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The predator–prey/consumer–resource interaction is the most fundamental and im-
portant process in population dynamics. Many species, such as monocarpic plants 
and semelparous animals, have discrete nonoverlapping generations and their births 
occur in regular breeding seasons. Their interactions are described by difference 
equations or formulated as discrete-time mappings. In this paper we study bifur-
cations in a discrete predator–prey model with nonmonotone functional response 
described by a simplified Holling IV function. It is shown that the model ex-
hibits various bifurcations of codimension 1, including fold bifurcation, transcritical 
bifurcation, flip bifurcations and Neimark–Sacker bifurcation, as the values of pa-
rameters vary. Moreover, we establish the existence of Bogdanov–Takens bifurcation 
of codimension 2 and calculate the approximate expressions of bifurcation curves. 
Numerical simulations are also presented to illustrate the theoretical analysis. These 
results demonstrate that the Bogdanov–Takens bifurcation of codimension 2 at the 
degenerate singularity persists in all three versions of the predator–prey model with 
nonmonotone functional response: continuous-time, time-delayed, and discrete-time.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The predator–prey/consumer–resource interaction is the most fundamental and important process in 
population dynamics. For populations with overlapping generations, the birth processes occur continuously, 
so the predator–prey interaction is usually modeled by ordinary differential equations. Very rich and com-
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plex dynamics and bifurcations have been observed in continuous-time predator–prey systems (see e.g., 
Collings [6], Huang and Xiao [11], Ruan and Xiao [21] and references there). Many other species, such 
as monocarpic plants and semelparous animals, have discrete nonoverlapping generations and their births 
occur in regular breeding seasons. Their interactions are described by difference equations or formulated as 
discrete-time mappings. Discrete-time predator–prey models can exhibit even more complicated dynamics 
than the corresponding continuous-time models (see e.g., Huang [10], Li and Zhang [15], Liu and Xiao [16], 
May [17], Maynard Smith [18] and references there).

The pioneer model describing the discrete time predator–prey/host–parasitoid interactions is the now 
well-known Nicholson and Bailey model (Nicholson and Bailey [20]):

(
x

y

)
→

(
λxe−ay

cx(1 − e−ay)

)
, (1.1)

where x and y are numbers of prey (hosts) and predators (parasitoids) in generation t, λ is the net repro-
ductive rate of prey (hosts), c is the clutch size of the predators (parasitoids), a is the area of discovery with 
units of area. The Nicholson and Bailey model is the canonical model for predator–prey/host–parasitoid 
interactions (Kot [12]). It generates large oscillations which can drive both species to extinction. To stabilize 
the model, Beddinton et al. [1] introduced self-limitation (density dependence) to the prey (host) population 
and proposed the following model:

(
x

y

)
→

(
λx exp[r(1 − x

K ) − ay]
cx(1 − e−ay)

)
, (1.2)

where r is the intrinsic growth rate and K is the carrying capacity of the prey population in the absence of 
predators. Model (1.2) can exhibit transcritical, flip, or Neimark–Sacker bifurcations (Beddinton et al. [1,2], 
May [17]).

The Lotka–Volterra type discrete-time predator–prey model was first proposed by Maynard Smith [18]
and has been analyzed by Levine [14] and Liu and Xiao [16]. It has been shown that such systems undergo fold 
bifurcation, flip bifurcation and Neimark–Sacker bifurcation. The discrete-time predator–prey model with 
Holling type II functional response was first derived from the original continuous-time model by Hadeler and 
Gerstmann [8], see also Neubert and Kot [19]. For such a model, Li and Zhang [15] clarified the parameter 
conditions for non-hyperbolicity and then completely discussed bifurcations of codimension 1.

Most discrete-time predator–prey models possess three fixed points or equilibria that correspond to (i) 
extinction of both species, (ii) extinction of the predator with survival of the prey at its carrying capacity, 
and (iii) coexistence of both species. To study the nonlinear dynamics of discrete-time predator–prey models 
with more than three fixed points or equilibria, in this article we consider a discrete-time predator–prey 
(resource–consumer) model with nonmonotone or Holling type IV functional response.

Nonmonotonic functional response appears naturally in the cases of “inhibition” in microbial dynamics 
and “group defence” in population dynamics. In microbial dynamics, there are experiments that indicate 
that nonmonotonic responses occur at the microbial level: when the nutrient concentration reaches a high 
level an inhibitory effect on the specific growth rate may occur. In population dynamics, group defense is a 
term used to describe the phenomenon whereby predation is decreased, or even prevented altogether, due 
to the increased ability of the prey to better defend or disguise themselves when their numbers are large 
enough. In experiments on the uptake of phenol by pure culture of Pseudomonas putida growing on phenol 
in continuous culture, Sokol and Howell [22] proposed a nonmonotone function of the form

mx
. (1.3)
a + x2
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Collings [6] also used this function in a mite predator–prey interaction model and called it a Holling type-IV
function.

Ruan and Xiao [21] studied the following continuous-time predator–prey system with nonmonotonic 
functional response or Holling type-IV response function

dX
dT = RX

(
1 − X

K

)
− MXY

A+X2

dY
dT = Y

[
−D + CX

A+X2

]
,

(1.4)

where X(T ) and Y (T ) represent the densities of the prey and predator populations at (continuous) time T , 
respectively. R > 0 and K > 0 are the intrinsic growth rate and carrying capacity of the prey in absence 
of predators. M > 0 is the maximal growth rate of predators, A > 0 is the half-saturation constant, 
C > 0 is the conversion rate, and D > 0 is the death rate of predators. The bifurcation analysis of 
the model depending on all parameters was performed which indicates that it exhibits numerous kinds of 
bifurcation phenomena, including saddle-node bifurcation, supercritical and subcritical Hopf bifurcations, 
and homoclinic bifurcation. It was shown that there are different parameter values for which the model has 
a limit cycle or a homoclinic loop, or exhibits the so-called paradox of enrichment phenomenon. Moreover, 
it was shown that a limit cycle cannot coexist with a homoclinic loop for all parameters. In the generic 
case, they proved that the model has the bifurcation of cusp type of codimension 2 (i.e., Bogdanov–Takens 
bifurcation) but for some specific parameter values it has a multiple focus of multiplicity at least 2.

To derive a discrete-time model from (1.4), let

dX

dT
= xt+h − xt

h
,

dY

dT
= yt+h − yt

h
,

where xt and yt are the densities of the prey and predator populations in discrete time (generation) t. 
Moreover, let h → 1 and D = 1. We have the equations for the (t +1)th generation of the prey and predator 
populations

xt+1 = (R + 1)xt

[
1 − R

K(1+R)xt

]
− Mxtyt

A+x2
t

yt+1 = Cxtyt

A+x2
t
.

(1.5)

Letting

xt −→
R

K(1 + R)xt

and

a = R + 1, b = M

A
, d = CK(1 + R)

AR
, ε = K2(1 + R)2

AR2 ,

rewriting (1.5) as a mapping, we obtain the following discrete-time predator–prey (resource–consumer) 
system with nonmonotonic functional response

F :
(
x

y

)
→

(
ax(1 − x) − bxy

1+εx2
dxy

1+εx2

)
, (1.6)

where a, b, d and ε are all positive constants. By the biological meaning of the model variables, we only 
consider system (1.6) in the region Ω = {(x, y) : x ≥ 0, y ≥ 0} in the (x, y)-plane.
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Recall that the continuous-time predator–prey system (1.4) undergoes Bogdanov–Takens bifurcation 
(Ruan and Xiao [21]), a codimension-two bifurcation. An interesting question is whether system (1.6), the 
discrete-time version of system (1.4), still exhibits Bogdanov–Takens bifurcation. The theory on Bogdanov–
Takens bifurcation for generic diffeomorphisms can be found in Broer et al. [4,5] and Kuznetsov [13]. In 
particular, if the Jacobian matrix of a planar diffeomorphism at a fixed point has a double unit eigenvalue 
but is not the identity (1:1 resonance), then the diffeomorphism can be approximated by the time-one flow 
of a vector field which has a singularity with nilpotent linear part. Yagasaki [27] studied Bogdanov–Takens 
bifurcation for subharmonics in periodic perturbations of planar Hamiltonian systems and gave estima-
tions of the bifurcations sets near the Bogdanov–Takens bifurcation points of diffeomorphisms. We will use 
the results in Broer et al. [4,5] and Kuznetsov [13] and techniques in Yagasaki [27] to prove the existence 
of Bogdanov–Takens bifurcation and calculate the approximate expressions of bifurcation curves in sys-
tem (1.6). To the best of our knowledge, we believe that this is the first study showing the existence of 
Bogdanov–Takens bifurcation in discrete-time predator–prey systems.

The paper is organized as follows. In section 2, we study the number and stability of fixed points for 
model (1.6). In section 3, we discuss bifurcations of codimension 1, including fold bifurcation, transcritical 
bifurcation, flip bifurcation and Neimark–Sacker bifurcation, for model (1.6). The Bogdanov–Takens bifur-
cation of codimension 2 is discussed in section 4. Numerical simulations are given in section 5. The paper 
ends with a brief discussion in section 6.

2. Fixed points

In this section, we present results on the existence and stability of fixed points of the discrete model (1.6), 
detailed derivations are given in the Appendix. By simple calculations, we can see that the map (1.6) has 
at most four fixed points under various conditions: the trivial fixed point O(0, 0), a semitrivial fixed point 
A(a−1

a , 0) if a > 1, and two positive fixed points

E1(x1, y1) = E1

(d−√
d2 − 4ε
2ε ,

dx1

b

(
a(1 − x1) − 1

))
,

E2(x2, y2) = E2

(d +
√
d2 − 4ε
2ε ,

dx2

b

(
a(1 − x2) − 1

))
.

The two positive fixed points may coalesce into a unique positive fixed point

E0(x0, y0) = E0

(2
d
,
2a(d− 2) − 2d

bd

)
.

The existence conditions of these fixed points are summarized in Table 1.
We have the following results on the linear stability of these fixed points.

2.1. The trivial fixed point O(0, 0) and semitrivial fixed point A(a−1
a , 0)

The fixed point O is a stable node if 0 < a < 1, or a saddle if a > 1, or non-hyperbolic if a = 1. The 
fixed point A arises when a > 1. The properties of A are given in Table 2.

2.2. The first positive fixed point E1(x1, y1)

Combining with the existence conditions of the positive fixed point E1, we know that when ε < d2

4 , x1 < 1
and y1 > 0, the positive fixed point E1(x1, y1) exists. The properties of E1 are given in Table 3, where 
f(x) = 5dx2 − (3d + 2)x + 2, x11 = 3d+2−

√
Δ , x12 = 3d+2+

√
Δ , Δ = (3d + 2)2 − 40d.
10d 10d
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Table 1
Existence of fixed points.

Conditions Fixed points
a, b, ε, d > 0 O

ε >
d2

4
a > 1 O, A

0 < d ≤ 2 a > 1
O, A

ε =
d2

4
d > 2 1 < a ≤ d

d−2

d > 2 a > d
d−2 O, A, E0

0 < d < 2 ε ≥ d − 1 a > 1
1 < d ≤ 2 ε < d − 1 1 < a ≤ 2ε

2ε−d+
√
d2−4ε

O, A

d > 2 1 < a ≤ 2ε
2ε−d+

√
d2−4ε

ε <
d2

4
1 < d ≤ 2 ε < d − 1 a > 2ε

2ε−d+
√
d2−4ε

d > 2 ε ≤ d − 1 a > 2ε
2ε−d+

√
d2−4ε

O, A, E1

d > 2 ε > d − 1 2ε
2ε−d+

√
d2−4ε

< a ≤ 2ε
2ε−d−

√
d2−4ε

d > 2 ε > d − 1 a > 2ε
2ε−d−

√
d2−4ε

O, A, E1, E2

Table 2
Properties of the semitrivial fixed point A.

Conditions Eigenvalues Properties
λ1 = 2 − a λ2 = ad(a−1)

a2+ε(a−1)2

1 < a < 3
d > a

a−1 , 0 < ε < a(ad−d−a)
(a−1)2 λ2 > 1 unstable

d > a
a−1 , ε = a(ad−d−a)

(a−1)2 |λ1| < 1 λ2 = 1 non-hyperbolic

ε > a(ad−d−a)
(a−1)2 0 < λ2 < 1 stable

a = 3
d > 3

2 , 0 < ε < 3(2d−3)
4 λ2 > 1

d > 3
2 , ε = 3(2d−3)

4 λ1 = −1 λ2 = 1 non-hyperbolic
ε > 3(2d−3)

4 0 < λ2 < 1

a > 3
d > a

a−1 , 0 < ε < a(ad−d−a)
(a−1)2 λ2 > 1 unstable

d > a
a−1 , ε = a(ad−d−a)

(a−1)2 λ1 < −1 λ2 = 1 non-hyperbolic

ε > a(ad−d−a)
(a−1)2 0 < λ2 < 1 unstable

Table 3
Properties of the positive fixed point E1.

