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Abstract

We consider a predator–prey system of Leslie type with generalized Holling type III functional response 
p(x) = mx2

ax2+bx+1
. By allowing b to be negative (b > −2

√
a ), p(x) is monotonic for b > 0 and nonmono-

tonic for b < 0 when x ≥ 0. The model has two non-hyperbolic positive equilibria (one is a multiple focus 
of multiplicity one and the other is a cusp of codimension 2) for some values of parameters and a degenerate 
Bogdanov–Takens singularity (focus or center case) of codimension 3 for other values of parameters. When 
there exist a multiple focus of multiplicity one and a cusp of codimension 2, we show that the model ex-
hibits subcritical Hopf bifurcation and Bogdanov–Takens bifurcation simultaneously in the corresponding 
small neighborhoods of the two degenerate equilibria, respectively. Different phase portraits of the model 
are obtained by computer numerical simulations which demonstrate that the model can have: (i) a stable 
limit cycle enclosing two non-hyperbolic positive equilibria; (ii) a stable limit cycle enclosing an unstable 
homoclinic loop; (iii) two limit cycles enclosing a hyperbolic positive equilibrium; (iv) one stable limit 
cycle enclosing three hyperbolic positive equilibria; or (v) the coexistence of three stable states (two stable 
equilibria and a stable limit cycle). When the model has a Bogdanov–Takens singularity of codimension 3, 
we prove that the model exhibits degenerate focus type Bogdanov–Takens bifurcation of codimension 3. 
These results not only demonstrate that the dynamics of this model when b > −2

√
a are much more com-

plex and far richer than the case when b > 0 but also provide new bifurcation phenomena for predator–prey 
systems.
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1. Introduction

Let x(t) and y(t) denote densities of the prey and predators at time t , respectively. The clas-
sical Gause type predator–prey system takes the following form (Freedman [14]):

ẋ = xg(x,K) − yp(x),

ẏ = y
(−d + cq(x)

)
, (1.1)

where g(x, K) is a continuous and differentiable function describing the specific growth rate of 
the prey in the absence of predators and satisfying g(0, K) = r > 0, g(K, K) = 0, gx(K, K) < 0, 
gx(x, K) ≤ 0, and gK(x, K) > 0 for any x > 0. The logistic growth g(x, K) = r(1 − x/K) is 
considered as a prototype and satisfies all assumptions.

The functional response p(x) of predators to the prey describes the change in the density 
of the prey attacked per unit time per predator as the prey density changes. It is continuous 
and differentiable and satisfies p(0) = 0. In general the functional response depends on many 
factors, for example, the various prey densities, the efficiency with which predators can search 
out and kill the prey, the handling time, etc. The following functional response functions have 
been extensively used in modeling population dynamics.

(i) Lotka–Volterra type:

p(x) = mx,

where m > 0 is a constant, which is an unbounded function.
(ii) Holling type II:

p(x) = mx

a + x
,

where m > 0 and a > 0 are constants and a is called the half-saturation constant, which is 
bounded, p′(x) > 0 for x ≥ 0, and limx→∞ p(x) = m.

(iii) Generalized Holling type III or sigmoidal:

p(x) = mx2

ax2 + bx + 1
,

where m and a are positive constants and b is a constant. When b = 0, it is called the 
Holling type III response function. When b > −2

√
a (so that ax2 +bx +1 > 0 for all x ≥ 0

and hence p(x) > 0 for all x > 0), it is called the generalized Holling type III or sigmoidal 
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Fig. 1.1. Generalized Holling type-III functional response. (a) b ≥ 0; (b) b < 0.

functional response (Bazykin [2]). The difference between b ≥ 0 and b < 0 can be seen from 
Fig. 1.1, when the prey density is below a certain level of threshold density, both figures 
indicate that the predators show some form of learning behavior and will not utilize the prey 
for food at any great intensity (Hsu and Huang [18]). However, above that density level, 
the predators increase their feeding rates until some saturation level is reached when b ≥ 0
(Hsu and Huang [18]), while when b < 0, the predation increases to a maximum and then 
decreases, approaching m

a
as x approaches infinity, thus p(x) describes the situation where 

the prey can better defend or disguise themselves when their population density becomes 
large enough (see the next case (iv)).

(iv) Generalized Holling type IV or Monod–Haldane:

p(x) = mx

ax2 + bx + 1
,

where m and a are positive constants and b is a constant. This function is called the Monod–
Haldane (Andrews [1], Ruan and Xiao [32]) or the generalized Holling type IV (Taylor [37], 
Collings [10]) functional response and can be used to describe the phenomenon of “inhi-
bition” in microbial dynamics and “group defence” in population dynamics. In microbial 
dynamics, there are experiments indicating that when the nutrient concentration reaches a 
high level an inhibitory effect on the specific growth rate may occur. In population dynam-
ics, field observations demonstrate that predation is decreased, or even prevented altogether, 
due to the increased ability of the prey to better defend or disguise themselves when their 
numbers are large enough. When b = 0, the function is called the Holling type IV functional 
response in the literature (Ruan and Xiao [32], Li and Xiao [27]).

The generalized Holling type III functional response with b < 0 and the generalized Holling 
type IV functional response are nonmonotone functions (see Fig. 1.1 (b), Fig. 1.1 in Ruan and 
Xiao [32], and Fig. 1.1 in Zhu, Campbell and Wolkowicz [45]). Predator–prey systems with 
nonmonotone functional response have been extensively studied by many authors (see Wolkow-
icz [38], Ruan and Xiao [32], Zhu, Campbell and Wolkowicz [45], Xiao and Zhu [43], Broer, 
Naudot and Roussarie [6], Lamontagne, Coutu and Rousseau [23], Etoua and Rousseau [13], 
and references cited therein). In these systems, predator functional responses have played an im-
portant role in inducing more complex bifurcation phenomena and dynamical behaviors, such as 
homoclinic bifurcation and Hopf bifurcation of codimension 1 in Wolkowicz [38], Bogdanov–
Takens bifurcation of codimension 2 in Ruan and Xiao [32], Bogdanov–Takens bifurcation of 
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codimension 3 (cusp) in Zhu, Campbell and Wolkowicz [45], Broer, Naudot and Roussarie [6]
and Lamontagne, Coutu and Rousseau [23], Hopf bifurcation of codimension 2 in Lamontagne, 
Coutu and Rousseau [23], existence of two limit cycles in Xiao and Zhu [43], and canard phe-
nomenon in Li and Zhu [26].

The function q(x) in system (1.1) describes how predators convert the consumed prey into the 
growth of predators and the parameter c indicates the efficiency of predators in converting con-
sumed prey into their growth, while d is the predator mortality rate. In most classical predator–
prey models, q(x) = p(x). The dynamics of the predator–prey model (1.1) when q(x) = p(x)

taking one of the above four types have been studied extensively, see for example, Seo and 
DeAngelis [34] for Holling type I, Bazykin [2], Freedman [14], Kuang and Freedman [22], and 
May [30] for Holling type II, Lamontagne, Coutu and Rousseau [23] for generalized Holling 
type III, and Huang and Xiao [21] for Holling type IV.

An interesting case is when the predator growth function is different from the predator pre-
dation function. Moreover, the predator growth term is described by a function of not the prey 
density only, instead it is assumed to be dependent on the ratio of predators and their prey, y/x, 
see for example, Leslie [24], Leslie and Gower [25]. The new predator–prey system takes the 
following form (Freedman and Mathsen [15], Hsu and Huang [18]):

ẋ = xg(x,K) − yp(x),

ẏ = yq

(
y

x

)
, (1.2)

where q(z) is continuous and differentiable and satisfies q(0) > 0 and q ′(0) < 0. System (1.2)
includes some very interesting special cases.

(a) When g(x, K) = r(1 −x/K), p(x) = mx, and q(
y
x
) = s(1 − y

hx
), where s and h are positive 

constants, it becomes the so-called Leslie–Gower model (Leslie and Gower [25]):

ẋ = rx

(
1 − x

K

)
− mxy,

ẏ = sy

(
1 − y

hx

)
, (1.3)

which has been studied extensively, for example, Hsu and Huang [18] showed that the unique 
positive equilibrium of system (1.3) is globally asymptotically stable under all biologically 
admissible parameters.

(b) When g(x, K) = r(1 − x/K), p(x) = mx
a+x

, and q(
y
x
) = s(1 − y

hx
), it becomes the so-called 

Holling–Tanner model (Leslie [24], Holling [17], Tanner [36]):

ẋ = rx

(
1 − x

K

)
− mxy

a + x
,

ẏ = sy

(
1 − y

hx

)
. (1.4)

Model (1.4) was first proposed in May [30]. Caughley [8] used this system to model the 
biological control of the prickly-pear cactus by the moth Cactoblastis cactorum. Wollkind, 
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Collings and Logan [39] employed this model to study the temperature-mediated stabil-
ity of the predator–prey mite interaction between Metaseiulus occidentalis and the phy-
tophagous spider mite Tetranychus mcdanieli on apple trees. The nonlinear dynamics of 
system (1.4) have been investigated by many researchers (see, for example, Hsu and 
Huang [18–20], Collings [10], Gasull, Kooij and Torregrosa [16], Braza [5], Sáez and 
González-Olivares [33]) and many interesting results on the existence and uniqueness of 
limit cycles have been obtained.

