
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjbd20

Journal of Biological Dynamics

ISSN: 1751-3758 (Print) 1751-3766 (Online) Journal homepage: https://www.tandfonline.com/loi/tjbd20

Modeling the seasonality of Methicillin-resistant
Staphylococcus aureus infections in hospitals with
environmental contamination

Qimin Huang, Xi Huo, Darlene Miller & Shigui Ruan

To cite this article: Qimin Huang, Xi Huo, Darlene Miller & Shigui Ruan (2019) Modeling
the seasonality of Methicillin-resistant Staphylococcus�aureus infections in hospitals with
environmental contamination, Journal of Biological Dynamics, 13:sup1, 99-122, DOI:
10.1080/17513758.2018.1510049

To link to this article:  https://doi.org/10.1080/17513758.2018.1510049

© 2019 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 22 Aug 2018.

Submit your article to this journal 

Article views: 358

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tjbd20
https://www.tandfonline.com/loi/tjbd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17513758.2018.1510049
https://doi.org/10.1080/17513758.2018.1510049
https://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2018.1510049&domain=pdf&date_stamp=2018-08-22
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2018.1510049&domain=pdf&date_stamp=2018-08-22
https://www.tandfonline.com/doi/citedby/10.1080/17513758.2018.1510049#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/17513758.2018.1510049#tabModule


JOURNAL OF BIOLOGICAL DYNAMICS
2019, VOL. 13, NO. S1, 99–122
https://doi.org/10.1080/17513758.2018.1510049

Modeling the seasonality of Methicillin-resistant
Staphylococcus aureus infections in hospitals with
environmental contamination

Qimin Huanga, Xi Huoa, Darlene Millerb and Shigui Ruana

aDepartment of Mathematics, University of Miami, Coral Gables, FL, USA; bDepartment of Ophthalmology,
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA

ABSTRACT
A deterministic mathematical model with periodic antibiotic pre-
scribing rate is constructed to study the seasonality of Methicillin-
resistant Staphylococcus aureus (MRSA) infections taking antibiotic
exposure and environmental contamination into consideration. The
basic reproduction number R0 for the periodic model is calculated
under the assumption that there are only uncolonized patients
with antibiotic exposure at admission. Sensitivity analysis of R0 with
respect to some essential parameters is performed. It is shown that
the infection would go to extinction if the basic reproduction num-
ber is less than unity and would persist if it is greater than unity.
Numerical simulations indicate that environmental cleaning is the
most important intervention to control the infection, which empha-
sizes the effect of environmental contamination in MRSA infections.
It is also important to highlight the importance of effective antimi-
crobial stewardshipprogrammes, increase active screening at admis-
sion and subsequent isolation of positive cases, and treat patients
quickly and efficiently.
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1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA), a type of staph bacteria first discov-
ered in 1961, is one of the most common causes of hospital-acquired infections. As a
considerable threat to global public health, MRSA causes many hard-to-treat infections
such as serious skin infections, brain abscess (central nervous system infection), endoph-
thalmitis, pneumonia (lung infection), and bloodstream infections. We usually treat staph
bacteria with antibiotics, however, as antibiotics are abused to be prescribed to inhibit these
kinds of bacteria infections, so far MRSA has been resistant to many common antibiotics
such as methicillin, oxacillin, penicillin, and amoxicillin. Based on a Centers for Disease
Control and Prevention (CDC) report [5], 30–50% of antibiotics patients accepted in hos-
pitals are unnecessary or inappropriate. Even though some antibiotics still work, MRSA is
constantly adapting, which makes researchers difficult to keep developing new antibiotics.
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Hence whether a patient has antibiotic exposure or not is kind of important for his or her
treatment. In fact, many studies observe that patients with antibiotic exposure tend to be
more likely to be colonized by MRSA, which results in a lengthier duration in hospitals, a
higher chance of failed treatment, a more expensive cost, a larger shedding rate of bacteria
to environment, and even a higher mortality of death [6,10,23,24]. Hence it is necessary to
consider antibiotic exposure and use of antibiotics in hospitals as influential factors in the
transmission of MRSA.

Furthermore, in recent decades seasonal variation of MRSA infections in the hospital
settings has been widely observed, especially in surgical wound, skin and soft tissue, urine,
and respiratory tract in young children [12,14,17,18,21,22]. Reasons for this seasonal vari-
ation of MRSA infections in hospital are very complicated and still controversial. Previous
studies believe that the seasonality involves temperature variation, insect bites, seasonal
influenza, community-associated MRSA (CA-MRSA) infection, school season, seasonal
community antibiotic use, which may result in a seasonal pattern of antibiotic prescrip-
tions in hospitals. Especially, in the work of Sun et al. [22], seasonality in the prescription
data was found (see Figure 1). Moreover, they performed a seasonal decomposition anal-
ysis for the MRSA isolates and found out that both fluoroquinolone prescriptions and the
percentage of MRSA isolates that were resistant to ciprofloxacin peaked in the winter.
Similar results were found for both the percentage of MRSA isolates resistant to clin-
damycin and macrolide/lincosamide prescriptions (see Figure 2). Though this does not
totally reflect the antibiotic usage in hospitals, [21,22] indicate that the usage of antibi-
otics in hospitals should also fluctuate seasonally. We believe that the seasonal pattern of
antibiotic consumption implies the seasonal circulation of pathogens, which could induce
seasonal risk of infections for hospitalized patients due to their weakened immune systems,
and thus results in seasonal antibiotic consumption rates among hospitalized patients.
Therefore, in our model we assume the antibiotic prescribing rate as a periodic func-
tion depending on time t, which has a period of 365 days and represents that antibiotic
prescribing rate increases starting at the beginning of August, gains a peak in winter
and then decreases starting at the beginning of February according to the data shown in
Figure 2.

Mathematical modelling, as a powerful tool in quantifying the complex and
numerous factors, has been widely developed to explore the transmission of MRSA
[1,3,6–9,11,25,26,28]. In their work, the direct patient-healthcare worker transmission is
shown to be an essential factor in the transmission ofMRSA in hospitals, as well as the indi-
rect transmission via environmental contamination based on the observation that MRSA
has the ability to be alive for days, weeks or even months on environmental surfaces in
healthcare facilities, doors, and gowns. To the best of our knowledge, no model has been
developed to address the seasonality in the transmission of MRSA. Studying seasonality
of MRSA infections is helpful in developing efficient control programmes, lowering the
long-term health risks, and distributing public resources.

