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Abstract. In this paper we study the effect of constant-yield predator har-

vesting on the dynamics of a Leslie-Gower type predator-prey model. It is

shown that the model has a Bogdanov-Takens singularity (cusp case) of codi-
mension 3 or a weak focus of multiplicity two for some parameter values, re-

spectively. Saddle-node bifurcation, repelling and attracting Bogdanov-Takens

bifurcations, supercritical and subcritical Hopf bifurcations, and degenerate
Hopf bifurcation are shown as the values of parameters vary. Hence, there

are different parameter values for which the model has a homoclinic loop or

two limit cycles. It is also proven that there exists a critical harvesting value
such that the predator specie goes extinct for all admissible initial densities of

both species when the harvest rate is greater than the critical value. These
results indicate that the dynamical behavior of the model is very sensitive to

the constant-yield predator harvesting and the initial densities of both species

and it requires careful management in the applied conservation and renewable
resource contexts. Numerical simulations, including the repelling and attract-

ing Bogdanov-Takens bifurcation diagrams and corresponding phase portraits,

two limit cycles, the coexistence of a stable homoclinic loop and an unstable
limit cycle, and a stable limit cycle enclosing an unstable multiple focus with
multiplicity one, are presented which not only support the theoretical analysis

but also indicate the existence of Bogdanov-Takens bifurcation (cusp case) of
codimension 3. These results reveal far richer and much more complex dynam-

ics compared to the model without harvesting or with only constant-yield prey

harvesting.

1. Introduction. The exploitation of biological resources and the harvesting of
populations are commonly practiced in fishery, forestry, and wildlife management.
Mathematical models have been used extensively and successfully to gain insight
into the scientific management of renewable resources like fisheries and forestries
(Clark [10]). The optimal management of renewable resources is based on the
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notion of maximum sustainable yield (MSY) of harvesting, which is the maximum
harvesting compatibility with survival. A population will go extinction if it is
harvested more than its MSY (i.e. it is over-exploited). We must determine the
MSY for the harvesting (when harvesting is allowed) of each population and assure
the preservation of all species.

Predator-prey models play an important role in studying the management of
renewable resources (Clark [10], Chrstensen [9], Hill et al. [17]). The effect of
harvesting on the dynamics of predator-prey systems and the role of harvesting
in the management of renewable resources have attracted great attention, see for
example, Beddington and Cooke [1], Beddington and May [2], Brauer and Soudack
[5, 6, 7], Dai and Tang [12], Etoua and Rousseau [14], Hogarth et al. [18], Leard et
al. [23], May et al. [24], Myerscough et al. [27], Xiao and Jennings [33], Xiao and
Ruan [34], etc. In order to investigate the interaction between the krill (prey) and
whale (predator) populations in the Southern Ocean, May et al. [24] proposed the
following model to describe the interaction of predators and their prey subject to
various harvesting regimes:

ẋ = r1x(1− x
K )− axy −H1,

ẏ = r2y(1− y
bx )−H2,

(1)

where x(t) > 0 and y(t) ≥ 0 represent the population densities of the prey and
predators at time t ≥ 0, respectively; r1 and K describe the intrinsic growth rate
and the carrying capacity of the prey in the absence of predators, respectively; a is
the maximum value at which per capita reduction rate of the prey x can attain; r2

is the intrinsic growth rate of predators; bx takes on the role of a prey-dependent
carrying capacity for predators and b is a measure of the quality of the food for
predators.
H1 and H2 describe the effect of harvesting on the prey and predators, respec-

tively. Two types of harvesting have been proposed (see May et al. [24]): constant-
effort harvesting, described by a constant multiplication of the size of the population
under harvest, and constant-yield harvesting, described by a constant independent
of the size of the population under harvest.

Various special cases of system (1) have been studied by different researchers.
(a) Unharvested system. When there is no harvesting, that is, H1 = H2 = 0,

system (1) becomes the so-called Leslie-Gower type predator-prey model

ẋ = r1x(1− x
K )− axy,

ẏ = r2y(1− y
bx ),

(2)

which has been studied extensively, for example, Hsu and Huang [21]. In partic-
ular, they showed that the unique positive equilibrium of system (2) is globally
asymptotically stable under all biologically admissible parameters.

(b) Constant-effort harvesting on both the prey and predators. Beddington and
May [2] analyzed system (1) when both the prey and predators were harvested with
constant-effort, H1 = r1h1x and H2 = r2h2y; namely,

ẋ = r1x(1− x
K )− axy − r1h1x = r1x[(1− h1)− x

K ]− axy,
ẏ = r2y(1− y

bx )− r2h2y = r2y[(1− h2)− y
bx )],

(3)

they discussed both the maximization of the sustainable yield of predators (whales),
for a specified level of fishing effort on the prey (krill), and conversely, the maxi-
mization of the sustainable yield of the prey, for a specified level of fishing effort on
predators. Notice that H1 and H2 are linear functions of x and y, respectively, and
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the harvesting terms can be combined into the growth/death terms as in system (3),
so the dynamics of system (3) are very similar to that of the unharvested system
(2).

(c) Constant-yield harvesting on the prey and constant-effort harvesting on preda-
tors. The case when the prey are harvested at a constant-yield rate (H1 = h1) and
predators are harvested with constant-effort (H2 = r2h2y); that is, the model

ẋ = r1x(1− x
K )− axy − h1,

ẏ = r2y[(1− h2)− y
bx )]

(4)

was considered in Beddington and Cooke [1]. Compared with the case of no predator
harvesting their results showed that the equilibrium is closer to the upper boundary
of the domain of attraction for same percentage of the stable MSY in the case of
constant-effort predator harvesting. Thus, if the same degree of stability is required
as in the case of no predator harvesting, the increase in potential prey MSY brought
about by predator harvesting cannot be fully exploited.

(d) Constant-yield harvesting on both the prey and predators. Beddington and
Cooke [1] also studied system (1) with constant-yield harvesting on both the prey
and predators, i.e., H1 = h1 and H2 = h2 both are constant:

ẋ = r1x(1− x
K )− axy − h1,

ẏ = r2y(1− y
bx )− h2.

(5)

They found that if the predators are in a state of heavy depletion the effect of the
prey harvesting on predator replacement yields or recovery rates is not very great,
but as the predator rise to higher levels the effect becomes substantial.

(e) Constant-yield harvesting on the prey only. Zhu and Lan [37] and Gong and
Huang [16] considered system (1) when only the prey population is harvested at a
constant-yield rate, i.e., H1 = h1 and H2 = 0 :

ẋ = r1x(1− x
K )− axy − h1,

ẏ = r2y(1− y
bx ).

(6)

They obtained various bifurcations including saddle-node bifurcation, supercritical
and subcritical Hopf bifurcations of codimension 1, and Bogdanov-Takens bifurca-
tion. Notice that the dynamics of model (4) are similar to that of system (6).

To develop a fishery in an unexploited area, the initial target species are usually
the larger and higher-priced predators (Chrstensen [9]). One exploitation pattern
can be described as the “tuna strategy” (Pauly [28], Chrstensen [9]): if well man-
aged, the strategy may result in a sustainable biomass of predators around half of
their maximal level and at MSY in total catches. However, if the predators are
fished so heavily that their biomass and production decline to almost zero which
results in increasing the biomass of their prey to a maximal level. This is the
so-called “whale strategy” (Pauly [28], Chrstensen [9]) and has been debated and
become controversial when predators like whales and seals are harvested (May et
al. [24], Flaaten [15], Yodzis [35]).

