B) is defined by

κ(B) = inf{δ > 0 | B admits a finite cover by sets of diameter � δ}.

For its properties, see details in [21]. Let Bt �
⋃

σ∈Σ

⋃
s�t Uσ (s, τ )B .

Definition 2.3. A family of processes {Uσ (t, τ )}, σ ∈ Σ , is said to be uniformly (with respect to (w.r.t.)
σ ∈ Σ ) ω-limit compact if for any τ ∈ R and B ∈ B(E), Bt is bounded for every t and limt→∞ κ(Bt) =
0.

A set B0 belonging to E is said to be uniformly (w.r.t. σ ∈ Σ ) absorbing for the family of processes
{Uσ (t, τ )}, σ ∈ Σ , if for any τ ∈ R and every B ∈ B(E), there exists t0 = t0(τ , B) � τ such that⋃

σ∈Σ

Uσ (t, τ )B ⊆ B0 for all t � t0.

A set P belonging to E is said to be uniformly (w.r.t. σ ∈ Σ ) attracting for the family of processes
{Uσ (t, τ )}, σ ∈ Σ , if for an arbitrary fixed τ ∈ R and any B ∈ B(E),

lim
t→∞
(

sup
σ∈Σ

distE
(
Uσ (t, τ )B, P

))= 0.

Here distE(X, Y ) denotes the Hausdorff distance from the set X to the set Y in the space E:

distE(X, Y ) = sup
x∈X

inf
y∈Y

‖y − x‖E .

We now introduce the notion of the uniform attractor AΣ .

Definition 2.4. A closed set AΣ is said to be the uniform (w.r.t. σ ∈ Σ ) attractor of a family of
processes {Uσ (t, τ )}, σ ∈ Σ , if it is uniformly (w.r.t. σ ∈ Σ ) attracting (attracting property) and is
contained in any closed uniformly (w.r.t. σ ∈ Σ ) attracting set A′ of the family of processes {Uσ (t, τ )},
σ ∈ Σ : AΣ ⊆ A′ (minimality property).

To describe the general structure of the uniform attractor of a family of processes, we need the
notion of the kernel of a process. A curve u(s), s ∈ R, is said to be a complete trajectory of the process
{Uσ (t, τ )} if

Uσ (t, τ )u(τ ) = u(t), ∀t � τ , τ ∈ R. (2.6)
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Definition 2.5. The kernel Kσ of the process {Uσ (t, τ )} consists of all bounded complete trajectories
of the process {Uσ (t, τ )}:

Kσ = {u(·) ∣∣ u(·) satisfies (2.6) and
∥∥u(s)

∥∥
E � Mu for all s ∈ R

}
.

The set

Kσ (t) = {u(t)
∣∣ u(·) ∈ Kσ

}⊂ E, t ∈ R,

is called the kernel section at time t .
Let ωτ,Σ(B) = ⋂t�τ Bt . The following existence result for uniform attractors can be founded

in [31].

Theorem 2.3. Let Σ be a subset of some Banach space, and let T (t) be a continuous invariant (T (t)Σ = Σ )
semigroup on Σ satisfying the translation identity. A family of processes {Uσ (t, τ )}, σ ∈ Σ , possesses a com-
pact uniform (w.r.t. σ ∈ Σ ) attractor AΣ satisfying

AΣ = ω0,Σ (B0) = ωτ,Σ(B0), ∀τ ∈ R

if and only if it

(i) has a bounded uniformly (w.r.t. σ ∈ Σ ) absorbing set B0; and
(ii) is uniformly (w.r.t. σ ∈ Σ ) ω-limit compact.

Moreover, if Σ is a weakly compact set, the family of processes {Uσ (t, τ )}, σ ∈ Σ , with {T (h)}h�0 is
(E × Σ, E) weakly continuous and satisfy (i)–(ii), then AΣ satisfies

AΣ = AΣ0 = ω0,Σ (B0) =
⋃
σ∈Σ

Kσ (0).

Here, Σ0 is the weak closure of Σ and Kσ (0) is the section at t = 0 of kernel Kσ of {Uσ (t, τ )} with symbol
σ ∈ Σ .

3. Well-posedness of (1.1)

Let A = �. Define Φ(u) by

Φ(u)(t) = e A(t−τ )u(τ ) +
t∫

τ

e A(t−s)[− f
(
x, u(s)

)+ g(x, s)
]

ds. (3.1)

The linear operator A = � with Dirichlet boundary conditions in a bounded and smooth domain
Ω can be seen as an unbounded operator in Lq(Ω), 1 < q < ∞, with domain D(A) = W 2,q(Ω) ∩
W 1,q

0 (Ω). In this situation, −A = −� is a sectorial operator and generates an analytic semigroup e At

in Lq(Ω). Denote by {Eα
q }α∈R the fractional power spaces associated to A with the norm ‖u‖Eα

q
=

‖Aαu‖Lq(Ω) , u ∈ Eα
q . Notice that E0

q = Lq(Ω) and E1
q = W 2,q(Ω) ∩ W 1,q

0 (Ω). We know from [3] that

⎧⎪⎨⎪⎩
Eα

q ↪→ H2α
q , α � 0, 1 < q < ∞,

E−α
q = (Eα

q′)′, α � 0, 1 < q < ∞,
1

q
+ 1

q′ = 1.
(3.2)
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3.1. Local existence of solutions of (1.1) in Lr(Ω), 1 < r < ∞

By the standard duality arguments, (2.1) and (3.2) imply that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Eα

r ↪→ Lν(Ω) for ν � Nr

N − 2αr
, 0 � α <

N

2r
,

E0
r = Lr(Ω),

Eα
r ←↩ Ls(Ω) for s � Nr

N − 2αr
, − N

2r′ < α � 0, r′ = r

r − 1
.

(3.3)

Theorem 3.1. Let 1 < r < ∞ and g(x, t) ∈ L p
b (R; Lr(Ω)), p > 1. Assume that f (x, u) satisfies (1.2)–(1.3) with

a(x) ∈ Lβ(Ω), β > 1, and exponent ρ > 1 such that

1

β
+ ρ − 1

r
<

2

N

(
resp.,

1

β
+ ρ − 1

r
= 2

N

)
. (3.4)

Then for each v ∈ Lr(Ω), there exist R = R(v) > 0 and T = T (v) such that for any uτ ∈ Lr(Ω) with ‖uτ −
v‖Lr (Ω) � R, there exists a continuous function u(·; uτ ):

u ∈ C
([τ , T ]; Lr(Ω)

)∩ C
(
(τ , T ]; Eε

r

)
for some

0 < ε � ε0 < min

{
N

2r
,

N

2r
+ N

2βρ
− N

2rρ
,

1

ρ

}
, (3.5)

which is the unique solution of (1.1) in the sense of (1.4). This solution is a classical solution and satisfies

u ∈ C
(
(τ , T ]; Eθ

r

)
, 0 < θ � θ0 < min

{
p − 1

p
,ρε + 1 + 1 − ρ

2r
N − N

2β

}
, (3.6)

lim
t→τ+(t − τ )θ

∥∥u(·, uτ )
∥∥

Eθ
r
= 0, 0 < θ � θ0 < min

{
p − 1

p
,ρε + 1 + 1 − ρ

2r
N − N

2β

}
. (3.7)

If u1τ , u2τ ∈ B(v, R), then

(t − τ )θ
∥∥u1(t, u1τ ) − u2(t, u2τ )

∥∥
Eθ

r
� M1‖u1τ − u2τ ‖Lr(Ω),

∀t ∈ [τ , T ], 0 < θ � θ0 < min

{
p − 1

p
,ρε + 1 + 1 − ρ

2r
N − N

2β

}
. (3.8)

Furthermore, the time of existence is uniform on any bounded set (resp. compact set) S of Lr(Ω).

Proof. Let Xα = Eα−1
r . From (3.3) we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xα ↪→ Lν(Ω) for ν � Nr

N + 2r − 2αr
, 1 � α <

N

2r
+ 1,

X1 = Lr(Ω),

Xα ←↩ Ls(Ω) for s � Nr

N + 2r − 2αr
, 1 − N

2r′ < α � 1.