We organize the paper as follows. We develop a periodic mathematical model to
describe a comprehensive transmission of MRSA in Section 2. In Section 3, bound-
edness and positivity of solutions, the basic reproduction number, the extinction and
uniform persistence of infections are analyzed. Simulations and discussion of the model
behaviours and sensitive analysis of the basic reproduction number are given in the last two
sections.
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Figure 1. Number of prescriptions for antibiotic drug classes, by month. Source: IMS Health, Xponent,
1999–2007. Abbreviation: TMP/Sulfra, trimethoprim/sulfamethoxazole [22].

2. The periodic deterministic model

In order to describe the seasonal transmission of MRSA by a mathematical model, we
first denote the patients, health-care workers (HCWS) and free-living bacteria in the
environment as the following seven compartments [16]:

• Pu(t) = number of uncolonized patients without antibiotic exposure at time t.
• PuA(t) = number of uncolonized patients with antibiotic exposure at time t.
• Pc(t) = number of colonized patients without antibiotic exposure at time t.
• PcA(t) = number of colonized patients with antibiotic exposure at time t.
• Hu(t)number of uncontaminated health care workers at time t.
• Hc(t) = number of contaminated health care workers at time t.
• Be(t) = number of the free-living bacteria in the environment at time t.

The flowchart describing the transmission dynamics of MRSA in hospitals among these
seven compartments is given in Figure 3. Our periodic deterministic model is derived
based on the following assumptions and descriptions:
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Figure 2. (a) Seasonal pattern of fluoroquinolone prescriptions and MRSA isolates resistant to
ciprofloxacin; Mean monthly seasonal variation for fluoroquinolone prescriptions and MRSA isolates
resistant to clindamycin for inpatient, outpatient and combined isolates as calculated by STL method.
Prescription data source: IMS Health, Xponent, 1999–2007; Resistance data source: The Surveillance Net-
work (TSN) Database-USA (Focus Diagnostics, Herndon, VA, USA) and (b) Seasonal pattern of macrolide
and lincosamideprescriptions andMRSA isolates resistant to ciprofloxacin;Meanmonthly seasonal varia-
tion formacrolide and lincosamideprescriptions andMRSA isolates resistant to clindamycin for inpatient,
outpatient and combined isolates as calculated by STL method. Prescription data source: IMS Health,
Xponent, 1999–2007; Resistance data source: The Surveillance Network (TSN) Database-USA (Focus
Diagnostics, Herndon, VA, USA) [22].
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(1) We assume that a patient would have antibiotic exposure if he or she has received
antibioticswithin themonth at admission or is currently receiving antibiotic treatment
in the hospital.

(2) Based on the seasonal pattern of antibiotic usage found in Sun et al. [22], we use a
periodic function ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))) to describe the antibiotic
prescription rate in the hospital. ε(t) has a period of 365 days, and represents that
antibiotic prescription rate increases starting at the beginning of August, gains a peak
in winter and then decreases starting at the beginning of February according to the
data shown in Figures 1 and 2. ε0 is the baseline antibiotic prescription rate and ε1 is
the magnitude of change.

(3) The free-living bacteria are uniformly distributed in the environment.
(4) The total number of patients in a unit is a constant Np. That is equivalent to say

that patients are admitted at a total rate �(t) = γuPu + γcPc + γuAPuA + γcAPcA,
where γu, γuA, γc, and γcA are the corresponding discharge rates of patients from
these four compartments. We also denote θu, θuA, θc, θcA as the corresponding pro-
portion of patients Pu,PuA,Pc,PcA at admission. It was estimated that the fraction of
patients with antibiotic exposure of new admission to be 0.38, i.e. θuA + θcA =0.38
[6,15].

(5) The total number of health-care workers is a constant Nh.
(6) We assume that the bacterial reproduction cannot occur due to lack of proper con-

dition in the hospital, even though the free-living bacteria are able to survive in
the environment for a long time. As a result, shedding from colonized patients
is one of the key transmission of bacteria to contaminate environment υpPc +
υpAPcA. υp, and υpA are the shedding rate of bacteria from patients without or
with antibiotic exposure, respectively. In addition, when the contaminated HCWs
touch the environmental surfaces such as door handles, health facilities, bedding,
they leave bacteria there υhHc, which is another way to contaminate the environ-
ment. Of course, hospitals always have a standard cleaning rate or disinfection
rate γb.

(7) We assume that there is no contact between patients, which means that if an uncol-
onized patient without antibiotic exposure becomes colonized without antibiotic
exposure, he/she either contacts contaminated HCWs at rate αpβp(1 − η)PuHc or
touches the contaminated environment at rate κpPuBe. A similar process happens
when an uncolonized patient with antibiotic exposure becomes colonized with antibi-
otic exposure at rate αpβpA(1 − η)PuAHc + κpAPuABe. αp is the contact rate per
day, βp and βpA are the chance of colonization per contact for uncolonized patients
without or with antibiotic exposure, respectively, η is the hand hygiene compliance,
κp and κpA are the chance of colonization by touching contaminated environment
for uncolonized patients without or with antibiotic exposure, respectively. Besides,
when an uncolonized patient without antibiotic exposure is accepting an antibi-
otic treatment for other diseases, which is the reason for his/her hospitalization,
he/she then becomes uncolonized patients with antibiotic exposure ε(t)Pu. That
is similar to how a colonized patient without antibiotic exposure becomes colo-
nized with antibiotic exposure ε(t)Pc. Note that an uncolonized patient without
antibiotic exposure cannot move to the colonized with antibiotic exposure in one
step.
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Table 1. Parameters and descriptions.

Parameter Description Parameter estimate Reference

ε0 antibiotic prescription rate 0.12 [13,20]
ε1 magnitude of change of antibiotic prescription rate 0.25 [22]
θu proportion of Pu on admission 0.617 [6,13]
θuA proportion of PuA on admission 0.349 [6,15]
θc proportion of Pc on admission 0.003 [6,13]
θcA proportion of PcAon admission 0.031 [6,15]
γu discharge rate of Pu (1/day) 0.2 [6]
γuA discharge rate of PuA (1/day) 0.2 [6]
γc discharge rate of Pc (1/day) 0.06 [13]
γcA discharge rate of PcA (1/day) 0.055 [6,13]
γb disinfection rate of environment 0.7 [26]
αp Contact rate 0.0435 [26]
βp probability of colonization for Pu after a contact with Hc 0.42 [26]
βpA probability of colonization for PuA after a contact with Hc 0.42*1.67 [6,13]
βh probability of contamination for HCW after a contact with Pc 0.2 [6,26]
βhA probability of contamination for HCW after a contact with PcA 0.25 [6]
η hand hygiene compliance with HCWs 0.4 [26]
μc decontaminated rate of HCWs 24 [26]
υp contamination(shedding) rate to the environment from Pc 235 [26]
υpA contamination(shedding) rate to theenvironment from PcA 470 [13,28]
υh contamination rate to the environment by contaminated HCWs 235 [26]
κp colonization rate from environment for Pu 0.000004 [26]
κpA colonization rate from environment for PuA 0.000005 [6,26]
κh colonization rate from environment for uncontaminated HCWs 0.00001 [26]
Np total number of patients 23 [26]
Nh total number of HCWs 23 [26]

(8) An uncontaminated HCW becomes contaminated when he/she contacts colonized
patients or touches contaminated environmental surfaces at rate αpβh(1 − η)PcHu +
αpβhA(1 − η)PcAHu, where βh,βhA are chance of contamination per contact with Pc
orPcA, respectively.HCWshave a decontaminated rateμc tomove from contaminated
state to uncontaminated state.