Conditions Eigenvalues Properties
3
2 < d < 9

4
1
d < x1 < 2

3
1

1−x1
< a < 2+dx1

f(x1)

9
4 ≤ d ≤ 3

1
d < x1 ≤ 4d−2

7d
1

1−x1
< a < 1

1−2x1
4d−2
7d < x1 < 2

3
1

1−x1
< a < 2+dx1

f(x1)
|λ1,2| < 1 stable

3 < d < 4
1
d < x1 ≤ 4d−2

7d
1

1−x1
< a < 1

1−2x1
4d−2
7d < x1 < 2

d
1

1−x1
< a < 2+dx1

f(x1)

d ≥ 4 1
d < x1 < 2

d
1

1−x1
< a < 1

1−2x1

3
2 < d < 14+4

√
10

9
1
d < x1 < 2

3

a = 2+dx1
f(x1)

14+4
√

10
9 ≤ d ≤ 3

1
d < x1 < x11 λ1 = −1
x12 ≤ x1 < 2

3 λ2 = −q(x1)
3 < d < 4 x12 < x1 < 2

d non-hyperbolic
9
4 < d < 4 ε = 7(4d3−9d2)

4(2d−1)2 a = 7d
4−d λ1,2 = −1

9
4 < d < 4 1

d < x1 < 4d−2
7d a = 1

1−2x1

|λi| = 1
d ≥ 4 1

d < x1 < 2
d λ1 = λ2

others unstable
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Table 4
Properties of the positive fixed point E2.

Conditions Eigenvalues Properties
3 < d < 4 2

d < x2 < 2
3 a = 2+dx2

f(x2)
λ1 = −1 non-hyperbolic

d ≥ 4 x12 < x2 < 2
3 λ2 = −q(x2) �= 1,−1

others unstable

Table 5
Properties of the fixed point E0.

Conditions Eigenvalues Properties

λ1 = 1, λ2 =
a(d − 4)

d

a �= ±
d

d − 4
, d > 2 λ1 = 1, |λ2| �= 1 non-hyperbolic

a =
d

4 − d
, 3 < d < 4 λ1 = 1, λ2 = −1 non-hyperbolic

a =
d

d − 4
, d > 4 λ1 = 1, λ2 = 1 non-hyperbolic

2.3. The second positive fixed point E2(x2, y2)

When d > 2, d − 1 < ε < d2

4 and a > 1
1−x2

, the positive fixed point E2(x2, y2) exists and the properties 
of E2 are given in Table 4, where f(x) = 5dx2 − (3d + 2)x + 2, x12 = 3d+2+

√
Δ

10d , Δ = (3d + 2)2 − 40d, 
q(x2) = a(1 − 2x2).

2.4. The unique positive fixed point E0(x0, y0)

When ε = d2

4 , d > 2 and a > d
d−2 , the map (1.6) has a unique positive fixed point E0, and the properties 

of E0 are given in Table 5.

3. Bifurcations of codimension 1

3.1. Bifurcations around the trivial fixed point O(0, 0)

Theorem 3.1. As a passes through 1, the map (1.6) undergoes a transcritical bifurcation at the fixed point O.

Proof. By the results in Section 2.1 (see also Theorem A.1), O is non-hyperbolic if a = 1. We choose a as 
the bifurcation parameter, and let a = 1 + μ, where μ = a − 1 is sufficiently small. We can easily deduce 
that the center manifold of F is y = 0 when a = 1 and F restricted to this center manifold is the map 
x �→ x + μx − x2 − μx2. Thus, as a passes through 1, the map (1.6) undergoes a transcritical bifurcation at 
the fixed point O, and the fixed point A appears when a > 1. �
3.2. Bifurcations around the semitrivial fixed point A(a−1

a , 0)

Theorem 3.2. When a > 1, the fixed point A arises. Moreover, when a = 3 or ε = a(ad−a−d)
(a−1)2 (d > a

a−1 ), A is 
non-hyperbolic.

(i) If ε �= a(ad−d−a)
(a−1)2 , then as a passes through 3, a flip bifurcation occurs at A;

(ii) If a �= 3 and d �= 2a
a−1 , then as ε passes through a(ad−a−d)

(a−1)2 (d > a
a−1 ), a transcritical bifurcation occurs 

at A.
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Proof. (i) By the results in Section 2.1 (also Theorem A.1), if a = 3, ε �= a(ad−d−a)
(a−1)2 , A(2

3 , 0) is non-hyperbolic 
and the eigenvalues of the Jacobian matrix J(A) are λ1 = −1 and |λ2| �= 1.

In order to analyze fold bifurcation around the fixed point A, we choose a as the bifurcation parameter. 
Let u = x − 2

3 , v = y − 0 and r = a − 3, we transform the fixed point A(2
3 , 0) to the origin and expand the 

right-hand side of map (1.6) around the origin. Then map (1.6) becomes
(
u

v

)
→

(
−u− 6b

9+4εv + 2r
9 − ru

3 − (3 + r)u2 − 9b(9−4ε)
(9+4ε)2 uv + 54bε(−27+4ε)

(9+4ε)3 u2v + O(|u, v|4)
6d

9+4εv + 9d(9−4ε)
(9+4ε)2 uv + 54dε(−27+4ε)

(9+4ε)3 u2v + O(|u, v|4)

)
, (3.1)

where r is the new variable and is sufficient small.
Consider the following system
⎛
⎜⎝ u

v

r

⎞
⎟⎠ →

⎛
⎜⎝

−u− 6b
9+4εv + 2r

9 − ru
3 − (3 + r)u2 − 9b(9−4ε)

(9+4ε)2 uv + 54bε(−27+4ε)
(9+4ε)3 u2v + O(|u, v|4)

6d
9+4εv + 9d(9−4ε)

(9+4ε)2 uv + 54dε(−27+4ε)
(9+4ε)3 u2v + O(|u, v|4)

r

⎞
⎟⎠ . (3.2)

Linearizing map (3.2) at (0, 0, 0), we obtain the associated Jacobian matrix

J =

⎛
⎜⎝−1 − 6b

9+4ε
2
9

0 6d
9+4ε 0

0 0 1

⎞
⎟⎠ .

Letting

T =

⎛
⎜⎝ 1 1 1

0 −9+4ε+6d
6b 0

0 0 9

⎞
⎟⎠

and using the transformation
⎛
⎜⎝ u

v

r

⎞
⎟⎠ = T

⎛
⎜⎝X

Y

Z

⎞
⎟⎠ ,

then the map (3.2) becomes
⎛
⎜⎝X

Y

Z

⎞
⎟⎠ →

⎛
⎜⎝−1 0 0

0 6d
9+4ε 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝X

Y

Z

⎞
⎟⎠ +

⎛
⎜⎝ f1(X,Y, Z)

g1(X,Y, Z)
0

⎞
⎟⎠ , (3.3)

where

f1(X,Y, Z) = −6Z2 − 9Z3 − (9Z + 18Z2)X −
(

3(45+28ε)Z
18+8ε + 9(162+171ε+28ε2)Z2

(9+4ε)2

)
Y − (3 + 9Z)X2

−
(

81+60ε
18+8ε + 54(27+33ε+4ε2)Z

(9+4ε)2

)
XY −

(
9(3+4ε)
18+8ε + 9(81+126ε+8ε2)Z

(9+4ε)2

)
Y 2 + 9ε(−27+4ε)

(9+4ε)2 Y 3

+18ε(−27+4ε)
(9+4ε)2 XY 2 + 9ε(−27+4ε)

(9+4ε)2 X2Y + O(|X,Y, Z|4),
g1(X,Y, Z) =

(
9d(9−4ε)Z
(9+4ε)2 + 54dε(−27+4ε)Z2

(9+4ε)3

)
Y +

(
9d(9−4ε)
(9+4ε)2 + 108dε(−27+4ε)Z

(9+4ε)3

)
Y 2 + 54dε(−27+4ε)

(9+4ε)3 Y 3

+
(

9d(9−4ε)
(9+4ε)2 + 108dε(−27+4ε)Z

(9+4ε)3

)
XY + 108dε(−27+4ε)

(9+4ε)3 XY 2 + 54dε(−27+4ε)
(9+4ε)3 X2Y

+O(|X,Y, Z|4).
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By the center manifold theory, the stability of (X, Y ) = (0, 0) near Z = 0 can be determined by studying 
a one-parameter family of reduced equations on a center manifold, which can be represented as follows

W c(0) = {(X,Y, Z) ∈ R3|Y = h(X,Z), h(0, 0) = 0, Dh(0, 0) = 0}

for X and Z sufficiently small. We assume that h(X, Z) takes the form

h(X,Z) = h1Z
2 + h2XZ + h3X

2 + O(|X,Z|3). (3.4)

Then h(X, Z) must satisfy

N (h(X,Z)) = h(−X + f1(X,h(X,Z), Z), Z) − 6d
9 + 4εh(X,Z) − g1(X,h(X,Z), Z) = 0. (3.5)

Substituting (3.4) into (3.5) and equating coefficients of powers to zero in (3.5), we obtain

h1 = h2 = h3 = 0.

Thus the map restricted to the center manifold is given by

X → f̃(X,Z) = −X − (9Z + 18Z2)X − (3 + 9Z)X2 − 6Z2 − 9Z3 + O(|X,Z|4).

It is easy to see that

∂f̃

∂X
(0, 0) = −1, − 3

( ∂2f̃

∂X2 (0, 0)
)2

− 2 ∂3f̃

∂X3 (0, 0) = −108, ∂2f̃

∂Z∂X
(0, 0) = −9.

Therefore, by [13], map (1.6) undergoes a flip bifurcation at the fixed point A when a = 3.
(ii) Similarly, if ε = a(ad−a−d)

(a−1)2 and a �= 3, A(a−1
a , 0) is non-hyperbolic because the eigenvalues of the 

Jacobian matrix J(A) are λ1 = 2 − a and λ2 = 1.
In order to analyze transcritical bifurcation of the fixed point A, we choose ε as the bifurcation parameter. 

Let u = x − a−1
a , v = y − 0 and μ = ε − a(ad−a−d)

(a−1)2 , we transform the fixed point (a−1
a , 0) to the origin and 

expand the right-hand side of map (1.6) around the origin. Then map (1.6) becomes

(
u

v

)
→

(
(2 − a)u− b

dv + b(a−1)μv
ad2 − ab(a(d−2)−d)uv

(a−1)2d2 − au2 + O(|u, v|3)
v + (1−a)μv

ad + a(−a(d−2)+d)uv
(a−1)2d + O(|u, v|3)

)
, (3.6)

where μ is the new variable and is sufficient small.
Linearizing map (3.6) at (0, 0), we obtain the associated Jacobian matrix

J =
(

2 − a − b
d

0 1

)
.

Let

T =
(

1 − b
d(a−1)

0 1

)

and use the transformation
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(
u

v

)
= T

(
X

Y

)
,

then the map (3.6) becomes

(
X

Y

)
→

(
2 − a 0

0 1

)(
X

Y

)
+
(
f1(X,Y, μ)
g1(X,Y, μ)

)
, (3.7)

where

f1(X,Y, μ) = (a−2)bμ
ad2 Y − aX2 + ab(a(4−7d)+4d+a2(3d−2))

(a−1)3d2 XY + ab2(−2a2(d−1)−3d+a(5d−4))
(a−1)4d3 Y 2

+O(|X,Y |3),
g1(X,Y, μ) = (1−a)μ

ad Y + a(−a(d−2)+d)
(a−1)2d XY + ab(a(d−2)−d)

(a−1)3d2 Y 2 + O(|X,Y |3).