(3.9)

We first establish the following two claims.
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Claim 1. For some 0 < ε � ε0 < min{ N
2r ,

N
2r + N

2βρ − N
2rρ , 1

ρ }, there exists γ (ε) with

ρε � γ (ε) = ρε + 1 + 1 − ρ

2r
N − N

2β
< 1 (3.10)

such that for any u,ϕ ∈ C((τ , T ]; X1+ε),

∥∥ f (x, u)
∥∥

Xγ (ε) � C2
∥∥a(x)

∥∥
Lβ (Ω)

(‖u‖ρ

X1+ε + 1
)
, (3.11)∥∥ f (x, u) − f (x,ϕ)

∥∥
Xγ (ε) � C2

∥∥a(x)
∥∥

Lβ (Ω)
‖u − ϕ‖X1+ε

(‖u‖ρ−1
X1+ε + ‖ϕ‖ρ−1

X1+ε + 1
)
. (3.12)

Proof of Claim 1. Since 1
β

+ ρ−1
r � 2

N , we know that there exists γ (ε) such that (3.10) holds and

γ (ε) > 1 + N
2r − N

2 for some ε ∈ (0, ε0]. Furthermore, (3.10) implies that

1

β
+ [N − 2εr]

Nr
ρ � N + 2r − 2γ (ε)r

Nr
.

Choosing m > 1 such that

1

β
<

1

β
+ [N − 2εr]

Nr
ρ � 1

m
� N + 2r − 2γ (ε)r

Nr
,

together with (1.3) we have

∥∥ f (x, u)
∥∥

Lm(Ω)
� C3

[(∫ ∣∣a(x)
∣∣m|u|ρm dx

) 1
m

+ 1

]
� C4
∥∥a(x)

∥∥
Lβ (Ω)

(‖u‖ρ

L
mβ

β−m ρ
(Ω)

+ 1
)
. (3.13)

From (3.9) and (3.13) we have

f : X1+ε ↪→ L
mβ

β−m ρ
(Ω) ↪→ Lm(Ω) ↪→ Xγ (ε), (3.14)

which implies that (3.11) holds.
By similar arguments, we get (3.12). �

Claim 2. For any t1 < t2 , 0 < θ � θ0 < 1
q ,

∥∥∥∥∥
t2∫

t1

e A(t2−s)g(x, s)ds

∥∥∥∥∥
X1+θ

� M2et2−t1(t2 − t1)
−θ+ 1

q ,

where

M2 = M

(
ep

ep − 1

) 1
p 1

(1 − qθ0)
1
q

∥∥g(x, t)
∥∥

L p
b (R;Lr(Ω))

,
1

p
+ 1

q
= 1.
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Proof of Claim 2. From (2.2) we get that

∥∥∥∥∥
t2∫

t1

e A(t2−s) g(x, s)ds

∥∥∥∥∥
X1+θ

� M

t2∫
t1

(t2 − s)−θ
∥∥g(x, s)

∥∥
Lr(Ω)

ds

� M

( t2∫
t1

(t2 − s)−qθ eqs ds

) 1
q
( t2∫

t1

e−ps
∥∥g(x, s)

∥∥p
Lr(Ω)

ds

) 1
p

� Met2
1

(1 − qθ0)
1
q

(t2 − t1)
−θ+ 1

q

(
e−pt1

t1+1∫
t1

∥∥g(x, s)
∥∥p

Lr(Ω)
ds

+ e−p(t1+1)

t1+2∫
t1+1

∥∥g(x, s)
∥∥p

Lr(Ω)
ds + · · · + e−p(t1+n)

t1+n+1∫
t1+n

∥∥g(x, s)
∥∥p

Lr(Ω)
ds + · · ·

) 1
p

� Met2−t1
1

(1 − qθ0)
1
q

(t2 − t1)
−θ+ 1

q
(
1 + e−p + e−2p + · · ·) 1

p
∥∥g(x, t)

∥∥
L p

b (R;Lr(Ω))

= M

(
ep

ep − 1

) 1
p 1

(1 − qθ0)
1
q

∥∥g(x, t)
∥∥

L p
b (R;Lr(Ω))

et2−t1(t2 − t1)
−θ+ 1

q . �

Note that the solution u(t) of (1.1) can be decomposed into the sum

u(t) = v(t) + w(t),

where v(t) and w(t) solve the problems

⎧⎨⎩
vt − �v = g(x, t) in Ω, t > τ,

v = 0 on ∂Ω,

v(τ ) = 0, τ ∈ R,

(3.15)

and ⎧⎪⎨⎪⎩
wt − �w + f̃ (x, w) = 0 in Ω, t > τ,

w = 0 on ∂Ω,

w(τ ) = uτ , τ ∈ R,

(3.16)

respectively, where f̃ (x, w) = f (x, w + v).
By Claim 2, as in the proof of Theorem 1 of [6], the linear equation (3.15) has a unique solution

v(t) in the sense of (1.4) such that

v(t) ∈ C
([τ , T ]; X1)∩ C

(
(τ , T ]; X1+θ

)
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with 0 < θ < 1
q and satisfies

v(t) =
t∫

τ

e A(t−s) g(x, s)ds. (3.17)

For the nonlinear function f̃ (x, w) of (3.16), choosing ρ such that 1
ρ � 1

q , by Claims 1–2 and (3.17)
we obtain

∥∥ f̃ (x, w)
∥∥

Xγ (ε) = ∥∥ f (x, u)
∥∥

Xγ (ε)

� C2
∥∥a(x)

∥∥
Lβ (Ω)

(‖u‖ρ

X1+ε + 1
)

= C2
∥∥a(x)

∥∥
Lβ (Ω)

(‖w + v‖ρ

X1+ε + 1
)

� C5
∥∥a(x)

∥∥
Lβ (Ω)

(‖w‖ρ

X1+ε + 1
)

(3.18)

and

∥∥ f̃ (x, w1) − f̃ (x, w2)
∥∥

Xγ (ε)

= ∥∥ f (x, w1 + v) − f (x, w2 + v)
∥∥

Xγ (ε)

� C2
∥∥a(x)

∥∥
Lβ (Ω)

‖w1 − w2‖X1+ε

(‖w1 + v‖ρ−1
X1+ε + ‖w2 + v‖ρ−1

X1+ε + 1
)

� C5
∥∥a(x)

∥∥
Lβ (Ω)

‖w1 − w2‖X1+ε

(‖w1‖ρ−1
X1+ε + ‖w2‖ρ−1

X1+ε + 1
)
. (3.19)

By (3.18)–(3.19), applying Theorem 1 of [6], we know that Eq. (3.16) has a unique ε-regular solution

w(t) ∈ C
([τ , T ]; X1)∩ C

(
(τ , T ]; X1+ε

)
for some ε satisfying (3.5). Therefore,

∥∥u(t) − uτ

∥∥
X1 = ∥∥v(t) + w(t) − uτ

∥∥
X1

�
∥∥w(t) − uτ

∥∥
X1 + ∥∥v(t)

∥∥
X1 → 0 as t → τ+

and u(t) is the unique solution of (1.1) in the sense of (1.4).
By Claim 2 and Theorem 1 of [6], we obtain (3.6)–(3.8). This completes the proof. �

3.2. Local existence of solutions of (1.1) in W 1,r(Ω), 1 < r < N

Theorem 3.2. Let 1 < r < N and g(x, t) ∈ L p
b (R; Lr(Ω)), p > 2. Assume that f (x, u) satisfies (1.2)–(1.3) with

a(x) ∈ Lβ(Ω), β > 1 and exponent ρ > 1 such that

N − r

N + r
ρ + Nr

β(N + r)
< 1

(
resp.,

N − r

N + r
ρ + Nr

β(N + r)
= 1

)
. (3.20)

Then for each v ∈ W 1,r(Ω), there exist R = R(v) > 0 and T = T (v) such that for any uτ ∈ W 1,r(Ω) with
‖uτ − v‖W 1,r(Ω) � R, there exists a continuous function u(·; uτ ):
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u ∈ C
([τ , T ]; W 1,r(Ω)

)∩ C
(
(τ , T ]; E

1
2 +ε
r
)

for some

0 < ε � ε0 < min

{
N

2r
− 1

2
,

1

2ρ
+ N − r

2r
+ N

2βρ
− N + r

2rρ
,

1

2ρ

}
, (3.21)

which is the unique solution of (1.1) in the sense of (1.4). This solution is a classical solution and satisfies

u ∈ C
(
(τ , T ]; E

1
2 +θ
r
)
, 0 < θ � θ0 < min

{
1

2
− 1

p
,ρε + N + r

2r
− N − r

2r
ρ − N

2β

}
, (3.22)

lim
t→τ+(t − τ )θ

∥∥u(·, uτ )
∥∥

E
1
2 +θ

r

= 0,

0 < θ � θ0 < min

{
1

2
− 1

p
,ρε + N + r

2r
− N − r

2r
ρ − N

2β

}
.