(9) Antibiotics can not only kill the bad bacteria that make patients sick, but also com-
mensal bacteria, thismay disturb the balance of patients’ commensalmicrobiota. Then
patients with prior antibiotic exposure are more likely to have a higher colonization
rate of MRSA, so we assume βpA ≥ βp. In addition, by previous studies [6,13], we
estimate that uncolonized patients with antibiotic exposure are 1.67 times more vul-
nerable than uncolonized patients without antibiotic exposure, i.e. βpA = 1.67 × βp.
Moreover, patients with recent antibiotic exposure are more likely to experience
adverse effects or new health problems (such as gastrointestinal symptoms, respira-
tory infections, skin rashes, and so on); and a higher probability of treatment failure
because of the acquisition of resistance elements, which lead to lengthier hospital stays.
So we assume that γ −1

cA ≥ γ −1
c ≥ γ −1

uA ≥ γ −1
u . We also follow the assumptions and

parametrizions from [6,13,25] for the values of βh, βhA, υp, υpA, υh, κp, κpA, κh as
shown in Table 1.

Detailed parameter values are given in Table 1. We hence formulate the periodic
mathematical model as follows:
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Figure 3. Transmission flowchart of MRSA among patients, health-care works and environment.

dPu
dt

= θu�(t) − αpβp(1 − η)PuHc − κpPuBe − γuPu − ε(t)Pu,

dPc
dt

= θc�(t) + αpβp(1 − η)PuHc + κpPuBe − γcPc − ε(t)Pc,

dPuA
dt

= θuA�(t) − αpβpA(1 − η)PuAHc − κpAPuABe − γuAPuA + ε(t)Pu,

dPcA
dt

= θcA�(t) + αpβpA(1 − η)PuAHc + κpAPuABe − γcAPcA + ε(t)Pc,

dHu

dt
= −αpβh(1 − η)PcHu − αpβhA(1 − η)PcAHu − κhHuBe + μcHc,

dHc

dt
= αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe − μcHc,

dBe
dt

= υpPc + υpAPcA + υhHc − γbBe

(1)

with initial conditions Pu(0) = P0u, PuA(0) = P0uA, Pc(0) = P0c , PcA(0) = P0cA, Hu(0) =
H0
u, Hc(0) = H0

c , Be(0) = B0e , where �(t) = (γuPu + γcPc + γuAPuA + γcAPcA) and
ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))).
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3. Mathematical analysis

3.1. Basic reproduction number

The basic reproduction number R0 for the periodic deterministic model (1) is constructed
according to the definition in Bacaër and Guenaoui [2] and follow the general calcula-
tion procedure in Wang and Zhao [27]. When θu =0, θc =0, and θcA =0, that is only
uncolonized patients with antibiotic exposure are admitted into hospital, the infection-free
infection (IFE) is defined as

E0 = (Pu,Pc,PuA,PcA,Hu,Hc,Be) = (0, 0,Np, 0,Nh, 0, 0),

We can rewrite the variables of periodic ODE system (1) as a vector E0 = (Pc,PcA,Hc,Be,
Pu,PuA,Hu) = (0, 0, 0, 0, 0,Np,Nh). Following the general calculation procedure in Wang
and Zhao [27], we have

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αpβp(1 − η)PuHc + κpPuBe
αpβpA(1 − η)PuAHc + κpAPuABe

αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γcPc + ε(t)Pc − θc�

γcAPcA − [ε(t)Pc + θcA�]
μcHc

γbBe − (υpPc + υpAPcA + υhHc)

αpβp(1 − η)PuHc + κpPuBe + γuPu + ε(t)Pu − θu�

αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA − [ε(t)Pu + θuA�]
αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe − μcHc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))) and �(t) = (γuPu + γcPc + γuAPuA +
γcAPcA). We also have

V− =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γcPc + ε(t)Pc
γcAPcA
μcHc
γbBe

αpβp(1 − η)PuHc + κpPuBe + γuPu + ε(t)Pu
αpβpA(1 − η)PuAHc + κpAPuABe + γuAPuA

αpβh(1 − η)PcHu + αpβhA(1 − η)PcAHu + κhHuBe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θc�

ε(t)Pc + θcA�

0
υpPc + υpAPcA + υhHc

θu�

ε(t)Pu + θuA�

μcHc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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So we derive that

F(t) =

⎛
⎜⎜⎝

0 0 0 0
0 0 αpβpA(1 − η)Np κpANp

αpβh(1 − η)Nh αpβhA(1 − η)Nh 0 κhNh
0 0 0 0

⎞
⎟⎟⎠ ,

V(t) =

⎛
⎜⎜⎝

γc + ε(t) 0 0 0
−ε(t) γcA 0 0
0 0 μc 0

−υp −υpA −υh γb

⎞
⎟⎟⎠ ,

and

M(t) =
⎛
⎝−γu − ε(t) 0 0

γu + ε(t) 0 0
0 0 0

⎞
⎠ .

Let Y(t, s), t ≥ s be the evolution operator of the system

dy
dt

= −V(t)y. (2)

That is, for each s ∈ R, the 4 × 4 matrix Y(t, s) satisfies

d
dt
Y(t, s) = −V(t)Y(t, s), ∀ t ≥ s, Y(s, s) = I,

where I is the 4 × 4 identity matrix. In order to characterize R0, we consider the following
linear ω-periodic system

dw
dt

=
[
−V(t) + F(t)

λ

]
ω, t ∈ R+ (3)

with parameterλ ∈ (0,∞). LetW(t, s, λ), t ≥ s, be the evolution operator of the system (3)
on R

4. Clearly,�F−V = W(t, 0, 1),∀t ≥ 0.
According to themethod inWang and Zhao [27], we let φ beω-periodic in s and the ini-

tial distribution of infectious individuals. So F(s)φ(s) is the rate of new infections produced
by the infected individuals who were introduced at time s. When t ≥ s, Y(t, s)F(s)φ(s)
gives the distribution of those infected individuals who were newly infected by φ(s) and
remain in the infected compartments at time t. Naturally,

∫ t

−∞
Y(t, s)F(s)φ(s) ds =

∫ ∞

0
Y(t, t − a)F(t − a)φ(t − a) da

is the distribution of accumulative new infections at time t produced by all those infected
individuals φ(s) introduced at time previous to t.