Once again, the stability of (X, Y ) = (0, 0) near μ = 0 can be determined by studying a one-parameter 
family of equations restricted on a center manifold, which can be represented as follows

W c(0) = {(X,Y, μ) ∈ R3|X = h(Y, μ), h(0, 0) = 0, Dh(0, 0) = 0}

for Y and μ sufficiently small. Assume that

h(Y, μ) = h1μ
2 + h2Y μ + h3Y

2 + O(|Y, μ|3). (3.8)

Then we have

N (h(Y, μ)) = h(Y + g1(h(Y, μ), Y, μ), μ) − (2 − a)h(Y, μ) − f1(h(Y, μ), Y, μ) = 0. (3.9)

Substituting (3.8) into (3.9) and comparing the coefficients of (3.9), we obtain

h1 = 0, h2 = b(a− 2)
(a2 − a)d2 , h3 = −ab2(4a− 2a2 + 3d− 5ad + 2a2d)

(a− 1)5d3 .

Thus the map restricted to the center manifold is given by

Y → g̃(Y, μ) = Y

(
1 + μ(1−a)

ad + ab(a(d−2)−d)
(a−1)3d2 Y − b(a(d−2)−d)Y

(a−1)7d4

(
2(a− 2)a3bY

+(a− 1)d((a− 2)(a− 1)3μ + (3 − 2a)a2bY )
)

+ O(|Y, μ|3)
)
.

(3.10)

We can see that g̃(0, 0) = 0, ∂g̃
∂Y (0, 0) = 1, ∂g̃

∂μ (0, 0) = 0, ∂2g̃
∂μ∂Y (0, 0) = 1−a

ad �= 0, and ∂2g̃
∂Y 2 (0, 0) =

2ab(ad−d−2a)
(a−1)3d2 �= 0 if a > 1 and d �= 2a

a−1 . By [25], when a �= 3 and d �= 2a
a−1 , the fixed point A under-

goes a transcritical bifurcation at ε = a(ad−a−d)
(a−1)2 (d > a

a−1 ). �
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3.3. Bifurcation analysis of the first positive fixed point E1(x1, y1)

Firstly, we discuss the flip bifurcation at the fixed point E1(x1, y1). Let

p1 ≡ p(x1) = a0(2 − 3x1) − 2
dx1

(
a0(1 − x1) − 1

)
,

q1 ≡ q(x1) = a0(1 − 2x1),
a0 = 2+dx1

5dx2
1−(3d+2)x1+2 ,

x̃ = 2d7+10d5ε+d6ε−166d3ε2−19d4ε2+216dε3+88d2ε3−48ε4
2d8+8d6ε+d7ε−178d4ε2−20d5ε2+368d2ε3+106d3ε3−80ε4−120dε4 ,

Γ1 ≡ {(d, x1, a) : 3
2 < d < 14+4

√
10

9 , 1
d < x1 < 2

3 , a = a0},
Γ2 ≡ {(d, x1, a) : 14+4

√
10

9 ≤ d ≤ 3, x1 ∈ ( 1
d , x11) ∪ (x12,

2
3 ), a = a0},

Γ3 ≡ {(d, x1, a) : 3 < d < 4, x12 < x1 < 2
d , a = a0},

where x11 and x12 are given in Table 3 or in Theorem A.2.

Theorem 3.3. If (d, x1, a) ∈ Γ1 ∪ Γ2 ∪Γ3 and x1 �= 4d−2
7d , then the eigenvalues of the Jacobian matrix J(E1)

are λ1 = −1 and λ2 = −q1 �= −1, 1. Moreover, if x1 �= x̃, then the map (1.6) undergoes a flip bifurcation at 
the fixed point E1.

Proof. By the results in Section 2.2 (see also Theorem A.2), if (d, x1, a) ∈ Γ1 ∪ Γ2 ∪ Γ3 and x1 �= 4d−2
7d , 

then the positive fixed point E1(x1, y1) of map (1.6) is non-hyperbolic and the eigenvalues of the Jacobian 
matrix J(E1) are λ1 = −1 and λ2 = −q1 �= −1, 1. Thus, 1 + p1 + q1 = 0 and p1 �= −2, 0.

In order to analyze flip bifurcation at E1(x1, y1), we choose a as the bifurcation parameter. Let u = x −x1, 
v = y − y1 and r = a − a0, we transform the fixed point (x1, y1) to the origin and expand the right-hand 
side of map (1.6) around the origin. Then map (1.6) becomes

(
u

v

)
→

⎛
⎜⎝ (p1 − 1 + (1 − 2x1)r)u− b

dv + (1 − x1)x1r − b
dQ1uv + (− b

dQ2 − a0 − r)u2

− b
dQ3u

2v − b
dQ4u

3 + O(|u, v|4)
−2p1d

b u + v + Q1uv + Q2u
2 + Q3u

2v + Q4u
3 + O(|u, v|4)

⎞
⎟⎠ , (3.11)

where Q1 = d−dx2
1ε

(1+x2
1ε)2

, Q2 = dx1y1ε(−3+x2
1ε)

(1+x2
1ε)3

, Q3 = dx1ε(−3+x2
1ε)

(1+x2
1ε)3

, Q4 = −dy1ε(1−6x2
1ε+x4

1ε
2)

(1+x2
1ε)4

, and r is the new 
variable and is sufficient small.

Consider the following system

⎛
⎜⎝ u

v

r

⎞
⎟⎠ →

⎛
⎜⎜⎜⎝

(p1 − 1 + (1 − 2x1)r)u− b
dv + (1 − x1)x1r − b

dQ1uv + (− b
dQ2 − a0 − r)u2

− b
dQ3u

2v − b
dQ4u

3 + O(|u, v|4)
−2p1d

b u + v + Q1uv + Q2u
2 + Q3u

2v + Q4u
3 + O(|u, v|4)

r

⎞
⎟⎟⎟⎠ . (3.12)

Linearizing map (3.12) at (0, 0, 0), we obtain the associated Jacobian matrix

J =

⎛
⎜⎝ p1 − 1 − b

d (1 − x1)x1
−2p1d

b 1 0
0 0 1

⎞
⎟⎠ .

Letting

T =

⎛
⎜⎝

b
dp1

− b
2d 0

1 1 d(1−x1)x1
b

0 0 1

⎞
⎟⎠
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and using the transformation

⎛
⎜⎝ u

v

r

⎞
⎟⎠ = T

⎛
⎜⎝X

Y

r

⎞
⎟⎠ ,

then map (3.12) becomes (omitting the third equation)

(
X

Y

)
→

(
−1 0
0 −q1

)(
X

Y

)
+

(
f1(X,Y, r)
g1(X,Y, r)

)
, (3.13)

where

f1(X,Y, r) = k1rX − p1
2 k1rY + k2X

2 + k3XY + k4Y
2 + O(|X,Y |3),

g1(X,Y, r) = −k5rX + p1
2 k5rY + k6X

2 + k7XY + k8Y
2 + O(|X,Y |3),

and

k1 = 2−(4+Q1)x1+Q1x
2
1

2+p1
, k2 = − b(2a0d+dp1Q1+bQ2)

d2p1(2+p1) , k3 = b(4a0d+d(p1−2)Q1+2bQ2)
2d2(2+p1) ,

k4 = − bp1(2a0d−2dQ1+bQ2)
4d2(2+p1) , k5 = 2(Q1(x1−1)x1+p1(1−(2+Q1)x1+Q1x

2
1))

p1(2+p1) , k6 = 2b(a0dp1+(1+p1)(dp1Q1+bQ2))
d2p2

1(2+p1) ,

k7 = − b(2a0dp1+(1+p1)(d(p1−2)Q1+2bQ2))
d2p1(2+p1) , k8 = b(a0dp1−(1+p1)(2dQ1−bQ2))

2d2(2+p1) .

To discuss the stability of (X, Y ) = (0, 0) near r = 0, consider the center manifold

W c(0) = {(X,Y, r) ∈ R3|Y = h(X, r), h(0, 0) = 0, Dh(0, 0) = 0}

for X and r sufficiently small. Assume that

h(X, r) = h1r
2 + h2Xr + h3X

2 + O(|X, r|3). (3.14)

Then

N (h(X, r)) = h(−X + f1(X,h(X, r), r), r) + q1h(X, r) − g1(X,h(X, r), r) = 0. (3.15)

Substituting (3.14) into (3.15) and comparing coefficients of (3.15), we obtain

h1 = 0, h2 = k5

2 + p1
, h3 = −k6

p1
.

Thus the map (3.13) restricted to the center manifold is given by

X → f̃(X, r) = −X + k1rX − k1k5p1
2(2+p1)r

2X +
(

k1k6
2 + k3k5

2+p1

)
rX2 + k2X

2 − k3k6
p1

X3 + O(|r,X|4). (3.16)

By lengthy calculations, and using the second equation of (A.1), we can see that

∂f̃
∂X (0, 0) = −1, ∂2f̃

∂r∂X (0, 0) = k1 = − (2−(2+3d)x1+5dx2
1)

2

dx2
1(2−4d+7dx1) ,

−3( ∂2f̃
∂X2 (0, 0))2 − 2 ∂3f̃

∂X3 (0, 0) = −12k2
2 + 12k3k6

p1
≡ �1�2,
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where

�1 = 12b2(2−(2+3d)x1+5dx2
1)

2

d4x5
1(2−3x1)2(dx1−2)3(2−4d+7dx1) ,

�2 = 48 − 40(2 + 3d)x1 + 8d(27 + 11d)x2
1 − 2d2(76 + 9d)x3

1 + d3(14 + d)x4
1 + 2d4x5

1
= 48 − 2d7

ε4 − 10d5

ε3 − d6

ε3 + 166d3

ε2 + 19d4

ε2 − 216d
ε − 88d2

ε

+ (−80 − 120d + 2d8

ε4 + 8d6

ε3 + d7

ε3 − 178d4

ε2 − 20d5

ε2 + 368d2

ε + 106d3

ε )x1.

When (d, x1, a) ∈ Γ1 ∪ Γ2 ∪ Γ3 and x1 �= 4d−2
7d , we have 1

d < x1 < min
{ 2

d ,
2
3
}

and f(x1) =
2 − (2 + 3d)x1 + 5dx2

1 �= 0, it is easy to see that k1 �= 0 and �1 �= 0, and �2 �= 0 if x1 �= x̃ ≡
2d7+10d5ε+d6ε−166d3ε2−19d4ε2+216dε3+88d2ε3−48ε4

2d8+8d6ε+d7ε−178d4ε2−20d5ε2+368d2ε3+106d3ε3−80ε4−120dε4 . By [25], the fixed point E1 undergoes a flip bifur-
cation if (d, x1, a) ∈ Γ1 ∪ Γ2 ∪ Γ3, x1 �= 4d−2

7d and x1 �= x̃. �
Secondly, we discuss the Neimark–Sacker bifurcation at the fixed point E1(x1, y1). Let

a1 ≡ 1
1−2x1

,

x̄ ≡ 4+3d±
√

5d2−8d+16
d(8+d) ,

Λ1 ≡ {(d, x1) : 9
4 < d ≤ 5

2 ,
1
d < x1 < 4d−2

7d },
Λ2 ≡ {(d, x1) : 5

2 < d ≤ 3, 1
d < x1 < 4d−2

7d },
Λ3 ≡ {(d, x1) : 3 < d < 4, 1

d < x1 < 4d−2
7d },

Λ4 ≡ {(d, x1) : d ≥ 4, 1
d < x1 < 2

d}.

Theorem 3.4. The map (1.6) undergoes a Neimark–Sacker bifurcation at the fixed point E1 if one of the 
following conditions holds:

(i) (d, x1) ∈ Λ1 ∪ Λ4, a = a1, x1 �= x̄;
(ii) (d, x1) ∈ Λ2, a = a1, x1 �= 2d−2

3d , x1 �= x̄;
(iii) (d, x1) ∈ Λ3, a = a1, x1 �= d−2

d , x1 �= 2d−2
3d , x1 �= x̄.

Proof. By the results in Section 2.2 (also Theorem A.2), if (d, x1) ∈ Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4 and a = a1, the 
positive fixed point E1(x1, y1) of map (1.6) is non-hyperbolic and the eigenvalues of the Jacobian matrix 
J(E1) are complex conjugate with module 1.

When a is sufficiently closing to a1, we denote the eigenvalues by λ(a) = λ̄(a) = p(a)+
√

4q(a)−p2(a)i
2 , 

where p(a) = a(2 − 3x1) − 2
dx1

(a(1 − x1) − 1), q(a) = a(1 − 2x1); When a = a1, we let λ ≡ λ(a1), ̄λ ≡
λ̄(a1), p ≡ p(a1) = 2d−2−3dx1

d(2x1−1) , q ≡ q(a1) = 1. Then we have λ = p+
√

4−p2i
2 , |λ(a)| =

√
q(a), |λ| = 1, and the 

transversality condition d|λ(a)|
da

∣∣∣
a=a1

= 1−2x1
2 > 0 due to x1 < 1

2 when (d, x1) ∈ Λ1 ∪ Λ2 ∪ Λ3 ∪ Λ4.