If u1τ , u2τ ∈ B(v, R), then

(t − τ )θ
∥∥u1(t, u1τ ) − u2(t, u2τ )

∥∥
E

1
2 +θ

r

� M3‖u1τ − u2τ ‖W 1,r(Ω),

∀t ∈ [τ , T ], 0 < θ � θ0 < min

{
1

2
− 1

p
,ρε + N + r

2r
− N − r

2r
ρ − N

2β

}
.

Furthermore, the time of existence is uniform on any bounded set (resp. compact set) S of W 1,r(Ω).

Proof. Let Xα = E
α− 1

2
r . From (3.3) we have that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xα ↪→ Lν(Ω) for ν � Nr

N + r − 2αr
,

1

2
� α <

1

2
+ N

2r
,

X
1
2 = Lr(Ω),

Xα ←↩ Ls(Ω) for s � Nr

N + r − 2αr
,

1

2
− N

2r′ < α � 1

2
.

(3.23)

Similar to the proof of Claim 1 in the proof of Theorem 3.1, for any u,ϕ ∈ C((τ , T ]; X1+ε) and
some 0 < ε < min{ N

2r − 1
2 , 1

2ρ + N−r
2r + N

2βρ − N+r
2rρ }, there exists γ (ε) with

ρε � γ (ε) = N + r

2r
− N − r

2r
ρ − N

2β
+ ρε � 1

2
(3.24)

such that (3.11)–(3.12) hold with the constant C ′
2. In fact, since

N − r

N + r
ρ + Nr

β(N + r)
� 1,

there exists γ (ε) such that (3.24) holds for some ε in (3.21). From (3.24) we get that

1

β
<

1

β
+ N + r − 2(1 + ε)r

Nr
ρ � N + r − 2γ (ε)r

Nr
.
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Choosing 1 < m < β such that

1

β
+ N + r − 2(1 + ε)r

Nr
ρ � 1

m
� N + r − 2γ (ε)r

Nr
,

using (3.13)–(3.14) and (3.23), we obtain (3.11)–(3.12).
For t1 < t2, 0 < θ � θ0 < 1

q − 1
2 , as the proof of Claim 2 in the proof of Theorem 3.1, we have

∥∥∥∥∥
t2∫

t1

e A(t2−s) g(x, s)ds

∥∥∥∥∥
X1+θ

� M

t2∫
t1

(t2 − s)
1
2 −(1+θ)

∥∥g(x, s)
∥∥

Lr(Ω)
ds

� M

(
ep

ep − 1

) 1
p ∥∥g(x, t)

∥∥
L p

b (R;Lr(Ω))

(
1

1 − q(θ0 + 1
2 )

) 1
q

et2−t1(t2 − t1)
(− 1

2 −θ)+ 1
q .

The rest of the proof is similar to that of Theorem 3.1. The proof is completed. �
Remark 3.1. If g(x, t) ∈ L p

b (R; W 1,r(Ω)), the solution of (1.1) with u(τ ) = uτ ∈ W 1,r(Ω) has higher
regularity, that is,

u ∈ C
(
(τ , T ]; E

1
2 +θ
r
)
, 0 < θ � θ0 < min

{
p − 1

p
,ρε + N + r

2r
− N − r

2r
ρ − N

2β

}
,

and for u1τ , u2τ ∈ B(uτ , R),

(t − τ )θ
∥∥u1(t, u1τ ) − u2(t, u2τ )

∥∥
E

1
2 +θ

r

� M3‖u1τ − u2τ ‖W 1,r(Ω),

∀t ∈ [τ , T ], 0 < θ � θ0 < min

{
p − 1

p
,ρε + N + r

2r
− N − r

2r
ρ − N

2β

}
.

4. Existence of attractors in Lr(Ω)

4.1. r = 2, 1
β

+ ρ−1
2 < 2

N

Let H = L2(Ω), V = H1
0(Ω), and V ′ = (H1

0(Ω))′ the dual of V . Denote by ‖ · ‖ the norm of H .
In order to establish the global existence of solution of (1.1) with the initial data belonging to H , we
need the following dissipative condition: Suppose that there exist constants c0 and c′

0 with 0 � c0 <

(1 − α0)λ1, where α0 is a constant satisfying 0 < α0 < 1 and λ1 is the first eigenvalue of −� in V ,
such that

f (x, u)u � −c0|u|2 − c′
0. (4.1)

Similar dissipative conditions are also introduced in [7,22,44,48], specially in [7].
For a fixed external force g0(t) := g0(x, t) ∈ L p

b (R; X), consider the following translation:

Σ0 = {T (h)g0(t)
∣∣ h ∈ R

}= {g0(h + t)
∣∣ h ∈ R

}
,
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where T (h), h ∈ R, is the translation operator. Denote by

HX (g0) = [{T (h)g0(t)
∣∣ h ∈ R

}]
L p,w

loc (R;X)

the closure of Σ0 in L p,w
loc (R; X), which is the subspace of L p

loc(R; X) endowed with the local weak
convergence topology. By Proposition V.4.2 of [16] we know that

∥∥g(t)
∥∥

L p
b (R;X)

�
∥∥g0(t)

∥∥
L p

b (R;X)
, ∀g(t) ∈ HX (g0). (4.2)

Theorem 4.1. Assume that f (x, u) satisfies (1.2)–(1.3) with a(x) ∈ Lβ , β > 1 and exponent ρ > 1 such that

1

β
+ ρ − 1

2
<

2

N
,

and (4.1) holds. Let g0(t) ∈ L p
b (R; H), p > 2. Then the family of processes {U g(t, τ )}, g ∈ HH (g0), corre-

sponding to problem (1.1) possesses a compact uniform (w.r.t. g ∈ HH (g0)) attractor AHH (g0) in H satisfying:

AHH (g0) = ω0,HH (g0)(B0) =
⋃

g∈HH (g0)

Kg(0), (4.3)

where B0 is the uniformly (w.r.t. g ∈ HH (g0)) absorbing set in H.

Proof. We first show that the family of processes {U g(t, τ )}, g ∈ HH (g0), corresponding to problem
(1.1) is well defined.