Let Cω be the ordered Banach space of all ω-periodic functions from R to R
4, which

is equipped with the maximum norm ‖ · ‖ and the positive cone C+
ω := {φ ∈ Cω : φ(t) ≥
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0,∀t ∈ R+}. Then we can define a linear operator L : Cω → Cω by

(Lφ)(t)
∫ ∞

0
Y(t, t − a)F(t, t − a)φ(t − a) da, ∀ t ∈ R+, φ ∈ Cω,

L is called the next infection operator and the spectral radius of L is defined as the basic
reproduction number

R0 := ρ(L)

for the periodic epidemic model. In order to determine the threshold dynamics, we use
Theorems 2.1 and 2.2 in Wang and Zhao [27]. First of all, we need to verify the seven
assuptions in the theorems.

(A1)–(A5) The first five conditions can be easily verified by observing F , V+ andV−.
(A6) ρ(�M(ω)) < 1, where ρ(�M(ω)) is the spectral radius of �M(ω). �M(t) is the

monodromy matrix of the linear ω-periodic system dq/dt = M(t)q with

M =
⎛
⎝−γu − ε(t) 0 0

γu + ε(t) 0 0
0 0 0

⎞
⎠ .

Hence, we have,

�M(t) =
⎛
⎝0 0 e−

∫
γu+ε(t) dt

1
2

1
2 −e−

∫
γu+ε(t) dt

0 1
2 0

⎞
⎠ .

It is obvious that ρ(�M(t)) < 1, since e−
∫

γu+ε(t) dt < 1 based on γu + ε(t) > 0 in our
parameter setting.

(A7) ρ(�−V(ω)) < 1, where�−V(t) is themonodromymatrix of the linearω-periodic
sysstem dy/dt = −V(t)y with

−V =

⎛
⎜⎜⎝

−γc − ε(t) 0 0 0
ε(t) −γcA 0 0
0 0 −μc 0
υp υpA υh −γb

⎞
⎟⎟⎠ .

Hence, we have,

�−V(t) =

⎛
⎜⎜⎜⎜⎝

e−
∫

γu+ε(t) dt 0 0 0
c1 e−γcAt 0 0
c2 0 e−μct 0
c3

υpA

γb − γcA
e−γcAt υh

γb − μc
e−μct e−γbt

⎞
⎟⎟⎟⎟⎠ ,

where c1, c2 and c3 are no need to be calculated, even though they can be calculated. Since it
is a lower triangularmatrix with all elements in diagonal are less than one,ρ(�−V(ω)) < 1.

Hence, all assumptions (A1)–(A7) hold, So by (ii) in Theorems 2.1 and 2.2 inWang and
Zhao [27], we have the following results.
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Lemma 3.1: R0 = λ is the unique solution of ρ(W(ω, 0, λ)) = 1, where W(t, s, λ), t ≥ s, is
the evolution operator of system (3).

Theorem 3.2: If R0 < 1, then the infection-free equilibrium E0 is locally asymptotically
stable; If R0 > 1, then E0 is unstable.

Lemma 3.3: For the basic reproduction number R0, we have

(i) R0 = 1 if and only of ρ(�F−V(ω)) = 1.
(ii) R0 > 1 if and only of ρ(�F−V(ω)) > 1.
(iii) R0 < 1 if and only of ρ(�F−V(ω)) < 1.

Remark 3.4: If ρ(�F−V(ω)) < 1, then the disease-free equilibrium E0 is locally asymptoti-
cally stable; If ρ(�F−V(ω)) > 1, then E0 is unstable.

In order to characteristic R0, we consider

F(t)
λ

− V(t) =

⎛
⎜⎜⎜⎜⎜⎝

−(γc + ε(t)) 0 0 0

ε(t) −γcA
αpβpA(1 − η)Np

λ

κpANp

λ
αpβh(1 − η)Nh

λ

αpβhA(1 − η)Nh

λ
−μc

κhNh

λ
υp υpA υh −γb

⎞
⎟⎟⎟⎟⎟⎠
,

where ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))). We want to calculate the monodromy
matrix of the system

dx
dt

=
(
F(t)
λ

− V(t)
)
x. (4)

By observing the matrix F(t)/λ − V(t), we can see that x1(t) can be solved directly.
When x1(t) = 0, we have

⎛
⎝ẋ2(t)
ẋ3(t)
ẋ4(t)

⎞
⎠ = A

⎛
⎝x2(t)
x3(t)
x4(t)

⎞
⎠ ,

where

A =

⎛
⎜⎜⎜⎝

−γcA
αpβpA(1 − η)Np

λ

κpANp

λ
αpβhA(1 − η)Nh

λ
−μc

κhNh

λ
υpA υh −γb

⎞
⎟⎟⎟⎠

is a constant matrix.
When x1(t) = −e−

∫
γu+ε(t), we have

⎛
⎝ẋ2(t)
ẋ3(t)
ẋ4(t)

⎞
⎠ = A

⎛
⎝x2(t)
x3(t)
x4(t)

⎞
⎠ + f (t),
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where

f (t) =

⎛
⎜⎜⎝

−ε(t)e−
∫

γu+ε(t)

−αpβh(1 − η)Nh

λ
e−

∫
γu+ε(t)

−υpe−
∫

γu+ε(t)

⎞
⎟⎟⎠ .

According to the results in Chapter 1 of Perko [19], we are able to find the monodromy
matrix of the system (4). However, the high-dimension of the matrix F/λ − V makes the
analytical solution for R0 complicated. Hence, we derive R0 numerically in next section.

3.2. Extinction of infection

Based on the biological background of the model (1), we consider solutions of model (1)
with nonnegative initial values:

P0u ≥ 0, P0uA ≥ 0, P0c ≥ 0, P0cA ≥ 0, H0
u ≥ 0, H0

c ≥ 0, B0e ≥ 0.

