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Abstract. Recently, we (J. Huang, Y. Gong and S. Ruan, Discrete Contin.

Dynam. Syst. B 18 (2013), 2101-2121) showed that a Leslie-Gower type

predator-prey model with constant-yield predator harvesting has a Bogdanov-
Takens singularity (cusp) of codimension 3 for some parameter values. In this

paper, we prove analytically that the model undergoes Bogdanov-Takens bi-

furcation (cusp case) of codimension 3. To confirm the theoretical analysis
and results, we also perform numerical simulations for various bifurcation sce-

narios, including the existence of two limit cycles, the coexistence of a stable
homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf

bifurcations, and homoclinic bifurcation of codimension 1.

1. Introduction. Harvesting is commonly practiced in fishery, forestry, and wildlife
management (Clark [8]). It is very important to harvest biological resources with
maximum sustainable yield while maintain the survival of all interacting popula-
tions. Recently, the nonlinear dynamics in predator-prey models with harvesting
have been studied extensively and very interesting and complex bifurcation phe-
nomona have been observed depending on various functional responses and different
harvesting regimes. We refer to Beddington and Cooke [1], Beddington and May
[2], Brauer and Soudack [3, 4, 5], Chen et al. [6], Dai and Tang [9], Etoua and
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Rousseau [12], Gong and Huang [13], Huang et al. [15, 16, 17], Leard et al. [19],
May et al. [21], Xiao and Jennings [23], Xiao and Ruan [24], Zhu and Lan [26], and
references cited therein.

In order to investigate the interaction between krill (prey) and whale (predator)
populations in the Southern Ocean, May et al. [21] proposed the following model
subject to various harvesting regimes: ẋ = r1x(1− x

K
)− axy −H1,

ẏ = r2y(1− y

bx
)−H2,

(1)

where x(t) > 0 and y(t) ≥ 0 represent the population densities of the prey and
predators at time t ≥ 0, respectively; r1 and K describe the intrinsic growth rate
and carrying capacity of the prey in the absence of predators, respectively; a is the
maximum value at which per capita reduction rate of the prey x can attain; r2
is the intrinsic growth rate of predators; bx takes on the role of a prey-dependent
carrying capacity for predators and b is a measure of the quality of the food for
predators. H1 and H2 describe the effect of harvesting on the prey and predators,
respectively.

(a) When H1 = H2 = 0, that is, there is no harvesting, system (1) becomes the
so-called Leslie-Gower type predator-prey model ẋ = r1x(1− x

K
)− axy,

ẏ = r2y(1− y

bx
),

(2)

which has been studied extensively, for example, Hsu and Huang [14]. In partic-
ular, they showed that the unique positive equilibrium of system (2) is globally
asymptotically stable under all biologically admissible parameters.

(b) When H1 = h1 and H2 = 0, where h1 is a positive constant, that is, there is
constant harvesting on the prey only, Zhu and Lan [26] and Gong and Huang [13]
considered system (1) when only the prey population is harvested at a constant-yield
rate  ẋ = r1x(1− x

K
)− axy − h1,

ẏ = r2y(1− y

bx
).

(3)

They obtained various bifurcations including saddle-node bifurcation, supercritical
and subcritical Hopf bifurcations of codimension 1, and repelling Bogdanov-Takens
bifurcation of codimension 2.

(c) When H1 = 0 and H2 = h2, where h2 is a positive constant, that is, there
is constant harvesting on the predators only, we (Huang, Gong and Ruan [17])
considered system (1) when only the predator population is harvested at a constant-
yield rate 

dx

dt
= r1x(1− x

K
)− axy,

dy

dt
= r2y(1− y

bx
)− h2.

(4)

By the following scaling

t→ r1t, x→
x

K
, y → ay

r1
,
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model (4) becomes 
dx

dt
= x(1− x)− xy,

dy

dt
= y(δ − β y

x
)− h,

(5)

here δ = r2
r1

, β = r2
abK , h = ah2

r21
are positive constants. The effect of constant-yield

predator harvesting on system (5) in the biological-feasible region Ω = {(x, y) :
x > 0, y ≥ 0} was studied. The saddle-node bifurcation, repelling and attracting
Bogdanov-Takens bifurcations of codimension 2, supercritical and subcritical Hopf
bifurcations, and degenerate Hopf bifurcation are shown in model (5) as the values
of parameters vary. In particular, it was shown that the model has a Bogdanov-
Takens singularity (cusp) of codimension 3. However, the existence of Bogdanov-
Takens bifurcation (cusp case) of codimension 3 has not been proved analytically,
which is the subject of this paper.