(c) Collings [10] further suggested that the Holling type II functional response in system (1.4)
can be replaced by the Holling types III and IV function responses. The predator–prey model 
of Leslie type with Holling type IV function response was considered by Li and Xiao [27]. 
For other related cases and their analysis, we refer to Lindström [28], Freedman and Math-
sen [15], Li and Xiao [27] and so on.

In this paper, we consider system (1.2) with the following functions, g(x, K) = r(1 − x/K), 
p(x) = mx2

ax2+bx+1
, and q(

y
x
) = s(1 − y

hx
); namely, we study the following predator–prey system 

of Leslie type with generalized Holling type III or sigmoidal functional response

ẋ = rx

(
1 − x

K

)
− mx2y

ax2 + bx + 1
,

ẏ = sy

(
1 − y

hx

)
, (1.5)

where the parameters r , K , m, a, s and h are all positive constants, and b is an arbitrary constant. 
When b > 0, Hsu and Huang [18] studied the global stability of system (1.5) and showed that the 
unique positive equilibrium of system (1.5) is globally asymptotically stable for some parameter 
values if it is local asymptotically stable. However, the nonlinear dynamics of system (1.5) are 
not well-understood.

Before going into details, we make the following scaling:

t̄ = rt, x̄ = x

K
, ȳ = mKy

r
, ā = aK2,

b̄ = bK, δ = s

r
, β = s

hmK2
.

Dropping the bars, model (1.5) becomes

ẋ = x(1 − x) − x2y

ax2 + bx + 1
,

ẏ = y

(
δ − βy

x

)
, (1.6)

where b > −2
√

a (so that ax2 + bx + 1 > 0 for all x ≥ 0). From the point of view of biology, we 
only restrict our attention to system (1.6) in the closed first quadrant in the (x, y) plane. Since 
system (1.6) is not well-defined at x = 0, we consider (1.6) in R+

2 = {(x, y) : x > 0, y ≥ 0}. 
It is standard to show that solutions of (1.6) are positive and bounded and for each solution 
(x(t), y(t)) of (1.6) there exists a T ≥ 0 such that 0 < x(t) < 1 and 0 ≤ y(t) < δ

β
for all t ≥ T . 

Thus, system (1.6) is well-defined in a subset of R+.
2
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To study dynamical behaviors of system (1.6), we show that it has at most three positive equi-
libria for all parameters values and perform qualitative and bifurcation analyses of the system. 
Firstly, there exist some values of parameters such that the model has two non-hyperbolic positive 
equilibria, one is a multiple focus of multiplicity one and the other is a cusp of codimension 2. 
Choosing two parameters of the model as bifurcation parameters, we demonstrate that the model 
exhibits a subcritical Hopf bifurcation and a Bogdanov–Takens bifurcation simultaneously in the 
corresponding small neighborhoods of the two degenerate equilibria, respectively. The bifurca-
tion curves divide the plane of bifurcation parameters into six regions. For various parameter 
values in these regions, different phase portraits of the model are obtained by computer numer-
ical simulations which demonstrate that the model can have: (i) a stable limit cycle enclosing 
two non-hyperbolic positive equilibria; (ii) a stable limit cycle enclosing an unstable homoclinic 
loop; (iii) two limit cycles enclosing a hyperbolic positive equilibrium; (iv) one stable limit cy-
cle enclosing three hyperbolic positive equilibria; or (v) the coexistence of three stable states 
(two stable equilibria and a stable limit cycle). Secondly, when the model has a unique degen-
erate positive equilibrium we show that it is a Bogdanov–Takens singularity of codimension 3
(focus or center case) for some values of parameters. Choosing three parameters of the model 
as bifurcation parameters, we prove that the model exhibits degenerate focus type Bogdanov–
Takens bifurcation of codimension 3. These results indicate that the dynamics of system (1.6)
with b > −2

√
a are much more complex and richer than the case when b > 0.

2. Equilibria and their types

Notice that system (1.6) always has a boundary equilibrium E0 = (1, 0) for all parameters 
which is a hyperbolic saddle. The biological interpretation of this boundary equilibrium is that 
the prey population reaches its carrying capacity in the absence of predators. E0 divides the 
positive x-axis into two parts which are two stable manifolds of E0 and there exists a unique 
unstable manifold of E0 in the interior of R2+.

If Ē(x̄, ȳ) is a positive equilibrium of system (1.6), then x̄ is a root of the equation

ax̄3 +
(

δ

β
+ b − a

)
x̄2 + (1 − b)x̄ − 1 = 0 (2.1)

in the interval (0, 1). Note that the third-order algebraic equation (2.1) can have one, two, or 
three positive roots in the interval (0, 1) which can be evaluated by using the root formula of the 
third-order algebraic equation. Correspondingly, system (1.6) can have one, two, or three positive 
equilibria. The Jacobian matrix of system (1.6) at Ē(x̄, ȳ) takes the form

J (Ē) =
(

1 − 2x̄ − (bx̄2+2x̄)ȳ

(ax̄2+bx̄+1)2
−x̄2

ax̄2+bx̄+1
βȳ2

x̄2 −δ

)
,

and

Det
(
J (Ē)

) = −δ

(
1 − 2x̄ − δ(bx̄3 + 2x̄2)

β(ax̄2 + bx̄ + 1)2

)
+ δ2x̄2

β(ax̄2 + bx̄ + 1)
,

Tr
(
J (Ē)

) = 1 − 2x̄ − δ(bx̄3 + 2x̄2)

2 2
− δ.
β(ax̄ + bx̄ + 1)
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It implies that Ē(x̄, ȳ) is an elementary equilibrium if Det(J (Ē)) �= 0, a hyperbolic saddle if 
Det(J (Ē)) < 0, or a degenerate equilibrium if Det(J (Ē)) = 0, respectively.

Regarding the number of positive equilibria of system (1.6), similar to Lemma 2.1 in Li and 
Xiao [27], we have the following results.

Lemma 2.1. Let A = ( δ
β

+b−a)2 +3a(b−1) and � = −4A3 + (27a2 +9a(1 −b)( δ
β

+b−a) −
2( δ

β
+ b − a)3)2.

(a) If � > 0, then system (1.6) has a unique positive equilibrium E∗ = (x∗, y∗), which is an 
elementary and anti-saddle equilibrium;

(b) If � = 0 and
(b1) A > 0, then system (1.6) has two different positive equilibria: an elementary anti-

saddle equilibrium E∗
2(x∗

2 , y∗
2 ) = (

βδ

βδ+(1−δ)2 , δ2

βδ+(1−δ)2 ) and a degenerate equilibrium 

E∗(x∗, y∗) = (1 − δ, δ
β
(1 − δ));

(b2) A = 0, then system (1.6) has a unique positive equilibrium E∗(x∗, y∗) = ( 3
1−b

, δ
β

3
1−b

), 
which is a degenerate equilibrium;

(c) If � < 0, δ
β

≤ a − b − √
3a(1 − b) and −2

√
a < b < 1, then system (1.6) has three dif-

ferent positive equilibria E∗
1(x∗

1 , y∗
1 ), E∗

2 (x∗
2 , y∗

2 ), and E∗
3 (x∗

3 , y∗
3 ), which are all elementary 

equilibria and E∗
3 is a saddle.

In case (a) of Lemma 2.1, the stability of the unique positive equilibrium E∗ can be determined 
easily. In the following we consider the other three cases (b1), (b2), and (c) of Lemma 2.1.

2.1. Two non-hyperbolic positive equilibria

We first discuss case (b1) of Lemma 2.1 and look for some parameter values such that sys-
tem (1.6) has a nonhyperbolic equilibrium E∗

2(x∗
2 , y∗

2 ) with Det(J (E∗
2 )) > 0 and Tr(J (E∗

2 )) = 0
and a degenerate equilibrium E∗(x∗, y∗) with Det(J (E∗)) = 0 and Tr(J (E∗)) = 0.

We can verify that if Det(J (E∗)) = 0 and Tr(J (E∗)) = 0, then

x∗ = 1 − δ, y∗ = δ

β
(1 − δ), a = (δ − 1)2 + βδ

βδ(1 − δ)2
, b = (δ − 1)3 − 2βδ

βδ(1 − δ)
, (2.2)

where 0 < δ < 1. If a = (δ−1)2+βδ

βδ(1−δ)2 , b = (δ−1)3−2βδ
βδ(1−δ)

and 0 < δ < 1, then system (1.6) reduces to

ẋ = x(1 − x) − x2y

(δ−1)2+βδ

βδ(1−δ)2 x2 + (δ−1)3−2βδ
βδ(1−δ)

x + 1
,

ẏ = y

(
δ − βy

x

)
. (2.3)

Lemma 2.1 (b1) then implies that system (2.3) has two positive equilibria

E∗
2

(
x∗

2 , y∗
2

) =
(

βδ

βδ + (1 − δ)2
,

δ2

βδ + (1 − δ)2

)
, E∗(x∗, y∗) =

(
1 − δ,

δ

β
(1 − δ)

)
.
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Fig. 2.1. The coexistence of an unstable multiple focus with multiplicity one (E∗
2 ) and a cusp of codimension 2 (E∗).