The purpose of this paper is to study the effect of constant-yield predator har-
vesting in system (1), that is to consider

ẋ = r1x(1− x
K )− axy,

ẏ = r2y(1− y
bx )− h2,

(7)
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where h2 > 0 denotes the constant-yield predator harvesting. Let us simplify model
(7) with the following scaling

t→ r1t, x→
x

K
, y → ay

r1
,

then model (7) takes the form

ẋ = x(1− x)− xy,
ẏ = y(δ − βy

x )− h, (8)

here δ = r2
r1

, β = r2
abK , h = ah2

r1
are positive constants. Saddle-node bifurcation,

repelling and attracting Bogdanov-Takens bifurcations of codimension 2, supercriti-
cal and subcritical Hopf bifurcations, and degenerate Hopf bifurcation are shown in
model (8) as the values of parameters vary, and there exists a critical predator har-
vesting rate such that predators go extinct when the harvest rate is greater than the
critical value. It is shown that the model has a Bogdanov-Takens singularity (cusp)
of codimension 3 or a weak focus of multiplicity two for some various parameter val-
ues. Numerical simulations, including the repelling and attracting Bogdanov-Takens
bifurcation diagrams and corresponding phase portraits, two limit cycles, the coex-
istence of a stable homoclinic loop and an unstable limit cycle, or a stable limit cycle
enclosing an unstable multiple focus with multiplicity one, are presented to not only
support the theoretical analysis but also indicate the existence of Bogdanov-Takens
bifurcation (cusp case) of codimension 3. These complex dynamics cannot occur in
the unharvested system (2).

This paper is organized as follows. In section 2, we study the existence of equi-
libria and various types of dynamical behavior in the small neighborhood of each
equilibrium for model (8). In section 3, we discuss bifurcations of model (8) depend-
ing on all parameters. We show that the model has a Bogdanov-Takens singularity
(cusp) of codimension 3 or a weak focus of multiplicity two for some parameter
values and exhibits saddle-node bifurcation, Hopf bifurcation of codimension 1, de-
generate Hopf bifurcation, repelling and attracting Bogdanov-Takens bifurcations
of codimension 2 in terms of the original parameters. The paper ends with a brief
discussion about the effect of constant-yield predator harvesting on system (8) and
a brief comparison about different dynamics between systems (2), (6), and (7).

2. Equilibria and their stability. In this section we discuss the existence and
stability of equilibria in system (8) which is rewritten as

ẋ = x(1− x)− xy := f1(x, y),

ẏ = y(δ − βy
x )− h := f2(x, y).

(9)

By the biological meaning of the model variables, we only consider system (9) in the
region Ω = {(x, y) : x > 0, y ≥ 0} in the (x, y)-plane. Notice that unlike the classical
predator-prey systems, (0, 0) is not an equilibrium of system (9), and the system is
not even well defined at (0, 0). We can see that the region Ω is not invariant under
the flow and all solutions once touching the x-axis will leave the first quadrant since
h > 0, which makes the analysis of system (9) more challenging.

First, we determine the location and number of equilibria of system (9). To find
the equilibria of system (9) in Ω, we consider the algebraic equations in x and y,

x(1− x)− xy = 0,

y(δ − βy
x )− h = 0.

(10)
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By the nonnegativeness of solutions of (10), we only need to consider the nonnegative
solutions of the following equations:

1− x− y = 0,

y(δ − βy
x )− h = 0.

(11)

Since the x coordinate of any positive equilibrium must satisfy 0 < x < 1 and
y = 1 − x (from the first equation of (11)), the second equation of (11) takes the
form

(β + δ)x2 − (2β + δ − h)x+ β = 0. (12)

Using the discriminant ∆ := (δ − h)2 − 4βh of (12) and letting

h1 = δ + 2β − 2
√
β2 + βδ, h2 = δ + 2β + 2

√
β2 + βδ, (13)

we obtain the following results:

Lemma 2.1. The equilibria of system (9) are as follows:

(i) System (9) has no equilibria in Ω if h > h1. The phase portrait is shown in
Fig. 1;

(ii) System (9) has a unique equilibrium (x1, y1) in Ω if h = h1, where x1 =
δ−h
δ+h , y1 = 2h

δ+h ;

(iii) System (9) has two distinct equilibria (x2, y2) and (x3, y3) in Ω if h < h1,
where

x2 =
2β+δ−h+

√
(δ−h)2−4βh

2(β+δ) , y2 =
δ+h−

√
(δ−h)2−4βh

2(β+δ) ,

x3 =
2β+δ−h−

√
(δ−h)2−4βh

2(β+δ) , y3 =
δ+h+

√
(δ−h)2−4βh

2(β+δ) .
(14)

Proof. Notice that equation (12) has no real roots if and only if ∆ < 0, that is
h1 < h < h2; equation (12) has only one positive real root if and only if ∆ = 0 and
h < δ, that is h = h1 (because 0 < h1 < δ < h2); equation (12) has two distinct
positive real roots if and only if ∆ > 0 and h < δ + 2β, that is, h < h1 (because
δ+2β < h2). We can also check that the real roots of equation (12) are not positive
if ∆ = 0, h > δ or ∆ > 0, h > δ + 2β, that is, h ≥ h2.
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Figure 1. The phase portrait of system (9) when it has no equilibria.
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Next we study the dynamics of system (9) in the neighborhood of each equilib-
rium. The Jacobian matrix of system (9) at these equilibria is given by

Df(x, y) =

(
−x −x

β( 1
x − 1)2 δ − 2β( 1

x − 1)

)
,

where x is the positive real root of equation (12).

Theorem 2.2. If h = h1, then system (9) has a unique equilibrium ( δ−hδ+h ,
2h
δ+h ) and

no closed orbits in Ω. More precisely,

(i) if δ 6= h+h2

1−h , then the equilibrium ( δ−hδ+h ,
2h
δ+h ) is a saddle-node and it is attract-

ing (repelling) if δ > h+h2

1−h (δ < h+h2

1−h );

(ii) if δ = h+h2

1−h , then the equilibrium (h, 1 − h) is a cusp. The phase portrait is
shown in Fig. 2.

Proof. The number of equilibria of system (9) can be obtained straightforward
from Lemma 2.1. Next we determine the type of the unique positive equilibrium
( δ−hδ+h ,

2h
δ+h ).

We calculate the determinant and trace of the Jacobian matrix of system (9) at
( δ−hδ+h ,

2h
δ+h ) and obtain

Det
(
Df(

δ − h
δ + h

,
2h

δ + h
)
)

= 0

and

Tr
(
Df(

δ − h
δ + h

,
2h

δ + h
)
)

=
h− δ
h+ δ

+ h.

If δ = h+h2

1−h , then Tr(Df( δ−hδ+h ,
2h
δ+h )) = 0, so both eigenvalues of Det(Df( δ−hδ+h ,

2h
δ+h ))

are zero. Otherwise, one of the eigenvalues is zero and the other is nonzero. The
type of ( δ−hδ+h ,

2h
δ+h ) can be directly proved by checking the conditions in Zhang et

al. [36, Theorems 7.1 - 7.3].

(a) (b) (c)
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Figure 2. The phase portraits of system (2.1) with one equilib-
rium. (a) Attracting saddle-node with δ = 0.4, β = 0.4, h = 0.0686;

(b) Repelling saddle-node with δ = 1+
√

2
2 , β = 0.25, h = 0.5; (c)

Cusp with δ = 0.3, β = 0.0125, h = 0.2.

Nonexistence of limit cycles in Ω comes from the following argument. If there
exists a limit cycle in Ω, then the limit cycle must contain some equilibria in its
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interior and the sum of indices of these equilibria is one. However, ( δ−hδ+h ,
2h
δ+h ) is

a unique equilibrium of system (9) in Ω, and it is a saddle-node or a cusp whose
index is not one. Hence, it is impossible to have any limit cycle in Ω if system (9)
has a unique equilibrium in Ω. This completes the proof of the theorem.