Lemma 3.5: If P0u,P
0
uA,P

0
c ,P

0
cA,H

0
u,H0

c ,B0e ≥ 0, i.e. the initial values are nonnegative, then
the solution of model (1) is nonnegative for all t ≥ 0 and ultimately bounded. In particular,
if P0u,P

0
uA,P

0
c ,P

0
cA,H

0
u,H0

c ,B0e > 0, i.e. the initial values are positive, then the solutions of
model (1) is also positive for all t ≥ 0.

Proof: According to the continuous dependence of solutions with respect to ini-
tial values, we only need to prove that when the initial values are positive, i.e.
P0u,P

0
uA,P

0
c ,P

0
cA,H

0
u,H0

c ,B0e > 0, the solution of model (1) is also positive for all t ≥ 0. Let

m(t) = min{Pu(t),PuA(t),Pc(t),PcA(t),Hu(t),Hc(t),Be(t)}, ∀ t > 0.

By the assumption that the initial values are positive, we clearly have, m(0) > 0. So we
assume that there exists a t1 > 0 such thatm(t1) = 0 andm(t) > 0 for all t ∈ [ 0, t1).

If m(t1) = Pu(t1), from the first equation of model (1), it follows that dPu/dt ≥
−(αpβp(1 − η)Hc(t) + κpBe(t) + γu + ε(t))Pu for all t ∈ [ 0, t1). Since Hc(t),Be(t) >

0, ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))) > 0 for all t ∈ [ 0, t1), we have

0 = Pu(t1) ≥ P0u exp
(

−
∫ t1

0
(αpβp(1 − η)Hc(s) + κpBe(s) + γu + ε(s)) ds

)
> 0,

which leads to a contradiction.We can get similar contradictions in the other cases. Hence,
the solutions remain in the positive cone if the initial conditions are in the positive coneR

7.
Next, denoteM(t) = Pu(t) + PuA(t) + Pc(t) + PcA(t) + Hu(t) + Hc(t) + Be(t). Then

dM(t)
dt

= dBe(t)
dt

= υpPc + υpAPcA + υhHc − γbBe

≤ υpNp + υpANp + υhNh − γbBe(t),

whereNp = Pu(t) + PuA(t) + Pc(t) + PcA(t) andNh = Hu(t) + Hc(t), which implies that

Be(t) ≤ (υpNp + υpANp + υhNh)

γb
(1 − e−γbt) + B0e e

−γbt .
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So Be(t) is bounded by a fixed number

K = (υpNp + υpANp + υhNh)

γb
+ B0e .

Let N = Np + Nh + K, we have

Pu(t) + PuA(t) + Pc(t) + PcA(t) + Hu(t) + Hc(t) + Be(t) ≤ N.

Thus, the solution is ultimately bounded. This completes the proof. �

Remark 3.6: Denote

G := {(Pu,PuA,Pc,PcA,Hu,Hc,Be) ∈ R
7
+ : Pu + PuA + Pc + PcA + Hu + Hc + Be ≤ N)},

Lemma 3.5 implies that G is positively invariant set with respect to solutions of model (1).

Theorem 3.7: If R0 < 1, then the infection-free equilibrium E0 = (0, 0,Np, 0,Nh, 0, 0) is
globally asymptotically stable.

Proof: According toTheorem3.2,E0 is locally asymptotically stablewhenR0 < 1. Accord-
ing to Lemma 3.3, we know that R0 < 1 is equivalent to ρ(�F−V(ω)) < 1, where F−V is
the defined as

F(t) − V(t) =

⎛
⎜⎜⎝

−γc − ε(t) 0 0 0
ε(t) −γcA αpβpA(1 − η)Np κpANp

αpβh(1 − η)Nh αpβhA(1 − η)Nh −μc κhNh
υp υpA υh −γb

⎞
⎟⎟⎠ .

By the continuity, we can always find a small enough positive constant δ such that

ρ(�F−V+δN(ω)) < 1,

where

N(t) =

⎛
⎜⎜⎝
0 0 αpβp(1 − η) κp
0 0 αpβpA(1 − η) κpA
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Now we try to prove the global attractivity of the disease-free equilibrium E0. By the non-
negativity of solutions and the assumption that θu = θc = θcA = 0, θuA = 1, we have the
following result from the first equation of the model (1):

dPu
dt

≤ −γuPu − ε(t)Pu.
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Note that ε(t) = ε0(1 + ε1 sin((2π/365)(t − 240))) > 0,∀t. That is, ∀δ > 0, there exists
t1 > 0, such that

Pu(t) ≤ δ, ∀ t ≥ t1.

Similarly, by the third equation of the model (1) and the fact that γu = max{γu, γc, γcA},
we get

dPuA
dt

≤ γu(Np − PuA) + γuAPuA − γuAPuA + ε(t)(Np − PuA),

that is,
dPuA
dt

≤ (γu + ε(t))Np − (γu + ε(t))PuA.

Then ∀δ > 0, there exists t2 > 0, such that

PuA(t) ≤ Np + δ, ∀ t ≥ t2.

Let T = max{t1, t2}, If t > T, since θu = θc = θcA = 0, θuA = 1, then

P′
c(t) ≤ αpβp(1 − η)δHc + κpδBe − γcPc − ε(t)Pc,

P′
cA(t) ≤ αpβpA(1 − η)(Np + δ)Hc + κpA(Np + δ)Be − γcAPcA + ε(t)Pc,

H′
c(t) ≤ αpβh(1 − η)NhPc + αpβhA(1 − η)NhPcA + κhNhBe − μcHc,

B′
e(t) ≤ υpPc + υpAPcA + υhHc − γbBe.

(5)

Considering the following auxiliary system:

P̃′c(t) = αpβp(1 − η)δH̃c + κpδB̃e − γcP̃c − ε(t)P̃c,

P̃′cA(t) = αpβpA(1 − η)(Np + δ)H̃c + κpA(Np + δ)B̃e − γcAP̃cA + ε(t)P̃c,

H̃′c(t) = αpβh(1 − η)NhP̃c + αpβhA(1 − η)NhP̃cA + κhNhB̃e − μcH̃c,

B̃′e(t) = υpP̃c + υpAP̃cA + υhH̃c − γbB̃e,

(6)

which can be written as,

dx(t)
dt

= (F(t) − V(t) + δN(t))x(t), x(t) = (P̃c(t), P̃cA(t), H̃c(t), B̃e(t))T . (7)

Hence, there exists a positive ω-periodic function f (t) = (f1(t), f2(t), f3(t), f4(t))T such
that x(t) = eμtf (t) is a solution of system (7) where μ = 1

ω
ln ρ(�F−V+δN(ω)), accord-

ing to the Lemma 2.1 in Zhang and Zhao [29]. Note that ρ(�F−V+δN(ω)) < 1, which
implies that ln ρ(�F−V+δN(ω)) < 0, that is to say, μ < 0. Then limt→∞ x(t) = 0. Let
S(t) = (Pc(t),PcA(t),Hc(t),Be(t))T , by comparison principle, we have limt→∞ S(t) = 0,
which is equivalent to say that

lim
t→∞ Pc = 0, lim

t→∞ PcA = 0, lim
t→∞Hc = 0, lim

t→∞Be = 0.