Theorem 2.2. If (a, b, β) = ( 1+δ2

(1−δ)3 , − δ2+δ+2
1−δ

, (1−δ)3

δ2(1+δ)
) and 0 < δ < 1, then system (1.6) has two 

positive equilibria:

(i) E∗
2 ( 1−δ

1+δ2 , δ3(1+δ)

(1−δ)2(1+δ2)
) is an unstable multiple focus with multiplicity one;

(ii) E∗(1 − δ, δ
3(1+δ)

(1−δ)2 ) is a cusp of codimension 2.

The phase portrait is given in Fig. 2.1.

Proof. Under the assumptions of Theorem 2.2 system (1.6) becomes

ẋ = x(1 − x) − x2y

1+δ2

(1−δ)3 x2 − δ2+δ+2
1−δ

x + 1
,

ẏ = y

(
δ − (1 − δ)3

δ2(1 + δ)

y

x

)
, (2.4)

which has two positive equilibria: E∗
2( 1−δ

1+δ2 , δ3(1+δ)

(1−δ)2(1+δ2)
) and E∗(1 − δ, δ

3(1+δ)

(1−δ)2 ).

(i) We first verify that E∗
2( 1−δ

1+δ2 , δ3(1+δ)

(1−δ)2(1+δ2)
) is an unstable multiple focus with multiplicity 

one. Translate E∗
2 to the origin by letting u = x − 1−δ

1+δ2 and v = y − δ3(1+δ)

(1−δ)2(1+δ2)
, the Taylor 

expansion of system (2.4) around the origin takes the form
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u̇ = δu − (1 − δ)3

δ2(1 + δ2)
v + (

1 + δ + δ3)u2 + (1 − δ)4

δ3
uv

+ (1 + δ)(1 + δ2)(1 + δ − δ2 + 3δ3 − δ4 + δ5)

(−1 + δ)δ2
u3

+ (1 − δ)2(2 − δ + 3δ2 − δ3 + δ4)

δ3
u2v + O

(|u,v|4),
v̇ = δ4(1 + δ)

(1 − δ)3
u − δv − δ4(1 + δ)(1 + δ2)

(1 − δ)4
u2 + 2δ(1 + δ2)

1 − δ
uv − (1 − δ)2(1 + δ2)

δ2(1 + δ)
v2

+ δ4(1 + δ)(1 + δ2)2

(1 − δ)5
u3 − 2δ(1 + δ2)2

(1 − δ)2
u2v + (1 − δ)(1 + δ2)2

δ2(1 + δ)
uv2 + O

(|u,v|4). (2.5)

Make a change of variables as follows:

(
u

v

)
=

(√
(1−δ)7

δ5(1+δ)2(1+δ2)

(1−δ)3

δ3(1+δ)

0 1

)(
x

y

)
,

then system (2.5) can be written as

ẋ = −
√

δ3(1 − δ)

1 + δ2
y + f (x, y),

ẏ =
√

δ3(1 − δ)

1 + δ2
x + g(x, y), (2.6)

where

f (x, y) =
√

(1 − δ)7
√

δ5(1 + δ)2(1 + δ2)(−1 − δ + δ2 − 2δ3 + δ4)

δ5(−1 − δ + δ4 + δ5)
x2

+ (1 − δ)3(3 + 2δ − δ2 + 2δ3)

δ3(1 + δ)
xy

+
√

δ5(1 + δ)2(1 + δ2)(1 − δ)6(2 + δ − δ2 + δ3)√
(1 − δ)7δ6(1 + δ)2

y2

+ (1 − δ)5(−1 − δ + 2δ2 − 3δ3 + δ5 − δ6 + δ7)

δ7(1 + δ)2
x3

+
√

δ5(1 + δ)2(1 + δ2)(1 − δ)(−3 − 3δ + 8δ2 − 8δ3 − δ4 + 6δ5 − 4δ6 + 3δ7)

δ10(1 + δ)3
x2y

− (1 − δ)5(3 + 3δ − 4δ2 + 14δ3 − 12δ4 + 14δ5 − 5δ6 + 3δ7)

δ8(1 + δ)
xy2

−
√

(1 − δ)7(1 − δ)(1 + δ2)2(1 + δ − 3δ2 + 4δ3 − 2δ4 + δ5)

6
√

5 2 2
y3 + O

(|x, y|4),

δ δ (1 + δ) (1 + δ )
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g(x, y) = − (1 − δ)3

δ(1 + δ)
x2 + (−1 + δ)2

√
(1 − δ)7

√
δ5(1 + δ)2(1 + δ2)

δ6(1 + δ)3
x3

+ (1 − δ)5(1 + δ2)

δ4(1 + δ)2
x2y + O

(|x, y|4).
The Liapunov number (Perko [31, p. 219]) can be expressed as

Re c1 = 1

16

{
(fxxx + fxyy + gxxy + gyyy)

+ 1

ω

[
fxy(fxx + fyy) − gxy(gxx + gyy) − fxxgxx + fyygyy

]}∣∣∣∣
x=y=0

= (−1 + δ)5(−3 + 2δ − 8δ2 + δ3 − δ5 + δ6)

8δ8(1 + δ)
> 0

because 0 < δ < 1. Therefore, E∗
2 is an unstable multiple focus with multiplicity one.

(ii) Next we show that the degenerate equilibrium E∗ is a cusp of codimension 2. Using the 

change of variables x1 = x − (1 − δ), x2 = y − δ3(1+δ)

(1−δ)2 , system (2.4) is transformed into

ẋ1 = δx1 + (−1 + δ)3

δ2(1 + δ)
x2 − 2 + δ

1 + δ
x2

1 + (1 − δ)3

δ3(1 + δ)
x1x2 + O

(|x1, x2|3
)
,

ẋ2 = δ4(1 + δ)

(1 − δ)3
x1 − δx2 − δ4(1 + δ)

(1 − δ)4
x2

1 + 2δ

1 − δ
x1x2 − (1 − δ)2

δ2(1 + δ)
x2

2 + O
(|x1, x2|3

)
. (2.7)

Let y1 = x1, y2 = δx1 + (−1+δ)3

δ2(1+δ)
x2. Then system (2.7) can be rewritten as

ẏ1 = y2 − 1

1 + δ
y2

1 − 1

δ
y1y2 + O

(|y1, y2|3
)
,

ẏ2 = − δ

1 + δ
y2

1 − y1y2 + 1

1 − δ
y2

2 + O
(|y1, y2|3

)
. (2.8)

Making a C∞-change of variables z1 = y1 − 2δ−1
2δ(1−δ)

y2
1 , z2 = y2 − 1

1+δ
y2

1 − 1
1−δ

y1y2 in a small 
neighborhood of (0, 0), system (2.8) becomes

ż1 = z2 + O
(|z1, z2|3

)
,

ż2 = μ1z
2
1 + μ2z1z2 + O

(|z1, z2|3
)
, (2.9)

where μ1 = −δ
1+δ

, μ2 = − δ+3
1+δ

. Notice that μ1μ2 = δ(δ+3)

(1+δ)2 �= 0, hence the equilibrium E∗ is a 
cusp of codimension 2. �
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2.2. The degenerate positive equilibrium

Next we consider case (b2) of Lemma 2.1, that is the unique degenerate positive equilib-
rium E∗, and have the following result.

Theorem 2.3.

(i) If (a, δ) = (
(1−b)3

27 , −β(2+b)3

27 ) and β �= 27
(1−b)(2+b)2 , −2

√
a < b < −2, a > 1, then sys-

tem (1.6) has a unique degenerate positive equilibrium E∗( 3
1−b

, δ
β

3
1−b

), which is a stable 

(an unstable) degenerate node if β > 27
(1−b)(2+b)2 (if β < 27

(1−b)(2+b)2 , respectively);

(ii) If (a, δ, β) = (
(1−b)3

27 , 2+b
b−1 , 27

(1−b)(2+b)2 ), then the unique degenerate positive equilibrium 

E∗( 3
1−b

, − (2+b)3

9(1−b)
) of system (1.6) is a codimension 3 Bogdanov–Takens singularity (focus 

or center case).

The phase portraits are given in Fig. 2.2.

Proof. We have � = 0 and A = 0 when a = (1−b)3

27 and δ = −β(2+b)3

27 . Moreover,

Det
(
J
(
E∗)) = 0, Tr

(
J
(
E∗)) = (2 + b)(27 + (b − 1)(2 + b)2β)

27(b − 1)
.

(i) When β �= 27
(1−b)(2+b)2 , we have Tr(J (E∗)) �= 0; that is, there is only one zero eigenvalue 

for the Jacobian matrix J (E∗), Theorem 7.1 in Zhang et al. [44] implies that the unique degener-
ate positive equilibrium E∗( 3

1−b
, δ

β
3

1−b
) of system (1.6) is a stable (an unstable) degenerate node 

if β > 27
(1−b)(2+b)2 (if β < 27

(1−b)(2+b)2 , respectively).

(ii) When β = 27
(1−b)(2+b)2 , we have Tr(J (E∗)) = 0. It follows that E∗( 3

1−b
, − (2+b)3

9(1−b)
) is nilpo-

tent (with double-zero eigenvalue). To determine the exact type of this equilibrium, we provide 
a series of explicitly smooth transformations to derive a normal form with terms up to the fourth 
order.

Firstly, we translate the unique positive equilibrium E∗( 3
1−b

, − (2+b)3

9(1−b)
) to the origin and ex-

pand system (1.6) in power series up to the fourth order around the origin. Let

(I ): X = x − 3

1 − b
, Y = y −

(
− (2 + b)3

9(1 − b)

)
.