Theorem 2.3. If h < h1, then system (9) has two distinct equilibria (x2, y2) and
(x3, y3) in Ω, which are given by (14). Furthermore, (x2, y2) is a hyperbolic saddle
of system (9) and (x3, y3) is an anti-saddle of system (9). More precisely,

(a) (x3, y3) is an unstable focus (or a node) if h > h3;
(b) (x3, y3) is a weak focus (or a center) if h = h3;
(c) (x3, y3) is a stable focus (or a node) if h < h3;

here h3 = 1
4 (6β − 4β2 + 3δ − 6βδ − 2δ2 + (−1 + 2β + 2δ)

√
−8β + 4β2 + 4βδ + δ2).

The phase portraits are shown in Fig. 3.

Proof. The existence of two equilibria follows from Lemma 2.1. By some simple
calculations, we obtain

Det(Df(x2, y2)) = −∆ + (2β + δ − h)
√

∆

2β + δ − h+
√

∆
= −
√

∆ < 0,

Tr(Df(x3, y3)) = −x
2
3 − (2β + δ)x3 + 2β

x3
= 0 if h = h3,

and

Det(Df(x3, y3)) = β
x3
− x3(β + δ) = −∆−(2β+δ−h)

√
∆

2β+δ−h−
√

∆
=
√

∆ > 0. (15)

Then it is easy to check that these three cases hold.

(a) (b)
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Figure 3. The phase portrait of system (9) with two equilibria.
(a) A stable focus and a saddle; (b) An unstable focus and a saddle.

3. Bifurcations. In this section, we are interested in various possible bifurcations
in system (9) including saddle-node, Bogdanov-Takens, and Hopf bifurcations.
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3.1. Saddle-node bifurcation. It follows from Lemma 2.1, Theorems 2.2 and 2.3
that

SN = {(β, δ, h) : h = h1, δ 6=
h+ h2

1− h
}

is a saddle-node bifurcation surface. When parameters pass from one side of the
surface SN to the other side, the number of positive equilibria of system (9) changes
from zero to two. This indicates that there exists a critical harvesting rate h1 such
that the predator species goes extinct when the harvesting rate h > h1 and the
two species coexist in the form of a positive equilibrium for certain choices of initial
values when h = h1.

3.2. Bogdanov-Takens bifurcation. First, we investigate the Bogdanov-Takens
bifurcation in system (9). The following Lemma 3.1 is from Perko [30], and Lemma
3.2 is Proposition 5.3 in Lamontage et al. [22].

Lemma 3.1. The system

ẋ = y +Ax2 +Bxy + Cy2 + o(|x, y|2),
ẏ = Dx2 + Exy + Fy2 + o(|x, y|2)

(16)

is equivalent to the system

ẋ = y,
ẏ = Dx2 + (E + 2A)xy + o(|x, y|2)

(17)

in some small neighborhood of (0,0) after changes of coordinates.

Lemma 3.2. The system

ẋ = y,
ẏ = x2 + a30x

3 + a40x
4 + y(a21x

2 + a31x
3) + y2(a12x+ a22x

2) + o(|x, y|4)
(18)

is equivalent to the system

ẋ = y,
ẏ = x2 +Gx3y + o(|x, y|4)

(19)

in some small neighborhood of (0,0) after changes of coordinates and a rescaling of
time, where

G = a31 − a30a21. (20)

Now we state and prove one of the main theorems of this section.

Theorem 3.3. When β = h3

(1−h)2 , δ = h+h2

1−h , and 0 < h < 1, system (9) has an

interior equilibrium (h, 1− h) which is a cusp. Moreover,

(i) if h 6= 2−
√

3, then (h, 1− h) is a cusp of codimension 2;

(ii) if h = 2−
√

3, then (h, 1− h) is a cusp of codimension 3.

Proof. From the conditions h = h1 and δ = h+h2

1−h in Theorem 2.2, we can express

β and δ in terms of h: β = h3

(1−h)2 , δ = h+h2

1−h , 0 < h < 1.

First of all, we translate the interior equilibrium (h, 1−h) of system (9) into the
origin and expand system (9) in power series around the origin. Let X = x − h,
Y = y − 1 + h. Then system (9) can be rewritten as

Ẋ = −hX − hY −X2 −XY,
Ẏ = hX + hY −X2 + 2h

1−hXY −
h2

(1−h)2Y
2 + o(|X,Y |2),

(21)

where β and δ are eliminated by the conditions of Theorem 3.3.
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Making the affine transformation

x = (1 + h)X + hY, y = −hX − hY,

we obtain

ẋ = y − h
(1−h)2x

2 + 1−h−5h2+h3

h(1−h)2 xy + 1−h−5h2+h3

h(1−h)2 y2 + o(|x, y|2),

ẏ = h
(1−h)2x

2 − 1−6h+h2

(1−h)2 xy − 1−6h+h2

(1−h)2 y2 + o(|x, y|2).
(22)

By Lemma 3.1 we obtain an equivalent system of (22) as follows

ẋ = y,

ẏ = h
(1−h)2x

2 − 1−4h+h2

(1−h)2 xy + o(|x, y|2),
(23)

where h
(1−h)2 > 0. When 1−4h+h2

(1−h)2 6= 0, i.e. h 6= 2 −
√

3, (h, 1 − h) is a cusp of

codimension 2 by the results in Perko [30]. Moreover, − 1−4h+h2

(1−h)2 < 0 (or > 0) if

0 < h < 2 −
√

3 (or 2 −
√

3 < h < 1). On the other hand, if 1−4h+h2

(1−h)2 = 0, i.e.,

h = 2−
√

3 (since 0 < h < 1), then (h, 1− h) is a cusp of codimension at least 3.

Now we investigate the exact codimension of the cusp (h, 1−h) when h = 2−
√

3.
Rewrite (21) as

Ẋ = (
√

3− 2)X + (
√

3− 2)Y −X2 −XY,
Ẏ = (2−

√
3)X + (2−

√
3)Y −X2 + (

√
3− 1)XY − 7−4

√
3

4−2
√

3
Y 2

+ 1
2−
√

3
X3 + 2

1−
√

3
X2Y + 1

2XY
2 + 1

−7+4
√

3
X4

+ 2
−5+3

√
3
X3Y − 1

4−2
√

3
X2Y 2 + o(|X,Y |4).

(24)

Let

x = X, y = (
√

3− 2)X + (
√

3− 2)Y −X2 −XY.
Then system (24) is transformed into

ẋ = y,

ẏ = x2

2 + (5+2
√

3)y2

2 + (19−11
√

3)x2y

−71+41
√

3
+ (33−19

√
3)xy2

−97+56
√

3
+ (13775−7953

√
3)x3y

191861−110771
√

3

+ (343−198
√

3)x2y2

2702−1560
√

3
+ o(|x, y|4).

(25)

Next, introducing a new time variable τ by dt = (1 − ( 5
2 +
√

3)x)dτ to (25) and
rewriting τ as t, we obtain

ẋ = y(1− ( 5
2 +
√

3)x),

ẏ = (1− ( 5
2 +
√

3)x)( 1
2x

2 + ( 5
2 +
√

3)y2 + 19−11
√

3
−71+41

√
3
x2y + 33−19

√
3

−97+56
√

3
xy2

+ 13775−7953
√

3
191861−110771

√
3
x3y + 343−198

√
3

2702−1560
√

3
x2y2 + o(|x, y|4)).

(26)

The transformation X = x, Y = y(1− ( 5
2 +
√

3)x) brings (26) into

Ẋ = Y,

Ẏ = 1
2X

2 − ( 5
2 +
√

3)X3 + 1
2 ( 5

2 +
√

3)2X4 + 19−11
√

3
−71+41

√
3
X2Y

+( 13775−7953
√

3
191861−110771

√
3
− 29−17

√
3

−142+82
√

3
)X3Y + ( 33−19

√
3

−97+56
√

3
− ( 5

2 +
√

3)2)XY 2

+( 343−198
√

3
2702−1560

√
3
− ( 5

2 +
√

3)3)X2Y 2 + o(|X,Y |4)).