Therefore, E0 is globally attractive when R0 < 1. This completes the proof. �
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3.3. Persistence of infection

Finally, we prove that the model is uniformly persistent, which implies the the persistence
of MRSA infections.

Theorem 3.8: If R0 > 1, then model (1) is uniformly persistent.

Proof: We follow the persistence theory of nonautonomous models given in Zhao [30]
to discuss the uniform persistence of model (1). We first define X = {(Pu,Pc,PuA,PcA,Hu,
Hc,Be) : Pu ≥ 0,Pc ≥ 0,PuA ≥ 0,PcA ≥ 0,Hu ≥ 0,Hc ≥ 0,Be ≥ 0},X0 = {(Pu,Pc,PuA,PcA,
Hu,Hc,Be) ∈ X : Pc > 0,PcA > 0,Hc > 0,Be > 0}, ∂X0 = X\X0. Note that both X and
X0 are positively invariant with respect to system (1), and ∂X0 is relatively closed in X.
Since our model (1) is ω-periodic (ω = 365 days), the Poincaré map associated with our
model (1) P : X → X is defined by

P(x0) = φ(ω, x0), ∀ x0 ∈ X,

where x0 = (Pu(0),Pc(0),PuA(0),PcA(0),Hu(0),Hc(0),Be(0)) and φ(t, x0) is the unique
solution of model (1) with initial values φ(0, x0) = x0. Note that a continuous mapping
f : X → X is said to be compact if f maps any bounded set to a precompact set in X [30].
According to Lemma 3.5, the Poincaré map P is compact and point dissipative onX, which
implies that there exists a global attractor by Theorem 1.1.3 in [30].

Define

M∂ = {x0 ∈ ∂X0 : Pn(x0) ∈ ∂X0, n = 1, 2, . . .},
where x0 = (Pu(0),Pc(0),PuA(0),PcA(0),Hu(0),Hc(0),Be(0)). We want to verify that

M∂ = {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh}.
We first verify that M∂ ⊆ {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh}, which is
equivalent to verify that if x0 /∈ {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Np}, then
x0 /∈ M∂ . For any point x0 = (Pu(0),Pc(0),PuA(0),PcA(0),Hu(0),Hc(0),Be(0)), we sup-
pose that x0 /∈ {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Np}, that is to say one
of Pc(0),PcA(0),Hc(0),Be(0) is not zero. Without loss of generality, we suppose that
Pc(0) > 0,PcA(0) = 0,Hc(0) = 0,Be(0) = 0. By the fourth, sixth and seventh equations
of model (1), note that ε(t) > 0∀t, we have
dPcA(0)

dt
≥ ε(0)Pc(0) > 0;

rdHc(0)
dt

≥ αpβhNpPc(0) > 0;
dBe(0)
dt

≥ κpPc(0) > 0.

Thus, there exists δ0 > 0, if 0 < t < δ0, then Pc(t) > 0,PcA(t) > 0,Hc(t) > 0,
Be(t) > 0, which implies that x0 /∈ ∂X0. Other cases (Pc(0) > 0, or PcA(0) > 0, or
Hc(0) > 0) can be proved in the similar way. Thus x0 /∈ M∂ . That is to say, for any x0 /∈
{(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh}, x0 /∈ M∂ . So M∂ ⊆ {(Pu, 0, PuA, 0,
Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh}.

Obviously we have {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh} ⊆ M∂ , since if
x0 = (Pu(0), 0, PuA(0), 0,Np, 0, 0), then the solutions (Pu(t),Pc(t),PuA(t),PcA(t),
Hu(t),Hc(t),Be(t)) ≡ (Pu(t), 0, PuA(t), 0,Nh, 0, 0) where Pu(t) > 0,PuA > 0. Therefore
M∂ = {(Pu, 0, PuA, 0,Hu, 0, 0) : Pu ≥ 0,PuA ≥ 0,Hu = Nh}. There is only one equilibrium
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E0 = (0, 0,Np, 0,Nh, 0, 0) in M∂ , so ∪x0∈M∂
ω(x0) = E0. Therefore E0 is a compact and

isolated invariant sets in∂X0.
Let x0 = (Pu(0),Pc(0),PuA(0),PcA(0),Hu(0),Hc(0),Be(0)) ∈ X0 be any initial value.

Next we claim that there exist a positive constant δ such that

lim sup
n→∞

‖Pn(x0) − E0‖ ≥ δ. (8)

Suppose that claim (8) is not true, i.e. for any δ > 0, lim supn→∞ ‖Pn(x0) − E0‖ ≤ δ for
some x0 ∈ X0. That is to say, there exists a big enough n1 > 0, for all n > n1, ‖Pn(x0) −
E0‖ ≤ δ Followed by the continuity of solutionφ(t, x0)with respect to the initial values, we
know ∀� > 0, there exists a δ > 0 such that if ‖x0 − E0‖ ≤ δ, then ‖φ(t, x0) − φ(t,E0)‖ <

�, ∀t ∈ [0,ω]. Hence we obtain ‖φ(t,Pn(x0)) − φ(t,E0)‖ < � for all n > n1 andt ∈ [0,ω].
Now for any big enough t ≥ 0, we can rewrite t = nω + t̂, where n = [t/ω] is the

greatest integer less than or equal to t/ω and t̂ ∈ [0,ω]. We can always choose t
big enough to make sure that n > n1. Hence for big enough t , we have ‖φ(t, x0) −
φ(t,E0)‖ = ‖φ(t̂,Pn(x0)) − φ(t̂,E0)‖ < �. It follows that 0 ≤ Pu(t) ≤ �, ¶c(t) ≤ �, Np −
� ≤ PuA(t) ≤ Np + �, PcA(t) ≤ �, Nh − � ≤ Hu(t) ≤ Nh + �, Hc(t) ≤ �, Be(t) ≤ �, for
any t big enough. Thus for t big enough, we have

P′
c(t) ≥ −γcPc − ε(t)Pc,

P′
cA(t) ≥ αpβpA(1 − η)(Np − �)Hc + κpA(Np − �)Be − γcAPcA + ε(t)Pc,

H′
c(t) ≥ αpβh(1 − η)(Nh − �)Pc + αpβhA(1 − η)(Nh − �)PcA + κh(Nh − �)Be − μcHc,

B′
e(t) ≥ υpPc + υpAPcA + υhHc − γbBe.