Then system (1.6) can be rewritten as

Ẋ = F

(
X + 3

1 − b
,Y − (2 + b)3

9(1 − b)

)
,

Ẏ = G

(
X + 3

, Y − (2 + b)3 )
. (2.10)
1 − b 9(1 − b)
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Fig. 2.2. The unique degenerate positive equilibrium E∗ . (a) Stable degenerate node; (b) codimension 3 Bogdanov–
Takens singularity (focus case).
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Secondly, we transform the linear part of system (2.10) to the Jordan canonical form. To do so, 
let

(II): X = − 27

(2 + b)3
x − 27(b − 1)

(2 + b)4
y, Y = x.

Then system (2.10) becomes

ẋ = y + a02y
2 + a12xy2 + a03y

3 + a13xy3 + a22x
2y2 + a04y

4 + R1(x, y),

ẏ = b11xy + b02y
2 + b30x

3 + b12xy2 + b21x
2y + b03y

3 + b40x
4

+ b13xy3 + b22x
2y2 + b31x

3y + b04y
4 + R2(x, y), (2.11)

where b11a02b02 �= 0, aij , bij , i, j = 0, . . . , 4, 2 ≤ i + j ≤ 4, are functions of parameter b, and 
R1(x, y) and R2(x, y) are smooth functions of order at least five in (x, y). Thirdly, to eliminate 
the y2 terms in system (2.11), we make the following near identity transformation

(III): x = X + b02

2
X2, y = Y + b02XY − a02Y

2,

which transforms system (2.11) into

Ẋ = Y + c30X
3 + c12XY 2 + c21X

2Y + c03Y
3 + c40X

4 + c13XY 3

+ c31X
3Y + c22X

2Y 2 + c04Y
4 + Q1(X,Y ),

Ẏ = d11XY + d30X
3 + d12XY 2 + d21X

2Y + d03Y
3 + d40X

4 + d13XY 3

+ d31X
3Y + d22X

2Y 2 + d04Y
4 + Q2(X,Y ), (2.12)

where Q1(X, Y) and Q2(X, Y) are smooth functions of order at least five in (X, Y), and

c30 = 0, c12 = −81(8 + b)(b − 1)3

(2 + b)8
, c21 = 0, c03 = −81(b − 1)4

(2 + b)8
, c40 = 0,

c13 = 1458(b − 1)5(5 + b)

(2 + b)12
, c31 = 0, c22 = 2187(b − 1)4(24 + 11b + b2)

2(2 + b)12
,

c04 = 729(b − 1)6

(2 + b)12
, d11 = 27

(2 + b)3
, d30 = 243(b − 1)2

(2 + b)7 ,

d12 = 81(b − 1)2(89 + 48b + 24b2 + b3)

(2 + b)9
, d21 = 243(−16 + 21b − 12b2 + 7b3)

2(2 + b)8
,

d03 = 81(b − 1)3(35 + 30b + 15b2 + b3)

(2 + b)10
, d40 = −2187(b − 7)(b − 1)3

2(2 + b)11
,

d13 = −2187(b − 1)4(72 + 137b + 42b2 + 18b3 + b4)

(2 + b)14
, d31 = −2187(4b − 13)(b − 1)4

(2 + b)12
,
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d22 = 2187(1 − b)3(143 + 287b + 24b2 + 31b3 + b4)

2(2 + b)13
,

d04 = 729(1 − b)5(77 + 145b + 75b2 + 25b3 + 2b4)

(2 + b)15
.

Notice that

d11d30 = 6561(b − 1)2

(2 + b)10
�= 0,

by Lemma 3.1 in Cai, Chen and Xiao [7], there exists a small neighborhood U of (0, 0) such that 
in this neighborhood U system (2.12) is locally topologically equivalent to

ẋ = y,

ẏ = d11xy + d30x
3 + (d21 + 3c30)x

2y + (d40 − d11c30)x
4

+
(

4c40 + d31 + 1

3
d11c21 + 1

6
d11d12

)
x3y + Q(x,y), (2.13)

where Q(x, y) is a smooth function of order at least five in (x, y). Moreover, we have

5d30(d21 + 3c30) − 3d11(d40 − d11c30) = 59 049(b − 1)3(19 − 20b + 19b2)

(2 + b)15
�= 0

and

d30 = 243(b − 1)2

(2 + b)7 < 0, d2
11 + 8d30 = 243(14 − 13b + 8b2)

(2 + b)7 < 0

since −2
√

a < b < −2. Again by Lemma 3.1 in Cai, Chen and Xiao [7], we know that the 
equilibrium (0, 0) of system (2.12) is a degenerate focus or center of codimension 3, that is, the 

unique degenerate positive equilibrium E∗( 3
1−b

, − (2+b)3

9(1−b)
) of system (1.6) is a codimension 3

Bogdanov–Takens singularity (focus or center case). �
3. Bifurcations

In this section, we first discuss the existence of a subcritical Hopf bifurcation and a Bogdanov–
Takens bifurcation in case (b1) of Lemma 2.1 and then consider the degenerate focus type 
Bogdanov–Takens bifurcation of codimension 3 in case (b2) of Lemma 2.1.

3.1. Hopf bifurcation and Bogdanov–Takens bifurcation

Consider case (b1) of Lemma 2.1 when system (1.6) has a nonhyperbolic equilibrium 
E∗

2 (x∗
2 , y∗

2 ) and a degenerate equilibrium E∗(x∗, y∗) with Det(J (E∗)) = 0 and Tr(J (E∗)) = 0. 
We study the existence of a subcritical Hopf bifurcation in a small neighborhood of E∗

2 and a 
Bogdanov–Takens bifurcation in a small neighborhood of E∗ in system (1.6). Choosing δ and β
as bifurcation parameters, we carry out a bifurcation analysis of system (1.6) as (δ, β) varies near 
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(δ0, β0), where δ0 and β0 satisfy (a, b, β) = ( 1+δ2

(1−δ)3 , − δ2+δ+2
1−δ

, (1−δ)3

δ2(1+δ)
). That is, we consider the 

following unfolding system of system (1.6):

ẋ = x(1 − x) − x2y

1+δ2

(1−δ)3 x2 − δ2+δ+2
1−δ

x + 1
,

ẏ = y

(
δ + λ1 −

(
(1 − δ)3

δ2(1 + δ)
+ λ2

)
y

x

)
, (3.1)

where λ = (λ1, λ2) are small parameters and 0 < δ < 1. Actually, we have the following results.

Theorem 3.1. When parameters (λ1, λ2) vary in a small neighborhood of the origin, system (3.1)
undergoes a subcritical Hopf bifurcation in a small neighborhood of E∗

2 and a Bogdanov–Takens 
bifurcation in a small neighborhood of E∗. Hence, there exist some parameter values such that 
system (1.6) has an unstable limit cycle around E∗

2 , and there exist some other parameter values 
such that system (1.6) has an unstable limit cycle or an unstable homoclinic loop around E∗.

Proof. By Theorem 2.2, if λ1 = λ2 = 0 then system (3.1) has two equilibria: E∗
2(x∗

2 , y∗
2 ) =

( 1−δ

1+δ2 , δ3(1+δ)

(1−δ)2(1+δ2)
) which is an unstable multiple focus with multiplicity one and E∗(x∗, y∗) =

(1 − δ, δ
3(1+δ)

(1−δ)2 ) which is a cusp of codimension 2.
(i) First we study the existence of a subcritical Hopf bifurcation of system (3.1) in a small 

neighborhood of the equilibrium E∗
2 when parameters (λ1, λ2) vary in a small neighborhood 

of the origin. When (λ1, λ2) �= (0, 0), system (3.1) has an equilibrium E2(x2, y2) with x2 =
1−δ

1+δ2 + w, |w| 
 1, y2 = δ+λ1
(1−δ)3

δ2(1+δ)
+λ2

x2. We have

Tr
(
J (E2)

) = 1 − 2x2 − δ + δ3(−1 + δ)2(1 + δ)[2(−1 + δ) + (2 + δ + δ2)x2]x2
2

[(−1 + δ)3 − (1 + δ2)x2
2 + (1 − δ)2(2 + δ + δ2)x2]2

−
(

1 − δ2(1 − δ)2(1 + δ)[2(−1 + δ) + (2 + δ + δ2)x2]x2
2

[(−1 + δ)3 − (1 + δ2)x2
2 + (1 − δ)2(2 + δ + δ2)x2]2

)
λ1

+ δ5(1 + δ)2[2(−1 + δ) + (2 + δ + δ2)x2]x2
2

(−1 + δ)[(−1 + δ)3 − (1 + δ2)x2
2 + (1 − δ)2(2 + δ + δ2)x2]2

λ2

+ O
(|λ1, λ2|2

)
,

Det
(
J (E2)

) = δ2(1 + δ)(1 − δ)3(δ + λ1)
2x2

2

[(1 − δ)3 − (1 − δ)2(2 + δ + δ2)x2 + (1 + δ2)x2
2 ][(1 − δ)3 + δ2(1 + δ)λ2]

− (δ + λ1)

(
1 − 2x2

− δ2(1 + δ)(−1 + δ)5[2(−1 + δ) + (2 + δ + δ2)x2](δ + λ1)x
2
2

[(1 − δ)3 − (1 − δ)2(2 + δ + δ2)x + (1 + δ2)x2]2[(1 − δ)3 + δ2(1 + δ)λ ]
)

.