(27)

Make the following change of variables

x = X, y =
√

2Y, τ =
1√
2
t,
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then system (27) can be rewritten as

ẋ = y,

ẏ = x2 − (5 + 2
√

3)x3 + ( 5
2 +
√

3)2x4 + y(−
√

2(2 +
√

3)x2 + 30+17
√

3√
2

x3)

+y2((− 73
4 − 10

√
3)x+ −13−6

√
3

8 x2) + o(|x, y|4).

(28)

By Lemma 3.2 we obtain an equivalent system of (28) as

ẋ = y,
ẏ = x2 +Mx3y + o(|x, y|4),

(29)

where

M = −2 +
√

3√
2

.
= −2.63896.

By results in Dumortier et al. [13], (h, 1 − h) is a cusp of codimension 3 when

h = 2−
√

3.

In the following, we discuss if system (9) can undergo Bogdanov-Taken bifurca-
tion under a small parameter perturbation if the bifurcation parameters are chosen
suitably. Actually, we have the following theorem.

Theorem 3.4. When β = h3

(1−h)2 , δ = h+h2

1−h , 0 < h < 1 and h 6= 2 −
√

3, system

(9) has an interior equilibrium (h, 1 − h) which is a cusp of codimension 2 (i.e.,
B-T singularity). If we choose δ and h as bifurcation parameters, then system
(9) undergoes Bogdanov-Taken bifurcation in a small neighborhood of the interior
equilibrium (h, 1 − h) as (h, δ) varies near (h0, δ0), where δ0 and h0 satisfy β0 =

h3
0

(1−h0)2 , δ0 =
h0+h2

0

1−h0
, 0 < h0 < 1 and h0 6= 2−

√
3. Moreover,

(i) if 2 −
√

3 < h < 1, then there exists a repelling Bogdanov-Takens bifurcation
of codimension 2. Hence, there exist some parameter values such that system
(9) has an unstable limit cycle, and there exist some other parameter values
such that system (9) has an unstable homoclinic loop;

(ii) if 0 < h < 2−
√

3, then there exists an attracting Bogdanov-Takens bifurcation
of codimension 2. Hence, there exist some parameter values such that system
(9) has a stable limit cycle, and there exist some other parameter values such
that system (9) has a stable homoclinic loop.

Proof. We choose δ and h as bifurcation parameters. Consider

ẋ = x(1− x)− xy,
ẏ = y(δ0 + λ1 − β0

y
x )− (h0 + λ2),

(30)

where the constants β0, δ0 and h0 satisfy β0 =
h3
0

(1−h0)2 , δ0 =
h0+h2

0

1−h0
, 0 < h0 < 1

and h0 6= 2 −
√

3, (λ1, λ2) is a parameter vector in a small neighborhood of (0, 0).
We are only interested in the phase portraits of system (30) when x and y are in a
small neighborhood of the interior equilibrium (h0, 1− h0).

In the following we will make a series of variable changes to obtain the versal
unfolding of system (30). We first translate (h0, 1 − h0) to the origin and expand
system (30) in power series around the origin. Let X = x−h0, Y = y−1 +h0, then
we have

Ẋ = −h0X − h0Y −X2 −XY,
Ẏ = λ1(1− h0)− λ2 + h0X + (h0 + λ1)Y −X2 + 2h0

1−h0
XY

− h2
0

(1−h0)2Y
2 +R1(X,Y ),

(31)
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where R1 is a C∞ function at least of the third order with respect to (X,Y ). Let

x = X, y = −h0X − h0Y −X2 −XY,
then system (31) can be written as

ẋ = y,

ẏ = h0(h0 − 1)λ1 + h0λ2 + ((2h0 − 1)λ1 + λ2)x+ λ1y + ( h0

(1−h0)2 + λ1)x2

+( 2h0

(1−h0)2 − 1)xy + ( h0

(1−h0)2 + 1
h0

)y2 +R2(x, y),
(32)

where R2(x, y) is a C∞ function at least of the third order with respect to (x, y).
Next, we introduce a new time variable τ by dt = (1 − ( h0

(1−h0)2 + 1
h0

)x)dτ .

Rewriting τ as t, we have from (32) that

ẋ = y(1− ( h0

(1−h0)2 + 1
h0

)x),

ẏ = (1− ( h0

(1−h0)2 + 1
h0

)x)(h0(h0 − 1)λ1 + h0λ2

+((2h0 − 1)λ1 + λ2)x+ λ1y + ( h0

(1−h0)2 + λ1)x2

+( 2h0

(1−h0)2 − 1)xy + ( h0

(1−h0)2 + 1
h0

)y2 +R2(x, y)).

(33)

Let X = x, Y = y(1− ( h0

(1−h0)2 + 1
h0

)x), then (33) can be rewritten as

Ẋ = Y,

Ẏ = ψ1 + ψ2X + ψ3Y + ψ4X
2 + ψ5XY +R3(X,Y, λ1, λ2),

(34)

where R3(X,Y, λ1, λ2) is a C∞ function at least of the third order with respect to
(X,Y ), whose coefficients depend smoothly on λ1 and λ2, and

ψ1 = h0(h0 − 1)λ1 + h0λ2, ψ2 =
−1 + h0 − 2h2

0

h0 − 1
λ1 − (1 +

2h2
0

(1− h0)2
)λ2, ψ3 = λ1,

ψ4 =
h0

(1− h0)2
+
−1 + 5h0 − 9h2

0 + 9h3
0 − 3h4

0

h0(h0 − 1)3
λ1 + (

h3
0

(h0 − 1)4
− 1

h0
)λ2,

ψ5 =
−1 + 4h0 − h2

0

(1− h0)2
− (

1

h0
+

h0

(1− h0)2
)λ1.

Notice that ψ4 > 0 when λi are small. Make the following change of variables

x = X, y =
Y√
ψ4

, τ =
√
ψ4t,

then system (34) becomes

ẋ = y,

ẏ = ψ1

ψ4
+ ψ2

ψ4
x+ ψ3√

ψ4
y + x2 + ψ5√

ψ4
xy +R4(x, y, λ1, λ2),

(35)

where R4(x, y, λ1, λ2) is a C∞ function at least of the third order with respect to
(x, y), and the coefficients depend smoothly on λ1 and λ2. Let

X = x+
ψ2

2ψ4
, Y = y.

Then (35) can be written as

Ẋ = Y,

Ẏ = ψ1

ψ4
− ψ2

2

4ψ2
4

+ ( ψ3√
ψ4
− ψ2ψ5

2ψ4

√
ψ4

)Y +X2 + ψ5√
ψ4
XY +R5(X,Y, λ1, λ2),

(36)

where R5(X,Y, λ1, λ2) is a C∞ function at least of the third order with respect to
(X,Y ), and the coefficients depend smoothly on λ1 and λ2.
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Note that ψ5 6= 0 (since h0 6= 2−
√

3 and 0 < h0 < 1) when λi are small. Make
the change of variables one more time by setting

x =
ψ2

5

ψ4
X, y =

ψ3
5

ψ4

√
ψ4
Y, τ =

√
ψ4

ψ5
t.

Then we obtain the versal unfolding of system (30)

ẋ = y,
ẏ = ξ1 + ξ2y + x2 + xy +R6(x, y, λ1, λ2),

(37)

where R6(x, y, λ1, λ2) is a C∞ function at least of the third order with respect to
(x, y), whose coefficients depend smoothly on λ1 and λ2, and

ξ1 =
ψ1ψ

4
5

ψ3
4

− ψ2
2ψ

4
5

4ψ4
4

, ξ2 =
ψ3ψ5

ψ4
− ψ2ψ

2
5

2ψ2
4

.