Obviously, λj �= 1 (j = 1, 2, 3, 4) if and only if p2 − 4 < 0 and p �= 0, −1. Clearly, we have p2 − 4 =
(2−dx1)(2−4d+7dx1)

d2(2x1−1)2 < 0 due to x1 < 4d−2
7d under the existence of E1 with a pair of conjugate imaginary roots.

By computation, p = 0 ⇔ x1 = 2d−2
3d , and p = −1 ⇔ x1 = d−2

d . (i) When 9
4 < d ≤ 5

2 , we have 
2d−2
3d (or d−2

d ) ≤ 1
d < 4d−2

7d < 1
2 < 2

d , then p �= 0, −1 if x1 ∈ ( 1
d , 

4d−2
7d ); (ii) When 5

2 < d ≤ 3, we have 
d−2
d ≤ 1

d < 2d−2
3d < 4d−2

7d < 1
2 < 2

d , then p �= 0, −1 if x1 ∈ ( 1
d , 

4d−2
7d ) and x1 �= 2d−2

3d ; (iii) When 3 < d < 4, 
we have 1

d < 2d−2
3d (or d−2

d ) < 4d−2
7d < 1

2 < 2
d , then p �= 0, −1 if x1 ∈ ( 1

d , 
4d−2
7d ) and x1 �= d−2

d and x1 �= 2d−2
3d ; 

(iv) When d ≥ 4, we have 1
d < 2

d ≤ 1
2 ≤ 4d−2

7d ≤ 2d−2
3d (or d−2

d ), then p �= 0, −1 if x1 ∈ ( 1
d , 

2
d ).

So we have the nondegeneracy condition λj �= 1, j = 1, 2, 3, 4, if one of the following conditions holds: (i) 
(d, x1) ∈ Λ1 ∪ Λ4; (ii) (d, x1) ∈ Λ2, x1 �= 2d−2

3d ; (iii) (d, x1) ∈ Λ3, x1 �= d−2
d , x1 �= 2d−2

3d .
Next we calculate the other nondegeneracy condition for Neimark–Sacker bifurcation.
We transform the fixed point (x1, y1) to the origin and expand the right-hand side of map (1.6) around 

the origin by the translations u = x − x1, v = y − y1. Then map (1.6) becomes
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(
u

v

)
→

(
(p− 1)u− b

dv −
b
dQ1uv + (− b

dQ2 − a0)u2 − b
dQ3u

2v − b
dQ4u

3 + O(|u, v|4)
d
b (2 − p)u + v + Q1uv + Q2u

2 + Q3u
2v + Q4u

3 + O(|u, v|4)

)
, (3.17)

where p, q, Q1, Q2, Q3, Q4 are same as those in map (3.11) by replacing a0 by a1 and r by 0.
Linearizing map (3.17) at (0, 0), we obtain the associated Jacobian matrix

J =
(

p− 1 − b
d

d(2−p)
b 1

)
.

Let

T =
(

b
d 0

p−2
2

√
4−p2

2

)

and use the transformation (
u

v

)
= T

(
X

Y

)

then the map (3.17) becomes

(
X

Y

)
→

(
p
2 −

√
4−p2

2√
4−p2

2
p
2

)(
X

Y

)
+

(
f̂(X,Y )
ĝ(X,Y )

)
, (3.18)

where

f̂(X,Y ) = m1X
2 + m2XY + m3X

2Y + m4X
3 + O(|X,Y |4),

ĝ(X,Y ) = m5X
2 + m6XY + m7X

2Y + m8X
3 + O(|X,Y |4),

and

m1 = − b(2a1d+d(p−2)Q1+2bQ2)
2d2 ,m2 = − b

√
4−p2Q1
2d ,m3 = − b2

√
4−p2Q3
2d2 ,m4 = − b2(d(p−2)Q3+2bQ4)

2d3 ,

m5 = b(2a1d(p−2)+p(d(p−2)Q1+2bQ2))
2d2

√
4−p2 ,m6 = bpQ1

2d ,m7 = b2pQ3
2d2 ,m8 = b2p(d(p−2)Q3+2bQ4)

2d3
√

4−p2 .

Noticing that (3.18) is exactly in the form on the center manifold, the additional nondegeneracy condition 
for Neimark–Sacker bifurcation is given by (see Theorem 3.5.2 in [7])

â = −Re
( (1 − 2λ)λ̄2

1 − λ
�11�20

)
− 1

2 |�11|2 − |�02|2 + Re(λ̄�21), (3.19)

where

�20 = 1
8
[
f̂XX − f̂Y Y + 2ĝXY + i(ĝXX − ĝY Y − 2f̂XY )

]∣∣∣
(0,0)

,

�11 = 1
4
[
f̂XX + f̂Y Y + i(ĝXX + ĝY Y )

]∣∣∣
(0,0)

,

�02 = 1
8
[
f̂XX − f̂Y Y − 2ĝXY + i(ĝXX − ĝY Y + 2f̂XY )

]∣∣∣
(0,0)

,

�21 = 1
16
[
f̂XXX − f̂XY Y + ĝXXY + ĝY Y Y + i(ĝXXX − ĝXY Y − f̂XXY − f̂Y Y Y )

]∣∣∣
(0,0)

.

By lengthy computations and using the second equation of (A.1), we get



214 J. Huang et al. / J. Math. Anal. Appl. 464 (2018) 201–230
â = 1
16(p−2)

(
(−p3 + 3p2 + p− 6)(m2

1 + m1m6 −m2
5 + m2m5)

−(p2 − 3p + 1)(2m1m5 −m1m2 + m5m6)
√

4 − p2
)
− 1

8 (m2
1 + m2

5)

− 1
16

(
(m1 −m6)2 + (m2 + m5)2

)
+ 1

16

(
p(3m4 + m7) + (3m8 −m3)

√
4 − p2

)
= −b2

4−2(4+3d)x1+d(8+d)x2
1

8d3x2
1(1−2x1)2(dx1−2) .

When (d, x1) ∈ Λ1 ∪Λ2 ∪Λ3 ∪Λ4 and a = a1, we have 1
d < x1 < min

{ 2
d ,

1
2
}
, and it is easy to see that â �= 0

if x1 �= x̄ ≡ 4+3d±
√

5d2−8d+16
d(8+d) .

Summarizing the above results, by [7], the map (1.6) undergoes a Neimark–Sacker bifurcation at the fixed 
point (x1, y1) if one of the following conditions holds: (i) (d, x1) ∈ Λ1 ∪Λ4, a = a1, x1 �= x̄; (ii) (d, x1) ∈ Λ2, 
a = a1, x1 �= 2d−2

3d , x1 �= x̄; (iii) (d, x1) ∈ Λ3, a = a1, x1 �= d−2
d , x1 �= 2d−2

3d , x1 �= x̄. �
3.4. Bifurcation analysis at the second positive fixed point E2(x2, y2)

Theorem 3.5. When (d, x2, a) ∈ {(d, x2, a) : 3 < d < 4, 2d < x2 < 2
3 , a = a2} ∪ {(d, x2, a) : d ≥ 4, x12 <

x2 < 2
3 , a = a2}, and x2 �= x̃, then the map (1.6) undergoes a flip bifurcation at the fixed point E2, where 

a2 = 2+dx2
5dx2

2−(3d+2)x2+2 , x12 is given in Table 4 and x̃ is given in Theorem 3.3.

Proof. The proof is completely similar to that of Theorem 3.3 by replacing all x1 and a0 by x2 and a2, 
respectively, so we omit it here. �
3.5. Bifurcations around the unique positive fixed point E0( 2

d , 
2a(d−2)−2d

bd )

By the results in Section 2.4 (see also Theorem A.4), when ε = d2

4 , d > 2 and a > d
d−2 , the map (1.6) has 

a unique positive fixed point E0, and the eigenvalues of J(E0) are λ1 = 1 and |λ2| �= 1 if a �= ± d
d−4 . Thus 

fold bifurcation may occur at E0. We have the following results.

Theorem 3.6. If ε = d2

4 , a > d
d−2 , d > 2 and a �= ± d

d−4 , a fold bifurcation occurs at E0.

Proof. When ε = d2

4 , d > 2 and a > d
d−2 , E0(x0, y0) arises, where x0 = 2

d , y0 = 2a(d−2)−2d
bd . The eigenvalues 

of J(E0) are λ1 = 1 and |λ2| �= 1 if a �= ± d
d−4 .

In order to analyze the fold bifurcation of the fixed point E0, we choose ε as the bifurcation parameter. 
Let u = x − x0, v = y − y0 and r = ε − d2

4 . We transform the fixed point (x0, y0) to the origin and expand 
the right-hand side of map (1.6) around the origin, where r is sufficient small. Then map (1.6) becomes

⎛
⎜⎝ u

v

r

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎝

a(d−4)
d u− b

dv + 4a(d−2)−4d
d4 r + 8(−a(d−2)+d)

d6 r2 + 2a(d−2)−2d
d3 ru

+ 2b
d3 rv + a(d−6)−d

4 u2 + O(|u, v|3)
v + 8a+4d−4ad

bd3 r + 8(a(d−2)−d)
bd5 r2 − 2

d2 rv + 4a+2d−2ad
bd2 ru

+d(−a(d−2)+d)
4b u2 + O(|u, v|3)

r

⎞
⎟⎟⎟⎟⎟⎠ , (3.20)

where r = ε − d2

4 is the new dependent variable.
Linearizing map (3.20) at (0, 0), we obtain the associated Jacobian matrix

J =

⎛
⎜⎝

a(d−4)
d − b

d
4a(d−2)−4d

d4

0 1 8a+4d−4ad
bd3

0 0 1

⎞
⎟⎠ .

Let
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T =

⎛
⎜⎝

1 b
ad−4a−d

bd
(ad−4a−d)2

0 1 −1
0 0 bd3

4(2a+d−ad)

⎞
⎟⎠

and use the transformation
⎛
⎜⎝ u

v

r

⎞
⎟⎠ = T

⎛
⎜⎝X

Y

μ

⎞
⎟⎠ ,

then we obtain from (3.20) that

⎛
⎜⎝X

Y

μ

⎞
⎟⎠ →

⎛
⎜⎝

a(d−4)
d 0 0
0 1 1
0 0 1

⎞
⎟⎠

⎛
⎜⎝X

Y

μ

⎞
⎟⎠ +

⎛
⎜⎝ f2(X,Y, μ)

g2(X,Y, μ)
0

⎞
⎟⎠ , (3.21)

where

f2(X,Y, μ) = ā00μ
2 + ā10Xμ + ā01Y μ + ā20X

2 + ā11XY + ā02Y
2 + O(|X,Y |3),

g2(X,Y, μ) = b̄00μ
2 + b̄10Xμ + b̄01Y μ + b̄20X

2 + b̄11XY + b̄02Y
2 + O(|X,Y |3),

and

ā00 = ab2d((16−3d)d2−2a2(d−4)3+ad(88−42d+5d2))
4(ad−4a−d)5 , ā10 = −ab(a2(d−4)3+2d2(d−6)+ad(−56+26d−3d2))

2(ad−4a−d)3 ,

ā01 = −ab2(2a3(d−4)3(d−3)+(16−3d)d3+2ad2(64−33d+4d2)+a2d(368−300d+80d2−7d3))
2(ad−2a−d)(4a−ad+d)4 ,

ā20 = a(a(24−10d+d2)−d(d−8))
4(ad−4a−d) , ā11 = ab(a(24−10d+d2)−d(d−8))

2(ad−4a−d)2 , ā02 = ab2(a(24−10d+d2)−d(d−8))
4(ad−4a−d)3 ,

b̄00 = bd2(2a2(d−4)2+ad(18−5d)+3d2)
4(ad−4a−d)4 , b̄10 = d(a2(d−4)2+ad(10−3d)+2d2)

2(ad−4a−d)2 ,

b̄01 = bd(2a3(d−4)2(d−3)−3d3+2ad2(−13+4d)+a2d(−84+48d−7d2))
2(ad−4a−d)3(ad−2a−d) , b̄20 = d(2a+d−ad)

4b ,

b̄11 = d(a2(d−4)2+ad(10−3d)+2d2)
2(4a+d−ad)2 , b̄02 = bd(2a+d−ad)

4(4a+d−ad)2 .