2 2 2
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Let

Tr
(
J (E2)

) = 0, Det
(
J (E2)

)
> 0. (3.2)

It follows that

λ1 = −w(2w2(1 + δ2)2 − (−1 + δ)2δ2(3 + δ + δ2 + δ3) + w(3 − 2δ + δ2 − 3δ4 + 2δ5 − δ6))

(−1 + δ)2δ2 + w2(1 + δ2)2 − w(−1 + δ)δ(1 + δ2)2
,

λ2 = −(
w(−1 + δ)3(−w4(1 + δ2)4(−1 + δ2 + 2δ3) + (−1 + δ)4δ4(3 + 4δ + 3δ2 + 2δ3 + 2δ4)

+ w2δ2(−1 + δ − δ2 + δ3)2(−7 − 12δ + 5δ2 + δ4 + δ6) + w3δ
(
1 + δ2)3(1 − 10δ + 3δ2

+ 4δ3 + 3δ4 − 2δ5 + δ6) − w(−1 + δ)3δ2(−3 − 4δ + δ2 + 5δ3 + 5δ4 + 15δ5 + 3δ6

+ 7δ7 + 2δ8 + δ9)))/(δ5(1 + δ)2(1 + w − δ + wδ2)2(
(−1 + δ)2δ2 + w2(1 + δ2)2

− w(−1 + δ)δ
(
1 + δ2)2))

, (3.3)

and w1 < w < w2, where

w1 = B1 − √
�

2A1
, w2 = B1 + √

�

2A1
, B1 = 4δ2 − 2δ3 + 3δ4 + 4δ5 − 6δ6 − δ8 − 2δ9,

A1 = 3 − 8δ − 4δ2 + 19δ3 + 2δ4 + 35δ5 + 27δ6 + 18δ7 + 17δ8 + 15δ9 − δ10 + 5δ11,

� = 4δ4 + 28δ5 + 24δ6 − 116δ7 + 29δ8 + 8δ9 − 64δ10 + 108δ11 + 10δ12 − 48δ13

+ 56δ14 − 8δ15 − 43δ16 + 28δ17 − 16δ18.

Thus the Hopf bifurcation curve of system (3.1) at E∗
2 is defined by

H2 = {
(λ1, λ2) : (λ1, λ2) satisfy (3.3) and w1 < w < w2

}
.

Notice that

lim
w→0

λ2

λ1
= (1 − δ)3(3 + 4δ + 3δ2 + 2δ3 + 2δ4)

δ3(1 + δ)2(3 + δ + δ2 + δ3)
,

we can see that the approximate representation of H2 is a straight line

λ2 = (1 − δ)3(3 + 4δ + 3δ2 + 2δ3 + 2δ4)

δ3(1 + δ)2(3 + δ + δ2 + δ3)
λ1

in a small neighborhood of the origin in the parameter plane (see Fig. 3.1).
(ii) Next we consider the Bogdanov–Takens bifurcation of system (3.1) in a small neighbor-

hood of the equilibrium E∗. We follow the techniques and steps of Xiao and Ruan [41] and Li 
and Xiao [27] to derive a normal form by using a series of transformations. When (λ1, λ2) vary in 

a small neighborhood of the origin, let x1 = x −x∗, x2 = y −y∗, where x∗ = 1 −δ, y∗ = δ3(1+δ)

(1−δ)2 . 
Then system (3.1) is transformed into
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Fig. 3.1. The bifurcation diagram of system (3.1) with δ = 0.47.

ẋ1 = α10x1 + α01x2 + α11x
2
1 + 2α12x1x2 + A1(x1, x2),

ẋ2 = β00 + β10x1 + β01x2 + β11x
2
1 + 2β12x1x2 + β22x

2
2 + A2(x1, x2), (3.4)

where

α10 = δ, α01 = (−1 + δ)3

δ2(1 + δ)
, α11 = −2 + δ

1 + δ
, α12 = (1 − δ)3

2δ3(1 + δ)
,

β00 = δ3(1 + δ)

(−1 + δ)5

[
(−1 + δ)3λ1 + δ3(1 + δ)λ2

]
, β10 = δ4(1 + δ)

(1 − δ)3
+ δ6(1 + δ)2

(1 − δ)6
λ2,

β01 = −δ + λ1 − 2δ3(1 + δ)

(1 − δ)3
λ2, β11 = −δ4(1 + δ)

(1 − δ)4
− δ6(1 + δ)2

(1 − δ)7 λ2,

β12 = δ

1 − δ
+ δ3(1 + δ)

(1 − δ)4
λ2, β22 = (1 − δ)3

δ2(−1 + δ2)
− 1

1 − δ
λ2,

and Ai (i = 1, 2) are C∞ in (x1, x2) and Ai(x1, x2) = O(|x1, x2|3).
First, we make an affine transformation y1 = x1, y2 = α10x1 + α01x2. System (3.4) can be 

rewritten as

ẏ1 = y2 +
(

α11 − 2α10α12

α01

)
y2

1 + 2α12

α01
y1y2 + B1(y1, y2),

ẏ2 = α01β00 + (α01β10 − α10β01)y1 + (α10 + β01)y2 +
(

2α10α12

α01
+ 2β12 − 2α10β22

α01

)
y1y2

+
(

α10α11 − 2α2
10α12

α01
+ α01β11 − 2α10β12 + α2

10β22

α01

)
y2

1 + β22

α01
y2

2 + B2(y1, y2), (3.5)

where Bi (i = 1, 2) is C∞ in (y1, y2) and Bi(y1, y2) = O(|y1, y2|3).
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Next, we make a C∞ change of coordinates in a small neighborhood of (0, 0) as

z1 = y1 −
(

α12

α01
+ β22

2α01

)
y2

1 ,

z2 = y2 +
(

α11 − 2α10α12

α01

)
y2

1 − β22

α01
y1y2

and obtain from system (3.5) that

ż1 = z2 + C1(z1, z2),

ż2 = α01β00 + (α01β10 − α10β01 − β00β22)z1 + (α10 + β01)z2 + d1(λ)z2
1

+
(

2α11 + 2β12 − 2α10α12

α01
− 2α10β22

α01

)
z1z2 + C2(z1, z2), (3.6)

where d1(λ) = (α01β10+α10β01)α12
α01

−β01α11 +α01β11 −2α10β12 +(
α2

10
α01

− β10β01
2 + α10β01

2α01
− β00α12

α01
−

β00β22
2α01

)β22, and Ci (i = 1, 2) is C∞ in (z1, z2) and Ci(z1, z2) = O(|z1, z2|3).
Now, in a small neighborhood of (0, 0), we make another C∞ change of coordinates

X1 = z1, X2 = z2 + C1(z1, z2)

and transform system (3.6) into

Ẋ1 = X2,

Ẋ2 = α01β00 + (α01β10 − α10β01 − β00β22)X1 + (α10 + β01)X2 + d1(λ)X2
1 + F1(X1)

+
(

2α11 + 2β12 − 2α10α12

α01
− 2α10β22

α01

)
X1X2 + X2F2(X1) + X2

2F3(X1,X2), (3.7)

where F1, F2 are C∞ in X1, F3 is C∞ in (X1, X2), F1(X1) = O(|X1|3), F2(X1) = O(|X1|2)
and F3(X1, X2) = O(|X1, X2|). Substituting values of α10, α01, β10, β01, α11, α12, β00, β11, β12
and β22 into system (3.7), we obtain the following system

Ẋ1 = X2,

Ẋ2 = Φ(X1, λ) +
[
λ1 + 2δ3(1 + δ)

(−1 + δ)3
λ2

]
X2

− 3 + δ

1 + δ
X1X2 + X2F2(X1) + X2

2F3(X1,X2), (3.8)

where

Φ(X1, λ) = δ[(−1 + δ)3λ1 + δ3(1 + δ)λ2]
(1 − δ)2

− λ2δ
3(1 + δ)[(−1 + δ)3λ1 + δ3(1 + δ)λ2]

(1 − δ)6
X1

+ d1(λ)X2 + F1(X1),
1
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d1(λ) = − δ

1 + δ
+ 1 + δ2

1 − δ2
λ1 + δ3(−2 + δ − δ2)

(1 − δ)4
λ2 + δ3(−1 + 3δ + 4δ2)

2(1 − δ)4
λ1λ2

+ δ5(1 + δ)2(1 − 4δ)

2(1 − δ)7 λ2
2 + δ5(1 + δ)2

2(1 − δ)7 λ1λ
2
2 − δ8(1 + δ)3

2(1 − δ)10
λ3

2.

Since d1(0) = − δ
1+δ

< 0, we make it positive by using a time transform. Let Y1 = −X1, Y2 = X2, 
τ = −t . Then system (3.8) becomes (still denote time by t )

Ẏ1 = Y2,

Ẏ2 = −Φ(Y1, λ) −
[
λ1 + 2δ3(1 + δ)

(−1 + δ)3
λ2

]
Y2

− 3 + δ

1 + δ
Y1Y2 + Y2F2(Y1) + Y 2

2 F3(Y1, Y2). (3.9)

Applying the Malgrange Preparation Theorem (Chow and Hale [9, p. 43]) to Φ(Y1, λ), we 
have

Φ(Y1, λ) = (
ξ1(λ) + ξ2(λ)Y1 + Y 2

1

)
Ψ (Y1, λ),

where ξ1(λ) = δ[(−1+δ)3λ1+δ3(1+δ)λ2]
(1−δ)2d1(λ)

, ξ2(λ) = − δ3(1+δ)λ2[(−1+δ)3λ1+δ3(1+δ)λ2]
(1−δ)6d1(λ)

, Ψ (0, λ) =
−d1(λ), and Ψ (Y1, λ) is a power series in Y1 whose coefficients depend on parameters 
λ = (λ1, λ2).