By some simple computation, we obtain that

ξ1 = − 1
Q2(λ)

(−1 + h0)
6[h0(1− 4h0 + h2

0) + (1− 2h0 + 2h2
0)λ1]

4[(5− 22h0 + 41h2
0 − 40h30 + 16h4

0)λ
2
1

+(5− 10h0 + 9h2
0)λ

2
2 − 4h2

0λ2 + 4(1− h0)h
2
0λ1 + 2(−5 + 16h0 − 21h2

0 + 12h30)λ1λ2],

ξ2 = 1
Q(λ)

(−1 + h0)
2[h0(1− 4h0 + h2

0) + (1− 2h0 + 2h2
0)λ1][(−1 + h0)

2(−3 + 10h0 − 14h2
0 + 10h3

0)λ
2
1

+h0(1− 6h0 + 12h2
0 − 14h3

0 + 3h4
0)λ2 − h0(1− h0)(1− 3h0 + 5h20 − 9h3

0 + 2h4
0)λ1

−3(1− h0)(−1 + 3h0 − 4h2
0 + 2h3

0)λ1λ2],

Q(λ) = 2[−h2
0(1− h0)

2 + (−1 + 6h0 − 14h20 + 18h3
0 − 12h4

0 + 3h5
0)λ1 + (1− 4h0 + 6h2

0 − 4h3
0)λ2)]

2.

Since ∣∣∣∣ ∂(ξ1, ξ2)

∂(λ1, λ2)

∣∣∣∣
λ=0

=
(3− h0)(1− 4h0 + h2

0)5

2h3
0(1− h0)

6= 0

when 0 < h0 < 1 and h0 6= 2−
√

3, the above parameter transformation is a home-
omorphism in a small neighborhood of the origin, and ξ1 and ξ2 are independent
parameters.

By the results in Bogdanov [3, 4] and Takens [31] or Perko [30], we obtain the
following local representations of the bifurcation curves up to second-order approx-
imations:

(1) The saddle-node bifurcation curve SN = {(ξ1, ξ2) : ξ1 = 0, ξ2 6= 0}, i.e.,

SN = {(λ1, λ2) : λ2 = (1− h0)λ1}.
(2) The Hopf bifurcation curve H = {(ξ1, ξ2) : ξ2 =

√
−ξ1, ξ1 < 0}, i.e.,

H = {(λ1, λ2) :
(1−4h0+h20)4

h20(−1+h0)
λ1 +

(1−4h0+h20)4

h20(−1+h0)2
λ2 −

3(1−4h0+h20)4(−1+4h0−6h20+4h30)

h40(−1+h0)4
λ2
2

+
(1−4h0+h20)3(6−54h0+168h20−257h30+215h40−75h50+9h60)

h40(−1+h0)3
λ1λ2

+
(1−4h0+h20)3(3−42h0+24h20−595h30+903h40−826h50+411h60−99h70+9h80)

h40(−1+h0)2
λ2
1 = 0}.

(3) The homoclinic bifurcation curve HL = {(ξ1, ξ2) : ξ2 = 5
7

√
−ξ1, ξ1 < 0}, i.e.,

HL = {(λ1, λ2) :
25(1−4h0+h20)4

49h20(−1+h0)
(λ1 +

λ2
−1+h0

)−
3(1−4h0+h20)4(27−108h0+170h20−124h30+18h40)

49h40(−1+h0)4
λ2
2

+
(1−4h0+h20)3(162−1410h0+4368h20−6761h30+5795h40−2247h50+297h60)

49h40(−1+h0)3
λ1λ2

+
(1−4h0+h20)2(81−1086h0+5714h20−15163h30+23073h40−21262h50+10881h60−2691h70+249h80)

49h40(−1+h0)2
λ2
1 = 0}.

From the expression of ψ5 and the transformation τ =
√
ψ4

ψ5
t, which was used to

obtain system (37), we also have the following results:

(i) If 2−
√

3 < h < 1, then ψ5 > 0. Therefore, there exists a repelling Bogdanov-
Takens bifurcation of codimension 2. Hence, there exist some parameter values such
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that system (9) has an unstable limit cycle, and there exist some other parameter
values such that system (9) has an unstable homoclinic loop.

(ii) If 0 < h < 2 −
√

3, then ψ5 < 0. Therefore, there exists an attracting
Bogdanov-Takens bifurcation of codimension 2. Hence, there exist some parameter
values such that system (9) has a stable limit cycle, and there exist some other
parameter values such that system (9) has a stable homoclinic loop.

The repelling B-T bifurcation diagram and phase portraits of system (30) with

h = h0 = 3
10 > 2 −

√
3 are given in Fig. 4. These bifurcation curves H,HL, and

SN divide the small neighborhood of the origin in the parameter (λ1, λ2)-plane into
four regions (see Fig. 4(a)).
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λ
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λ
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Figure 4. The repelling B-T bifurcation diagram and corre-
sponding phase portraits of system (30) with h = h0 = 3

10 . (a)
Bifurcation diagram; (b) A cusp of codimension 2 when (λ1, λ2) =
(0, 0); (c) No equilibria when (λ1, λ2) = (0.01, 0.01) lies in region
I; (d) An unstable focus when (λ1, λ2) = (0.01, 0.006) lies in region
II; (e) An unstable limit cycle when (λ1, λ2) = (0.01, 0.0052) lies in
region III; (f) A stable focus when (λ1, λ2) = (0.01, 0.0035) lies in
region IV.

(a) When (λ1, λ2) = (0, 0), the unique positive equilibrium is a cusp of codimen-
sion 2 (see Fig. 4(b)).

(b) There are no equilibria when the parameters lie in region I (see Fig. 4(c)),
all solutions will pass through the x-axis and go out of the first quadrant.
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(c) When the parameters lie on the curve SN , there is a positive equilibrium,
which is a saddle-node.

(d) Two positive equilibria, one is an unstable focus and the other is a saddle,
will occur through the saddle-node bifurcation when the parameters cross SN into
region II (see Fig. 4(d)).

(e) An unstable limit cycle will appear through the subcritical Hopf bifurcation
when the parameters crossH into region III (see Fig. 4(e)), where the focus is stable,
whereas the focus is an unstable one with multiplicity one when the parameters lie
on the curve H.

(f) An unstable homoclinic cycle will occur through the repelling homoclinic
bifurcation when the parameters pass region III and lie on the curve HL.

(g) The relative location of one stable and one unstable manifold of the saddle
(x2, y2) will be reverse when the parameters cross III into region IV (compare Fig.
4(e) and Fig. 4(f)).

The attracting B-T bifurcation diagram of codimension 2 and phase portraits
in system (30) with h = h0 = 1

5 < 2 −
√

3 are given in Fig. 5, where a stable
homoclinic loop arises from attracting homoclinic bifurcation is given in Fig. 5(d),
and a stable limit cycle arises from supercritical Hopf bifurcation is given in Fig.
5(e).

When δ tends to δ0, the above results indicate that if the harvesting rate h tends
to h0, then there exist some parameter values such that the prey and predators
coexist in the form of a positive equilibrium or a periodic orbit with a finite period
for different initial values, respectively. There exist some other parameter values
such that the prey and predator coexist in the form of a positive equilibrium or a
periodic orbit with an infinite period for different initial values, respectively.

3.3. Hopf bifurcation. From Theorem 2.3(b) we know that (x3, y3) is a weak
focus or a center. Hence Hopf bifurcation may occur at this equilibrium. In this
subsection we present conditions under which the stability of (x3, y3) changes such
that system (9) undergoes Hopf bifurcation and degenerate Hopf bifurcation and
exhibits two limit cycles.