This paper is organized as follows. In section 2, we prove analytically the exis-
tence of Bogdanov-Takens bifurcation (cusp case) of codimension 3 for model (5)
and describe the bifurcation diagram and bifurcation phenomena. Numerical simu-
lations of various bifurcation cases, including the existence of two limit cycles, the
coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical
and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1, are
also presented in section 3 to confirm the theoretical analysis. The paper ends with
a brief discussion in section 4 about the effect of constant-yield predator harvesting
on system (5) and a comparison about different dynamics in systems (2), (3), and
(5).

2. Bogdanov-Takens bifurcation of codimension 3. Before stating the main
results of our paper, we firstly recall the definition of Bogdanov-Takens bifurcation
(cusp case) of codimension 3 introduced by Dumortier, Roussarie and Sotomayor
[10] (see also Chow, Li and Wang [7], Dumortier et al. [11], Perko [22]) as follows.

Definition 2.1. The bifurcation that results from unfolding the following normal
form of a cusp of codimension 3 

dx

dt
= y,

dy

dt
= x2 ± x3y

is called a Bogdanov-Takens bifurcation (cusp case) of codimension 3. A universal
unfolding of the above normal form is given by

dx

dt
= y,

dy

dt
= µ1 + µ2y + µ3xy + x2 ± x3y.

The following lemma is from Theorem 3.3 (ii) in Huang, Gong and Ruan [17].

Lemma 2.2. When β = h3

(1−h)2 , δ = h+h2

1−h , and 0 < h < 1, system (5) has an

interior equilibrium (h, 1 − h) which is a cusp. Moreover, if h = 2 −
√

3, then
(h, 1− h) is a cusp of codimension 3. The phase portrait is given in Figure 1.
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x ’ = x (1 − x) − x y                                                       
y ’ = y (sqrt(12) − 3 + r1 − (7/2 − sqrt(12) + r2) y/x) − (2 − sqrt(3) + r3)

r2 = 0
r3 = 0

r1 = 0
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Figure 1. A cusp of codimension 3 for system (6).

Substituting h = 2−
√

3 into β = h3

(1−h)2 and δ = h+h2

1−h , we can find a necessary

condition for the existence of higher codimension B-T bifurcations:

(δ0, β0, h0) = (−3 + 2
√

3,
7

2
− 2
√

3, 2−
√

3),

and the degenerate equilibrium (h, 1 − h) is (2 −
√

3,−1 +
√

3) under the above
conditions.

Lemma 2.2 indicates that system (5) may exibit Bogdanov-Takens bifurcation of
codimension 3. In order to make sure if such a bifurcation can be fully unfolded in-
side the class of system (5) as (δ, β, h) vary in the small neighborhood of (δ0, β0, h0),
we let (δ, β, h) = (δ0 + r1, β0 + r2, h0 + r3) in system (5) and obtain the following
unfolding system 

dx

dt
= x(1− x)− xy,

dy

dt
= y(δ0 + r1 − (β0 + r2)

y

x
)− (h0 + r3),

(6)

where (r1, r2, r3) ∼ (0, 0, 0). If we can transform the unfolding system (6) into the
following versal unfolding of Bogdanov-Takens singularity (cusp) of codimension 3
by a series of near-identity transformations

dx

dτ
= y,

dy

dτ
= γ1 + γ2y + γ3xy + x2 − x3y +R(x, y, r),

(7)

where

R(x, y, r) = y2O(|x, y|2)+O(|x, y|5)+O(r)(O(y2)+O(|x, y|3))+O(r2)O(|x, y|), (8)
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and D(γ1,γ2,γ3)
D(r1,r2,r3)

6= 0 for small r, then we can claim that system (5) undergoes

Bogdanov-Takens bifurcation (cusp case) of codimension 3 (Dumortier, Roussarie
and Sotomayor [10], Chow, Li and Wang [7]). In fact, we have the following main
theorem.

Theorem 2.3. System (5) undergoes Bogdanov-Takens bifurcation (cusp case) of

codimension 3 in a small neighborhood of the interior equilibrium (2−
√

3,−1+
√

3)
as (δ, β, h) varies near (δ0, β0, h0). Therefore, system (5) can exhibit the coexistence
of a stable homoclinic loop and an unstable limit cycle, two limit cycles (the inner
one unstable and the outer stable) and semi-stable limit cycle for various parameters
values.