Taking the scalar product in H of (1.1) with u, we have

1

2

d

dt

∥∥u(t)
∥∥2 + ∥∥∇u(t)

∥∥2 + 〈 f (x, u(t)
)
, u(t)

〉= 〈g(x, t), u(t)
〉
. (4.4)

By (4.1), we have that

〈
f
(
x, u(t)

)
, u(t)

〉
� −c0‖u‖2 − c′

0|Ω|. (4.5)

Using the fact that p > 2 and Young’s inequality we obtain

∣∣〈g(x, t), u(t)
〉∣∣� ∥∥g(x, t)

∥∥∥∥u(t)
∥∥

� 1

q

∥∥u(t)
∥∥q + 1

p

∥∥g(x, t)
∥∥p

� α0λ1
∥∥u(t)

∥∥2 +
[

1

q
(α0λ1)

− q
2

] 2
2−q

+ 1

p

∥∥g(x, t)
∥∥p

. (4.6)

Let M4 = c′
0|Ω| + [ 1

q(α0λ1)
q
2
] 2

2−q . By Poincaré inequality, it follows from (4.4)–(4.6) that

d

dt

∥∥u(t)
∥∥2 + 2

(
(1 − α0)λ1 − c0

)∥∥u(t)
∥∥2 � 2M4 + 2

p

∥∥g(x, t)
∥∥p

.
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Let Λ = 2((1 − α0)λ1 − c0). Using Lemma 2.2 and (4.2), from the above inequality we have

∥∥u(t)
∥∥2 �

∥∥u(τ )
∥∥2

e−Λ(t−τ ) +
t∫

τ

e−Λ(t−s)
(

2M4 + 2

p

∥∥g(x, s)
∥∥p
)

ds

�
∥∥u(τ )

∥∥2
e−Λ(t−τ ) +

(
2M4 + 2

p

∥∥g0(x, t)
∥∥p

L p
b (R;H)

)(
1 + 1

Λ

)
. (4.7)

Thus, the family of process {U g(t, τ )}: U g(t, τ )uτ = u(t), U g(t, τ )H → H , g ∈ HH (g0), t � τ , τ ∈ R,
is well defined, where u(t) is the solution of (1.1).

Let

R2
0 = 2

(
2M4 + 2

p

∥∥g0(x, t)
∥∥p

L p
b (R;H)

)(
1 + 1

Λ

)
.

(4.7) also implies that the family of processes possesses a uniformly absorbing set

B0 = {u ∈ H
∣∣ ‖u‖ � R0

}
,

that is, for any bounded set B ⊂ H , there exists T0 = T0(τ , B) such that⋃
g∈HH (g0)

U g(t, τ )B ⊂ B0, ∀t > T0.

Since p > 2, by the regularity of solutions of (1.1) obtained in Theorem 3.1, we can choose θ = 1
2

such that

B1 =
⋃

g∈HH (g0)

⋃
τ∈R

U g(τ + 1, τ )B0

is also a uniformly absorbing set and bounded in V . By standard Sobolev compact embedding, we
know that the family of processes {U g(t, τ )}, g ∈ HH (g0), is ω-limit compact in H and possesses a
compact uniform (w.r.t. g ∈ HH (g0)) attractor AHH (g0) in H .

Next, we show that (4.3) holds. We claim that if uτn → uτ in H , gn ⇀ g0 weakly in L p
loc(R; H),

then for any fixed t � τ , t ∈ R,

U gn (t, τ )uτn ⇀ U g0(t, τ )uτ weakly in H . (4.8)

For fixed τ ∈ R, let

un(t) = U gn (t, τ )uτn , u(t) = U g0(t, τ )uτ , (4.9)

be the solutions of the equation

d

dt
un(t) − �un(t) + f

(
x, un(t)

)= gn(x, t) (4.10)
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and (1.1), respectively. The regularity of solutions of (4.10) implies that

t∫
τ

∥∥∇un(s)
∥∥ds � C6(τ ). (4.11)

As in Claim 1 in the proof of Theorem 3.1, we can choose 0 < ε � 1
2 and γ (ε) � 1

2 such that∥∥ f
(
x, un(t)

)∥∥
V ′ � C7

∥∥ f
(
x, un(t)

)∥∥
E
γ (ε)−1
2

� C8
∥∥a(x)

∥∥
Lβ (Ω)

(∥∥un(t)
∥∥ρ

Eε
2
+ 1
)

� C9
∥∥a(x)

∥∥
Lβ (Ω)

(∥∥∇un(t)
∥∥ρ + 1

)
. (4.12)

Since the operator A is an isometry between V and V ′ , from (4.11) and (4.12) we have

t∫
τ

∥∥u′
n(s)
∥∥2

V ′ ds �
t∫

τ

∥∥Aun(s)
∥∥2

V ′ ds +
t∫

τ

∥∥ f
(
x, un(s)

)∥∥2
V ′ ds +

t∫
τ

∥∥gn(x, s)
∥∥2

V ′ ds

� C10
(
τ ,
∥∥a(x)

∥∥
Lβ (Ω)

,
∥∥g0(x, t)

∥∥
L p

b (R;H)
, R0
)
. (4.13)

Similar to the derivation of (4.7), together with (4.12)–(4.13), we obtain that

{
un(t)

}
is bounded in L∞(Rτ ; H),

bounded in L2
loc(Rτ ; V ),{

u′
n(t)
}

is bounded in L2
loc

(
Rτ ; V ′), (4.14)

where Rτ = [τ ,∞). Using Theorem 2.1, we know that

{
un(t)

}
is precompact in L2

loc(Rτ ; H). (4.15)

Therefore, by taking, if necessary, a subsequence (which we still denote by un(t)), there exists ũ(t) ∈
L∞(Rτ ; H) ∩ L2

loc(Rτ ; V ) such that

un(t) ⇀ ũ(t) ∗ -weakly in L∞(Rτ ; H),

⇀ ũ(t) weakly in L2
loc(Rτ ; V ),

→ ũ(t) strongly in L2
loc(Rτ ; H). (4.16)

In particularly, as n → ∞,

u′
n(t) ⇀ ũ′(t) weakly in L2

loc

(
Rτ ; V ′),

�un(t) ⇀ �ũ(t) weakly in L2
loc

(
Rτ ; V ′),

f
(
x, un(t)

)
⇀ w(t) weakly in L2

loc

(
Rτ ; V ′),

gn(x, t) ⇀ g0(x, t) weakly in Lp
loc(Rτ ; H). (4.17)
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Taking n → ∞, we obtain the equality

ũ′(t) − �ũ(t) + w(t) = g0(x, t)

in the distribution sense of the space D′(Rτ ; V ′). Thanks to (4.15), using Theorem II.1.8 of [16], we get
that ũ(t) ∈ C([τ , T ′

0]; H) for any T ′
0 > 0, which implies that ũ(τ ) = uτ , since uτn → uτ strongly in H .

Now, we show that w(t) = f (x, ũ(t)), which implies that ũ(t) is the solution of (1.1), and by
uniqueness, ũ(t) = u(t). Due to the strong convergence in (4.16), we can extract a subsequence of
{un(t)} (which we still denote by un(t)) such that un(x, t) → ũ(x, t) (n → ∞) for almost every (x, t) ∈
Ω × [τ , T ′

0]. By the continuity of f (x, u), f (x, un(t)) → f (x, ũ(t)) (n → ∞) for almost every (x, t) ∈
Ω × [τ , T ′

0]. From (4.11)–(4.12), we get that

t∫
τ

∥∥ f
(
x, un(s)

)∥∥
V ′ ds � C11,

where C11 is independent on n. Similar to the proof of Lemma I.1.3 in [27], we obtain that
f (x, un(t)) ⇀ f (x, ũ(t)) weakly in L2

loc(Rτ ; V ′). Thus, w(t) = f (x, ũ(t)).
Finally, by the strong convergence of (4.15), we get that for almost every t � τ , un(t) converges

strongly to u(t) in H . Therefore,〈
un(t),υ

〉→ 〈u(t),υ
〉

for a.e. t � τ , υ ∈ C∞
0 (Ω).

It follows from (4.15) that {〈un(t),υ〉} is uniformly bounded. For all υ ∈ C∞
0 (Ω) and t1 � 0, by (4.17)

we have

〈
un(t + t1) − un(t),υ

〉= t+t1∫
t

〈
∂t un(s),υ

〉
ds � C12t1‖υ‖V

∥∥u′
n(t)
∥∥

L2
loc(Rτ ;V ′) � C13t1‖υ‖V ,

which implies that {〈un(t),υ〉} is locally equicontinuous. Thus, by (4.15) again,〈
un(t),υ

〉→ 〈u(t),υ
〉
, ∀t � τ , υ ∈ C∞

0 (Ω),

which implies that (4.8) holds, since C∞
0 (Ω) is dense in H .