We first make a transformation of u = x− x3, v = y − y3, and then rewrite u, v
as x and y, respectively, system (9) can be changed into

ẋ =
∑3
i+j=1 aijx

iyj +O1(|(x, y)|4),

ẏ =
∑3
i+j=1 bijx

iyj +O2(|(x, y)|4),
(38)

where aij and bij are the coefficients of the power series expansions of f1(x, y) and
f2(x, y) at (x3, y3), respectively, i, j = 0, 1, 2, 3. Ok(|(x, y)|)4 is the same order
infinity, k = 1, 2. Hence, using the formula of the first Liapunov number σ from
Perko [30] at the origin of (38), we have

σ =
3πβQ

2x5
3∆

3
2
1

,

where ∆1 = β
x3
− x3(β + δ), and

Q = x5
3 − (β − 4)x4

3 − 2(β + 1)x3
3 + β(2β + 3)x2

3 − 4β2x3 + 2β2.

From (15), we can see that ∆1 > 0, therefore the sign of σ is determined by
Q. By some numerical calculations, we know that there exist parameter values

(β, δ, h) = ( 37
1000 ,

3
5 ,

1
4 ( 290831+137

√
39569

250000 )
.
= 0.318083) which satisfy the conditions of
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Figure 5. The attracting B-T bifurcation diagram and corre-
sponding phase portraits of system (30) with h = h0 = 1

5 . (a)
Bifurcation diagram; (b) No equilibria when (λ1, λ2) = (0.01, 0.01)
lies in region I; (c) An unstable focus when (λ1, λ2) = (0.01, 0.001)
lies in region II; (d) A stable homoclinic loop when (λ1, λ2) =
(0.01,−0.00647) lies on the curve HL; (e) A stable limit cycle when
(λ1, λ2) = (0.01,−0.012) lies in region III; (f) A stable focus when
(λ1, λ2) = (0.01,−0.015) lies in region IV.

Theorem 2.3(b), such that σ
.
= 8.23692. On the other hand, there exist parameter

values (β, δ, h) = ( 1
80 ,

3
10 ,

119
640 ) which also satisfy the conditions of Theorem 2.3(b),

such that σ
.
= −272.777. Therefore, there exists an open set V1 in the parameter

space (β, δ, h), such that σ > 0 and h < h1, i.e.,

V1 = {(β, δ, h) : h < h1, σ > 0}.

And there exists another open set V2 in the parameter space (β, δ, h), such that
σ < 0 and h < h1, i.e.,

V2 = {(β, δ, h) : h < h1, σ < 0}.

Summarizing the above discussion, we have the following results.

Theorem 3.5. (i) If h = h3 and the parameters (β, δ, h) are in V1, then the
equilibrium (x3, y3) of system (9) is a multiple focus of multiplicity one and is
unstable. System (9) has an unstable limit cycle arising from the subcritical
Hopf bifurcation;
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(ii) If h = h3 and the parameters (β, δ, h) are in V2, then the equilibrium (x3, y3)
of system (9) is a multiple focus of multiplicity one and is stable. System (9)
has a stable limit cycle arising from the supercritical Hopf bifurcation. The
phase portrait for one limit cycle is given in Fig. 6.
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Figure 6. (a) A stable limit cycle created by the supercritical
Hopf bifurcation; (b) An unstable limit cycle created by the sub-
critical Hopf bifurcation.

In Fig. 6, by incorporating the above analysis and using numerical simulations
we present the supercritical and subcritical Hopf bifurcations of codimension 1.
When (β, δ, h) = ( 1

80 ,
3
10 , 119

640 ), (x3, y3) is a stable multiple fucus with multiplicity

one, then we let h increase to 119
640 + 1

1000 , the existence of one stable limit cycle of
system (9) arises from the supercritical Hopf bifurcation is illustrated in Fig. 6(a);

When (β, δ, h) = ( 37
1000 ,

3
5 ,

1
4 ( 290831+137

√
39569

250000 )
.
= 0.318083), (x3, y3) is an unstable

multiple fucus with multiplicity one, then we let h decrease to 0.315, the existence
of one unstable limit cycle of system (9) arises from the subcritical Hopf bifurcation
is illustrated in Fig. 6(b).

Next, we present an example to show that system (9) has an interior equilibrium
which is a stable weak focus of multiplicity two, and under a small perturbation,
system (1.1) undergoes a degenerate Hopf bifurcation and produces two limit cycles.

Theorem 3.6. When (β, δ, h) = (−4+
√

51
100 , −3+2

√
51

25 , 4(1+
√

51)
125 ), system (9) has an

interior equilibrium (x3, y3) which is a stable weak focus of multiplicity two. System
(1.1) has two limit cycles arising from the degenerate Hopf bifurcation, the repelling
cycle is surrounded by an attracting cycle. The phase portrait for two limit cycles
is given in Fig. 7.

Proof. From Theorem 2.3(b), we know that Tr(Df(x3, y3)) = 0 when δ = x3 +
2β( 1

x3
− 1). We make the following linear transformation of state variables to

system (38),

X = −a01x, Y = a01x+
√
dy,
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β = ( − 3.9495 + sqrt(51))/100
h = (21 + 20 sqrt(51))/625

δ = ( − 29 + 20 sqrt(51))/250
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Figure 7. Two limit cycles arising from the degenerate Hopf bifurcation.

where d = Det(Df(x3, y3)) = βx3 − x2
3 − 2β + β

x3
, we still denote X,Y by x, y,

respectively, then system (38) becomes

ẋ = −
√
dy +O3(|(x, y)|2),

ẏ =
√
dx+O4(|(x, y)|2),

(39)

where Ok(|(x, y)|2) is the same order infinity, k = 3, 4.
Next, we determine the multiplicity of the weak focus (0, 0) of system (39) by

the successor function method. It is convenient to introduce polar coordinates (r, θ)
and rewrite system (39) in polar coordinates by x = r cos θ, y = r sin θ. It is clear
that in a small neighborhood of the origin the successor function D(c0) of system
(39) can be expressed by

D(c0) = r(2π, c0)− r(0, c0),

where r(θ, c0) is the solution of the following Cauchy problem

dr
dθ = R2(θ)r2 +R3(θ)r3 +R4(θ)r4 +R5(θ)r5 + ...,
r(0) = c0, 0 <| c0 |� 1,

(40)

where Ri(θ) is a polynomial of (sin θ, cos θ), i = 2, 3, ..., whose coefficients can be
expressed by the coefficients of system (39). We omit them here since the expressions
are too long.

In the following, we fix x3 = 1
5 , then β > 1

80 because d > 0. From the method of
successor function in Zhang et al. [36], we can obtain the first Liapunov number of
the equilibrium (0, 0) of system (39)

L1 =
5β(−7 + 160β + 2000β2)

4(80β − 1)
3
2

.

Obviously, L1 = 0 when β = −4+
√

51
100 . Therefore, the interior equilibrium (x3, y3)

is an unstable (stable) weak focus of multiplicity one if β > −4+
√

51
100 ( 1

80 < β <
−4+

√
51

100 , respectively).
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However, if β = −4+
√

51
100 , then L1 = 0. We further compute the second Liapunov

number of equilibrium (0, 0) of system (39) as β = −4+
√

51
100 and obtain

L2 = −
√

165405 + 23180
√

51

14400

.
= −0.0399498.

Therefore, the interior equilibrium (x3, y3) is a stable weak focus of multiplicity

two if (β, δ, h) = (−4+
√

51
100 , −3+2

√
51

25 , 4(1+
√

51)
125 ), where we can determine δ from

Tr(Df(x3, y3)) = 0 and h from the equilibria equation (12).

In the following, we present additional interesting dynamics to show the existence
of attracting Bogdanov-Takens bifurcation (cusp case) of codimension 3 in system
(9) by numerical simulations.