Proof. Firstly, we translate the equilibrium (2−
√

3,−1 +
√

3) of system (6) when
r = 0 into the origin and expand system (6) in power series around the origin. Let

X = x− 2 +
√

3, Y = y + 1−
√

3.

Then system (6) becomes
dX

dt
= (−2 +

√
3)X + (−2 +

√
3)Y −XY −X2,

dY

dt
= Q0(X,Y ) +O(|X,Y |5),

(9)

where

Q0(X,Y ) =A00+A10X+A01Y +A11XY +A20X
2+A02Y

2+A30X
3+A21X

2Y

+A12XY
2 +A40X

4 +A31X
3Y +A22X

2Y 2

in which

A00 = (−1 +
√

3)r1 − 2r2 − r3, A10 = 2−
√

3 + 2(2 +
√

3)r2,

A01 = 2−
√

3 + r1 − 2(1 +
√

3)r2, A11 = −1 +
√

3 + 2(5 + 3
√

3)r2,

A20 = −1− 2(7 + 4
√

3)r2, A02 =
1

2
(−2 +

√
3− 2(2 +

√
3)r2),

A30 = 2 +
√

3 + (52 + 30
√

3)r2, A21 = −(1 +
√

3 + 2(19 + 11
√

3)r2),

A12 =
1

2
+ (7 + 4

√
3)r2, A40 = −7− 4

√
3− 2(97 + 56

√
3)r2,

A31 = 5 + 3
√

3 + (142 + 82
√

3)r2, A22 = −(26 + 15
√

3)(
7

2
− 2
√

3 + r2).

Next, let

x1 = X, y1 = (−2 +
√

3)X + (−2 +
√

3)Y −XY −X2.

Then system (9) can be transformed into
dx1
dt

= y1,

dy1
dt

= Q1(x1, y1) +O(|x1, y1|5),

(10)

where

Q1(x1, y1) =a00 + a10x1 + a01y1 + a11x1y1 + a20x
2
1 + a02y

2
1 + a12x1y

2
1

+ a21x
2
1y1 + a22x

2
1y

2
1 + a31x

3
1y1
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with

a00 = (−2 +
√

3)A00,

a10 = −A00 + (2−
√

3)A01 − (2−
√

3)A10,

a01 = −2 +
√

3 +A01,

a11 = −1− 2A02 +A11,

a20 = A01 + (−2 +
√

3)A02 −A10 + (2−
√

3)A11 − (2−
√

3)A20,

a02 = 2 +
√

3− (2 +
√

3)A02,

a12 = (7 + 4
√

3)(−1 +A02 + (−2 +
√

3)A12),

a21 = −2A12 +A21,

a22 = (−7− 4
√

3)(−2−
√

3 + (2 +
√

3)A02 −A12 + (2−
√

3)A22),

a31 = −2A22 +A31.

Secondly, following the procedure in Li, Li and Ma [20], we use several steps (I, II,
III, IV, V, VI) to transform system (10) to the versal unfolding of Bogdanov-Takens
singularity (cusp) of codimension 3, that is system (7).

(I) Removing the y21-term from Q1 in system (10) when r = 0. In order
to remove the y21-term from Q1, we let x1 = x2 + a02

2 x
2
2, y1 = y2 +a02x2y2, which is

a near identity transformation for (x1, y1) near (0, 0), then system (10) is changed
into 

dx2
dt

= y2,

dy2
dt

= Q2(x2, y2) +O(|x2, y2|5),

(11)

where

Q2(x2, y2) =b00 + b10x2 + b01y2 + b11x2y2 + b20x
2
2 + b12x2y

2
2 + b21x

2
2y2

+ b30x
3
2 + b31x

3
2y2 + b40x

4
2 + b22x

2
2y

2
2

with

b00 = a00, b10 = −a00a02 + a10, b01 = a01, b11 = a11, b20 =
1

2
(2a00a

2
02 − a02a10 +

2a20), b12 = 2a202 +a12, b21 =
1

2
(a02a11 +2a21), b30 =

1

2
(−2a00a

3
02 +a202a10), b31 =

a02a21 +a31, b40 =
1

4
(4a00a

4
02−2a302a10 +a202a20), b22 =

1

2
(−2a302 +3a02a12 +2a22).