The stability of (X, Y ) = (0, 0) near μ = 0 is determined by a one-parameter family of equations on a 
center manifold represented by

W c(0) = {(X,Y, μ) ∈ R3|X = h(Y, μ), h(0, 0) = 0, Dh(0, 0) = 0}

for Y and μ sufficiently small. Assume that

h(Y, μ) = h1μ
2 + h2Y μ + h3Y

2 + O(|Y, μ|3). (3.22)

We have

N (h(Y, μ)) = h(Y + μ + g2(h(Y, μ), Y, μ), μ) − a(d− 4)
d

h(Y, μ) − f2(h(Y, μ), Y, μ) = 0. (3.23)

Substituting (3.22) into (3.23) and comparing coefficients of (3.23), we obtain
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h1 = ab2d2(d3(56−10d)+a3(d−4)2(52−32d+5d2)+ad2(384−204d+25d2)−4a2d(−232+198d−55d2+5d3)
4(ad−2a−d)(ad−4a−d)6 ,

h2 = ab2d(a3(d−4)3(d−3)−2d3(d−6)+a2d(84−43d+5d2)+2a2d(104−86d+23d2−2d3))
(ad−4a−d)5(ad−2a−d) ,

h3 = −ab2d(24a+8d−10ad−d2+ad2)
4(ad−4a−d)4 .

Thus the map restricted to the center manifold is given by

Y → f̃(Y, μ) = Y + μ + bd(2a+d−ad)
4(4a+d−ad)2Y

2 + bd2(2a2(d−4)2)+ad(18−5d)+3d2

4(4a+d−ad)4 μ2

+ bd(2a3(d−4)2(d−3)−3d3+2ad2(−13+4d)+a2d(−84+48d−7d2))
2(ad−4a−d)3(ad−2a−d) Y μ + O(|Y, μ|3).

(3.24)

We have f̃(0, 0) = 0, ∂f̃
∂Y (0, 0) = 1, ∂f̃

∂μ (0, 0) = 1, ∂2f̃
∂Y 2 (0, 0) = bd(2a+d−ad)

2(4a+d−ad)2 �= 0 because a > d
d−2 and 

a �= ± d
d−4 . By [25], if ε = d2

4 , a > d
d−2 , d > 2 and a �= ± d

d−4 , a fold bifurcation occurs at E0. �
Remark 3.7. By the results in Section 2.4 (also Theorem A.4), when ε = d2

4 , a > d
d−2 , 3 < d < 4 and 

a = d
4−d , the eigenvalues of J(E0) are 1 and −1. By computation we obtain a normal form of map (1.6)

at E0:

[
x1
x2

]
�−→

[
−x1 + g20x

2
1 + g11x1x2 + g02x

2
2 + g30x

3
1 + g21x

2
1x2 + g12x1x

2
2 + g03x

3
2

x2 + e20x
2
1 + e11x1x2 + e02x

2
2 + e30x

3
1 + e21x

2
1x2 + e12x1x

2
2 + e03x

3
2

]
+ O(|x|4), (3.25)

where

x = (x1, x2), g20 = −d(d−7)
4(d−4) , g11 = −d(d−7)

2(d−4) , g02 = −d(d−7)
4(d−4) , g30 = d2(d−3)

8(d−4) ,

g21 = d2(2d−5)
8(d−4) , g12 = −d2(d−1)

8(d−4) , g03 = d2

8(d−4) , e20 = −d(d−3)
4(d−4) , e11 = −d(d−3)

2(d−4) ,

e02 = −d(d−3)
4(d−4) , e30 = d2(d−3)

8(d−4) , e21 = d2(2d−5)
8(d−4) , e12 = d2(d−1)

8(d−4) , e03 = d2

8(d−4) .

Since all of the above coefficients are not zero for 3 < d < 4, a fold-flip bifurcation may occur at E0, which 
will be considered in the future.

4. Bogdanov–Takens bifurcation around the unique positive fixed point E0(2
d
, 2a(d−2)−2d

bd
)

By the results in Section 2.4 (also Theorem A.4), when ε = d2

4 , d > 2 and a > d
d−2 , the map (1.6) has a 

unique positive fixed point E0 and J(E0) has an eigenvalue 1 with multiplicity 2 if a = d
d−4 (d > 4). Thus 

Bogdanov–Takens bifurcation may occur at E0.
Before discussing the Bogdanov–Takens bifurcation around the unique positive fixed point E0 in map 

(1.6), we firstly state some known results about Bogdanov–Takens bifurcation for diffeomorphisms (see 
Broer et al. [4,5], Kuznetsov [13] and Yagasaki [27]).

Consider an analytic family of planar diffeomorphisms fλ : R2 −→ R
2, λ ∈ R

2. We assume that fλ has a 
fixed point x = 0 at λ = 0 such that the Jacobian matrix Dxf0(0) has a double unit eigenvalue but is not 
the identity (1:1 resonance); that is, Dxf0(0) has the nilpotent form

Dxf0(0) =
(

1 1
0 1

)
.

In appropriate coordinates fλ has the form
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fλ(x) =
(

1 1
0 1

)
x +

(
f1(x, λ)
f2(x, λ)

)
+ O((|x|)3), (4.1)

where x = (x1, x2)T , λ = (λ1, λ2),

f1(x, λ) = a00(λ) + a10(λ)x1 + a01(λ)x2 + 1
2a20(λ)x2

1 + a11(λ)x1x2 + 1
2a02(λ)x2

2,

f2(x, λ) = b00(λ) + b10(λ)x1 + b01(λ)x2 + 1
2b20(λ)x2

1 + b11(λ)x1x2 + 1
2b02(λ)x2

2
(4.2)

with a00(0) = a10(0) = a01(0) = b00(0) = b10(0) = b01(0) = 0.
Diffeomorphism (4.1) can be approximated by the time-one flow of a planar vector field, which has a 

singularity with nilpotent linear part, the following lemma is Lemma 3.1 in Yagasaki [27] (see also Lemma 9.6 
in Kuznetsov [13] or Theorem 1 in Broer et al. [4]).

Lemma 4.1. For | λ | sufficiently small diffeomorphism (4.1) can be represented as

x �→ ψ1
λ(x) + O((|x|)3), (4.3)

where ψ1
λ(x) is the time-one flow of the following planar vector field

ẋ =
(

0 1
0 0

)
x +

(
g1(x, λ)
g2(x, λ)

)
, (4.4)

where

g1(x, λ) = c00(λ) + c10(λ)x1 + c01(λ)x2 + 1
2c20(λ)x2

1 + c11(λ)x1x2 + 1
2c02(λ)x2

2,

g2(x, λ) = d00(λ) + d10(λ)x1 + d01(λ)x2 + 1
2d20(λ)x2

1 + d11(λ)x1x2 + 1
2d02(λ)x2

2,
(4.5)

in which the coefficients can be expressed by those in (4.2) as follows:

c00(λ) = a00(λ) − (1
2a10(λ) − 1

3b10(λ))a00(λ)

−(1
2 − 1

3a10(λ) + 1
2a01(λ) + 1

4b10(λ) − 1
3b01(λ))b00(λ),

c10(λ) = a10(λ) − 1
2b10(λ),

c01(λ) = a01(λ) − 1
2a10(λ) + 1

3b10(λ) − 1
2b01(λ),

c20(λ) = a20(λ) − 1
2b20(λ),

c11(λ) = a11(λ) − 1
2a20(λ) + 1

3b20(λ) − 1
2b11(λ),

c02(λ) = a02(λ) + 1
6a20(λ) − a11(λ) − 1

6b20(λ) + 2
3b11(λ) − 1

2b02(λ),

d00(λ) = b00(λ) − 1
2b10(λ)a00(λ) + (1

3b10(λ) − 1
2b01(λ))b00(λ),

d10(λ) = b10(λ),

d01(λ) = b01(λ) − 1
2b10(λ),

d20(λ) = b20(λ),



218 J. Huang et al. / J. Math. Anal. Appl. 464 (2018) 201–230
d11(λ) = b11(λ) − 1
2b20(λ),

d02(λ) = b02(λ) + 1
6b20(λ) − b11(λ).

In particular, c00(0) = c10(0) = c01(0) = d00(0) = d10(0) = d01(0) = 0.

Under some nondegeneracy and transversality conditions, system (4.4) can be transformed to the versal 
unfolding of a Bogdanov–Takens singularity of codimension 2 by a series of near-identity transformations. 
Consequently, the versal unfolding of a Bogdanov–Takens singularity of codimension 2 for diffeomorphism 
(4.1) can be obtained as follows (see Lemma 3.2 and Proposition 3.1 in Yagasaki [27]).

Lemma 4.2. Suppose that the following nondegeneracy conditions

d20(0) �= 0 (i.e., b20(0) �= 0), c20(0) + d11(0) �= 0 (i.e., a20(0) + b11(0) − b20(0) �= 0) (4.6)

are satisfied, then under analytic near-identity transformations of coordinates and scaling of time system 
(4.4) (and in turn system (4.1)) becomes (up to second order of coordinates)

ẏ1 = y2, ẏ2 = ν1(λ) + ν2(λ)y1 + y2
1 + sy1y2, (4.7)

where

s = sign[b20(0)(a20(0) + b11(0) − b20(0))] = ±1

and ν1(λ) and ν2(λ) can be expressed by the coefficients in (4.5) (and in turn by those in (4.2)) as follows:

ν1(λ) = 8β4
0

b320(0)β1(λ) − 8β3
0

b320(0)β2(λ)β3(λ) + 4β2
0

b220(0)β
2
2(λ),

ν2(λ) = 4β2
0

b220(0)β4(λ) − 4β0

b20(0)β2(λ)

in which

β0 = a20(0) + b11(0) − b20(0),

β1(λ) = b00(λ) + 1
2(1

6b20(0) − b11(0) + b02(0))a2
00(λ)

−(1
6a20(0) − a11(0) + a02(0) − 1

12b20(0) + 1
6b11(0))a00(λ)b00(λ)

+1
2(1

6a20(0) − a11(0) + a02(0) − 1
8b20(0) + 5

12b11(0) − 1
4b02(0))b200(λ)

−a00(λ)b01(λ) − 1
2a10(λ)b00(λ) + a01(λ)b00(λ) + 5

12b00(λ)b10(λ) − 1
2b00(λ)b01(λ),

β2(λ) = a10(λ) − b10(λ) + b01(λ) + (1
2a20(0) − a11(0) − 1

2b20(0) + 3
2b11(0) − b02(0))a00(λ)

−( 1
12a20(0) + 1

2a11(0) − a02(0) − 1
12b20(0) + 1

12b11(0))b00(λ),

β3(λ) = b10(λ) + (1
b20(0) − b11(0))a00(λ) − (1

a20(0) − a11(0) − 1
b20(0))b00(λ),
2 2 12
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β4(λ) = b10(λ) + (1
2b20(0) − b11(0))a00(λ)

+(1
2a20(0) − a11(0) − 3

4b20(0) + 2b11(0) − b02(0))b00(λ).

Furthermore, if the following transversality condition

detDλν(0) �= 0 (4.8)

is satisfied, then system (4.7) is the versal unfolding of the Bogdanov–Takens singularity of codimension 2.

Remark 4.3. The bifurcation sets of system (4.7) is now well known (i.e. Bogdanov–Takens bifurcation 

for vector fields, see Bogdanov [3] and Takens [23]): A saddle-node bifurcation occurs at ν1 = ν2
2
4 ; a Hopf 

bifurcation of codimension 1 occurs at ν1 = 0, ν2 < 0; and a homoclinic bifurcation of codimension 1 occurs 
near ν1 = −6ν2

2
25 , ν2 < 0.

Remark 4.4. The dynamical behaviors of the approximate map ψ1
λ in Lemma 4.1 are described by those 

of system (4.7), the bifurcation diagram of system (4.7) therefore describes the bifurcation sets of the 
approximate map ψ1

λ, where equilibria correspond to fixed points, a limit cycle corresponds to a normally 
hyperbolic invariant cycle, etc.

Remark 4.5. By Lemma 4.1, the generic diffeomorphism fλ(x) in (4.1) can be seen as the perturbation of 
the approximate map ψ1

λ, and some certain features of the bifurcation diagram for ψ1
λ do persist, such as the 

saddle-node and Hopf bifurcations, which correspond to the fold and Neimark–Sacker bifurcations for fλ(x), 
respectively. However, the orbit structure on the closed invariant cycle for fλ is generically different from that 
for ψ1

λ, phase-locking or quasi-periodic phenomena occur for fλ. Even less persistence is that the homoclinic 
bifurcation curve in ψ1

λ generically extends to an exponentially narrow horn, which is bounded by two 
smooth bifurcation curves, corresponding to homoclinic tangencies, and transversal homoclinic intersection 
(homoclinic tangle) occurs between these two curves (Broer et al. [5] and Kuznetsov [13]).