In Fig. 8, we fix (β, h) = ( 1
80 ,

21
100 ). The phase portrait about the existence of a

stable homoclinic cycle enclosing an unstable hyperbolic focus when δ = 0.37507 is
given in Fig. 8(a); When δ increases to 0.378, the existence of a stable limit cycle
enclosing an unstable hyperbolic focus and arising from the attracting homoclinic
bifurcation is shown in Fig. 8(b); When δ increases to 0.38, the existence of two
limit cycles enclosing a stable hyperbolic focus is given in Fig. 8(c), the inner limit
cycle is unstable and the outer is stable, the inner one arises from the subcritical
Hopf bifurcation. Comparing Fig. 8(b) with Fig. 8(c), we know that there exists a
unique δ0 satisfying 0.378 < δ0 < 0.38 such that system (9) has a stable limit cycle
enclosing an unstable multiple focus with multiplicity one.

(a) (b) (c)
β = 1/80
h = 21/100

δ = 3/10 + 0.07507
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Figure 8. Phase portraits of system (9) with (β, h) = ( 1
80 ,

21
100 ),

(a) A stable homoclinic cycle enclosing an unstable hyperbolic fo-
cus when δ = 0.37507; (b) A stable limit cycle enclosing an un-
stable hyperbolic focus and arising from the attracting homoclinic
bifurcation when δ = 0.378; (c) Two limit cycles enclosing a stable
hyperbolic focus when δ = 0.38.

In Fig. 9, we show the coexistence of a stable homoclinic loop and an unstable
limit cycle in system (9).

4. Discussion. Our qualitative analysis on system (9) reveals that the constant-
yield predator harvesting h plays an important role in determining the dynamics and
bifurcations of system (9): it can affect the number and type of equilibria (Lemma
2.1 and Theorems 2.2 and 2.3) and the type of bifurcations (saddle-node bifurcation,
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x ’ = x (1 − x) − x y                                                       
y ’ = y (sqrt(12) − 3 + a1 − (7/2 − sqrt(12) + a2) y/x) − (2 − sqrt(3) + a3)

a2 = − 0.01
a3 = − 0.01

a1 = 0
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Figure 9. The coexistence of a stable homoclinic loop and an
unstable limit cycle in system (9).

Hopf bifurcation, and Bogdanov-Takens bifurcation) in the model. The saddle-node
bifurcation, repelling and attracting Bogdanov-Takens bifurcations of codimension
2, supercritical and subcritical Hopf bifurcations, and degenerate Hopf bifurcation
are shown in model (9) as the values of parameters vary, and there exists a critical
predator harvesting rate such that predators go extinct when the harvest rate is
greater than the critical value. It is also shown that the model has a Bogdanov-
Takens singularity (cusp) of codimension 3 for some parameter values, numerical
simulations, including the repelling and attracting Bogdanov-Takens bifurcation
diagrams and corresponding phase portraits, two limit cycles, the coexistence of a
stable homoclinic loop and an unstable limit cycle, and a stable limit cycle enclosing
an unstable multiple focus with multiplicity one, are presented to not only support
the theoretical analysis but also indicate the existence of attracting Bogdanov-
Takens bifurcation (cusp case) of codimension 3. These complex dynamics cannot
occur in the unharvested systems (2) and the case (6) with only constant-yield prey
harvesting. System (2) has only one positive equilibrium which is global stable
under all admissible parameters (Hsu and Huang [21]), while system (1) with only
constant-yield prey harvesting has at most two positive equilibria and exhibits Hopf
bifurcation of codimension 1 (Zhu and Lan [37]) and Bogdanov-Takens bifurcation
of codimension 2 (Gong and Huang [16]). Thus we can see that the constant-yield
predator harvesting in system (7) can cause more complex dynamical behaviors and
bifurcation phenomena compared with no harvesting in system (2) or (6) with only
constant-yield prey harvesting.

It is obvious that the absolute maximum sustainable yield of predator harvesting
is hMSY = h1. From the theoretical analysis (Theorems 3.3-3.6) and numerical
simulations (Fig. 4-9), we can choose δ, h and β as bifurcation parameters such
that system (9) exhibits Bogdanov-Taken bifurcation of codimension 3 under a small
parameter perturbation, which has been studied for general differential equations
by Dumortier et al. [13] and by Chow et al. [11]. The bifurcation diagram for such
a bifurcation is known ([13]) and the unfolding of system (29) is equivalent to

ẋ = y,
ẏ = µ1 + µ2y + µ3xy + x2 − x3y + o(|x, y|4),
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system (9) can have at least two limit cycles or the coexistence of a limit cycle
and a homoclinic loop for different parameter values. See Zhu et al. [38] for such
bifurcations in a predator-prey model, and Tang et al. [32] and Cai et al. [8] for
such bifurcations in epidemic models.

The reduction of the predator stock level in predator-prey interactions within fish-
ery systems may increase the surplus production of the prey. Harvesting predators
becomes controversial (May et al. [24], Flaaten [15], Yodzis [35]) and is important
in maintaining the abundance of fish stocks. The Bogdanov-Takens bifurcation
diagrams and the numerical simulations in section 3 demonstrate that there are
some parameter regions in which predator species can be driven to extinction by
constant-yield harvesting of the predators. These may provide some explanations
for the collapse of the Atlantic cod stocks in the Canadian Grand Banks (Hutchings
and Myers [20], Myers et al. [25], Hutchings [19]) and may be significant and useful
in designing fishing policies for the fishery industry (Pauly et al. [29], Myers and
Worm [26]).

Since fishing is a seasonal activity, it will be very interesting to study how seasonal
harvesting affects the existing bifurcations in predator-prey systems. We leave these
for future consideration.

Acknowledgments. Research of this paper was completed when the first author
was visiting the University of Miami, he would like to thank the faculty and staff
in the Department of Mathematics there for their kind hospitality and helpful as-
sistance.

REFERENCES

[1] J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex , Ecol. Modelling,
14 (1982), 155–177.

[2] J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting

at more than one trophic level , Math. Biosci., 51 (1980), 261–281.
[3] R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane, Trudy

Sem. Petrovsk. Vyp., 2 (1976), 23–35.
[4] R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero

eigenvalues, Trudy Sem. Petrovsk. Vyp., 2 (1976), 37–65.

[5] F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested
predator-prey systems, J. Math. Biol., 7 (1979), 319–337.

[6] F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate

prey harvesting, J. Math. Biol., 8 (1979), 55–71.
[7] F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under

constant rate harvesting and stocking, J. Math. Biol., 12 (1981), 101–114.

[8] L. Cai, G. Chen and D. Xiao, Multiparametric bifurcations of an epidemiological model with
strong Allee effect , J. Math. Biol., 67 (2013), 185–215.

[9] V. Christensen, Managing fisheries involving predator and prey species, Rev. Fish Biol.

Fisher., 6 (1996), 417–442.
[10] C. W. Clark, “Mathematical Bioeconomics. The Optimal Management of Renewable Re-

sources,” Second edition, Pure and Applied Mathematics (New York), A Wiley-Interscience
Publication, John Wiley & Sons, New York, 1990.

[11] S.-N. Chow, C. Li and D. Wang, “Normal Forms and Bifurcation of Planar Vector Fields,”

Cambridge University Press, Cambridge, 1994.
[12] G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey

system, SIAM J. Appl. Math., 58 (1998), 193–210.