(9)

Consider the following auxiliary system:

P̃′c(t) = −γcP̃c − ε(t)P̃c,

P̃′cA(t) = αpβpA(1 − η)(Np − �)H̃c + κpA(Np − �)B̃e − γcA ˜PcA + ε(t)P̃c,

H̃′c(t) = αpβh(1 − η)(Nh − �)P̃c + αpβhA(1 − η)(Nh − �) ˜PcA + κh(Nh − �)B̃e − μcH̃c,

B̃′e(t) = υpP̃c + υpA ˜PcA + υhH̃c − γbB̃e,
(10)

which can be written as,

dx(t)
dt

= (F(t) − V(t) − �N(t))x(t), x(t) = (P̃c(t), P̃cA(t), H̃c(t), B̃e(t))T , (11)

where

F(t) − V(t) =

⎛
⎜⎜⎝

−γc − ε(t) 0 0 0
ε(t) −γcA αpβpA(1 − η)Np κpANp

αpβh(1 − η)Nh αpβhA(1 − η)Nh −μc κhNh
υp υpA υh −γb

⎞
⎟⎟⎠ ,
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N(t) =

⎛
⎜⎜⎝

0 0 0 0
0 0 αpβpA(1 − η) κpA

αpβh(1 − η) αpβhA(1 − η) 0 κh
0 0 0 0

⎞
⎟⎟⎠ .

Hence there exists a positive ω-periodic function g(t) = (g1(t), g2(t), g3(t), g4(t))T such
that x(t) = eμtg(t) is a solution of system (11) where μ = 1

ω
ln ρ(�F−V−�N(ω)), accord-

ing to the Lemma 2.1 in Zhang and Zhao [29]. Note that ρ(�F−V−�N(ω)) > 1, which
implies that ln ρ(�F−V−�N(ω)) > 0, that is to say, μ > 0. Then limt→∞ x(t) = ∞. Let
J(t) = (Pc(t),PcA(t),Hc(t),Be(t))T , by comparison principle, we have limt→∞ J(t) = ∞,
which is equivalent to say that

lim
t→∞ Pc = ∞, lim

t→∞ PcA = ∞, lim
t→∞Hc = ∞, lim

t→∞Be = ∞.

The claim implies that E0 is an isolated invariant set in X andWs(E0) ∩ X0 = ∅. Therefore
the Poincar map P is uniformly persistent with respect to (X0, ∂X0) if R0 > 1 by Theorems
1.3.1 and 3.1.1 in [30]. This completes the proof. �

4. Numerical simulations

The deterministic model with periodic transmission rate is simulated for 1000 days with
initial values (P0u,P

0
uA,P

0
c ,P

0
cA,H

0
u,H0

c ,B0e) = (4, 6, 7, 6, 17, 6, 1000) and detailed parameter
values in Table 1. The simulated solutions of the model are periodic as shown in Figure 4.
Based on the seasonal pattern of antibiotic usage observed in Sun et al. [22], we assume that
antibiotic prescription rate in hospital increases starting at the beginning of August, gains
a peak in winter and then decreases starting at the beginning of February according to the

Figure 4. Solutions of uncolonized patients without or with antibiotic exposure (Pu(t), PuA) and col-
onized patients without or with antibiotic exposure (Pc(t), PcA) of the model (1) with initial values
(P0u, P

0
uA, P

0
c , P

0
cA,H

0
u,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000). Parameters are given in Table 1.
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Figure 5. (a) Prevalence of colonized patients with or without antibiotic exposure of model (1) with
initial values (P0u, P

0
uA, P

0
c , P

0
cA,H

0
u,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000). Parameters are given in Table 1. Com-

pared with antibiotic prescribing rate and (b) The free-living bacterial load in the environment.

Figure 6. (a) Prevalence of colonized patients with or without antibiotic exposure of the model (1)
with initial values (P0u, P

0
uA, P

0
c , P

0
cA,H

0
u,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000), θu = 0.62, θuA = 0.38, θc = 0,

θcA = 0andother parameter valuesgiven in Table 1; (b) The free-livingbacterial load in the environment.

data shown in Figures 1 and 2, which results in the similar pattern of colonized patients
with antibiotic exposure in Figures 4 and 5(a), but with a lag about 15-days.We suggest that
there may be a temporal correlation between antibiotic use and resistance. Figures 4 and 5
tell us that the prevalence of colonized patients with antibiotic exposure has periodic phe-
nomenon between about 34% and 39% and the prevalence of colonized patients without
antibiotic exposure is between 4% and 6%. While when there is no admission of colo-
nized patients, i.e. θc = θcA = 0, Figure 6 implies that the prevalence of colonized patients
with antibiotic exposure reduces to between 20% and 23% and the prevalence of colonized
patients without antibiotic exposure is between 3% and 5%. This means that detection and
isolation ofMRSA colonized patients on admissionmay be a useful intervention to control
the hospital infection. While when only uncolonized patients without antibiotic exposure
are admitted to hospital, Figure 7 indicates that the prevalence of colonized patients with
antibiotic exposure is between 12% and 15% and the prevalence of colonized patients with-
out antibiotic exposure is between 3% and 4%. We suggest that in order to control the
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Figure 7. (a) Prevalence of colonozied patients with or without antibiotic exposure of modified
model (1) with initial values (P0u, P

0
uA, P

0
c , P

0
cA,H

0
u,H

0
c , B

0
e) = (4, 6, 7, 6, 17, 6, 1000), θu = 1, θuA = 0,

θc = 0, θcA = 0 and other parameter values given in Table 1 and (b) The free-living bacterial load in the
environment.

infection in hospital, it is important to increase the public education about how to use
antibiotics properly in community.