From the above known results, we can prove the existence of Bogdanov–Takens bifurcation and calculate
the bifurcation curves of diffeomorphism (1.6) as follows.

Theorem 4.6. Suppose that d > 4, diffeomorphism (1.6) undergoes Bogdanov–Takens bifurcation in a small 
neighborhood of the unique interior fixed point E0

(
2
d , 

4
b(d−4)

)
as (ε, a) varies near (d

2

4 , d
d−4 ). Furthermore, 

the bifurcation sets of diffeomorphism (1.6) are as follows for sufficiently small | λ |:

(i) A fold bifurcation occurs on the curve

f± : ν1(λ) = 1
4ν

2
2(λ) + O((|λ|)3);

(ii) A Neimark–Sacker bifurcation around one of the fixed points born at the fold bifurcation of (i) occurs 
on the curve

NS : ν1(λ) = O((|λ|)3), ν2(λ) + O((|λ|)2) < 0.

The invariant circle created at the Neimark–Sacker bifurcation is stable;
(iii) A homoclinic bifurcation at which the stable and unstable manifolds of the saddle point born at the fold 

bifurcation of (i) have homoclinic tangencies occurs on two curves (denoted by h1 and h2) with the 
asymptotic forms
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Fig. 4.1. Bogdanov–Takens bifurcation diagram and phase portraits of fλ(U) near (U, ν(λ)) = (0, 0).

ν1(λ) = − 6
25ν

2
2(λ) + O((|λ|)3), ν2(λ) + O((|λ|)2) < 0.

The distance between the two homoclinic tangencies bifurcation curves is exponentially small with 
respect to 

√
|λ| and the invariant manifolds intersect transversally (homoclinic tangle) inside the pa-

rameter region between the curves and do not intersect outside, where

ν1(λ1, λ2) = 1024
(d−4)2d2λ2 + 16(752−752d+284d2−48d3+3d4)

3(d−4)2d2 λ2
1 −

64(2600−2308d+704d2−84d3+3d4)
3(d−4)3d3 λ1λ2

+64(1340−1376d+496d2−72d3+3d4)
3(d−4)4d4 λ2

2 + O((|λ|)3),
ν2(λ1, λ2) = 8(d−4)

d λ1 − 16(124−36d+3d2)
3(d−4)4d2 λ2 − 112(d−2)

3d2 λ2
1 + 16(−24+88d−36d2+3d3)

3(d−4)2d3 λ1λ2

+32(−856+392d−60d2+3d3)
3(d−4)3d4 λ2

2 + O((|λ|)3).

The bifurcation diagram and phase portraits of fλ(U) near (U, ν(λ)) = (0, 0) are given in Fig. 4.1.

Proof. By the results in Section 2.4 (see also Theorem A.4), we know that the unique positive fixed point 
E0( 2

d , 
4

b(d−4) ) of map (1.6) is a nilpotent fixed point when (ε, a) = (d
2

4 , d
d−4 ), where d > 4.

In order to establish the existence of Bogdanov–Takens bifurcation and calculate the bifurcation curves of 
diffeomorphism (1.6), we choose the parameters a and ε as bifurcation parameters and consider the following 
unfolding map

fλ :
(
x

y

)
→

(
(a0 + λ1)x(1 − x) − bxy

1+(ε0+λ2)x2

dxy
1+(ε0+λ2)x2

)
, (4.9)

where λ1 and λ2 are parameters in a small neighborhood of (0, 0). We are interested only in the dynamics 
of map (4.9) when x and y are in a small neighborhood of the nilpotent fixed point when E0( 2

d , 
4

b(d−4) ).
We firstly expand map (4.9) into a power series around the fixed point E0( 2

d , 
4

b(d−4) ) and translate 

E0( 2
d , 

4
b(d−4) ) to the origin. Let

X = x− 2
d
, Y = y − 4

b(d− 4) ,

then we have
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(
X

Y

)
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X + 2(−2+d)λ1
d2 + 8λ2

(−4+d)d3 + c1(λ1, λ2) +
(

(d−4)λ1
d + 4λ2

(d−4)d2 + c2(λ1, λ2)
)
X

+
(
− b

d + 2bλ2
d3 + c3(λ1, λ2)

)
Y +

(
− λ1 + d

8−2d − 2λ2
(−4+d)d + c4(λ1, λ2)

)
X2

+
(

bλ2
d2 + c5(λ1, λ2)

)
XY + P3(X,Y, λ1, λ2)

Y − 8λ2
b(−4+d)d2 + d1(λ1, λ2) +

(
4λ2

4bd−bd2 + d2(λ1, λ2)
)
X +

(
− 2λ2

d2 + d3(λ1, λ2)
)
Y

+
(

d2

8b−2bd + 2λ2
b(−4+d) + d4(λ1, λ2)

)
X2 +

(
− λ2

d + d5(λ1, λ2)
)
XY

+Q3(X,Y, λ1, λ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

where ci(λ1, λ2), di(λ1, λ2)(i = 1, 2, 3, 4, 5) are functions of at least the second order in λ1, λ2. P3 and Q3
are functions of at least the third order with respect to (X, Y ).

Secondly, under the parameter-dependent affine translation

u = X, v =
( (d− 4)λ1

d
+ 4λ2

(d− 4)d2 + c2(λ1, λ2)
)
X +

(
− b

d
+ 2bλ2

d3 + c3(λ1, λ2)
)
Y,

map (4.10) becomes

(
u

v

)
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u + v + 2(−2+d)λ1
d2 + 8λ2

(−4+d)d3 + e1(λ1, λ2)
+
(

d
8−2d − λ1 − 2λ2

d(d−4) + e4(λ1, λ2)
)
u2 +

(
− λ2

d + e5(λ1, λ2)
)
uv

+P4(u, v, λ1, λ2)
v + 8λ2

(−4+d)d3 + f1(λ1, λ2) +
(

4λ2
(d−4)d2 + f2(λ1, λ2)

)
u +

(
(d−4)λ1

d − 2(d−6)λ2
d2(d−4)

+f3(λ1, λ2)
)
v +

(
d

2d−8 − λ1
2 + (10−3d)λ2

(−4+d)2d + f4(λ1, λ2)
)
u2

+
(
− λ2

d + f5(λ1, λ2)
)
uv + Q4(u, v, λ1, λ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)

where ei(λ1, λ2), fi(λ1, λ2)(i = 1, 2, 3, 4, 5) are functions of at least the second order with respect to (λ1, λ2), 
P4 and Q4 are functions of at least the third order with respect to (u, v).

We next rewrite the above map (4.11) in the following form

fλ(U) =
(

1 1
0 1

)
U +

(
a(U, λ)
b(U, λ)

)
+ O((|U |)3), (4.12)

where

U = (u, v)T , λ = (λ1, λ2),

a(U, λ) = a00(λ) + a10(λ)u + a01(λ)v + 1
2a20(λ)u2 + a11(λ)uv + 1

2a02(λ)v2,

b(U, λ) = b00(λ) + b10(λ)u + b01(λ)v + 1
2b20(λ)u2 + b11(λ)uv + 1

2b02(λ)v2,

a00(λ) = 2(−2+d)λ1
d2 + 8λ2

(−4+d)d3 + e1(λ), a10(λ) = 0, a01(λ) = 0,

a20(λ) = 2
(

d
8−2d − λ1 − 2λ2

d(d−4) + e4(λ)
)
, a11(λ) = −λ2

d + e5(λ),

b00(λ) = 8λ2
(−4+d)d3 + f1(λ), b10(λ) = 4λ2

(d−4)d2 + f2(λ), b11(λ) = −λ2
d + f5(λ),

b01(λ) = (d−4)λ1
d − 2(−6+d)λ2

d2(d−4) + f3(λ), b20(λ) = 2
(

d
2d−8 − λ1

2 − (10−3d)λ2
(−4+d)2d + f4(λ)

)
,

a02(λ) = 0, b02(λ) = 0, and a00(0) = a10(0) = a01(0) = b00(0) = b10(0) = b01(0) = 0.

By Lemma 4.2, after tedious calculations, we obtain the nondegeneracy conditions, if d > 4,

d20(0) = b20(0) = d
> 0,
d− 4
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Fig. 5.1. Neimark–Sacker bifurcation diagram in the (a, x)-plane when d = 3, b = 1, ε = 5
4 in diffeomorphism (1.6).

c20(0) + d11(0) = a20(0) + b11(0) − b20(0) = 2d
4 − d

< 0,

and the transversality condition

detDλν(0) = − 8192
(d− 4)d3 < 0,

where

ν1(λ1, λ2) = 1024
(d−4)2d2λ2 + 16(752−752d+284d2−48d3+3d4)

3(d−4)2d2 λ2
1 −

64(2600−2308d+704d2−84d3+3d4)
3(d−4)3d3 λ1λ2

+64(1340−1376d+496d2−72d3+3d4)
3(d−4)4d4 λ2

2 + O((|λ|)3),
ν2(λ1, λ2) = 8(d−4)

d λ1 − 16(124−36d+3d2)
3(d−4)4d2 λ2 − 112(d−2)

3d2 λ2
1 + 16(−24+88d−36d2+3d3)

3(d−4)2d3 λ1λ2

+32(−856+392d−60d2+3d3)
3(d−4)3d4 λ2

2 + O((|λ|)3).

By Proposition 3.1 in [27] and corresponding results in Broer et al. [4] and Kuznetsov [13], diffeomorphism 
(1.6) undergoes Bogdanov–Takens bifurcation in a small neighborhood of the unique interior fixed point 
E0

(
2
d , 

4
b(d−4)

)
as (ε, a) varies near (d

2

4 , d
d−4 ) if d > 4. We also can calculate the approximate expressions of 

fold and Neimark–Sacker bifurcation curves and the asymptotic forms of homoclinic tangency curves ac-
cording to Proposition 3.1 in Yagasaki [27]. Furthermore, the invariant circle created at the Neimark–Sacker 
bifurcation is stable because b20(0)(a20(0) + b11(0) − b20(0)) < 0. �
5. Numerical simulations

In order to use Theorem 3.4, we choose (d, x1) = (3, 25 ) ∈ Λ2 and let b = 1, then ε = dx1−1
x2
1

= 5
4 , a1 =

1
1−2x1

= 5, it is easy to see that x1 = 2
5 �= 2d−2

3d (= 4
9 ) and x1 = 2

5 �= x̄(= 13±
√

37
33 ). We can calculate 

â = −875
864 < 0. By Theorem 3.4, the fixed point E1 is stable when a < a1 = 5, E1 loses its stability 

and becomes unstable, and an attractive invariant cycle occurs near E1 when a > a1 = 5 slightly. The 
bifurcation diagram in the (a, x)-plane for the above parameters is given in Fig. 5.1, and the corresponding 
phase portraits are given in Fig. 5.2, which depict how a smooth invariant cycle bifurcates from the fixed 
point E1. Fig. 5.2(d) shows the existence of a period-5 orbit.
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Fig. 5.2. Phase portraits corresponding to Fig. 5.1, (a) a = 4.9; (b) a = 5; (c) a = 5.1; (d) a = 5.2.

6. Conclusions

The Bogdanov–Takens bifurcation theory for generic diffeomorphisms developed by Broer et al. [4,5]
and Kuznetsov [13] indicates that if the Jacobian matrix of a planar diffeomorphism at a fixed point has a 
double unit eigenvalue but is not the identity (1:1 resonance), then the diffeomorphism can be approximated 
by the time-one flow of a vector field which has a singularity with nilpotent linear part. Using this fact, 
Yagasaki [27] studied Bogdanov–Takens bifurcation for subharmonics in periodic perturbations of planar 
Hamiltonian systems and gave estimations of the bifurcation sets near the Bogdanov–Takens bifurcation 
points of diffeomorphisms.