Now consider Z1 = Y1, Z2 = Y2√
Ψ (Y1,λ)

, τ = ∫ √
Ψ (Y1(s), λ)ds. Then system (3.9) can be 

written as

Ż1 = Z2,

Ż2 = ξ1(λ) + ξ2(λ)Z1 + Z2
1 −

λ1 + 2δ3(1+δ)

(−1+δ)3 λ2√
Ψ (Z1, λ)

Z2

− 3 + δ

1 + δ

1√
Ψ (Z1, λ)

Z1Z2 + G(Z1,Z2, λ), (3.10)

where G(Z1, Z2, 0) is a power series in (Z1, Z2) with power Zi
1Z

j

2 satisfying i + j ≥ 3 and 

j ≥ 2. Letting η(λ) = −λ1+ 2δ3(1+δ)

(−1+δ)3
λ2√

Ψ (0,λ)
and making the parameter dependent affine transformation 

x = Z1 + 1
2ξ2(λ), y = Z2, we transform system (3.10) to

ẋ = y,

ẏ = μ1(λ1, λ2) + μ2(λ1, λ2)y + x2 + d2√−d1
xy + R(x, y,λ), (3.11)

where μ1(λ1, λ2) = ξ1(λ) − 1
4ξ2

2 (λ), μ2(λ1, λ2) = η(λ) − d2
2
√−d1

ξ2(λ), d1(0) = d1, d2 = − 3+δ
1+δ

, 

and R(x, y, λ) is a power series in (x, y) with power xiyj satisfying i + j ≥ 3 and j ≥ 2.
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Since 0 < δ < 1, we can check that

∣∣∣∣∂(μ1,μ2)

∂(λ1, λ2)

∣∣∣∣
λ=0

= −δ2(1 + δ)2√δ(1 + δ)

(1 − δ)2
�= 0.

Thus, the parameter transformation is nonsingular and system (3.11) becomes

ẋ = y,

ẏ = μ1(λ1, λ2) + μ2(λ1, λ2)y + x2 − 3 + δ

1 + δ

√
1 + δ

δ
xy + S(x, y,μ), (3.12)

where

μ1(λ1, λ2)

= [δ(δ − 1)3λ1 + δ4(1 + δ)λ2][δ5(1 − δ2)2(1 − δ)λ1λ
2
2 − δ8(1 + δ)3λ3

2 − (1 − δ)4Q(λ)]
Q2(λ)

,

μ2(λ1, λ2) = δ4(3 + δ)λ2[(−1 + δ)3λ1 + δ3(1 + δ)λ2]
Q(λ)(1 − δ)( δ

1+δ
)

2
3

+
√

2(−1 + δ)3λ1 + 2
√

2δ3(1 + δ)λ2√
Q(λ)

,

Q(λ) = (1 − δ)6
[

2δ

1 + δ
− 2(1 + δ2)

1 − δ2
λ1 + 2δ3(2 − δ + δ2)

(1 − δ)4
λ2 − δ2(−1 + 3δ + 4δ2)

(1 − δ)4
λ1λ2

− δ5(1 + δ)2(1 − 4δ)

(1 − δ)7 λ2
2 − δ5(1 + δ)2

(1 − δ)7 λ1λ
2
2 + δ8(1 + δ)3

(1 − δ)10
λ3

2

]
,

and S(x, y, μ) is a power series in (x, y, μ1, μ2) with powers xiyjμk
1μ

l
2 satisfying i+j +k+ l ≥

4 and i + j ≥ 3.
The results in Bogdanov [3,4] and Takens [35] or Perko [31] imply that system (3.12) is 

strongly topologically equivalent to

ẋ = y,

ẏ = μ1 + μ2y + x2 − xy. (3.13)

Choosing μ1 and μ2 as bifurcation parameters we know that system (3.13) undergoes a 
Bogdanov–Takens bifurcation when the parameters (λ1, λ2) vary in a small neighborhood of 
the origin. The local representations of the bifurcation curves in a small neighborhood of the 
origin are given as follows:

(a) The saddle-node bifurcation curve

SN =
{
(λ1, λ2) : μ1(λ1, λ2) = 0, i.e., λ2 = (1 − δ)3

δ3(1 + δ)
λ1 + O

(
λ2

1

)}
,

which consists of SN+ = {(λ1, λ2) : μ1(λ1, λ2) = 0, μ2(λ1, λ2) > 0} and SN− = {(λ1, λ2) :
μ1(λ1, λ2) = 0, μ2(λ1, λ2) < 0};
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(b) The Hopf bifurcation curve

H =
{
(λ1, λ2) : μ2(λ1, λ2) = −3 + δ

1 + δ

√
1 + δ

δ

√−μ1(λ1, λ2), μ1(λ1, λ2) < 0

}

=
{
(λ1, λ2) : − (−1 + δ)(3 + δ)2

δ
λ1 − δ2(1 + δ)(3 + δ)2

(−1 + δ)2
λ2

+ δ(27 + 40δ + 32δ2 + 30δ3 + 13δ4 + 25δ5)

(−1 + δ)3
λ1λ2

+ 9 + 7δ + 11δ2 + 6δ3 + δ4

δ2
λ2

1 + δ4(1 + δ)2(18 + 7δ + 9δ2 + 5δ3 + δ4)

(−1 + δ)6
λ2

2

+ O
(|λ1, λ2|3

) = 0, μ1(λ1, λ2) < 0

}
;

(c) The homoclinic bifurcation curve

HL =
{
(λ1, λ2) : μ2(λ1, λ2) = −5(3 + δ)

7(1 + δ)

√
1 + δ

δ

√−μ1(λ1, λ2), μ1(λ1, λ2) < 0

}

=
{
(λ1, λ2) : −25(−1 + δ)(3 + δ)2

49δ
λ1 − 25δ2(1 + δ)(3 + δ)2

49(−1 + δ)2
λ2

+ δ(675 + 1096δ + 992δ2 + 846δ3 + 325δ4 + 50δ5)

49(−1 + δ)3
λ1λ2

+ 225 + 199δ + 299δ2 + 150δ3 + 25δ4

49δ2
λ2

1

+ δ4(1 + δ)2(450 + 271δ + 321δ2 + 125δ3 + 25δ4)

49(−1 + δ)6
λ2

2

+ O
(|λ1, λ2|3

) = 0, μ1(λ1, λ2) < 0

}
;

(d) Recall that the Hopf bifurcation curve of system (3.1) at E∗
2 is given by

H2 = {
(λ1, λ2) : (λ1, λ2) satisfy (3.3) and w1 < w < w2

}
=

{
(λ1, λ2) : λ2 = (1 − δ)3(3 + 4δ + 3δ2 + 2δ3 + 2δ4)

δ3(1 + δ)2(3 + δ + δ2 + δ3)
λ1

}
.

The bifurcation diagram of system (3.1) is sketched in Fig. 3.1. �
These bifurcation curves H2, SN+, H , HL, and SN− divide a small neighborhood of the origin 

in the (λ1, λ2) parameter plane into six regions. In each region, the dynamics of system (3.1) can 
be described as follows.
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Fig. 3.2. When (λ1, λ2) = (0, 0), E∗ is a cusp of codimension 2, E∗
2 is an unstable multiple focus with multiplicity one, 

there exists a large stable limit cycle surrounding the two non-hyperbolic positive equilibria.

Fig. 3.3. When (λ1, λ2) = (−0.012, −0.012) lies in region I, E∗
2 is an unstable focus and there exists a large stable limit 

cycle.

(i) When (λ1, λ2) = (0, 0), system (3.1) has two positive equilibria: E∗
2 is an unstable multiple 

focus with multiplicity one and E∗ is a cusp of codimension 2. From the Poincaré–Bendixon 
theorem, there exists at least one limit cycle enclosing these two positive equilibria (see Fig. 3.2).

(ii) When the parameters lie in region I (i.e., the region between the curves SN+ and H2), 
system (3.1) has a unique positive equilibrium E∗

2 which is an unstable focus. This implies that 
system (3.1) has at least a stable limit cycle by Poincaré–Bendixon theorem (see Fig. 3.3).
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Fig. 3.4. When (λ1, λ2) = (−0.0115, −0.012) lies in region VI, E∗
2 is a stable focus, there exist a small unstable limit 

cycle and a large stable limit cycle.

(iii) When parameters lie on the Hopf bifurcation curve H2 at E∗
2 , the unique positive equi-

librium E∗
2 is an unstable multiple focus with multiplicity one and the stable limit cycle still 

exists.
(iv) When parameters cross H2 into region VI (i.e., the region between H2 and SN−), E∗

2 be-
comes a stable focus and a new unstable limit cycle bifurcates from E∗

2 following the subcritical 
Hopf bifurcation. Thus system (3.1) has at least two limit cycles, the outer is stable and the inner 
is unstable (see Fig. 3.4).