Based on the calculation procedure about the basic reproduction number discussed
above, we calculate the basic reproduction number R0 to be 1.476 with the parameter
values in Table 1. By Theorem 3.8, we conclude that the infection will persist with the
baseline parameter values. In Figure 8, we perform some sensitivity analysis to explore the
effect of the following parameters on changing the basic reproduction number R0: (a) The
cleaning/disinfection rate of environment γb; (b) Shedding rate of bacteria from colonized
patients with antibiotic exposure to environment υpA; (c) The discharge rate of colonized
patients with antibiotic exposure γcA; (d) The hand hygiene compliance with HCWs η; (e)
The contact rate between patients andHCWsαp; (f) The decontaminated rate ofHCWsμc.
Figure 8(a) shows that increasing the environmental cleaning/disinfection rate γb from 0.6
to 1 can reduce the basic reproduction number from 1.705 to 1.065, which is the most effi-
cient intervention. Since we assume that the free-living bacteria have no proper condition
to reproduce themselves, shedding bacteria from colonized patients is a crucial factor in
environmental contamination, which is verified in Figure 8(b) where if the shedding rate
of colonized patients with antibiotic exposure υpA is below 300, the basic reproduction
number can be below 1. This again emphasizes the importance of environmental cleaning.
Figure 8(c) indicates that the discharge rate (the inverse of stay in hospital) of colonized
patients with antibiotic exposure γcA greatly increase the basic reproduction number espe-
cially when they have a lengthier stay than 18 days (baseline value i.e. 0.055−1 ). However, it
is hard to treat colonized patients with antibiotic exposure efficiently and quickly since they
have resistance tomany common antibiotics, which usually leads to a lengthier stay tomake
the situation worse. Hence how to make an efficient and right treatment plan for colonized
patients with antibiotic exposure is a challenge and also a key to control the infection. In
Figure 8(d), it seems that the hand hygiene compliance of HCWs (from the baseline value
0.4 to 1) make little difference to change the basic reproduction number, which is a little
surprising, since the hand hygiene is always thought to be an important intervention. We
think that this is because the direct transmission throughHCWs is well-known so hospitals
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Figure 8. Effects of parameters on the basic reproduction number R0: (a) γb, (b) υpA, (c) γcA, (d) η, (e) αp
and (f )μc . Other parameters values are given in Tabel 1.

have paid enough attention to the hand hygiene of HCWs while the indirect transmission
through contaminated environment lacks our surveillance and is more important than we
thought. That is why the environmental cleaning γb and the shedding rate γcA affect greatly
the basic reproduction number in our sensitivity analysis Figure 8(a,b). Hence, we believe
that it is necessary to strengthen the surveillance of environmental cleaning with feedback
to cleaning team, and try to use more efficient cleaning products. Figure 8(e,f) imply how
the contact rate αp and decontaminated rate of HCWs μc affect the basic reproduction
number.
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5. Discussion

We presented a comprehensive mathematical model with periodic transmission rate
to study MRSA infections in hospitals, including key factors such as environmental
contamination and antibiotic exposure. Both the direct transmission via HCWs and the
indirect transmission via free-living bacteria in the environment were taken into account.
Inspired by the work of Sun et al. [22], we modelled the antibiotic prescribing rate as a
periodic function depending on time t in the transmission of MRSA, i.e. ε(t) = ε0(1 +
ε1 sin((2π/365)(t − 240))), which has a period of one year (365 days) and implies that
antibiotic prescribing rate increases starting at the beginning of August, gains a peak in
winter and then decreases starting at the beginning of February according to the data
shown in Figures 1 and 2. Based on the definition in Bacaër and Guenaoui [2] and the
calculation procedure in Wang and Zhao [27], we deduced the basic reproduction num-
ber R0 for the periodic deterministic model and carried out somemathematical analysis to
prove that the infectionwould go to extinction if the basic reproduction number is less than
unity and would persist if it is greater than unity. On the basis of parameter values given in
Table 1, the basic reproduction number is estimated to be 1.476, which implies that MRSA
infections persist in hospitals. Our simulations suggest that the prevalence of colonized
patients with antibiotic exposure has periodic phenomenon between about 34% and 39%
and the prevalence of colonized patients without antibiotic exposure is between 4% and 6%
in Figures 4 and 5. In addition, since we observe a lag about 15 days between the pattern of
colonized patients with antibiotic exposure and antibiotic prescription rate in Figure 5,
we suggest that there may be a temporal correlation between antibiotic use and resis-
tance. By controlling the proportion of patients from four compartments on admission,
Figures 6 and 7 imply that the prevalence of colonized patients with or without antibiotic
exposure would reduce greatly if only uncolonized patients without antibiotic exposure are
admitted. This means that detection and isolation of MRSA colonized patients on admis-
sion may be a useful intervention to control the hospital infection, and also strengthens
the importance to increase the public education about how to use antibiotics properly at
community.

It follows from the sensitivity analysis that the basic reproduction number is sensitive
to the cleaning/disinfection rate of environment γb, shedding rate of bacteria from col-
onized patients with antibiotic exposure to environment υpA, and the discharge rate of
colonized patientswith antibiotic exposure γcA. In particular, environmental cleaning is the
most important intervention to control the infection according to our sensitivity analysis.
Figure 8(a) shows that increasing the environmental cleaning/disinfection rate γb from 0.6
to 1 reduces the basic reproduction number from 1.705 to 1.065. Besides, if the shedding
rate of colonized patients with antibiotic exposure υpA is below 300, the basic reproduc-
tion number can be below 1 (Figure 8(b)). Because the free-living bacteria have no proper
condition to reproduce themselves in hospitals, shedding bacteria from colonized patients
becomes a key factor in transmission of MRSA. This also indirectly shows the impact of
environmental cleaning. We also found that if colonized patients with antibiotic exposure
stay hospitals more than 18 days on average, the basic reproduction number increases dra-
matically. However, colonized patients with antibiotic exposure usually have resistance to
many common antibiotics, which makes it harder and longer to treat them. So how to
make an efficient and right treatment plan for colonized patients with antibiotic exposure
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is a challenge to control the infection. We also observed that the hand hygiene compli-
ance of HCWs change little on the basic reproduction number. We guess the reason is
that hospitals have paid enough attention to the hand hygiene of HCWs while still lack
attention on the indirect transmission via contaminated environment that maybe is much
more important than we thought. This again explains why the environmental cleaning γb
and the shedding rate γcA affect greatly the basic reproduction number in our sensitivity
analysis.

Hence, in order to control the infection, we believe it is necessary to strengthen the
surveillance of environmental cleaning with feedback to cleaning team, try to use more
efficient cleaning products, highlight the necessary of effective antimicrobial steward-
ship programmes, increase active screening on admission and subsequent isolation of
positive cases, and treat patients quickly and efficiently. Nevertheless, a comprehensive
cost-effectiveness analysis of control policy is needed in future work.

Our model emphasizes the importance of incorporating the indirect transmission via
free-living bacteria in the environment, where they are assumed to be uniformly dis-
tributed. However, bacterial density varies in rooms of hospitals [4], so future work should
take the environmental heterogeneity into consideration.
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