(II) Eliminating the x2y
2
2-term from Q2 in system (11) when r = 0. Let

x2 = x3 + b12
6 x

3
3, y2 = y3 + b12

2 x
2
3y3, then we obtaint the following system

dx3
dt

= y3,

dy3
dt

= Q3(x3, y3) +O(|x3, y3|5),

(12)

where

Q3(x3, y3) =c00 + c10x3 + c01y3 + c11x3y3 + c20x
2
3 + c21x

2
3y3 + c30x

3
3

+ c31x
3
3y3 + c40x

4
3
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in which

c00 = b00, c10 = b10, c01 = b01, c11 = b11, c20 = b20 −
b12b00

2
, c21 = b21, c30 =

b30 −
b12b10

3
, c31 = b31 +

b11b12
6

, c40 = b40 +
b00b

2
12

4
− b12b20

6
.

(III) Removing the x33 and x43-terms from Q3 in system (12) when
r = 0. Note that c20 = 1

2 + O(r), c20 6= 0 for small r. We let x3 = x4 − c30
4c20

x24 +
15c230−16c20c40

80c220
x34, y3 = y4, and obtain the following system from system (12):

dx4
dt

= y4(1 +
c30
2c20

x4 +
−25c230 + 48c20c40

80c220
x24 +

−35c330 + 48c20c30c40
80c320

x34),

dy4
dt

= Q∗
4(x4, y4) +O(|x4, y4|5),

(13)

where

Q∗
4(x4, y4) =D00 +D10x4 +D01y4 +D11x4y4 +D20x

2
4 +D21x

2
4y4 +D30x

3
4

+D40x
4
4 +D31x

3
4y4

and
D00 = c00, D10 = c10, D01 = c01, D11 = c11, D20 = c20 −

c10c30
4c20

, D21 = c21 −

c11c30
4c20

, D30 =
c30
2

+
3c10c

2
30

16c220
−c40c10

5c20
, D31 = c31+

3c11c
2
30

16c220
−5c21c30 + 2c11c40

10c20
, D40 =

3c40
5
− 5c230

16c20
.

Next, introducing a new time variable τ by

dτ = (1 +
c30
2c20

x4 +
−25c230 + 48c20c40

80c220
x24 +

−35c330 + 48c20c30c40
80c320

x34)dt,

we can obtain (still denote τ by t)
dx4
dt

= y4,

dy4
dt

= Q4(x4, y4) +O(|x4, y4|5),

(14)

where

Q4(x4, y4) =d00 + d10x4 + d01y4 + d11x4y4 + d20x
2
4 + d21x

2
4y4

+ d30x
3
4 + d40x

4
4 + d31x

3
4y4

and
d00 = c00, d10 = c10 −

c00c30
2c20

, d01 = c01, d11 = c11 −
c01c30
2c20

, d20 = c20 −

60c10c20c30−45c00c
2
30+48c00c20c40

80c220
, d21 = c21−

60c11c20c30−45c01c
2
30+48c01c20c40

80c220
,

d30 =
c10(35c230 − 32c20c40)

40c220
, d31 = c31 +

7c11c
2
30

8c220
− 5c21c30 + 4c11c40

5c20
,

d40 =
1

6400c420
(100c10c20c30(−15c230 + 16c20c40) + c00(−275c430 − 1440c20c

2
30c40 +

2304c220c
2
40)). d30 = 0 and d40 = 0 when r = 0.

(IV) Removing the x24y4-term from Q4 in system (14) when r = 0. Since
d20 = 1

2 + O(r), d20 6= 0 for small r, we can make the parameter dependent affine
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transformation x4 = x5, y4 = y5 + d21
3d20

y25 +
d221

36d220
y35 , then system (14) becomes

dx5
dt

= y5(1 +
d21
3d20

y5 +
d221

36d220
y25),

dy5
dt

= Q∗
5(x5, y5) +O(|x5, y5|5),

(15)