Using Theorem 2.3, we know that (4.3) holds. This completes the proof. �
Remark 4.1. For 1 < p � 2, from Theorem 3.1 we notice that the solution of (1.1) with g(x, t) ∈
L p

b (R; Lr(Ω)) does not belong to W 1,r(Ω). If we improve the regularity of g(x, t), that is, g(x, t) ∈
L p

b (R; W 1,r(Ω)), choosing θ = 1
2 and 0 < θ ′ < 1

2 such that θ − θ ′ < 1
q , similar to the proof of Claim 2

in the proof of Theorem 3.1, for t1 < t2 we can obtain

∥∥∥∥∥
t2∫

t1

e A(t2−s) g(x, s)ds

∥∥∥∥∥
X1+θ

� C ′
1M

t2∫
t1

(t2 − s)−(θ−θ ′)∥∥g(x, s)
∥∥

X1+θ ′ ds

= C ′
2M

(
ep

ep − 1

) 1
p 1

[1 − q(θ0 − θ ′)] 1
q

∥∥g(x, t)
∥∥

L p
b (R;W 1,r(Ω))

et2−t1(t2 − t1)
−(θ−θ ′)+ 1

q ,
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where C ′
1 and C ′

2 are two constants. Therefore, as the proof of Theorem 3.1, we get that the solution
of (1.1) with g(x, t) ∈ L p

b (R; W 1,r(Ω)) and u(τ ) ∈ Lr(Ω) can enter in W 1,r(Ω).
For p = 2, substituting the assumption on g0(x, t) in Theorem 4.1 with g0(x, t) ∈ L p

b (R; V ), we
obtain the same result as in Theorem 4.1 with HH (g0) being replaced by HV (g0).

For 1 < p < 2, substituting the dissipative condition (4.1) and g0(x, t) ∈ L p
b (R; H) in Theorem 4.1

with (5.21) and g0(x, t) ∈ L p
b (R; V ), respectively, proceeding as in the derivation of (5.22) and (5.23)

(see Section 5.2), we get that there exists a uniformly (w.r.t. g ∈ HV (g0)) absorbing set for the family
of processes {U g(t, τ )}, g ∈ HV (g0) in H . In this situation, as the proof of Theorem 4.1, we can obtain
that there exists a compact uniformly absorbing set in H for the family of processes and the family
of processes is weak continuous in H . Therefore, the result of Theorem 4.1 still holds with HH (g0)

being replaced by HV (g0). �
4.2. 1

β
+ ρ−1

r < 2
N , r > 1

In this case, the theory of Hilbert spaces cannot be used. We need other dissipative conditions
instead of (4.1). Assume that

lim
s→∞ inf

f (x, s)s

|s|2 > 0 (4.18)

and {
p � r, if r > 2,

p > 2, if 1 < r � 2.
(4.19)

Multiplying (1.1) by |u|r−2u and integrating by parts, using the boundary condition, we get

1

r

d

dt

∥∥u(t)
∥∥r

Lr(Ω)
+ 4(r − 1)

r2

∫
Ω

∣∣∇(|u| r
2
)∣∣2 dx +

∫
Ω

f (x, u)|u|r−2u dx

=
∫
Ω

g(x, t)|u|r−2u dx

�
∥∥g(x, t)

∥∥
Lr(Ω)

‖u‖r−1
Lr(Ω). (4.20)

By the dissipative condition (4.18), there exist positive constants C14 and C15 such that

f (x, u)|u|r−2u � C14|u|r − C15. (4.21)

Using (4.19), we have

∥∥g(x, t)
∥∥

Lr(Ω)
‖u‖r−1

Lr(Ω)

� C14

2
‖u‖r

Lr(Ω) + 1

r

(
C14r

2(r − 1)

)−(r−1)∥∥g(x, t)
∥∥r

Lr(Ω)

� C14

2
‖u‖r

Lr(Ω) + p − r

p

[
1

r

(
C14r

2(r − 1)

)−(r−1)] p
p−r

+ r

p

∥∥g(x, t)
∥∥p

Lr(Ω)
. (4.22)
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Let M5 = p−r
p [ 1

r ( C14r
2(r−1)

)−(r−1)] p
p−r . It follows from (4.20)–(4.22) that

d

dt

∥∥u(t)
∥∥r

Lr(Ω)
+ C14r

2
‖u‖r

Lr(Ω) � C15r + M5r + r2

p

∥∥g(x, t)
∥∥p

Lr(Ω)
.

Using Lemma 2.2 and (4.2), we obtain that

∥∥u(t)
∥∥r

Lr(Ω)
�
∥∥u(τ )

∥∥r
Lr(Ω)

e− C14
2 r(t−τ )

+
(

C15r + M5r + r2

p

∥∥g0(x, t)
∥∥p

L p
b (R;Lr(Ω))

)(
1 + 2

C14r

)
.

Therefore, problem (1.1) generates a family of processes {U g(t, τ )}, g ∈ HLr(Ω)(g0), acting in Lr(Ω).
Moreover, let

Rr
0 = 2

(
C15r + M5r + r2

p

∥∥g0(x, t)
∥∥p

L p
b (R;Lr(Ω))

)(
1 + 2

C14r

)
,

the set

B0 = {u ∈ Lr(Ω)
∣∣ ‖u‖Lr(Ω) � R0

}
(4.23)

is uniformly (w.r.t. g ∈ HLr(Ω)(g0)) absorbing, i.e., for any bounded set B ⊂ Lr(Ω) and for all g ∈
HLr (Ω)(g0), there exists T1(τ , B) such that for all t > T1(τ , B), U g(t, τ )B ⊆ B0.

Theorem 4.2. Assume that f (x, u) satisfies (1.2)–(1.3) with a(x) ∈ Lβ , β > 1 and exponent ρ > 1 such that

1

β
+ ρ − 1

r
<

2

N
,

and (4.18)–(4.19) hold. Let g0(t) ∈ L p
b (R; Lr(Ω)). Then the family of processes {U g(t, τ )}, g ∈ HLr(Ω)(g0),

corresponding to problem (1.1) possesses a compact uniform (w.r.t. g ∈ HLr(Ω)(g0)) attractor AHLr (Ω)(g0) in
Lr(Ω) satisfying:

AHLr (Ω)(g0) = ω0,HLr (Ω)(g0)(B0) =
⋃

g∈HLr (Ω)(g0)

Kg(0), (4.24)

where B0 is the uniformly (w.r.t. g ∈ HLr(Ω)(g0)) absorbing set in Lr(Ω).

Proof. By the fact that p > 2 and the regularity of solutions of (1.1), choosing θ = 1
2 , we know that

B1 =
⋃

g∈HLr (Ω)(g0)

⋃
τ∈R

U g(τ + 1, τ )B0 (4.25)

is also a uniformly absorbing set and bounded in W 1,r
0 (Ω). Thus, there exists a compact uniformly

(w.r.t. g ∈ HLr(Ω)(g0)) absorbing set in Lr(Ω) for the family of processes {U g(t, τ )}, g ∈ HLr(Ω)(g0),
acting in Lr(Ω). This implies that the family of processes {U g(t, τ )} possesses a uniform attractor
AHLr (Ω)(g0) in Lr(Ω). To show (4.24), by Theorem 2.3, we only need to check the weak continuity of
the family of processes {U g(t, τ )}, g ∈ HLr(Ω)(g0).
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Let un(t) and u(t) be the solutions of (4.10) and (1.1), respectively. Choosing 0 < ε � 1
2 and

γ (ε) � 1
2 as in Claim 1 of the proof of Theorem 3.1, we have

∥∥ f
(
x, un(t)

)∥∥
W −1,r(Ω)

� C17
∥∥ f
(
x, un(t)

)∥∥
E
γ (ε)−1
r

� C18
∥∥a(x)

∥∥
Lβ (Ω)

(∥∥un(t)
∥∥ρ

Eε
r
+ 1
)

� C19
∥∥a(x)

∥∥
Lβ (Ω)

(∥∥un(t)
∥∥ρ

W 1,r(Ω)
+ 1
)
. (4.26)

For every υ ∈ W 1,r′
(Ω), 1

r′ + 1
r = 1,

∣∣∣∣ ∫
Ω

u′
n(t)υ dx

∣∣∣∣� ∫
Ω

∣∣∇un(t)
∣∣|∇υ|dx +

∫
Ω

∣∣ f (x, un(t)
)
υ
∣∣dx +

∫
Ω

∣∣g(x, t)
∣∣|υ|dx

�
∥∥un(t)

∥∥
W 1,r

0 (Ω)
‖υ‖W 1,r′ (Ω)

+ ∥∥ f (x, u)
∥∥

W −1,r(Ω)
‖υ‖W 1,r′ (Ω)

+ C19
∥∥g(x, t)

∥∥
Lr(Ω)

‖υ‖W 1,r′ (Ω)
. (4.27)

By (4.25)–(4.27), we obtain that

t∫
τ

∥∥u′
n(t)
∥∥r

W −1,r ds � C20
(
τ ,
∥∥g0(x, t)

∥∥
L p

b (R;Lr(Ω))
,
∥∥a(x)

∥∥
Lβ (Ω)

, R0
)
.