In this paper we considered a discrete predator–prey model (1.6) with nonmonotone functional response. 
It was shown that the model exhibits various bifurcations of codimension 1, including fold bifurcation, 
transcritical bifurcation, flip bifurcations and Neimark–Sacker bifurcation, as the values of parameters vary. 
Moreover, we employed the results of Broer et al. [4,5] and Kuznetsov [13] and techniques of Yagasaki [27] to 
prove the existence of Bogdanov–Takens bifurcation and calculate the approximate expressions of bifurcation 
curves in system (1.6). To the best of our knowledge, this is the first study showing the existence of 
Bogdanov–Takens bifurcation in discrete-time predator–prey systems.
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We would like to mention that other researchers have studied the discrete version of the predator–prey 
model with nonmonotone functional response of Ruan and Xiao [21], for example, Hu et al. [9] and Wang 
and Li [24]. However, there are two key differences between these studies and ours. Firstly, we gave de-
tailed derivation of our model (1.6) which is different from theirs. Secondly, we proved that model (1.6)
exhibits bifurcations of codimension 1, including fold bifurcation, transcritical bifurcation, flip bifurcations 
Neimark–Sacker bifurcation, as well as Bogdanov–Takens bifurcation of codimension 2 whereas Hu et al. [9]
and Wang and Li [24] only considered bifurcations of codimension 1 of their models.

Notice that the original continuous-time predator–prey system (1.4) with nonmonotone functional re-
sponse undergoes Bogdanov–Takens bifurcation (Ruan and Xiao [21]). Moreover, the delayed version of 
this predator–prey model with nonmonotone functional response still exhibits Bogdanov–Takens bifurca-
tion (Xiao and Ruan [26]). Thus, it is interesting to see that Bogdanov–Takens bifurcation persists in the 
three versions of the predator–prey model with nonmonotone functional response: continuous-time, discrete 
time, and time-delayed. This indicates that the nonlinearity that induces the codimension 2 bifurcations 
near the singularity might be more dominated than the structure of the systems.

Theorems A.1, A.4 and 3.6 show that fold-flip bifurcation may occur at A and E0, and Theorem A.2 indi-
cates that 1:2 resonance bifurcation may occur at E1. It will be very interesting to study these bifurcations 
and we leave these cases for future consideration.

Appendix

In this Appendix, we provide details in deriving the existence and stability of fixed points of the discrete 
model (1.6) which were given in section 2.

The fixed points of map (1.6) satisfy the following equations

x = ax(1 − x) − bxy
1+εx2 ,

y = dxy
1+εx2 .

(A.1)

By simple calculations, we can see that the map (1.6) has at most four fixed points: O(0, 0), A(a−1
a , 0), two 

positive fixed points E1(x1, y1) and E2(x2, y2), and the two positive fixed points may coalesce into a unique 
positive fixed point E0(x0, y0), where

x1 = d−
√
d2−4ε
2ε , y1 = dx1

b

(
a(1 − x1) − 1

)
,

x2 = d+
√
d2−4ε
2ε , y2 = dx2

b

(
a(1 − x2) − 1

)
,

x0 = 2
d , y0 = 2a(d−2)−2d

bd .

(A.2)

Clearly, map (1.6) always has the fixed point O, and has the fixed point A if a > 1. We now discuss the 
existence of possible positive fixed points.

(I) When 0 < ε < d2

4 , we can see that xi(i = 1, 2) exists and 0 < 1
d < x1 < 2

d < x2 from the second 
equation of (A.1), and a(1 − x1) − 1 > a(1 − x2) − 1 from equations (A.2).
(i) If x1 ≥ 1, or x1 < 1 and y1 ≤ 0, we can deduce that y1 ≤ 0 and y2 ≤ 0, so both positive fixed 

points E1 and E2 do not exist. By simple calculations, we can see that x1 ≥ 1, or x1 < 1 and y1 ≤ 0
⇐⇒ 0 < d < 2, d − 1 ≤ ε < d2

4 or 1 < d ≤ 2, ε < d − 1, a ≤ 1
1−x1

or d > 2, ε < d2

4 , a ≤ 1
1−x1

.
(ii) If x1 < 1 ≤ x2 and y1 > 0, or x2 < 1, y1 > 0 and y2 ≤ 0, we can see that the positive fixed point E1

exists and the positive fixed point E2 does not exist. We can also get that x1 < 1 ≤ x2 and y1 > 0, 
or x2 < 1, y1 > 0 and y2 ≤ 0 ⇐⇒ 1 < d ≤ 2, ε < d − 1, a > 1

1−x1
or d > 2, ε ≤ d − 1, a > 1

1−x1

or d > 2, d − 1 < ε < d2
, 1 < a ≤ 1 .
4 1−x1 1−x2
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(iii) If x2 < 1 and y2 > 0, i.e., d > 2, d − 1 < ε < d2

4 , a > 1
1−x2

, both positive fixed points E1 and E2
exist.

(II) When ε = d2

4 , then x2 = x1 = 2
d > 0.

(i) If x0 < 1 and y0 > 0, i.e., d > 2, a > 2
d−2 , then the positive fixed point E1 coincides with E2 and 

a unique positive fixed point E0(x0, y0) arises.
(ii) If x0 ≥ 1 or y0 < 0, i.e., 0 < d ≤ 2, or d > 2 and a ≤ d

d−2 , then the unique positive fixed point 
E0(x0, y0) does not exist.

(III) When ε > d2

4 , then x1 and x2 do not exist, so the map (1.6) only has boundary fixed points.

The existence conditions of these fixed points were given in Table 1.
We next consider the linear stability of the fixed points of map (1.6), the Jacobian matrix of map (1.6)

at any fixed point (x, y) is given by

J(x, y) =
(
a(1 − 2x) − by(1−εx2)

(1+εx2)2 − bx
1+εx2

dy(1−εx2)
(1+εx2)2

dx
1+εx2

)
. (A.3)

Theorem A.1. The fixed point O is a stable node if 0 < a < 1, or a saddle if a > 1, or non-hyperbolic if 
a = 1. The fixed point A arises when a > 1. The properties of A are given in Table 2.

Proof. The eigenvalues of J(O(0, 0)) are λ1 = a, λ2 = 0, so the type of O(0, 0) is simple.
If a > 1, the fixed point A(a−1

a , 0) arises. The eigenvalues of the Jacobian matrix of map (1.6) at the 
fixed point A are

λ1 = 2 − a, λ2 = ad(a− 1)
a2 + ε(a− 1)2 .

When a > 1, then λ2 > 0. Hence, λ2 > 1 if 0 < ε < a(ad−d−a)
(a−1)2 and d > a

a−1 ; λ2 = 1 if ε = a(ad−d−a)
(a−1)2 and 

d > a
a−1 ; 0 < λ2 < 1 if ε > a(ad−d−a)

(a−1)2 .
On the other hand, we can see that 0 ≤ λ1 < 1 if 1 < a ≤ 2, −1 < λ1 < 0 if 2 < a < 3, λ1 = −1 if a = 3, 

and λ1 < −1 if a > 3.
By the above analysis, we can easily verify all cases in Table 2. �
The characteristic equation of the Jacobian matrix J around any positive fixed point (x, y) can be written 

as

λ2 − p(x) λ + q(x) = 0, (A.4)

where

p(x) = a(2 − 3x) − 2
dx

(
a(1 − x) − 1

)
, q(x) = a(1 − 2x), (A.5)

and the eigenvalues of the Jacobian matrix J around any positive fixed point (x, y) are

λ1,2 =
p(x) ±

√
p2(x) − 4q(x)
2 . (A.6)

Combining with the existence conditions of the positive fixed point E1, i.e., ε < d2

4 , x1 < 1 and y1 > 0, 
we have the stability of E1 as follows.
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Theorem A.2. When ε < d2

4 , x1 < 1 and y1 > 0, the positive fixed point E1(x1, y1) exists. The properties of E1

are given in Table 3, where f(x) = 5dx2−(3d +2)x +2, x11 = 3d+2−
√

Δ
10d , x12 = 3d+2+

√
Δ

10d , Δ = (3d +2)2−40d.

Proof. We choose x1 as a parameter to analyze the stability of E1(x1, y1) and denote f(x) = 5dx2 − (3d +
2)x + 2, x11 = 3d+2−

√
Δ

10d , x12 = 3d+2+
√

Δ
10d , Δ = (3d + 2)2 − 40d, which will be used in the following proof.

From the second equation of (A.1) and ε > 0, we have 1
d < x1 < 2

d . Combining with x1 < 1, we get

1
d
< x1 < min

{
1, 2

d

}
, d > 1, (A.7)

and we can deduce that ε < d2

4 provided that x1 satisfies the second equation of (A.1). When x1 < 1 and 
y1 > 0, we can also get that

a >
1

1 − x1
. (A.8)

Firstly, we analyze the stability of the positive fixed point E1. E1 is stable if and only if
⎧⎪⎨
⎪⎩

tr(J(E1)) − det(J(E1)) < 1,
tr(J(E1)) + det(J(E1)) > −1,
det(J(E1)) < 1.

⇐⇒

⎧⎪⎨
⎪⎩

a(1 − x1)(1 − 2
dx1

) < 1 − 2
dx1

,

af(x1) < dx1 + 2,
a(1 − 2x1) < 1.

(A.9)

By (A.7), we have

a(1 − x1)(1 − 2
dx1

) + 2
dx1

< 1 ⇐⇒ a >
1

1 − x1
,

which is the same as (A.8), and

a(1 − 2x1) < 1 ⇐⇒ a <
1

1 − 2x1
if 0 < x1 <

1
2 , or a > 0 if 1

2 ≤ x1 < 1.

In order to investigate the second inequality of (A.9), we firstly discuss the sign of f(x1). Obviously, 
when 1 < d < 14+4

√
10

9 , then Δ < 0 and f(x1) > 0 for any x1; when d ≥ 14+4
√

10
9 , then Δ ≥ 0, moreover, 

f(x1) ≤ 0 if x11 ≤ x1 ≤ x12, and f(x1) > 0 if 0 < x1 < x11 or x1 > x12.
(i) When 1 < d ≤ 3

2 , then 0 < 4d−2
7d < 1

2 < 2
3 ≤ 1

d < 1 < 2
d . Moreover, 1

1−x1
≥ 2+dx1

f(x1) if 2
3 ≤ x1 < 1. 

Then, it is easy to see that the solution set of inequality system (A.9) is empty by (A.7), so E1 is unstable 
or non-hyperbolic if 1 < d < 3

2 .
(ii) When 3

2 < d ≤ 2, then 0 < 4d−2
7d < 1

2 ≤ 1
d < 2

3 < 1 ≤ 2
d . Then, the solution set of inequality system 

(A.9) is {(x1, a) : 1
d < x1 < 2

3 ,
1

1−x1
< a < 2+dx1

f(x1) }. When 2 < d < 9
4 , then 0 < 4d−2

7d < 1
d < 1

2 < 2
3 < 2

d < 1, 
moreover, 1

1−2x1
≥ 2+dx1

f(x1) if 4d−2
7d ≤ x1 < 1

2 , similarly, the solution set of inequality system (A.9) is also 

{(x1, a) : 1
d < x1 < 2

3 ,
1

1−x1
< a < 2+dx1

f(x1) }. Hence, when 3
2 < d < 9

4 , E1 is stable if 1
d < x1 < 2

3 and 
1

1−x1
< a < 2+dx1

f(x1) .
(iii) When 9

4 ≤ d < 14+4
√

10
9 , then 1

d < 4d−2
7d < 1

2 < 2
3 < 2

d < 1. If 1
d < x1 ≤ 4d−2

7d , then 1
1−x1

< 1
1−2x1

≤
2+dx1
f(x1) , and the solution set of inequality system (A.9) is {(x1, a) : 1

d < x1 ≤ 4d−2
7d , 1

1−x1
< a < 1

1−2x1
}; If 

4d−2
7d < x1 < 2

3 , then 1
1−x1

< 2+dx1
f(x1) < 1

1−2x1
, and the solution set of inequality system (A.9) is {(x1, a) :

4d−2
7d < x1 < 2

3 ,
1

1−x1
< a < 2+dx1

f(x1) }; If 
2
3 < x1 < 2

d , then the solution set of inequality system (A.9) is 
empty. So, when 9

4 ≤ d < 14+4
√

10
9 , E1 is stable if 1

d < x1 ≤ 4d−2
7d and 1

1−x1
< a < 1

1−2x1
, or 4d−2

7d < x1 < 2
3

and 1 < a < 2+dx1 .
1−x1 f(x1)
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When 14+4
√

10
9 ≤ d ≤ 3, then 1

d < x11 ≤ x12 < 4d−2
7d < 1

2 < 2
3 ≤ 2

d < 1, we have 1
1−x1

< 1
1−2x1

≤ 2+dx1
f(x1)

if 1
d < x1 ≤ 4d−2

7d , and 1
1−x1

< 2+dx1
f(x1) < 1

1−2x1
if 4d−2

7d < x1 < 2
3 . Similarly, when 14+4

√
10

9 ≤ d ≤ 3, E1 is 
stable if 1

d < x1 ≤ 4d−2
7d , 1

1−x1
< a < 1

1−2x1
, or 4d−2

7d < x1 < 2
3 ,

1
1−x1

< a < dx1+2
f(x1) .