where

Q∗
5(x5, y5) =F00 + F10x5 + F01y5 + F20x

2
5 + F11x5y5 + F02y

2
5 + F30x

3
5 + F21x

2
5y5

+ F12x5y
2
5 + F03y

3
5 + F40x

4
5 + F31x

3
5y5 + F22x

2
5y

2
5 + F13x5y

3
5 + F04y

4
5

and

F00 = d00, F10 = d10, F01 = d01−
2d21d00

3d20
, F20 = d20, F11 = d11−

2d10d21
3d20

, F02 =

−12d01d20d21 + 13d00d
2
21

36d220
, F30 = d30, F21 =

d21
3
, F12 =

−12d11d20d21 + 13d10d
2
21

36d220
,

F03 =
9d01d20d

2
21 − 10d00d

3
21

54d320
, F40 = d40, F31 = d31 −

2d21d30
3d20

, F22 =
d221

36d20
,

F13 =
9d11d20d

2
21 − 10d10d

3
21

54d320
, F04 =

−108d01d20d
3
21 + 121d00d

4
21

1296d420
.

Once again, introducing a new time variable τ by

dτ = (1 +
d21
3d20

y5 +
d221

36d220
y25)dt,

we obtain (still denote τ by t )
dx5
dt

= y5,

dy5
dt

= Q5(x5, y5) +R5(x5, y5, r),

(16)

where

Q5(x5, y5) = e00 + e10x5 + e01y5 + e11x5y5 + e20x
2
5 + e31x

3
5y5

and
e00 = d00, e10 = d10, e01 = d01 − d00d21

d20
, e11 = d11 − d10d21

d20
, e20 = d20, e31 = d31,

R5(x5, y5, r) has the property (8).

(V) Changing e20 to 1 and e31 to −1 in Q5 in system (16). We can see

that e20 = 1
2 +O(r) > 0 and e31 = − 1

2 (2 +
√

3) +O(r) < 0 for small r. By making
the following changes of variables and time:

x5 = e
1
5
20e

−2
5

31 x6, y5 = −e
4
5
20e

−3
5

31 y6, t = −e
−3
5

20 e
1
5
31τ,

system (16) becomes (still denote τ by t)
dx6
dt

= y6,

dy6
dt

= Q6(x6, y6) +R6(x6, y6, r),

(17)

where

Q6(x6, y6) = f00 + f10x6 + f01y6 + f11x6y6 + x26 − x36y6
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and

f00 = e00e
4
5
31e

− 7
5

20 , f10 = e10e
2
5
31e

− 6
5

20 , f01 = −e01e
1
5
31e

− 3
5

20 , f11 = −e11e
− 1

5
31 e

− 2
5

20 ,
R6(x6, y6, r) has the property (8).

(VI) Removing the x6-term from Q6 in system (17) when r = 0. Let

x7 = x6 + f10
2 , y7 = y6, then system (17) becomes

dx7
dτ

= y7,

dy7
dt

= γ1 + γ2y7 + γ3x7y7 + x27 − x37y7 +R7(x7, y7, r),

(18)

where γ1 = f00− 1
4f

2
10, γ2 = f01+ 1

8 (f310−4f10f11), γ3 = f11− 3
4f

2
10, and R7(x7, y7, r)

has the property (8).
Lengthy computations by Mathematica software show that

D(γ1, γ2, γ3)

D(r1, r2, r3)
= 4
√

3 2
3
5 (2 +

√
3)

4
5 +O(r) > 0

for small r, it is obvious that system (18) is exactly in the form of system (7). By
the results in Dumortier, Roussarie and Sotomayor [10] and Chow, Li and Wang
[7], system (18) is the versal unfolding of the Bogdanov-Takens singularity (cusp)
of codimension 3, the remainder term R7(x7, y7, r) with the property (8) has no
influence on the bifurcation phenomena, and the dynamics of system (5) in a small

neighborhood of the interior equilibrium (2−
√

3,−1 +
√

3) as (δ, β, h) varing near
(δ0, β0, h0) are equivalent to that of system (18) in a small neighborhood of (0, 0)
as (γ1, γ2, γ3) varing near (0, 0, 0).

3. Bifurcation diagram and numerical simulations. We describe the bifurca-
tion diagram of system (18) following the bifurcation diagram given in Figure 3 of
Dumortier, Roussarie and Sotomayor [10] (see also Zhu, Campbell and Wolkowicz
[25], Lamontagne, Coutu and Rousseau [18]) based on a time reversal transforma-
tion. System (18) has no equilibria for γ1 > 0. γ1 = 0 is a saddle-node bifurcation
plane in a neighborhood of the origin, crossing the plane in the direction of decreas-
ing γ1, two equilibria are created: a saddle, and a node or focus. The other surfaces
of bifurcation are located in the half space γ1 < 0. The bifurcation diagram has the
conical structure in R3 starting from (γ1, γ2, γ3) = (0, 0, 0). It can best be shown
by drawing its intersection with the half sphere

S = {(γ1, γ2, γ3)|γ21 + γ22 + γ23 = λ2, γ1 ≤ 0, λ > 0 sufficiently small}.