Thus, by the fact

t∫
τ

∥∥∇un(s)
∥∥r

Lr(Ω)
� C21,

we obtain that {
un(t)

}
is precompact in Lr

loc

(
Rτ ; Lr(Ω)

)
.

The rest of the proof is similar to that of Theorem 4.1 after (4.15). This completes the proof. �
Remark 4.2. If g(x, t) ∈ L p

b (R; W 1,r(Ω)), by Remark 4.1 we notice that the assumption (4.19) in The-
orem 4.2 can be relaxed, i.e., p � r, and the result of Theorem 4.2 still holds with HLr(Ω)(g0) being
replaced by HW 1,r(Ω)(g0). For 1 < p < r, substituting assumption (4.18) and g0(x, t) ∈ L p

b (R; Lr(Ω)) in

Theorem 4.2 with (5.21) and g0(x, t) ∈ L p
b (R; W 1,r(Ω)), respectively, we have the same conclusion as

in Theorem 4.2 with HLr(Ω)(g0) being replaced by HW 1,r(Ω)(g0). �
4.3. 1

β
+ ρ−1

r = 2
N , r > 1

In this case, from Theorem 3.1 we know that the time of existence for the solutions of (1.1) is
only uniform on compact S ⊂ Lr(Ω). Thus, we cannot obtain existence of uniform attractor in Lr(Ω).
However, we have:
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Theorem 4.3. Assume that f (x, u) satisfies (1.2)–(1.3) with a(x) ∈ Lβ , β > 1 and exponent ρ > 1 such that

1

β
+ ρ − 1

r
= 2

N
,

and (4.17)–(4.18) hold. Let g0(t) ∈ L p
b (R; Lr(Ω)), p > 2. Then there exists a compact set A such that A

uniformly (w.r.t. g ∈ HLr(Ω)(g0)) attracts every compact set B in Lr(Ω).

5. Existence of attractors in W 1,r(Ω)

5.1. r = 2, N−2
N+2 ρ + 2N

β(N+2)
< 1, N > 2

Suppose that the nonlinear function f satisfies the following conditions:

∂ f

∂s
(x, s) � −c1,

∣∣∣∣∂ f

∂x
(x, s)

∣∣∣∣� b(x), (5.1)

where c1 is a positive constant such that c1 < 1
2 (1 − 2α1)λ1, α1 < 1

2 , and b(x) ∈ L2(Ω).
From Theorem 3.2 and Remark 3.1 we know that if g(x, t) belongs to L p

b (R; Lr(Ω)) and
L p

b (R; W 1,r(Ω)), respectively, the solutions of (1.1) cannot enter in H2(Ω) := W 2,2(Ω) in both cases.
Therefore, this brings some difficulties in priori estimates on solutions. To overcome this, using stan-
dard Faedo–Galerkin method, we first show that there exists a new type of solutions of (1.1).

Claim 3. u ∈ C([τ , T ]; V ) ∩ C((τ , T ]; E
1
2 +ε

2 ) is a solution of (1.1) in the sense of (1.4), and

u ∈ C
([τ , T ]; V

)∩ L2
loc

([τ , T ]; D(−A)
)∩ L∞(Rτ ; V ) (5.2)

is the weak solution of (1.1).

Proof of Claim 3. Since the injection of V in H is compact, (−A)−1 can be considered as a self-
adjoint compact operator in H . By the elementary spectral theory of self-adjoint compact operators
in a Hilbert space, there exists a sequence {λ j}∞j=1 and a family of elements {ω j}∞j=1 of D(−A), which
are orthonormal in H , such that{−Aω j = λ jω j, j = 1,2, . . . ,

0 < λ1 � λ2, . . . , λ j → ∞ as j → ∞.
(5.3)

Let Hm = span{ω1,ω2, . . . ,ωm} in H , Pm : H → Hm be the orthogonal projector. Let um(t) =∑m
j=1 b j,m(t)ω j(x) be a solution of the following ordinary differential equation

⎧⎨⎩
dum

dt
− Pm�um + Pm f (x, um) = Pm g(x, t),

um(τ ) = Pmuτ ,

(5.4)

where b j,m(t) are absolutely continuous scalar functions on [τ , T ].
Multiplying (5.4) by −�um and integrating by parts, we have

1

2

d

dt

∥∥∇um(t)
∥∥2 + ∥∥�um(t)

∥∥2 + 〈Pm f (x, um),−�um
〉= 〈Pm g(x, t),−�um(t)

〉
. (5.5)
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Note that the third term on the left-hand side of (5.5) can be rewritten as

〈
Pm f (x, um),−�um

〉= ∫
Ω

∂ f

∂x
(x, um)∇um +

∫
Ω

∂ f

∂um
(x, um)|∇um|2, (5.6)

and by (5.1), ∣∣∣∣ ∫
Ω

∂ f

∂x
(x, um)∇um

∣∣∣∣� ∫
Ω

∣∣b(x)
∣∣|∇um|

�
∥∥b(x)

∥∥‖∇um‖

� 1

4α1λ1

∥∥b(x)
∥∥2 + α1λ1‖∇um‖2. (5.7)

The term on the right-hand side of (5.5) satisfies

〈
Pm g(x, t),−�um(t)

〉
� 1

2

∥∥g(x, t)
∥∥2 + 1

2
‖�um‖2. (5.8)

By (5.1), from (5.5)–(5.8) we have that

d

dt

∥∥∇um(t)
∥∥2 + ∥∥�um(t)

∥∥2

� 2(c1 + α1λ1)
∥∥∇um(t)

∥∥2 + 1

2α1λ1

∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥2
, (5.9)

which yields

d

dt

∥∥∇um(t)
∥∥2 + ((1 − 2α1)λ1 − 2c1

)∥∥∇um(t)
∥∥2

� 1

2α1λ1

∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥2

� 1

2α1λ1

∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥p
H + C22. (5.10)

Thus, applying Gronwall’s inequality to (5.10) and integrating (5.9) from τ to T , respectively, we obtain
that

um(t) is bounded in L∞((τ ,∞); V
)
,

bounded in L2([τ , T ]; H2(Ω)
)
.

Since um(t) ∈ C([τ , T ]; V ) and Pmuτ → uτ (m → ∞) strongly in V , we have

um(t) ⇀ ũ(t) ∗ -weakly in L∞((τ , T ]; V
)
,

⇀ ũ(t) weakly in L2([τ , T ]; H2(Ω)
)
,

→ ũ(t) strongly in C
([τ , T ]; V

)
.

Similar to the proof of (4.8), we obtain the result. �
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In the rest of this subsection, the solutions of (1.1) are meant the solutions in sense of Claim 3.
In obtaining the compact uniformly attracting set in V for the family of processes {U g(t, τ )}, g ∈
HH (g0), we use the idea in [31]. We first introduce a new class of external forces which are similar
to Definition 3.1 in [31].

Definition 5.1. A function g ∈ L p
loc(R; X) (p > 1) is said to be p-normal if for any ε > 0, there exists

η > 0 such that

sup
t∈R

t+η∫
t

∥∥g(x, s)
∥∥p

X � ε,

where X is a Banach space.