[13] F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields
on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension

3 , Ergodic Theor. Dyn. Syst., 7 (1987), 375–413.

http://dx.doi.org/10.1016/0304-3800(82)90016-3
http://www.ams.org/mathscinet-getitem?mr=MR0587231&return=pdf
http://dx.doi.org/10.1016/0025-5564(80)90103-0
http://dx.doi.org/10.1016/0025-5564(80)90103-0
http://www.ams.org/mathscinet-getitem?mr=MR0442988&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0442996&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0648855&return=pdf
http://dx.doi.org/10.1007/BF00275152
http://dx.doi.org/10.1007/BF00275152
http://www.ams.org/mathscinet-getitem?mr=MR0657280&return=pdf
http://dx.doi.org/10.1007/BF00280586
http://dx.doi.org/10.1007/BF00280586
http://www.ams.org/mathscinet-getitem?mr=MR0631002&return=pdf
http://dx.doi.org/10.1007/BF00275206
http://dx.doi.org/10.1007/BF00275206
http://dx.doi.org/10.1007/s00285-012-0546-5
http://dx.doi.org/10.1007/s00285-012-0546-5
http://dx.doi.org/10.1007/BF00164324
http://www.ams.org/mathscinet-getitem?mr=MR1044994&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2477948&return=pdf
http://dx.doi.org/10.1017/CBO9780511665639
http://www.ams.org/mathscinet-getitem?mr=MR1610009&return=pdf
http://dx.doi.org/10.1137/S0036139994275799
http://dx.doi.org/10.1137/S0036139994275799
http://www.ams.org/mathscinet-getitem?mr=MR0912375&return=pdf
http://dx.doi.org/10.1017/S0143385700004119
http://dx.doi.org/10.1017/S0143385700004119
http://dx.doi.org/10.1017/S0143385700004119


BIFURCATION IN A PREDATOR-PREY MODEL WITH HARVESTING 2121

[14] R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalized Gause model with prey
harvesting and a generalized Holling response function of type III , J. Differential Equations,

249 (2010), 2316–2356.

[15] O. Flaaten, On the bioeconomics of predator-prey fishing, Fish. Research, 37 (1998), 179–191.
[16] Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model

with prey harvesting, Acta Math. Appl. Sinica Eng. Ser. (accepted).
[17] S. L. Hill, E. J. Murphy, K. Reid, P. N. Trathan and A. J. Constable, Modelling Southern

Ocean ecosystems: Krill, the food-web, and the impacts of harvesting, Biol. Rev., 81 (2006),

581–608.
[18] W. L. Hogarth, J. Norbury, I. Cunning and K. Sommers, Stability of a predator-prey model

with harvesting, Ecol. Modelling, 62 (1992), 83–106.

[19] J. A. Hutchings, Collapse and recovery of marine fishes, Nature, 406 (2000), 882–885.
[20] J. A. Hutchings and R. A. Myers, What can be learned from the collapse of a renewable

resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador, Can. J. Fish. Aquat.

Sci., 51 (1994), 2126–2146.
[21] S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J.

Appl. Math., 55 (1995), 763–783.

[22] Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system
with generalized Holling type III functional response, J. Dynam. Differential Equations, 20

(2008), 535–571.
[23] B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with

nonconstant harvesting, Discrete Contin. Dynam. Syst. Ser. S, 1 (2008), 303–315.

[24] R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multi-
species fisheries, Science, 205 (1979), 267–277.

[25] R. A. Myers, J. A. Hutchings and N. J. Barrowman, Why do fish stocks collapse? The example

of cod in Atlantic Canada, Ecol. Appl., 7 (1997), 91–106.
[26] R. A. Myers and B. Worm, Rapid worldwide depletion of large predatory fish communities,

Nature, 423 (2003), 280–283.

[27] M. R. Myerscough, B. F. Gray, W. L. Hograth and J. Norbury, An analysis of an ordinary dif-
ferential equation model for a two-species predator-prey system with harvesting and stocking,

J. Math. Biol., 30 (1992), 389–411.

[28] D. Pauly, Theory and management of tropical multispecies stocks, ICLARM Stud. Rev., 1
(1979), 35 pp.

[29] D. Pauly, et al., Towards sustainability in world fisheries, Nature, 418 (2002), 689–695.
[30] L. Perko, “Differential Equations and Dynamical Systems,” Second edition, Texts in Applied

Mathematics, 7, Springer-Verlag, New York, 1996.

[31] F. Takens, Forced oscillations and bifurcation, in “Applications of Global Analysis, I” (Sym-
pos., Utrecht State Univ., Utrecht, 1973), Comm. Math. Inst. Rijksuniversitat Utrecht., No.

3-1974, Math. Inst. Rijksuniv. Utrecht, Utrecht, (1974), 1–59.
[32] Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops

in a SIRS model with a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621–639.

[33] D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant

rate harvesting, SIAM J. Appl. Math., 65 (2005), 737–753.
[34] D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant

rate harvesting, in “Differential Equations with Applications to Biology” (Halifax, NS, 1997),
Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, (1999), 493–506.

[35] P. Yodzis, Predator-prey theory and management of multispecies fisheries, Ecol. Appl., 4

(1994), 51–58.

[36] Z. Zhang, T. Ding, W. Huang and Z. Dong, “Qualitative Theory of Differential Equation,”
Transl. Math. Monogr., 101, Amer. Math. Soc., Providence, RI, 1992.

[37] C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower
predator-prey systems with harvesting rates, Discrete Contin. Dynam. Syst. Ser. B, 14 (2010),

289–306.

[38] H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey
system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636–682.

Received April 2013; revised June 2013.

E-mail address: hjc@mail.ccnu.edu.cn;gyj19840301@163.com;ruan@math.miami.edu

http://www.ams.org/mathscinet-getitem?mr=MR2718660&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.06.021
http://dx.doi.org/10.1016/j.jde.2010.06.021
http://dx.doi.org/10.1016/S0165-7836(98)00135-0
http://dx.doi.org/10.1016/0304-3800(92)90083-Q
http://dx.doi.org/10.1016/0304-3800(92)90083-Q
http://www.ams.org/mathscinet-getitem?mr=MR1331585&return=pdf
http://dx.doi.org/10.1137/S0036139993253201
http://www.ams.org/mathscinet-getitem?mr=MR2429436&return=pdf
http://dx.doi.org/10.1007/s10884-008-9102-9
http://dx.doi.org/10.1007/s10884-008-9102-9
http://www.ams.org/mathscinet-getitem?mr=MR2379909&return=pdf
http://dx.doi.org/10.3934/dcdss.2008.1.303
http://dx.doi.org/10.3934/dcdss.2008.1.303
http://dx.doi.org/10.1126/science.205.4403.267
http://dx.doi.org/10.1126/science.205.4403.267
http://www.ams.org/mathscinet-getitem?mr=MR1154697&return=pdf
http://dx.doi.org/10.1007/BF00173294
http://dx.doi.org/10.1007/BF00173294
http://www.ams.org/mathscinet-getitem?mr=MR1418638&return=pdf
http://dx.doi.org/10.1007/978-1-4684-0249-0
http://www.ams.org/mathscinet-getitem?mr=MR0478235&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2465859&return=pdf
http://dx.doi.org/10.1137/070700966
http://dx.doi.org/10.1137/070700966
http://www.ams.org/mathscinet-getitem?mr=MR2136029&return=pdf
http://dx.doi.org/10.1137/S0036139903428719
http://dx.doi.org/10.1137/S0036139903428719
http://www.ams.org/mathscinet-getitem?mr=MR1662637&return=pdf
http://dx.doi.org/10.2307/1942114
http://www.ams.org/mathscinet-getitem?mr=MR1175631&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2644265&return=pdf
http://dx.doi.org/10.3934/dcdsb.2010.14.289
http://dx.doi.org/10.3934/dcdsb.2010.14.289
http://www.ams.org/mathscinet-getitem?mr=MR1951954&return=pdf
http://dx.doi.org/10.1137/S0036139901397285
http://dx.doi.org/10.1137/S0036139901397285
mailto:hjc@mail.ccnu.edu.cn;gyj19840301@163.com;ruan@math.miami.edu

	1. Introduction
	2. Equilibria and their stability
	3. Bifurcations
	3.1. Saddle-node bifurcation
	3.2. Bogdanov-Takens bifurcation
	3.3. Hopf bifurcation

	4. Discussion
	Acknowledgments
	REFERENCES