To see the trace of intersection clearly, we draw the projection of the trace onto the
(γ2, γ3)-plane, see Figure 2.

Now we summarize the bifurcation phenomena of system (18), which is equivalent
to the original system (5). There are three bifurcation curves on S as shown in
Figure 2:

C : homoclinic bifurcation curve;
H : Hopf bifurcation curve;
L : saddle-node bifurcation curve of limit cycles.

The curve L is tangent to H at a point h2 and tangent to C at a point c2. The
curves H and C have first order contact with the boundary of S at the points b1
and b2. In the neighborhood of b1 and b2, system (18) is an unfolding of the cusp
singularity of codimension 2.
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Figure 2. Bifurcation diagram for system (18) on S.

(a) Along the curve C, except at the point c2, a homoclinic bifurcation of codi-
mension 1 occurs. When crossing the arc b1c2 of C from left to right, the two
separatrices of the saddle point coincide and an unstable limit cycle appears. The
same phenomenon gives rise to a stable limit cycle when crossing the arc c2b2 of
C from right to left. The point c2 corresponds to a homoclinic bifurcation of codi-
mension 2.

(b) Along the arc b1h2 of the curve H, a subcritical Hopf bifurcation occurs with
an unstable limit cycle appearing when crossing the arc b1h2 of H from right to
left. Along the arc h2b2 of the curve H, a supercritical Hopf bifurcation occurs with
a stable limit cycle appearing when crossing the arc h2b2 of H from left to right.
The point h2 is a degenerate Hopf bifurcation point, i.e., a Hopf bifurcation point
of codimension 2.

(c) The curves H and C intersect transversally at a unique point d representing
a parameter value of simultaneous Hopf and homoclinic bifurcation.

(d) For parameter values in the triangle dh2c2, there exist exactly two limit
cycles: the inner one is unstable and the outer one is stable. These two limit cycles
coalesce in a generic way in a saddle-node bifurcation of limit cycles when the curve
L is crossed from right to left. On the arc L itself, there exists a unique semistable
limit cycle.

In the following, we give some numerical simulations for system (6) to confirm the
existence of Bogdanov-Takens bifurcation (cusp case) of codimension 3. In Figure
3, we fix r1 = 0, r3 = −0.01. An unstable hyperbolic focus A for r2 = −0.012 is
shown in Figure 3(a); when r2 increases to r2 = −0.011, an unstable limit cycle
arrounding a stable hyperbolic focus A appears by subcritical Hopf bifurcation (see
Figure 3(b)); when r2 = −0.009999, the coexistence of a stable homoclinic loop
and an unstable limit cycle is shown in Figure 3(c), the homoclinic orbit breaks for
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larger r2 = −0.0095 (see Figure 3(d)). Comparing with Figure 3(b) and (d), we
can see that the relative locations of the stable manifold and unstable manifold for
the saddle B are reversed, which implies the occurence of a homoclinic bifurcation
when r2 is between r2 = −0.011 and r2 = −0.0095.

(a) (b)
x ’ = x (1 − x) − x y                                                       
y ’ = y (sqrt(12) − 3 + r1 − (7/2 − sqrt(12) + r2) y/x) − (2 − sqrt(3) + r3)

r2 = − 0.012
r3 = − 0.01

r1 = 0
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(c) (d)
x ’ = x (1 − x) − x y                                                       
y ’ = y (sqrt(12) − 3 + r1 − (7/2 − sqrt(12) + r2) y/x) − (2 − sqrt(3) + r3)

r2 = − 0.009999
r3 = − 0.01
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Figure 3. The coexistence of a stable homoclinic loop and an
unstable limit cycle in system (6) with r1 = 0, r3 = −0.01. (a)
An unstable hyperbolic focus A for r2 = −0.012; (b) An unstable
limit cycle arrounding a stable focus A for r2 = −0.011; (c) The
coexistence of a stable homoclinic loop and an unstable limit cycle
for r2 = −0.009999; (d) A stable hyperbolic focus A for r2 =
−0.0095.