Denote by L p
n (R; X) the set of all p-normal functions in L p

loc(R; X). It is easy to see that L p
n (R; X) ⊂

L p
b (R; X).

Lemma 5.1. If g0 ∈ L p
n (R; X) then for any τ ∈ R,

lim
λ→+∞ sup

t�τ

t∫
τ

e−λ(t−s)
∥∥g(x, s)

∥∥p
X ds = 0

uniformly w.r.t. g ∈ HX (g0).

The proof is similar to Lemma 3.1 in [31].

Theorem 5.2. Assume that f (x, u) satisfies (1.2)–(1.3) with a(x) ∈ Lβ , β > 1 and exponent ρ > 1 such that

N − 2

N + 2
ρ + 2N

β(N + 2)
< 1, N > 2,

and (5.1) holds. Suppose that g0(x, t) ∈ L p
loc(R; H) is p-normal, p > 2. Then the family of processes {U g(t, τ )},

g ∈ HH (g0), corresponding to problem (1.1) possesses a compact uniform (w.r.t. g ∈ HH (g0)) attractor
AHH (g0) in V satisfying:

AHH (g0) = ω0,HH (g0)(B0) =
⋃

g∈HH (g0)

Kg(0), (5.11)

where B0 is the uniformly (w.r.t. g ∈ HH (g0)) absorbing set in V .

Proof. Taking the scalar product in H of (1.1) with −�u, we have that

1

2

d

dt

∥∥∇u(t)
∥∥2 + 〈−�u,−�u〉 + 〈 f (x, u),−�u

〉
= 〈g(x, t),−�u

〉
� 1

2

∥∥g(x, t)
∥∥2 + 1

2
‖ − �u‖2. (5.12)
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Proceeding as in the derivation of (5.10), it follows from (5.12) that

d

dt

∥∥∇u(t)
∥∥2 + ((1 − 2α1)λ1 − 2c1

)∥∥∇u(t)
∥∥2

� 1

2α1λ1

∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥p
H + C23.

Applying Lemma 2.2 and (4.2), from above we have that

∥∥∇u(t)
∥∥2 �

∥∥∇u(τ )
∥∥2

e−((1−2α1)λ1−2c1)(t−τ )

+
(

1 + 1

(1 − 2α1)λ1 − 2c1

)(∥∥g0(x, t)
∥∥p

L p
b (R;H)

+ C23
)
.

Thus, the family of processes {U g(t, τ )}, g ∈ HH (g0), acting in V is well defined. This estimate also
implies that the set

B0 = {u(t) ∈ V
∣∣ ∥∥u(t)

∥∥
V � R0

}
is the uniformly (w.r.t. HH (g0)) absorbing set, where

R2
0 = 2

(
1 + 1

(1 − 2α1)λ1 − 2c1

)(∥∥g0(x, t)
∥∥p

L p
b (R;H)

+ C23
)
.

For any bounded set B ⊂ V , let T0(τ , B) > τ such that
⋃

g∈HH (g0) U (t, τ )B ⊂ B0, t > T0.
Let Vm = span{ω1,ω2, . . . ,ωm} in V and Pm : V → Vm be an orthogonal projector. For any u ∈

D(−A), write

u(t) = Pmu(t) + (I − Pm)u(t) � u1(t) + u2(t).

Taking the scalar product in H of (1.1) with −�u2, proceeding as in the derivation of (5.12), we have

1

2

d

dt

∥∥∇u2(t)
∥∥2 + 〈−�u2,−�u2〉 + 〈 f (x, u),−�u2

〉
� 1

2

∥∥g(x, t)
∥∥2 + 1

2
‖ − �u2‖2. (5.13)

Similar to (5.7),

∣∣∣∣∂ f

∂x
(x, u)∇u2

∣∣∣∣� 1

2

∥∥b(x)
∥∥2 + 1

2
‖∇u2‖2. (5.14)

By (5.1) and (5.14), proceeding as in the derivation of (5.9), from (5.13) we get that

d

dt

∥∥∇u2(t)
∥∥2 + ∥∥�u2(t)

∥∥2 � (2c1 + 1)
∥∥∇u2(t)

∥∥2 + ∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥2
, (5.15)

which implies that
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d

dt

∥∥∇u2(t)
∥∥2 + (λm − 2c1 − 1)

∥∥∇u2(t)
∥∥2 �

∥∥b(x)
∥∥2 + ∥∥g(x, t)

∥∥2

�
∥∥b(x)

∥∥2 + ∥∥g(x, t)
∥∥p + C24. (5.16)

By Gronwall’s lemma, (5.16) yields

∥∥∇u2(t)
∥∥2 �

∥∥∇u2(T0 + 1)
∥∥2

e−(λm−2c1−1)(t−(T0+1)) +
t∫

T0+1

e−(λm−2c1−1)(t−s)
∥∥g(x, t)

∥∥p
ds

+ (∥∥b(x)
∥∥2 + C24

) t∫
T0+1

e−(λm−2c1−1)(t−s) ds, ∀t > T0 + 1. (5.17)

For any ε > 0, by Lemma 5.1 we can choose λm (λm > 2c1 + 1) large enough such that

t∫
T0+1

e−(λm−2c1−1)(t−s)
∥∥g(x, t)

∥∥p
ds < ε, ∀t > T0 + 1, (5.18)

and

(∥∥b(x)
∥∥2 + C24

) t∫
T0+1

e−(λm−2c1−1)(t−s) ds

�
(∥∥b(x)

∥∥2 + C24
) 1

λm − 2c1 − 1
< ε, ∀t > T0 + 1. (5.19)

Let T1 = T0 + 1 + 1
λm−2c1−1 ln

R2
0
ε . For any t > T1, we have

∥∥∇u2(T0 + 1)
∥∥2

e−(λm−2c1−1)(t−(T0+1)) < ε. (5.20)

Therefore, (5.17)–(5.20) imply that

∥∥∇u2(t)
∥∥2 � 3ε, ∀t � T1, g ∈ HH (g0).

Using the properties of the Kuratowski measure of non-compactness and Theorem 2.4, we know that
the family of processes {U g(t, τ )}, g ∈ HH (g0), corresponding to problem (1.1) has the uniform (w.r.t.
g ∈ HH (g0)) attractor AHH (g0) in V .

To show (5.11), according to Theorem 2.3, we only need to verify the weak continuity of the
family of processes {U g(t, τ )}, g ∈ HH (g0), acting in V . Let uτn ⇀ uτ weakly in V , gn ⇀ g0 weakly
in L p

loc(R; H). Let un(t) = U gn (t, τ )uτn be the solution of Eq. (4.10), u(t) = U g0 (t, τ )uτ . Similar to the
proof of Theorem 4.1, we can obtain

{
un(t)

}
is bounded in L∞(Rτ ; V ) ∩ L2

loc

(
Rτ ; D(−A)

)
,{

u′
n(t)
}

is bounded in L2
loc

(
Rτ ; H−1(Ω)

)
.



Author's personal copy

X. Li, S. Ruan / J. Differential Equations 251 (2011) 728–757 753

Similar to the proof of the weak continuity of the family of processes in Theorem 4.1, we can obtain
that U gn (t, τ )uτn ⇀ U g0 (t, τ )uτ weakly in V .

This completes the proof. �
5.2. 1 < r < N, N−2

N+2 ρ + 2N
β(N+2)

< 1

We first recall a result in [37, Proposition 48.5].

Lemma 5.3. Let Ω be an arbitrary bounded domain and let {e At}t�0 be the Dirichlet heat semigroup in Ω . For
all 1 � p � ∞ and all Φ ∈ L p(Ω), there holds∥∥e AtΦ

∥∥
L

p
(Ω)

� M6(Ω)e−λ1t‖Φ‖
L

p
(Ω)

, t � 0.