In conclusion, when 9
4 ≤ d ≤ 3, E1 is stable if 1

d < x1 ≤ 4d−2
7d and 1

1−x1
< a < 1

1−2x1
, or 4d−2

7d < x1 < 2
3

and 1
1−x1

< a < 2+dx1
f(x1) .

(iv) When 3 < d < 4, then x11 < 1
d < x12 < 4d−2

7d < 1
2 < 2

d < 2
3 , we have 1

1−x1
< 1

1−2x1
≤ 2+dx1

f(x1) if 
1
d < x1 ≤ 4d−2

7d , and 1
1−x1

< 2+dx1
f(x1) < 1

1−2x1
if 4d−2

7d < x1 < 2
d . Similarly, when 3 < d < 4, E1 is stable if 

1
d < x1 ≤ 4d−2

7d and 1
1−x1

< a < 1
1−2x1

, or 4d−2
7d < x1 < 2

d and 1
1−x1

< a < dx1+2
f(x1) .

(v) When d ≥ 4, then x11 < 1
d < 2

d ≤ 1
2 < 4d−2

7d < x12 < 2
3 , we have 1

1−x1
< 1

1−2x1
< 2+dx1

f(x1) if 1d < x1 < 2
d . 

Similarly, when d ≥ 4, E1 is stable if 1
d < x1 < 2

d and 1
1−x1

< a < 1
1−2x1

.
Secondly, we discuss the non-hyperbolicity of E1.
(vi) One eigenvalue of the Jacobian matrix at E1 is λ = 1 if and only if tr(J(E1)) − det(J(E1)) = 1. 

But tr(J(E1)) − det(J(E1)) = 1 ⇔ a = 1
1−x1

, which conflicts with the condition (A.7). So λ = 1 is not an 
eigenvalue of E1. Moreover, the Jacobian matrix of map (1.6) at E1 does not have a unit eigenvalue 1 with 
multiplicity 2.

(vii) One of eigenvalues of J(E1) is λ = −1 if and only if

tr(J(E1)) + det(J(E1)) = −1 ⇐⇒ a = dx1 + 2
f(x1)

(f(x1) > 0). (A.10)

By (A.7) and (A.8), and 2+dx1
f(x1) > 1

1−x1
if x1 < 2

3 , we have 1
d < x1 < min

{ 2
d ,

2
3
}

(d > 3
2 ). By the above 

analysis about the stability of E1, we have 1
d < 2

3 < 2
d if 3

2 < d < 14+4
√

10
9 , and 1

d < x11 ≤ x12 < 2
3 ≤ 2

d

if 14+4
√

10
9 ≤ d ≤ 3, and x11 < 1

d < x12 < 2
d < 2

3 if 3 < d < 4, and x11 < 1
d < 2

d < x12 < 2
3 if d ≥ 4. So, 

combining with f(x1) > 0, one of eigenvalues of J(E1) is λ = −1 if 3
2 < d < 14+4

√
10

9 , 1
d < x1 < 2

3 and 

a = 2+dx1
f(x1) , or 14+4

√
10

9 ≤ d ≤ 3, 1
d < x1 < x11 and a = 2+dx1

f(x1) , or 14+4
√

10
9 ≤ d ≤ 3, x12 < x1 < 2

3 and 

a = 2+dx1
f(x1) , or 3 < d < 4, x12 < x1 < 2

d and a = 2+dx1
f(x1) .

(viii) J(E1) has an eigenvalue λ = −1 with multiplicity 2 if and only if

{
tr(J(E1)) = −2,
det(J(E1)) = 1.

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 2dx1+2
3dx2

1−(2d+2)x1+2 if d ≥ 2 +
√

3 and 0 < x1 < x13,

or d ≥ 2 +
√

3 and x1 > x14,

or 2 −
√

3 < d < 2 +
√

3,
a = 1

1−2x1
if 0 < x1 < 1

2 ,

(A.11)

where x13 = 2d+2−
√

Δ1
6d , x14 = 2d+2+

√
Δ1

6d , Δ1 = 4d2 − 16d + 4.
When 2dx1+2

3dx2
1−(2d+2)x1+2 = 1

1−2x1
, then x1 = 4d−2

7d . Noted that 1
d < x1 = 4d−2

7d < 2
d , i.e., 9

4 < d < 4. 
Moreover, we have 1

d < x13 < x14 < 4d−2
7d < 1

2 < 2
d if 94 < d < 4. It is easy to see that x1 = 4d−2

7d (9
4 < d < 4)

satisfies (A.11). Hence, J(E1) has an eigenvalue −1 with multiplicity 2 if 9
4 < d < 4, x1 = 4d−2

7d and 

a = 1
1−2x1

. From x1 = d−
√
d2−4ε
2ε = 4d−2

7d , we can get that ε = 7(4d3−9d2)
4(2d−1)2 and a = 1

1−2x1
= 7d

4−d . Hence, we 

can obtain that J(E1) has eigenvalues −1 with multiplicity 2 if 9
4 < d < 4, ε = 7(4d3−9d2)

4(2d−1)2 and a = 7d
4−d .

(ix) J(E1) has conjugate complex eigenvalues with module 1 if and only if

{
detJ(E1) = 1,
−2 < trJ(E1) < 2.

⇔

⎧⎪⎨
⎪⎩

a = 1
1−2x1

, if 0 < x1 < 1
2 ,

2 − 2dx1 < a(3dx2
1 − (2d + 2)x1 + 2),

a(3dx2
1 − (2d + 2)x1 + 2) < 2 + 2dx1.

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 1
1−2x1

,

0 < x1 < 1
2 ,

1
d < x1 < 2

d ,

x < 4d−2 .

(A.12)
1 7d
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Obviously, when 4d−2
7d > 1

d , i.e., d > 9
4 , the solution set of (A.12) may be non-empty. We easily obtain that 

1
d < 4d−2

7d < 1
2 < 2

d if 9
4 < d < 4, and 1

d < 2
d ≤ 1

2 ≤ 4d−2
7d if d ≥ 4. Hence, J(E1) has conjugate complex 

eigenvalues with module 1 if 9
4 < d < 4, 1d < x1 < 4d−2

7d and a = 1
1−2x1

, or d ≥ 4, 1d < x1 < 2
d and a = 1

1−2x1
.

(x) Obviously, E1 is unstable for other cases. �
Theorem A.3. When d > 2, d − 1 < ε < d2

4 and a > 1
1−x2

, the positive fixed point E2(x2, y2) exists and the 

types of E2 are given in Table 4, where f(x) = 5dx2 − (3d + 2)x + 2, x12 = 3d+2+
√

Δ
10d , Δ = (3d + 2)2 − 40d, 

q(x2) = a(1 − 2x2).

Proof. If d > 2, d − 1 < ε < d2

4 , a > 1
1−x2

, E2 exists by Table 1 and 2
d < x2 < 1.

(i) Firstly, we analyze stability of the positive fixed point E2. E2 is stable if and only if

⎧⎪⎨
⎪⎩

tr(J(E2)) − det(J(E2)) < 1,
tr(J(E2)) + det(J(E2)) > −1,
det(J(E2)) < 1.

⇐⇒

⎧⎪⎨
⎪⎩

a(1 − x2)(1 − 2
dx2

) < 1 − 2
dx2

,

af(x2) < dx2 + 2,
a(1 − 2x2) < 1.

(A.13)

Since x2 > 2
d , then a(1 − x2)(1 − 2

dx2
) + 2

dx2
< 1 ⇔ a < 1

1−x2
, which contradicts the existence condition 

a > 1
1−x2

, so the positive fixed point E2 is always unstable.
(ii) Secondly, we analyze the non-hyperbolicity of E2.
• One of the eigenvalues of J(E2) is λ = 1 if and only if tr(J(E2)) − det(J(E2)) = 1, but tr(J(E2)) −

det(J(E2)) = 1 ⇔ a = 1
1−x2

, which conflicts with the existence condition a > 1
1−x2

. Hence λ = 1 is not an 
eigenvalue of J(E2), and J(E2) does not have an eigenvalue 1 with multiplicity 2.

• One of the eigenvalues of J(E2) is λ = −1 if and only if

tr(J(E2)) + det(J(E2)) = −1 ⇐⇒ a = dx2 + 2
f(x2)

(f(x2) > 0). (A.14)

Because 2
d < x2 < 1 and a > 1

1−x2
, we have 2+dx2

f(x1) > 1
1−x2

if 2
d < x2 < 2

3 (d > 3). Similarly, we have 

x11 < x12 < 2
d < 2

3 < 1 if 3 < d < 4, and x11 < 2
d < x12 < 2

3 < 1 if d ≥ 4. Hence, when 3 < d < 4, 2d < x2 < 2
3

and a = 2+dx2
f(x2) , or when d ≥ 4, x12 < x2 < 2

3 and a = 2+dx2
f(x2) , one of the eigenvalues of J(E2) is λ = −1.

• J(E2) has an eigenvalue λ = −1 with multiplicity 2 if and only if

{
trJ(E2) = −2,
det J(E2) = 1.

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 2dx2+2
3dx2

2−(2d+2)x2+2 if d ≥ 2 +
√

3 and 0 < x2 < x13,

or d ≥ 2 +
√

3 and x2 > x14,

or 2 −
√

3 < d < 2 +
√

3,
a = 1

1−2x2
if 0 < x2 < 1

2 ,

(A.15)

where x13 = 2d+2−
√

Δ1
6d , x14 = 2d+2+

√
Δ1

6d , Δ1 = 4d2 − 16d + 4.
When 2dx2+2

3dx2
2−(2d+2)x2+2 = 1

1−2x2
, then x2 = 4d−2

7d . Noted that x2 = 4d−2
7d > 2

d , i.e., d > 4. However, we 

have 2
d < 1

2 < 4d−2
7d if d > 4, that is x2 = 4d−2

7d /∈ ( 2
d , 

1
2 ), which shows that the solution set of system (A.15)

is empty. Hence, J(E2) does not have an eigenvalue −1 with multiplicity 2.
• J(E2) has conjugate complex eigenvalues with module 1 if and only if

{
det(J(E2)) = 1,
−2 < trJ(E2) < 2.

⇔

⎧⎪⎨
⎪⎩

a = 1
1−2x2

, if 0 < x2 < 1
2 ,

2 − 2dx2 < a(3dx2
2 − (2d + 2)x2 + 2),

a(3dx2
2 − (2d + 2)x2 + 2) < 2 + 2dx2.

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 < x2 < 1
2 ,

a = 1
1−2x2

,

x2 < 2
d ,

x < 4d−2 .

(A.16)
2 7d
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Noted that x2 > 2
d , which conflicts with (A.16), so the solution set of system (A.16) is empty, hence J(E2)

does not have conjugate complex eigenvalues with module 1.
(iii) Obviously, E2 is unstable for other cases. �
For the unique positive fixed point E0, we have the following results.

Theorem A.4. When ε = d2

4 , d > 2 and a > d
d−2 , the map (1.6) has a unique positive fixed point E0, and 

the types of E0 are given in Table 5.

Proof. When ε = d2

4 , d > 2 and a > d
d−2 , a unique positive fixed point E0(x0, y0) arises by Table 1, where 

x0 = 2
d , y0 = 2a(d−2)−2d

bd . The eigenvalues of the Jacobian matrix J around the fixed point E0 of map (1.6)
are

λ1 = 1, λ2 = a(d− 4)
d

. (A.17)

Then E0 is always non-hyperbolic. Concretely,

(i) When a �= ± d
d−4 and d > 2, then |λ2| �= 1. Hence, a fold bifurcation may occur at E0.

(ii) When a = d
4−d and 3 < d < 4, then λ2 = a(d−4)

d = −1, x0 = 2
d , y0 = 4(d−3)

b(4−d) > 0, the degenerate fixed 
point E0 has eigenvalues 1 and −1 and therefore a fold-flip bifurcation may occur at E0.

(iii) When a = d
d−4 and d > 4, then λ2 = a(d−4)

d = 1, the degenerate fixed point E0

(
2
d , 

4
b(d−4)

)
has 

an eigenvalue 1 with multiplicity 2, and a Bogdanov–Takens bifurcation of codimension 2 may occur 
around E0. �
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