(v) When parameters lie on the saddle-node bifurcation curve SN+, system (3.1) has two 
positive equilibria, one is a saddle-node E∗ and the other is an unstable focus E∗

2 (see also 
case (xiii)).

(vi) When parameters cross the curve SN+ into region II (i.e., the region between SN+ and H ), 
system (3.1) has three positive equilibria E∗

1 , E∗
2 and E∗

3 , in which E∗
1 and E∗

3 bifurcate from the 
saddle-node. When (λ1, λ2) = (−0.01232, −0.012), which lie in region II, we can see that E∗

1
and E∗

2 are unstable foci and E∗
3 is a saddle. Poincaré–Bendixon theorem implies that there 

exists at least one stable limit cycle enclosing these three hyperbolic positive equilibria (see 
Fig. 3.5).

(vii) When parameters lie on the Hopf bifurcation curve H , system (3.1) has three positive 
equilibria E∗

1 , E∗
2 , and E∗

3 , in which E∗
1 is an unstable multiple focus with multiplicity one, E∗

3 is 
a hyperbolic saddle, and E∗

2 is an unstable hyperbolic focus. There exists at least one stable limit 
cycle enclosing these three positive equilibria.

(viii) When the parameters cross the curve H into region III (i.e., the region between H
and HL), E∗

1 becomes a stable focus and an unstable limit cycle bifurcates from E∗
1 according to 

the subcritical Hopf bifurcation. Taking (λ1, λ2) = (−0.01235, −0.012), system (3.1) has three 
positive equilibria, a small limit cycle enclosing the stable focus E∗

1 and a large stable limit cycle 
enclosing all three positive equilibria (see Fig. 3.6).
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Fig. 3.5. When (λ1, λ2) = (−0.01232, −0.012) lies in region II, all three equilibria E∗
1 , E∗

2 , E∗
3 are unstable and there 

exists a large stable limit cycle surrounding these three hyperbolic positive equilibria.

Fig. 3.6. When (λ1, λ2) = (−0.01235, −0.012) lies in region III, E∗
1 is a stable focus and E∗

2 , E∗
3 are unstable, there exist 

a small unstable limit cycle surrounding E∗
1 and a large stable limit cycle enclosing the small limit cycle and equilibria 

E∗
2 , E∗

3 .

(ix) When parameters lie on the homoclinic bifurcation curve HL, system (3.1) has three 
positive equilibria E∗

1 , E∗
2 , E∗

3 and an unstable homoclinic loop enclosing the stable focus E∗
1

(see Fig. 3.7).
(x) When the parameters cross the curve HL into region IV (i.e., the region between HL

and H2), the above homoclinic loop is broken. There exist a stable focus E∗, a hyperbolic 
1
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Fig. 3.7. When (λ1, λ2) = (−0.012367, −0.012) lies on the HL curve, E∗
1 is a stable focus, E∗

3 is a saddle, E∗
2 is an 

unstable focus, there exist a homoclinic loop surrounding E∗
1 and a large stable limit cycle enclosing the homoclinic loop 

and equilibria E∗
2 , E∗

3 .

Fig. 3.8. When (λ1, λ2) = (−0.013, −0.012) lies in region IV, E∗
2 is an unstable focus, E∗

1 is a stable focus, and E∗
3 is a 

saddle, and there exists a large stable limit cycle enclosing all three equilibria.

saddle E∗
3 , an unstable focus E∗

2 , and a stable limit cycle enclosing these three hyperbolic positive 
equilibria (see Fig. 3.8).
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Fig. 3.9. When (λ1, λ2) = (0.0122, 0.012) lies in region V, E∗
1 , E∗

2 are stable foci, and E∗
3 is a saddle, there exists a 

small unstable limit cycle surrounding E∗
2 with a larger stable limit cycle.

(xi) When parameters lie on the Hopf bifurcation curve H2 at E∗
2 , system (3.1) has three 

positive equilibria E∗
1 , E∗

2 , and E∗
3 , in which E∗

2 is an unstable multiple focus with multiplicity 
one (see also case (iii)).

(xii) When the parameters cross the curve H2 into region V (i.e., the region between H2
and SN−), E∗

2 becomes stable and an unstable limit cycle bifurcates from E∗
2 via the Hopf bifur-

cation surrounded by a larger stable limit cycle (see Fig. 3.9).
(xiii) When parameters lie on the saddle-node bifurcation curve SN−, system (3.1) has two 

positive equilibria, one is a stable focus E∗
2 and the other is a saddle-node E∗ (see also case (v)).

(xiv) When parameters cross the curve SN− into region VI, it returns to case (iv), that is, 
system (3.1) has at least two limit cycles enclosing the unique positive equilibrium E∗

2 , the outer 
is stable and the inner is unstable (see Fig. 3.4).

Remark 3.2. When (λ1, λ2) = (0.0122, 0.012) lies in region V, there exists a tri-stability phe-
nomenon for system (3.1): stable foci E∗

1 and E∗
2 , and a large stable limit cycle surrounding these 

three positive equilibria (see Fig. 3.9).

3.2. Degenerate focus type Bogdanov–Takens bifurcation of codimension 3

In this subsection, we consider case (b2) of Lemma 2.1 when system (1.6) has a unique degen-

erate equilibrium E∗. From Theorem 2.3, we know that if (a, δ, β) = (
(1−b)3

27 , 2+b
b−1 , 27

(1−b)(2+b)2 ), 

then the unique degenerate positive equilibrium E∗( 3
1−b

, − (2+b)3

9(1−b)
) of system (1.6) is a codimen-

sion 3 Bogdanov–Takens singularity (focus or center case). If we choose a, δ and β as bifurcation 
parameters, system (1.6) may exhibit degenerate focus type Bogdanov–Takens bifurcation of 
codimension 3. Let
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a = (1 − b)3

27
+ α1, δ = 2 + b

b − 1
+ α2, β = 27

(1 − b)(2 + b)2
+ α3, α = (α1, α2, α3)

and consider the unfolding system of system (1.6) as follows

ẋ = x(1 − x) − x2y

(
(1−b)3

27 + α1)x2 − bx + 1
,

ẏ = y

(
2 + b

b − 1
+ α2 −

(
27

(1 − b)(2 + b)2
+ α3

)
y

x

)
, (3.14)

where α = (α1, α2, α3) is a parameter vector in a small neighborhood of (0, 0, 0).

Theorem 3.3. When parameters α = (α1, α2, α3) vary in a small neighborhood of the origin, 
system (3.14) undergoes degenerate focus type Bogdanov–Takens bifurcation of codimension 3

in a small neighborhood of E∗( 3
1−b

, − (2+b)3

9(1−b)
). Moreover, in a small neighborhood of the point 

(a, δ, β) = (
(1−b)3

27 , 2+b
b−1 , 27

(1−b)(2+b)2 ) of the parameter space, there exist a Hopf bifurcation sur-
face, two homoclinic bifurcation surfaces, two saddle-node loop bifurcation surfaces, a multiple 
limit cycle bifurcation surface, and two saddle-node bifurcation surfaces for system (1.6). When 
parameters (a, δ, β) cross these surfaces, system (1.6) undergoes Hopf bifurcation, homoclinic 
bifurcation, saddle-node loop bifurcation, multiple limit cycle bifurcation, and saddle-node bi-
furcation, respectively.

Proof. Firstly, we make a sequence of smooth coordinate transformations (I ), (II) and (III), 
which were used in the proof of Theorem 2.3, to obtain the following system from system (3.14)

Ẋ = Y + c00(α) + c10(α)X + c01(α)Y + c20(α)X2 + c11(α)XY + c02(α)Y 2 + c30(α)X3

+ c12(α)XY 2 + c21(α)X2Y + c03(α)Y 3 + O
(|X,Y |4),

Ẏ = d00(α) + d10(α)X + d01(α)Y + d20(α)X2 + d11(α)XY + d02(α)Y 2 + d30(α)X3

+ d12(α)XY 2 + d21(α)X2Y + d03(α)Y 3 + O
(|X,Y |4), (3.15)

where cij (α) and dij (α) are smooth functions whose long expressions are omitted here for 
the sake of brevity, c00(0) = c10(0) = c01(0) = c20(0) = c11(0) = c02(0) = c30(0) = c21(0) =
d00(0) = d10(0) = d01(0) = d20(0) = d02(0) = 0, c03(0) = c03, c12(0) = c12, d11(0) = d11, 
d30(0) = d30, d12(0) = d12, d21(0) = d21, d03(0) = d03, and c03, c12, d11, d30, d12, d21, d03
are given in system (2.12).

Secondly, to simplify the third order terms when α = 0, we make the following coordinate 
transformation

(IV): X = x1 + d12

6
x3

1 + c12 + d03

2
x2

1y1 + c03x1y
2
1 , Y = y1 + d12

2
x2

1y1 + d03x1y
2
1

and rewrite system (3.15) as follows
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ẋ1 = y1 + e00(α) + e10(α)x1 + e01(α)y1 + e20(α)x2
1 + e11(α)x1y1 + e02(α)y2

1 + e30(α)x3
1

+ e12(α)x1y
2
1 + e21(α)x2

1y1 + e03(α)y3
1 + O

(|x1, y1|4
)
,

ẏ1 = f00(α) + f10(α)x1 + f01(α)y1 + f20(α)x2
1 + f11(α)x1y1 + f02(α)y2

1 + f30(α)x3
1

+ f12(α)x1y
2
1 + f21(α)x2

1y1 + f03(α)y3
1 + O

(|x1, y1|4
)
, (3.16)

where eij (α) and fij (α) can be expressed by cij (α), dij (α), d12, c12, d03, and c03, we also omit 
their expressions here to save spaces.