We need the following dissipative condition:

f (x, u) � 0 for a.e. x ∈ Ω. (5.21)

Suppose that g(x, t) ∈ L p
b (R; W 1,r(Ω)). Notice that u(t) satisfies Eq. (3.1), by Theorem 3.2 and

(5.21), we have

u(t) = e A(t−τ )u(τ ) +
t∫

τ

e A(t−s)[− f
(
x, u(s)

)+ g(x, s)
]

ds

� e A(t−τ )u(τ ) +
t∫

τ

e A(t−s) g(x, s)ds. (5.22)

Using Lemma 5.3, from (5.22) we have

∥∥u(t)
∥∥

W 1,r(Ω)
�
∥∥e A(t−τ )u(τ )

∥∥
W 1,r(Ω)

+
t∫

τ

∥∥e A(t−s) g(x, s)
∥∥

W 1,r(Ω)
ds

� M6(Ω)e−λ1(t−τ )
∥∥u(τ )

∥∥
W 1,r(Ω)

+ C24M6(Ω)

t∫
τ

e−λ1(t−s)
∥∥g(x, s)

∥∥
W 1,r(Ω)

ds

� M6(Ω)e−λ1(t−τ )
∥∥u(τ )

∥∥
W 1,r(Ω)

+ C24M6(Ω)

( t∫
τ

e− λ1
2 (t−s)q ds

) 1
q
( t∫

τ

e− λ1
2 (t−s)p

∥∥g(x, s)
∥∥p

W 1,r(Ω)
ds

) 1
p

� M6(Ω)e−λ1(t−τ )
∥∥u(τ )

∥∥
W 1,r(Ω)

+ C24M6(Ω)

(
2

λ1q

) 1
q
(

e
λ1
2 p

e
λ1
2 p − 1

)∥∥g0(x, t)
∥∥p

L p
b (R;W 1,r(Ω))

. (5.23)
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Therefore, the family of processes {U g(t, τ )}, g ∈ HW 1,r(Ω)(g0), acting in the space W 1,r(Ω) is well
defined. Let

R0 = 2C24M6(Ω)

(
2

λ1q

) 1
q
(

e
λ1
2 p

e
λ1
2 p − 1

)∥∥g0(x, t)
∥∥p

L p
b (R;W 1,r(Ω))

,

the set

B0 = {u(t) ∈ W 1,r(Ω)
∣∣ ∥∥u(t)

∥∥
W 1,r(Ω)

� R0
}

(5.24)

is the uniformly (w.r.t. g ∈ HW 1,r(Ω)(g0)) absorbing set for the family of processes {U g(t, τ )}.
We know from Remark 3.1 that the solutions of (1.1) cannot enter in W 2,r(Ω). However, we can
obtain the existence of uniform attractor in the weakly topological space W −1,r(Ω).

Theorem 5.4. Assume that f (x, u) satisfies (1.2)–(1.3) with a(x) ∈ Lβ , β > 1 and exponent ρ > 1 such that

N − r

N + r
ρ + Nr

β(N + r)
< 1, 1 < r < N,

and (5.21) holds. Let g0(x, t) ∈ L p
b (R; W 1,r(Ω)), p > 2. Then the family of processes {U g(t, τ )}, g ∈

HW 1,r (Ω)(g0), is well defined in W 1,r(Ω) and possesses a uniformly (w.r.t. HW 1,r(Ω)(g0)) absorbing set in

W 1,r(Ω). Moreover, there exists a compact set A in W −1,r(Ω) such that A uniformly (w.r.t. HW 1,r(Ω)(g0))
attracts bounded set B of W 1,r(Ω) in the topology of W −1,r(Ω).

Proof. The existence of a uniformly absorbing set in W 1,r(Ω) is obtained in (5.24). The proof of
continuity of the process in the topology W −1,r(Ω) is similar to the proof of Theorem 4.2. �
6. Properties of attractors

In this section, we investigate the relationship between pullback, forward attractors corresponding
to problem (1.1) and uniform attractors obtained in Theorems 4.1, 4.2 and 5.2. Lots of work have been
done on studying the existence of pullback attractors for non-autonomous dynamical systems, e.g.
[13–15,38,45,49]. Non-autonomous dynamical systems can often be formulated in terms of a cocycle
mapping φ on a state space E for the dynamics in E that is driven by an autonomous dynamical
system {θt}t∈R in what is called a parameter space Σ . Let Σ be a metric space and {θt}t∈R be a
group acting on Σ satisfying:

(1) θ0(σ ) = σ for all σ ∈ Σ ;
(2) θt+s(σ ) = θt(θs(σ )) for all t, s ∈ R;
(3) the mapping (t, σ ) → θt(σ ) is continuous.

A mapping φ : R+ × Σ × E → E is called a cocycle on E if it satisfies:

(1) φ(0, σ , x) = x for all (σ , x) ∈ Σ × E;
(2) φ(t + s, σ , x) = φ(t, θs(σ ),φ(s, σ , x)) for all t, s ∈ R+ and all (σ , x) ∈ Σ × E;
(3) the mapping (t, σ , x) → φ(t, σ , x) is continuous.

A family of nonempty compact subsets {Aσ }σ∈Σ of E is called a pullback (or cocycle) attractor of
φ with respect to θ , if for all σ ∈ Σ , it satisfies:



Author's personal copy

X. Li, S. Ruan / J. Differential Equations 251 (2011) 728–757 755

(1) φ(t, σ ,Aσ ) = Aθt (σ ) for all t ∈ R+ (φ-invariance);
(2) limt→+∞ distE(φ(t, θ−t(σ ), B),Aσ ) = 0 for all bounded B ⊂ E .

A family of nonempty compact subsets {Aσ }σ∈Σ of E is said to be a forward attractor of φ, if it
satisfies the φ-invariance property and if, in addition, {Aσ }σ∈Σ forward attract each bounded set B
of E , i.e.,

lim
t→+∞ distE

(
φ(t,σ , B),Aθt (σ )

)= 0.

Suppose that assumptions of Theorem 4.1 hold. By Theorem 3.1 and (4.6), we can define a contin-
uous cocycle φ on H :

φ(t, g, uτ ) = u(t), ∀(t, g, uτ ) ∈ Rτ × HH (g0) × H, (6.1)

where u(t) is the solution of problem (1.1) with initial data uτ ∈ H and external force function g ∈
HH (g0). By Theorem 3.4 of [45], from the proof of Theorem 4.1 we deduce that the cocycle φ defined
by (6.1) possesses a pullback attractor AH in H :

AH = {AH
g

}
g∈HH (g0)

= {ωg(B0)
}

g∈HH (g0)
,

where B0 is the bounded uniformly absorbing set that is the same one as in Theorem 4.1, and

ωg(B0) =
⋂
s�0

⋃
t�s

φ
(
t, θ−t(g), B0

)H
.

Therefore, we have:

Proposition 6.1. Under the assumptions of Theorem 4.1, the cocycle φ corresponding to problem (1.1) possesses
a pullback attractor AH

1 = {AH
1g}g∈HH (g0) and a forward attractor AH

2 = {AH
2g}g∈HH (g0) in H. Moreover,

AHH (g0) =
⋃

g∈HH (g0)

AH
1g =

⋃
g∈HH (g0)

AH
2g .

Analogously, we have:

Proposition 6.2. Under the assumptions of Theorem 4.2, the cocycle φ corresponding to problem (1.1) pos-

sesses a pullback attractor ALr(Ω)
1 = {ALr(Ω)

1g }g∈HLr (Ω)(g0) and a forward attractor ALr(Ω)
2 =

{ALr(Ω)
2g }g∈HLr (Ω)(g0) in Lr(Ω). Moreover,

AHLr (Ω)(g0) =
⋃

g∈HLr (Ω)(g0)

ALr(Ω)
1g =

⋃
g∈HLr (Ω)(g0)

ALr(Ω)
2g .

Proposition 6.3. Under the assumptions of Theorem 5.2, the cocycle φ corresponding to problem (1.1) pos-
sesses a pullback attractor AV

1 = {AV
1g}g∈HH (g0) and a forward attractor AV

2 = {AV
2g}g∈HH (g0) in V . More-

over,

AHH (g0) =
⋃

g∈HH (g0)

AV
1g =

⋃
g∈HH (g0)

AV
2g .
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