In Figure 4, we fix r1 = −0.1541, r2 = −0.0234. A stable hyperbolic focus A for
r3 = −0.081 is shown in Figure 4(a); when r3 increases to r3 = −0.0799, a stable
limit cycle arrounding an unstable hyperbolic focus A appears by supercritical Hopf
bifurcation (see Figure 4(b)); when r3 = −0.07443, a stable homoclinic loop is shown
in Figure 4(c), the homoclinic orbit breaks for larger r3 = −0.073 (see Figure 4(d)).
Figure 4(b) and (d) show that the relative locations of the stable manifold and
unstable manifold for the saddle B are reversed, which implies the occurence of
homoclinic bifurcation when r3 is between r3 = −0.0799 and r3 = −0.073.
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(a) (b)
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Figure 4. Numerical simulations for the supercritical Hopf bi-
furcation and homoclinic bifurcation in system (6) with r1 =
−0.1541, r2 = −0.0234. (a) A stable hyperbolic focus A for
r3 = −0.081; (b) A stable limit cycle arrounding an unstable hy-
perbolic focus A for r3 = −0.0799; (c) A stable homoclinic loop for
r3 = −0.07443; (d) An unstable hyperbolic focus A for r3 =
−0.073.

In Figure 5, we fix r1 = 0.38+3−
√

12, r2 = 1
80 −

7
2 +
√

12 and r3 = 21
100 −2+

√
3,

the existence of two limit cycles is shown, in which the repelling cycle is surrounded
by an attracting cycle.

4. Discussion. Our analytical results confirmed the conjecture in Huang, Gong
and Ruan [17] about the existence of Bogdanov-Takens bifurcation of codimension
3 in system (5), so there exist some new dynamics in system (5), such as the
coexistence of a stable homoclinic loop and an unstable limit cycle, two limit cycles
(the inner one unstable and the outer stable) and a semi-stable limit cycle for various
parameters values, which were only numerically simulated in [17].

Notice that these complex dynamics cannot occur in the unharvested systems (2)
and the case (3) with only constant-yield prey harvesting. The unharvested model
(2) has only one positive equilibrium which is globally stable under all admissible



BOGDANOV-TAKENS BIFURCATION IN A PREDATOR-PREY MODEL 1065

r2 = 1/80 − 7/2 + sqrt(12)
r3 = 21/100 − 2 + sqrt(3)

r1 = 0.38 + 3 − sqrt(12)
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Figure 5. The existence of two limit cycles for system (6).

parameters (Hsu and Huang [14]), while model (3) with only constant-yield prey
harvesting has at most two positive equilibria and exhibits Hopf bifurcation of codi-
mension 1 (Zhu and Lan [26]) and Bogdanov-Takens bifurcation of codimension 2
(Gong and Huang [13]). Combining the results in Huang, Gong and Ruan [17] and
in this paper, we can see that the model (5) with constant-yield predator harvesting
has a Bogdanov-Takens singularity (cusp) of codimension 3 or a weak focus of mul-
tiplicity two for some parameter values, respectively, and exhibits saddle-node bi-
furcation, repelling and attracting Bogdanov-Takens bifurcations, supercritical and
subcritical Hopf bifurcations, degenerate Hopf bifurcation, and Bogdanov-Takens
(cusp) bifurcation of codimension 3 as the values of parameters vary. Thus the
constant-yield predator harvesting in system (5) can cause more complex dynam-
ical behaviors and bifurcation phenomena compared with the unharvested system
(2) or system (3) with only constant-yield prey harvesting. In Huang, Gong and
Ruan [17], we have shown that the constant-yield predator harvesting h can affect
the number and type of equilibria, and the type of bifurcations of the model (5) (see
Lemma 2.1 and Theorems 2.2, 2.3, 3.3 and 3.4 in [17]), from Figure 4 in this paper
we can also see that the dynamics of the model (5) change dramatically as h changes
even slightly. Therefore, our results demonstrate that the dynamical behaviors of
model (5) are sensitive to the constant-yield predator harvesting and this suggests
careful management of resource and harvesting policies in the applied conservation
and renewable resource contexts.

Recall that in the original model (1) proposed by May et al. [21], both the prey
and predators are subject to harvesting. It will be very interesting (and challenging)
to investigate the bifurcations in the model with constant-yield harvesting on both
the prey and predators (Beddington and Cooke [1]).
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