Thirdly, introduce the following transformation

(V ): x2 = x1,

y2 = y1 + e00(α) + e10(α)x1 + e01(α)y1 + e20(α)x2
1 + e11(α)x1y1 + e02(α)y2

1

+ e30(α)x3
1 + e12(α)x1y

2
1 + e21(α)x2

1y1 + e03(α)y3
1 + O

(|x1, y1|4
)

and rewrite system (3.16) as

ẋ2 = y2,

ẏ2 = g00(α) + g10(α)x2 + g01(α)y2 + g20(α)x2
2 + g11(α)x2y2 + g02(α)y2

2 + g30(α)x3
2

+ g12(α)x2y
2
2 + g21(α)x2

2y1 + g03(α)y3
2 + O

(|x2, y2|4
)
, (3.17)

where gij (α) can be expressed by eij (α) and fij (α), we also omit their expressions here.
Finally, following the steps in Xiao and Zhang [42], we can rewrite system (3.17) as

u̇ = σ(α)

ν(α)
v,

v̇ = −g30(α)

σ (α)

[
λ1(α) + λ2(α)ν(α)u − ν3(α)u3] + g21(α)v

[
λ3(α) + A(α)ν(α)u + ν2(α)u2]

+ v2Q1(u, v,α) + O
(|u,v|4), (3.18)

where λ1(α) = − g00(α)
g30(α)

+ g10(α)g20(α)

3g2
30(α)

− g3
20(α)

9g3
30(α)

+ g3
20(α)

27g3
30(α)

, λ2(α) = − g10(α)
g30(α)

+ g2
20(α)

3g2
30(α)

, λ3(α) =
g01(α)
g21(α)

− g11(α)g20(α)
3g21(α)g30(α)

+ g21(α)g2
20(α)

9g21(α)g2
30(α)

, A(α) = g11(α)
g21(α)

+ 2g20(α)
3g30(α)

, Q1(u, v, α) = σ(α)[g02(α) +
g12(α)g2

20(α)

9g2
30(α)

+ σ(α)g03(α)v + ν(α)g12(α)u].
By using the computer software Mathematica we can calculate that g30(0) = 243(b−1)2

(2+b)7 < 0

and g21(0) = 243(b−1)(16−5b+7b2)

2(2+b)8 < 0 (because b < −2), so we can choose

σ(α) = −g30(α)

g21(α)
ν(α), ν(α) =

√
−g30(α)

g2 (α)
21
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in the small neighborhood of α = (0, 0, 0). In order to obtain the canonical unfolding of the 
focus type Bogdanov–Takens singularity of codimension 3, we make the last time transformation 
τ = − g30(α)

g21(α)
t , and still denote τ by t , system (3.18) becomes

u̇ = v,

v̇ = μ1(α) + μ2(α)u − u3 + v
[
μ3(α) + A1(α)u + u2]

+ v2Q2(u, v,α) + O
(|u,v|4), (3.19)

where A1(α) = g21(α)
√−g30(α)

g30(α)
A(α), Q2(u, v, α) = − g21(α)

g30(α)
Q1(u, v, α),

μ1(α) = g3
21(α)

g30(α)
√−g30(α)

λ1(α), μ2(α) = −g2
21(α)

g30(α)
λ2(α),

μ3(α) = −g2
21(α)

g30(α)
λ3(α). (3.20)

Since

∣∣∣∣∂(μ1(α),μ2(α),μ3(α))

∂(α1, α2, α3)

∣∣∣∣
α=0

= 3
√

3(16 − 5b + 7b2)6

64(b − 1)10(2 + b)3
√−(2 + b)

�= 0

when b < −2, the parameter transformation (3.20) is a homeomorphism in a small neighborhood 
of the origin, and μ1, μ2 and μ3 are independent parameters. Furthermore, for system (3.19), 
the coefficients of u3 and u2v are −1 and 1, respectively, the coefficient of uv is A1(α), which 
can be calculated as follows when α = 0:

A1(0) =
√−3(2 + b)

1 − b
< 2

√
2.

By the results in [12] or [42], we know that system (3.19) is a generic 3-parameter fam-
ily or standard family of Bogdanov–Takens singularity of codimension 3 (focus case). Thus, 
system (1.6) will undergo a degenerate focus type Bogdanov–Takens bifurcation of codi-
mension 3 by choosing a, δ and β as bifurcation parameters in a small neighborhood of 

(
(1−b)3

27 , 2+b
b−1 , 27

(1−b)(2+b)2 ). �
Remark 3.4. Note that the maximum number of limit cycles for the versal unfolding of a focus 
type Bogdanov–Takens singularity of codimension 3 is still an open problem (see [12] for general 
theory or [42] for a predator–prey system with generalist and specialist predators).

4. Discussion

It is well-known that predation can induce oscillations in interacting species and many field 
and experimental data demonstrate periodic fluctuations in both predator and prey populations 
(May [29,30]). The existence of limit cycles in predator–prey models has been extensively stud-
ied, see for example, Bazykin [2], Kuang and Freedman [22], May [29], etc.
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Wollkind, Collings and Logan [39] employed the predator–prey system (1.4) of Leslie type 
with the Holling type II functional response to model the interaction between Metaseiulus occi-
dentalis and the phytophagous spider mite Tetranychus mcdanieli on apple trees, the existence of 
periodic solutions in the model mimics the observed biological data on population oscillations 
and outbreaks. The existence and uniqueness of limit cycles in this model has been studied by 
many researchers, see Hsu and Huang [18–20], Collings [10], Gasull, Kooij and Torregrosa [16], 
Braza [5], Sáez and González-Olivares [33], etc.

As Collings [10] suggested, the Holling type II functional response in system (1.4) can be 
replaced by other functions, including the Holling types III and IV function responses. The case 
with Holling type IV function response was considered by Li and Xiao [27]. It is shown that the 
model has two non-hyperbolic positive equilibria for some values of parameters, one is a cusp of 
codimension 2 and the other is a multiple focus of multiplicity one. Via Bogdanov–Takens bifur-
cation and subcritical Hopf bifurcation in the small neighborhoods of these two equilibria, it was 
shown that the model can have a stable limit cycle enclosing two equilibria, or an unstable limit 
cycle enclosing a hyperbolic equilibrium, or two limit cycles enclosing a hyperbolic equilibrium 
by choosing different values of parameters.

In this paper, we studied the dynamical behavior of a predator–prey model (1.6) of Leslie type 
with the generalized Holling type III functional response. We have shown that the model has very 
rich and complicated dynamics such as the existence of a stable limit cycle enclosing two non-
hyperbolic positive equilibria, a stable limit cycle enclosing an unstable homoclinic loop, two 
limit cycles enclosing a hyperbolic positive equilibrium, or one stable limit cycle enclosing three 
hyperbolic positive equilibria. In particular, we have shown that the model undergoes degenerate 
focus type Bogdanov–Takens bifurcation of codimension 3, the coexistence of three stable states 
(two stable equilibria and a stable limit cycle) are also shown by numerical simulations, these 
new dynamical behaviors were not observed in [27]. Since the generalized Holling type III func-
tional response has similar properties as the Holling type IV functional response, our model with 
b > −2

√
a exhibits much more complex and far richer dynamics not only than the case when 

b > 0 but also than the model with Holling type IV functional response considered by Li and 
Xiao [27]. Moreover, the analytical results and the numerical simulations predict population os-
cillations and outbreaks in the predator–prey model of Leslie type with the generalized Holling 
type III functional response with various parameter values. Furthermore, these results provide 
new bifurcation phenomena, such as the degenerate focus type Bogdanov–Takens bifurcation of 
codimension 3, the coexistence of three stable states (two stable equilibria and a stable limit cy-
cle), the existence of two limit cycles enclosing a hyperbolic positive equilibrium or one stable 
limit cycle enclosing three hyperbolic positive equilibria, that have not been observed in classical 
Gause type predator–prey systems.

The generic bifurcation of three-parameter families of planar vector fields around nilpotent 
singular points is a very important and challenging problem in the bifurcation theory of dynam-
ical systems (Dumortier et al. [11,12], Xiao [40]). It was shown that there are three topological 
types of degenerate Bogdanov–Takens bifurcation of codimension 3: saddle, elliptic, and focus. It 
is very interesting to apply the theory to realistic biological and physical systems that exhibit such 
degenerate Bogdanov–Takens bifurcation of codimension 3. Recently, Cai, Chen, and Xiao [7]
demonstrated that an epidemiological model with strong Allee effect undergoes degenerate el-
liptic type Bogdanov–Takens bifurcation of codimension 3 among other types of bifurcations. 
In this paper we have shown that a predator–prey model of Leslie type with the generalized 
Holling type III functional response exhibits degenerate focus type Bogdanov–Takens bifurca-
tion of codimension 3. These results indicate that the nonlinear dynamics of such biological and 
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epidemiological models not only depend on more bifurcation parameters but also are very sen-
sitive to parameter perturbations, which are important for the control of biological species or 
infectious diseases. It will be interesting to see if the degenerate saddle type Bogdanov–Takens 
bifurcation of codimension 3 occurs in realistic biological or epidemiological models.
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